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Article

Joint Design of Altitude and Channel Statistics Based
Energy Beamforming for UAV-Enabled Wireless
Energy Transfer

Jinho Kang

School of Electronic Engineering, Gyeongsang National University, Jinju 52828, South Korea; jinhokang@gnu.ac.kr

Abstract: In recent years, UAV-enabled wireless energy transfer (WET) has attracted significant attention for

its ability to provide ground devices with efficient and stable power by flexibly navigating three-dimensional

(3D) space and utilizing favorable line-of-sight (LoS) channels. At the same time, energy beamforming utilizing

multiple antennas, in which energy beams are focused toward devices in desirable directions, has been highlighted

as a key technology for substantially enhancing radio frequency (RF)-based WET efficiency. Despite its significant

utility, energy beamforming has not been studied in the context of UAV-enabled WET system design. In this paper,

we propose the joint design of UAV altitude and channel statistics based energy beamforming to minimize the

overall charging time required for all energy-harvesting devices (EHDs) to meet their energy demands while

reducing the additional resources and costs associated with channel estimation. Unlike previous works, in which

only the LoS dominant channel without small-scale fading was considered, we adopt a more general air-to-ground

(A2G) Rician fading channel, where the LoS probability as well as the Rician factor is dependent on the UAV

altitude. To tackle this highly non-convex and non-linear design problem, we first examine the scenario of a single

EHD, drawing insights by deriving an optimal energy beamforming solution in closed form. We then devise

efficient methods for jointly designing altitude and energy beamforming in scenarios with multiple EHDs. Our

numerical results demonstrate that the proposed joint design considerably reduces the overall charging time

while significantly lowering the computational complexity compared to conventional methods.

Keywords: wireless energy transfer; UAV; altitude; energy beamforming; channel statistics; charging time; optimization

1. Introduction

Radio frequency (RF)-based wireless energy transfer (WET) is a key enabling technology for
developing intelligent and self-sustaining Internet of Everything (IoE) networks in the 6G era [1–7]. It
enables the continuous supply of power to wireless devices over the air, such as wearable electronic
devices, extended reality devices, and robotics, without the need for frequent battery replacements or
wired power lines. Moreover, compared to traditional power systems, RF-based WET can significantly
enhance the quality of service for powering devices by adapting to different physical conditions and
service requirements while also improving throughput and robustness [1–3].

In recent years, unmanned aerial vehicles (UAVs) have gained significant attention in various
scenarios due to their deployment flexibility, mobility, and cost-effectiveness, leading to widespread
adoption across various applications, including military operations, cargo delivery, disaster manage-
ment, and communication platforms [8–15]. They provide greater flexibility in system design and
operation within wireless networks by allowing adjustments to the deployment position and path of
UAVs, yielding significant advantages such as coverage enhancements [8–15].

Thanks to its potential advantages, UAV-enabled wireless energy transfer (WET) has received great
attention for providing ground devices with more efficient and stable power compared to conventional
WET systems, which use fixed-location energy transmitters [15–24]. In particular, UAVs are able to
move flexibly in three-dimensional (3D) space, utilizing favorable line-of-sight (LoS) channels with
ground devices. As such, UAVs can serve as a new type of aerial energy transmitter, reducing the
transmission distances for powering devices while avoiding obstacles and shadow fading, even in
remote areas where conventional fixed-location energy transmitters are not available. Accordingly,
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UAV-enabled WET is able to overcome energy bottlenecks as well as meet urgent energy demands,
thereby extending the operational lifespan of energy-constrained devices, especially in dynamic or
hard-to-reach environments such as smart cities, wireless sensor networks, and maritime networks,
among others [15–18]. However, effective UAV trajectory design is required to reap potential gains
from UAV-enabled WET.

