
Article

Not peer-reviewed version

An Exact Formula for Cosmic Entropy in Rh=Ct Cosmological Model

[Stéphane Wojnow](#) *

Posted Date: 18 August 2025

doi: 10.20944/preprints202508.1329.v1

Keywords: Entropy; Rh=ct cosmology; Temperature of CMB; Black hole; era Planck

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

An Exact Formula for Cosmic Entropy in Rh=Ct Cosmological Model

Stéphane Wojnow

Independent Researcher, Limoges, France; wojnow.stephane@gmail.com

Abstract

The question of the entropy of the universe is crucial and remains unanswered in cosmology. Assuming a flat universe, we derive an exact heuristic formula for the entropy of the apparent universe: $S_{Rh} = \frac{16\pi^2 Rh^2 E_{Pl}}{Rh l_{Pl} T_{Pl}} \frac{T_{cmb}}{T_{Pl}} \frac{t_{Rh}}{t_{Pl}} J \cdot K^{-1}$ at the apparent horizon, i.e. at the Hubble radius. This approach forms part of a quantum thermodynamic cosmology framework of the Rh = ct type and could help to quantify the Planck era of Big Bang theory. It assumes that the universe would exist before Planck time at Planck temperature. Furthermore, it could shed new light on the standard cosmological model with regard to entropy.

Keywords: entropy; Rh=ct cosmology; temperature of CMB; black hole; era Planck

1. Introduction

Einstein said about thermodynamics: "A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability. Therefore, the deep impression which classical thermodynamics made upon me. It is the only physical theory of universal content concerning which I am convinced that within the framework of the applicability of its basic concepts, it will never be overthrown." [1]

Entropy is a measure of the disorder or randomness of a system. According to the second law of thermodynamics, the entropy of an isolated system increases over time, or at best remains constant. This law gives time a fundamental direction, often referred to as the 'arrow of time'.

A major challenge in the standard cosmological model is explaining why the universe began its expansion with abnormally low entropy, which then increased dramatically to reach values much higher than those observed at decoupling (approximately 380,000 years after the Big Bang). This 'initial entropy problem' appears to contradict the observed cosmic microwave background (CMB), which indicates that the early universe was close to thermal and chemical equilibrium, a state typically associated with high entropy.

Assuming our universe is an isolated system at the temperature of the CMB and based on recent thermodynamic cosmology research of the Rh = ct type, we propose a formula for the entropy of our universe that is consistent with its energy at the apparent horizon.

2. Background

In 2015, Tatum et al. [2] proposed an equation for the CMB temperature, noted T_{cmb} , that has since been formally derived from the Stefan-Boltzmann law by Haug and Wojnow [3,4].

$$T_{cmb} = T_{Rh} = \frac{\hbar c}{k_b 4\pi \sqrt{R_h 2l_{Pl}}} \quad (1)$$

Which can be derived as follows:

$$T_{cmb} = T_{Rh} = \frac{\hbar}{k_b 4\pi \sqrt{t_{Rh} 2t_{Pl}}} \quad (2)$$

Where \hbar is the reduced Planck constant, c is the speed of light in a vacuum, k_b is Boltzmann's constant, the Hubble radius is defined by $R_h = \frac{c}{H}$ where H is the Hubble parameter, T_{Rh} is the temperature of the Hubble sphere, l_{Pl} is the Planck length, t_{Rh} is the Hubble time defined by $t_{Rh} = \frac{1}{H}$, and t_{Pl} is the Planck time.

From Eq.2 we derive directly:

$$t_{Rh} = \frac{\hbar^2}{T_{cmb}^2 k_b^2 16\pi^2 2t_{Pl}} \quad (3)$$

These values, together with Planck's energy, $E_{Pl} = m_{Pl}c^2$, where m_{Pl} is Planck's mass, are necessary and sufficient to lead us to the formulation of the entropy S_{Rh} of the apparent universe, i.e. at the Hubble radius, compatible with the energy contained in the Hubble sphere.

3. Heuristic Formulation of the Entropy of Our Apparent Universe

First, we simply reject the formulation of entropy previously proposed, for example by Haug and Tatum [6] in $Rh=ct$ models, on the grounds that they do not correctly account for the energy contained in the Hubble sphere, $E_{Rh} = \frac{c^4 Rh}{2G}$, where G is the gravitational constant. Indeed, it is not logical that, in thermodynamic cosmological models, $S_{Rh} T_{Rh}$ diverges from E_{Rh} .

Note: It should be noted that Eq.1 is an adaptation of the Hawking temperature of black holes [2]. This leads to the speculative idea that our universe is the interior of an expanding black hole and that, in thermodynamic cosmology, an isolated system can also be likened to the interior of a black hole. Thus, our universe would be a simple part of an infinite flat universe populated by black holes, which themselves contain their own universes.