In practical UAV-enabled WET scenarios, a UAV may move closer to a device in order to reduce
the transmission distance for improved power efficiency. This may result in the UAV moving farther
away from another device, thereby decreasing the overall energy transfer efficiency. To address
this challenge, UAV trajectory design has been extensively studied to improve the energy transfer
performance for multiple devices [15–21]. Specifically, in a single UAV-enabled WET system, an optimal
one-dimensional (1D) trajectory design at a fixed altitude was proposed to maximize the minimum
received energy among all devices during a given charging period [16]. For a more general context, the
design of a two-dimensional (2D) UAV trajectory at a fixed altitude was studied to optimize the energy
transferred to all devices during a given charging period [17], with further investigations in a more
practical scenario [18]. Moreover, the design of a 3D UAV trajectory within a specified altitude range
was explored to maximize the total received energy across all devices for a given charging period [19].
The joint design of 2D UAV trajectory and orientation of 1D directional antenna array at the UAV with
a fixed altitude was also studied [20] and further extended to a structure that includes a 3D directional
antenna array at the UAV [21]. Moreover, a multi-UAV-enabled WET system capable of covering a
large area was proposed, and effective trajectory designs for multiple UAVs were studied to enhance
energy transfer performance across various scenarios [15,22–24].

Meanwhile, energy beamforming has been recognized as a promising technology for significantly
increasing the energy transfer efficiency of RF-based WET systems, particularly compared to single-
antenna omni-directional transmission [2–4]. An energy transmitter with multiple antennas can
simultaneously focus energy beams toward devices in the desired directions, thereby overcoming
high propagation path loss without increasing transmit power or bandwidth. In this regard, various
energy beamforming techniques have been proposed for use in terrestrial wireless networks with
perfect channel state information (CSI) as well as with imperfect CSI [3–7]. Moreover, due to the
advantage of having LoS channels, beamforming techniques combined with resource allocation
and optimization have been widely considered to enhance power transfer performance in various
UAV-enabled systems [25]. Beamforming combined with optimization of placement and resource
allocation has been studied to maximize energy efficiency in wireless-powered UAV communication
systems with non-orthogonal multiple access (NOMA) [26]. Additionally, hybrid beamforming with
resource allocation has been explored in UAV-enabled wireless-powered mobile edge computing
networks [27]. Furthermore, the joint optimization of beamforming, transmit power, power-splitting
ratio, and UAV trajectory was proposed to enhance communication performance in UAV-enabled
relay networks with wireless power transfer [28]. For UAV-enabled wireless-powered communication
networks (WPCNs), beamforming techniques have also been explored using a backscattering scheme
[29] and reconfigurable intelligent surfaces (RIS) [30], by jointly optimizing time allocation. Various
beamforming techniques for UAV-enabled systems have been proposed in conjunction with resource
allocation and optimization. However, existing studies have primarily focused on wireless-powered
communication systems (WPCNs) or simultaneous wireless information and power transfer (SWIPT)
systems, with an emphasis on optimizing communication performance. To the best of our knowledge,
despite its significant utility, an energy beamforming technique that focuses solely on increasing
energy transfer efficiency to simultaneously charge multiple devices, rather than on communication
performance, has not been fully studied to realize its potential gains in UAV-enabled WET systems.

Motivated by the aforementioned observations, we focus on energy beamforming design to
optimize energy transfer efficiency for UAV-enabled WET systems. In practical WET networks, multiple
devices have different energy requirements, and their charging times vary based on the amount of
energy needed. Therefore, UAV altitude and energy beamforming must be optimized accordingly. To
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this end, this paper investigates a joint design of UAV altitude and energy beamforming to minimize
the overall charging time required for all energy-harvesting devices (EHDs) to meet their energy
requirements. Thus, a large number of EHDs are efficiently served simultaneously while avoiding
unnecessary energy transfer from the UAV. Our main contributions are summarized as follows:

• We propose the joint design of UAV altitude- and channel statistics-based energy beamforming,
where the EHDs’ energy demands are considered in efficiently and simultaneously serving the
EHDs while reducing the additional resources and costs associated with obtaining perfect channel
state information. In contrast to existing works on UAV-enabled WET, which consider only the
LoS dominant channel without small-scale fading, we adopt the more general air-to-ground
(A2G) Rician fading channel while also taking into account the characteristic nature of the aerial
channel in practical UAV scenarios, where the channel statistics depend on the altitude of the
UAV.