For example, in Haug and Tatum's approach to the entropy of our apparent universe, the energy E_{Rh} is correct at Planck temperature, which should be noted, but diverges by a factor of 10^{52} today. We reject it for this reason.

The entropy S_{Rh} proposed by Haug and Tatum [5], although incorrect for all Rh , has the advantage of being correct at Planck temperature. They assumed in $Rh=ct$ cosmology the Bekenstein-Hawking formula for the entropy of a black hole as follows:

$$S_{Rh} = \frac{4\pi R_h^2}{4l_{Pl}^2} \quad (4)$$

We have noticed that the geometric means, commonly used in our particular approach to $Rh=ct$ thermodynamic cosmological models^[2,6], between unit quantum values and $Rh=ct$ model values.

We therefore replaced l_{Pl}^2 with $\sqrt{R_h^2 l_{Pl}^2} = R_h l_{Pl}$ to preserve the exact result at Planck time, when $R_h = c t_{Pl}$. Despite this modification, $S_{Rh} T_{Rh}$ still diverged from $E_{Rh} = \frac{c^4 Rh}{2G}$ for more contemporary values of Rh . We then applied the principle of the ratio of quantum values to values in the $Rh = c t$ model to count the number of Planck units. For example^[7], $\frac{t_{Rh}}{t_{Pl}}$. When $S_{Rh} T_{Rh}$ was sufficiently close to E_{Rh} , we searched for constants, particularly simple powers of π , to arrive at this formula for the entropy of the apparent universe, which is compatible with its energy at the CMB temperature

$$S_{Rh} = \frac{16 \pi^2 R_h^2 E_{Pl}}{R_h l_{Pl} T_{Pl}} \frac{T_{cmb}}{T_{Pl}} \frac{t_{Rh}}{t_{Pl}} J \cdot K^{-1} \quad (5)$$

$$S_{Rh} T_{Rh} = \frac{16 \pi^2 R_h^2 E_{Pl}}{R_h l_{Pl} T_{Pl}} \frac{T_{cmb}}{T_{Pl}} \frac{t_{Rh}}{t_{Pl}} T_{Rh} = E_{Rh} = \frac{c^4 Rh}{2G} \quad (6)$$

It is important to emphasize and remember that, in this approach,

$$T_{cmb} = T_{Rh} = \frac{\hbar}{k_b 4\pi \sqrt{t_{Rh} 2t_{Pl}}} \quad (7)$$

and

$$t_{Rh} = \frac{\hbar^2}{T_{cmb}^2 k_b^2 16\pi^2 2t_{Pl}} \quad (8)$$

3. Contribution of the Entropy $R_h = ct$ to the Duration in the Planck Era

It is widely accepted that the Planck era is characterized by Planck energy and Planck temperature. However, the concept of time in the Planck era is poorly defined. By setting $T_{cmb} = T_{Rh} = T_{Pl}$, we calculate $t_{Rh} = \frac{t_{Pl}}{64\pi^2}$, i.e. a time shorter than the Planck time at Planck era.

4. Conclusion

The contribution of the universe entropy formula $R_h = ct$ to emerging thermodynamic cosmological models seems to be an important advance. It provides a reliable formula in this field of research, paving the way for new developments and perspectives on the issues faced by the contemporary standard cosmological model.

References

1. Albert Einstein, Stephen W. Hawking (2007). "A Stubbornly Persistent Illusion: The Essential Scientific Works of Albert Einstein", p.353, Running Press
2. Tatum, E., Seshavatharam, U. and Lakshminarayana, S. (2015) The Basics of Flat Space Cosmology. *International Journal of Astronomy and Astrophysics*, 5, 116-124. <https://doi.org/10.4236/ijaa.2015.520153>.
3. Espen Gaarder Norwegian University of Life Sciences Haug, Stéphane Wojnow. How to predict the temperature of the CMB directly using the Hubble parameter and the Planck scale using the Stefan-Boltzman law. 2023. [hal-04269991](https://hal.archives-ouvertes.fr/hal-04269991)
4. Haug, E.G. CMB, Hawking, Planck, and Hubble Scale Relations Consistent with Recent Quantization of General Relativity Theory. *Int J Theor Phys* **63**, 57 (2024). <https://doi.org/10.1007/s10773-024-05570-6>.
5. Haug, E.G., Tatum, E.T. Friedmann type equations in thermodynamic form lead to much tighter constraints on the critical density of the universe. *Discov Sp* **129**, 6 (2025). <https://doi.org/10.1007/s11038-025-09566-y>
6. Espen Gaarder Haug, Eugene Tatum. The Hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature. 2023. [hal-04308132v2](https://hal.archives-ouvertes.fr/hal-04308132v2)
7. S. Wojnow, "Alternative Cosmology: Λ CDM-Like Predictions Today: Cosmology", hij, vol. 3, no. 4, pp. 24–30, Dec. 2023.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.