• Due to the highly non-convex and non-linear nature of our design problem, we first jointly
optimize UAV altitude and energy beamforming in a single-EHD scenario to draw insights. We
derive a solution for optimal energy beamforming in closed form, thereby developing an efficient
algorithm with low complexity in obtaining the optimal solution.

• We devise an efficient algorithm to jointly optimize the UAV altitude and energy beamforming
in a scenario with multiple EHDs by investigating the optimal conditions as well as the dual
problem. Motivated by insights from the design for a single-EHD scenario, we also develop an
efficient low-complexity method for determining near-optimal altitude and energy beamforming.
Moreover, we explore a sub-optimal design by leveraging weighted-sum energy beamforming in
closed form with considerably reduced computational complexity.

• The numerical results demonstrate that compared to conventional methods, the proposed meth-
ods can significantly reduce the overall charging time while also decreasing the computational
complexity.

The rest of this paper is organized as follows. In Section 2, we introduce the system model and
formulate our design problem. In Section 3, we jointly optimize UAV altitude and energy beamforming
for a single-EHD scenario. In Section 4, we propose the methods for jointly optimizing UAV altitude
and energy beamforming in a multiple-EHD scenario. We evaluate our proposed methods in Section 5
and conclude our paper in Section 6.

2. System Model and Problem Formulation

2.1. System Model

As depicted in Figure 1, we consider a UAV-enabled RF-based wireless energy transfer (WET)
system where one UAV simultaneously transfers power to U energy-harvesting devices (EHDs) on the
ground, such as IoT devices and sensors. The UAV is equipped with N transmitting antennas, and the
EHDs are equipped with a single antenna. The UAV hovers over the central EHDs with an altitude
h ∈ [Hmin, Hmax] in order to conserve power for flight, where Hmin and Hmax denote the minimum
and maximum altitude of the UAV, respectively. In addition, the maximum WPT coverage of the UAV
on the ground is denoted as rmax. The horizontal distance between the UAV and u-th EHD, where
u ∈ U ≜ {1, ..., U}, is denoted by ru ≤ rmax.

Let wb ∈ CN be the b-th energy beamforming vector transmitted from the UAV to the EHDs
where b ∈ B ≜ {1, ..., B} and B (≤ N) is the number of energy beams to be determined. Then, the
transmitted signal vector at the UAV for the power transfer, denoted by x ∈ CN , is given as

x =
B

∑
b=1

wbsb (1)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2024 doi:10.20944/preprints202410.2109.v1

https://doi.org/10.20944/preprints202410.2109.v1


4 of 25

where sb is the energy-bearing signal with zero mean and unit variance, i.e., E[|sb|2] = 1, which can
have an arbitrary distribution, since sb does not carry any information [1–3]. In this case, the transmit
covariance matrix at the UAV, denoted by X ∈ HN , becomes

X =
B

∑
b=1

wbwH
b ⪰ 0 (2)

where HN represents the set of N-by-N Hermitian matrices. It is assumed that the UAV has a transmit
sum power constraint of P; then, the transmit covariance matrix of (2) must satisfy Tr(X) ≤ P.

Figure 1. Illustration of our system model.

2.2. Aerial Channel Model

In this paper, we adopt an air-to-ground (A2G) Rician fading channel by considering the char-
acteristic nature of the aerial channel in practical scenarios, where the channel statistics depend on
the UAV altitude [11–14,31]. A Rician fading channel consists of a deterministic line-of-sight (LoS)
component as well as a random multipath component, i.e., Rayleigh-distributed non-LoS (NLoS).
Thus, the A2G Rician fading channel model characterizes the aerial channel by taking into account the
dominant LoS channel and the multiplicative effect of both large- and small-scale fading. The channel
vector between the UAV and u-th EHD, denoted by hu ∈ CN×1, is modeled by [14,31].

hu =
√

β0d−αu
u

(√
Ku

Ku + 1
au +

√
1

Ku + 1
hNLoS

u

)
(3)

where β0 is the path loss at the reference distance; du and αu denote the distance and path loss
exponent between the UAV and u-th EHD, respectively. au ∈ CN×1 is the deterministic LoS component;
hNLoS

u ∈ CN×1 is the NLoS component distributed with hNLoS
u ∼ CN (0, IN); Ku denotes the Rician

factor which reflects the power ratio of the LoS component and NLoS component. Assuming there is a
uniform linear array (ULA) at the UAV, the LoS component is represented by

au =
[
1, e−j2π da

λc sin(ϕu), . . . , e−j2π(N−1) da
λc sin(ϕu)

]T (4)

where λc is the carrier wavelength, da is the space between adjacent antennas, and ϕu is the angle of
departure (AoD) [14,31].

Since the propagation characteristics of the A2G channel, such as obstacle density and link quality,
are affected by the altitude of the UAV [8–14], we model not only the probability of a link having a
LoS component but also the values of the path loss exponent and Rician factor as a function of UAV
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altitude, as follows. First, the distance and elevation angle (in radians) between the UAV and u-th EHD
are respectively given by

du =
√

r2
u + h2, (5)

θu = arctan
( h

ru

)
. (6)

Then, the LoS probability can be modeled as a function of the elevation angle: [11–14]

PLoS(θu) =
1

1 + a1 exp
(
− b1

( 180
π θu − a1

)) (7)

where a1 and b1 are positive parameters that are determined by environmental characteristics, i.e.,
Suburban, Urban, Dense Urban, and Highrise Urban [8–10]. The value of the path loss exponent is
typically proportional to the LoS probability, so αu can be modeled as [11–14]

αu = a2PLoS(θu) + b2. (8)

In (8), the coefficients of a2 and b2 are given by

a2 =
(
α π

2
− α0

)1 + a1 exp(a1b1)

a1 exp(a1b1)
(9)

b2 = α0 −
a2

1 + a1 exp(a1b1)
(10)

where α0 and α π
2

are the path loss exponents of ground and aerial links, which are determined
through measurement [10–12]. Here, a2 < 0 and b2 > 0, and a2 ∼= α π

2
− α0 and b2 ∼= α0, where the

approximations come from PLoS(0) → 0 and PLoS
(

π
2
)
→ 1. In addition, with respect to θu, αu is a

monotonic function decreasing from α0 to α π
2

.
In addition, the Rician factor depends on the LoS probability and is thus characterized by the

elevation angle of the UAV. In this regard,Ku can be modeled in dB units using an exponential function
of θu [11,13,32], as follows:

KdB
u = a3 exp

(
b3θu

)
(11)

where a3 and b3 are environment- and frequency-dependent constant parameters that are given by
[11,13,32]

a3 = KdB
0 , b3 =

2
π

ln
(KdB

π
2

KdB
0

)
. (12)

In (12), KdB
0 and KdB

π
2

are the Rician factors in dB units when the elevation angles are 0 rad and π
2

rad, respectively, which are obtained from measurements [32]. In addition, with respect to θu, KdB
u is

monotonic function increasing from KdB
0 to KdB

π
2

.

2.3. Formulation of the Energy Harvesting Optimization Problem

By denoting τu as the charging time of the u-th EHD, the energy harvested at the u-th EHD is
given by [1–5]

Qu = ζuτu Tr
(
huhH

u X
)
, ∀u ∈ U (13)
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where ζk (∈ (0, 1]) is the energy-harvesting efficiency, which is determined by the circuit. Without loss
of generality, we set ζ1 = · · · = ζU = 1 for simplicity. However, any constant efficiency values can be
integrated into our energy-harvesting optimization problem.

When the energy requirement from the u-th EHD is represented by QReq
u > 0, the required charg-

ing time at the u-th EHD to meet the energy requirements is given by τu =
QReq

u

Tr(huhH
u X)

. On the other

hand, obtaining perfect channel state information (CSI) at the UAV for energy beamforming design
requires additional resources and cost for channel estimation, which is not expected to be feasible
in practice due to the high energy consumption and computational complexity [2,4,5,15]. Therefore,
we explore only channel statistics in the joint design of UAV altitude and energy beamforming. In
the context of optimization for energy harvesting, we focus on the long-term channel statistics, i.e.,
E
[
huhH

u
]
, rather than the perfect CSI of huhH

u [4,5,7]. To this end, we consider the expected required
charging time at the u-th EHD, which is represented as

τu =
QReq

u

Tr(E[huhH
u ]X)

, ∀u ∈ U . (14)

In consideration of the different energy requirements across all EHDs, i.e., [QReq
u ]Uu=1, the overall

charging time required for all EHDs to meet their energy demands becomes max(τ1, ..., τU) [3,6,7].
Our design objective is to jointly optimize UAV altitude and energy beamforming to minimize the
overall charging time required to meet the energy demands of all EHDs by leveraging only on channel
statistics. Consequently, our design problem is formulated as

P1 : min
h,X

max(τ1, ..., τU)

s.t. τu =
QReq

u

Tr
(
E[huhH

u ]X
) , ∀u ∈ U , (15)

Tr(X) ≤ P, (16)

X ⪰ 0, (17)

Hmin ≤ h ≤ Hmax. (18)

In the problem P1, the constraints (16) and (17) follow from the transmit sum power constraint
and (2), respectively, and the constraint (18) indicates the UAV altitude range with h ∈ [Hmin, Hmax].
In practical UAV operations, altitude adjustments should consider regulatory constraints such as
maximum allowable altitude, no-fly zones, and airspace restrictions, as well as practical factors like
energy consumption and safety management [33–35].

Additionally, from (3), E[huhH
u ] in (15) is expressed as

E[huhH
u ] = β0d−αu

u

 Ku

Ku + 1
auaH

u︸ ︷︷ ︸
LoS

+
1

Ku + 1
IN︸ ︷︷ ︸

NLoS


≜ Gu(h), (19)

where du, αu, and Ku are optimization functions for the variable h as well as the horizontal distance
between the UAV and u-th EHD, i.e., ru. In (19), Ku

Ku+1 auaH
u and 1

Ku+1 IN indicate the LoS and NLoS
components in the long-term channel statistics, respectively.
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By introducing an auxiliary variable as t ≜ max(τ1, ..., τU) , the problem P1 is equivalently
reformulated into the problem P2, as follows:

P2 : min
h,X,t

t

s.t. Tr
(
Gu(h)X

)
≥ QReq

u
t

, ∀u ∈ U , (20)

Tr(X) ≤ P, (21)

X ⪰ 0, (22)

Hmin ≤ h ≤ Hmax. (23)

P2 is a non-convex optimization problem, since the constraints of (20) are non-convex with respect
to the UAV’s altitude h. More specifically, in constraint (20), Gu(h) is non-linear as well as very complex
with respect to h for all u ∈ U , because du, αu, and Ku in Gu(h) are non-linear and complex functions
of h. Therefore, obtaining an optimal solution is, generally, extremely difficult. In order to tackle the
problem P2, we first solve the problem in a single-EHD scenario, to draw insights, and then establish
efficient methods for obtaining an optimal solution in a multiple-EHD scenario.

3. Joint Optimization of Altitude and Energy Beamforming for A Single EHD

In this section, we first solve the problem P2 in a single-EHD scenario by deriving energy beam-
forming in closed form. We then devise a method to jointly optimize altitude and energy beamforming.
Next, we develop an efficient low-complexity algorithm that yields the near-optimal altitude of the
UAV.

3.1. Optimal Design with a Closed-form Energy Beamforming Solution

For a single-EHD scenario, i.e., U = 1, we have t = τU =
QReq

U
Tr(GU(h)X) in the problem P2, so it can

be reformulated into the problem P3:

P3 : min
h,X

QReq
U

Tr
(
GU(h)X

)
s.t. Tr(X) ≤ P, X ⪰ 0,

Hmin ≤ h ≤ Hmax.

Since Tr
(
GU(h)X

)
> 0 must be satisfied at an optimal value, the objective function of the problem P3

can be recast as

min
h,X

QReq
U

Tr
(
GU(h)X

) = max
h,X

Tr
(
GU(h)X

)
. (24)

From (24), the problem P3 is equivalent to the problem P3′ :

P3′ : max
h,X

Tr
(
GU(h)X

)
s.t. Tr(X) ≤ P, X ⪰ 0,

Hmin ≤ h ≤ Hmax.

It is also difficult to obtain an optimal solution for h and X by directly solving the problem P3′ , because
GU(h) is a non-convex and complex non-linear function of h. However, an optimal covariance matrix
for X in relation to the problem P3′ is obtained in closed-form solution via the following lemma.
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Lemma 1. Optimal energy beamforming in the case of a single EHD is

X⋆ = PãU ãH
U (25)

where ãU =
aU
∥aU∥

. In addition, with a fixed h ∈ [Hmin, Hmax], the optimal value of the problem P3′ is given by

Tr
(
GU(h)X⋆

)
= Pβ0d−αU

U
KU∥aU∥2 + 1
KU + 1

(26)

where dU , αU , and KU depend on h. In (26), KU∥aU∥2

KU+1 and 1
KU+1 indicate the impact of the LoS and NLoS

components, respectively.

Proof of Lemma 1. Refer to Appendix A.

From Lemma 1, it is verified that optimal energy beamforming for a single-EHD case, i.e., X⋆,
depends only on the LoS component, i.e., aU , of the EHD and is not affected by the UAV altitude h.
Consequently, by inserting (25) and (26) in Lemma 1 into the problem P3′ , the optimal UAV altitude
for a single EHD can be obtained by solving the following problem:

Ph
3′ : max

h
Pβ0d−αU

U
KU∥aU∥2 + 1
KU + 1

s.t. Hmin ≤ h ≤ Hmax.

To tackle the problem Ph
3′ , we omit Pβ0, which is a constant term with respect to h, and we define

the objective function in the problem Ph
3′ as

fU(h) = d−αU
U
KU∥aU∥2 + 1
KU + 1

= (r2
U + h2)−

1
2 (a2PLoS(θU)+b2)

KU∥aU∥2 + 1
KU + 1

(27)

where (27) is obtained by substituting (5) and (8) into dU and αU , respectively. In this case, θU is
the function of the variable h as well as the EHD’s distance rU , while PLoS(θU) and KU are complex
functions with respect to θU . Therefore, for simplicity of notation, we define the functions ΨU(h) and
ΩU(h) such that PLoS(θU) ≜

1
1+ΨU(h) and KU = 100.1KdB

U ≜ ΩU(h), as follows:

ΨU(h) = a1 exp(a1b1) exp
(
−180

π
b1 arctan

( h
rU

))
(28)

ΩU(h) = 10
á3 exp

(
b3 arctan

( h
rU

))
(29)

where á3 = a3/10. Then, by inserting (28) and (29) into (27), we have

fU(h) =
(
r2

U + h2)−1
2

( a2

ΨU(h) + 1
+ b2

)
∥aU∥2ΩU(h) + 1

ΩU(h) + 1
. (30)

As represented in (30), the objective function of the problem Ph
3′ is non-convex, complex, and non-

linear with respect to h, making it generally challenging to obtain a closed-form solution. Fortunately,
the objective function of fU(h) only has one variable h with the range of h ∈ [Hmin, Hmax], so we adopt
a 1D exhaustive line search method to obtain the optimal h, i.e., h⋆. The detailed procedure to obtain
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the optimal altitude of h⋆ in the case of a single EHD is described in Algorithm 1. In this case, the

expected required charging time becomes t⋆ = QReq
U

Tr(GU(h⋆)X) .

Algorithm 1 Algorithm to find an optimal solution for the problem Ph
3′

1: Input: Parameters of the channel statistics (a1, b1, a2, b2, a3, c3), the minimum and

maximum altitude of Hmin and Hmax, the sample grid accuracy ∆,

an EHD’s horizontal distance and LoS component, i.e., rU and aU
2: Set: Hmin ≤ h ≤ Hmax with the sample grid ∆, the iteration number Iter = 1
3: for h = Hmin, Hmin + ∆, ..., Hmax do
4: Obtain fU(h) from (30)
5: Iter← Iter + 1
6: end for
7: Total number of iterations: Itertot ← Iter
8: Obtain h⋆ = arg max

Hmin≤h≤Hmax
fU(h)

9: Output: The optimal altitude of h⋆

3.2. Efficient Near-Optimal Altitude Design with Low complexity

In this subsection, we further explore the problem Ph
3′ to obtain a near-optimal solution with low

complexity. The first-order derivative of fU(h) is obtained via

∂ fU(h)
∂h

=

(
r2

U + h2)− a2
2(ΨU (h)+1)−

b2
2 −1

ΩU(h) + 1
gU(h) (31)

where gU(h) is given by

gU(h) ≜(∥aU∥2 − 1) ln(10)á3b3

rU exp
(

b3 arctan
( h

rU

))
ΩU(h)

ΩU(h) + 1

− a2

2
180
π

b1
rU ln(r2

U + h2)
(
∥aU∥2ΩU(h) + 1

)
ΨU(h)(

ΨU(h) + 1
)2

−
( a2

ΨU(h) + 1
+ b2

)(
∥aU∥2ΩU(h) + 1

)
h. (32)

As shown in (31), ∂ fU(h)
∂h is also a very complex non-linear function with respect to h ∈ [Hmin, Hmax]

to be optimally solved with a closed-form solution. Nevertheless, we can obtain the necessary con-
ditions for optimal solution of the problem Ph

3′ as follows. The critical point of the problem Ph
3′ must

satisfy ∂ fU(h)
∂h = 0. Additionally, ∂ fU(h)

∂h = 0 is equivalent to gU(h) = 0, because it is readily verified that

the first term in (31) always satisfies
(

r2
U+h2

)− a2
2(ΨU (h)+1)−

b2
2 −1

ΩU(h)+1 > 0, ∀h ∈ [Hmin, Hmax]. Moreover, the

feasible set of the problem Ph
3′ is given as a closed range of Hmin ≤ h ≤ Hmax. As a result, the optimal

solution to the problem Ph
3′ must satisfy either

(i) gU(h⋆) = 0, or (33)

(ii) h⋆ = Hmin, or (34)

(iii) h⋆ = Hmax. (35)

From (i) − (iii) in (33)–(35), we adopt the golden-section (GS)-based line search method to
determine the near-optimal solution of h⋆, which is known to have less computational complexity than
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the 1D exhaustive line search method. The detailed procedure of the proposed method to obtain a
near-optimal solution for the problem Ph

3′ with low complexity is described in Algorithm 2 in the next
page. Our proposed method is verified in the numerical results, i.e., Section 5.

Algorithm 2 Proposed method to obtain a near-optimal solution for the problem Ph
3′

1: Input: Parameters of the channel statistics (a1, b1, a2, b2, a3, c3), the minimum and

maximum altitude of Hmin and Hmax, the error tolerance ϵGS, δ = (
√

5−1)
2 ,

an EHD’s horizontal distance and LoS component, i.e., rU and aU
2: Set: ha = Hmin and hb = Hmax, hs,a = ha + (1− δ)(hb − ha) and

hs,b = hb − (1− δ)(hb − ha), the iteration number Iter = 1
3: Obtain gs,a = gU(hs,a) and gs,b = gU(hs,b) from (32), respectively
4: while |hb − ha| < ϵGS do
5: if gs,a > gs,b, then
6: hb ← hs,b, hs,b ← hs,a, and gs,b ← gs,a
7: hs,a ← ha + (1− δ)(hb − ha)
8: gs,a ← gU(hs,a) from (32)
9: else

10: ha ← hs,a, hs,a ← hs,b, and gs,a ← gs,b
11: hs,a ← hb − (1− δ)(hb − ha)
12: gs,b ← gU(hs,b) from (32)
13: end if
14: Iter← Iter + 1
15: end while
16: Total number of iterations: Itertot ← Iter
17: Obtain h⋆Prop = (ha + hb)/2
18: Output: The proposed near-optimal altitude of h⋆Prop

4. Joint Optimization of Altitude and Energy Beamforming for Multiple EHDs

In this section, we devise an efficient algorithm in the joint design of UAV altitude and energy
beamforming by solving the problem P2 in a multiple-EHD scenario (i.e., U ≥ 2) based on the
dual problem. Next, we propose an efficient low-complexity algorithm that yields near-optimal
altitude and energy beamforming at the UAV. Finally, we further explore a sub-optimal design by
developing weighted-sum energy beamforming in closed form, where the computational complexity
is considerably reduced by not using an SDP solver.

4.1. Optimal Design with an Efficient Algorithm

As mentioned in Section 2, it is generally very difficult to determine the joint optimal solution by
directly solving the original problem P2. However, the problem P2 with a given h ∈ [Hmin, Hmax] is a
convex optimization problem, so an optimal covariance matrix of X can be obtained by solving the
following problem:

PX
2 : min

X,t
t

s.t. Tr
(
Gu(h)X

)
≥ QReq

u
t

, ∀u ∈ U , (36)

Tr(X) ≤ P, (37)

X ⪰ 0.

The problem PX
2 is a semidefinite programming (SDP) problem and can therefore be solved using

well-known SDP solvers such as CVX [3,36,37]. Therefore, in order to obtain the optimal energy
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beamforming of X⋆ as well as the optimal UAV altitude h⋆ of the problem P2, we can adopt a 1D
exhaustive line search method for h ∈ [Hmin, Hmax] and iteratively solve the problem PX

2 using a fixed
h.

On the other hand, the SDP problem is commonly solved based on the interior-point method,
so the computational complexity mainly depends on the number and size of variables as well as the
number of constraints [36,37]. By defining the prescribed accuracy of an SDP solver as ϵSDP > 0, the
computational complexity to solve PX

2 becomes [37]

O
(

ln(1/ϵSDP)
√

N + U + 1N2(N4 + N2U + U
))

. (38)

In obtaining X⋆ for a given h, the computational complexity increases exponentially, following an order
of approximately 6 1

2 as the number of antennas N increases, which results in a burden on the UAV. To
resolve this challenge, we devise a low-complexity method to obtain X⋆ by solving the dual problem
instead of the primal problem PX

2 , as follows.
PX

2 is a convex optimization problem that satisfies Slater’s condition [3,36]. Hence, we consider the
Lagrangian function of PX

2 . By denoting νu ≥ 0 (∀u ∈ U ) and νP ≥ 0 as the dual variables associated
with the constraints of (36) and (37), respectively, the Lagrangian function is then obtained as [3]

L
(
{νu}U

u=1, νP
)
= inf

X⪰0,t

[
t +

U

∑
u=1

νu

(QReq
u
t
− Tr

(
Gu(h)X

))
+ νP

(
Tr(X)− P

)]

= inf
X⪰0

Tr
[(

νPI−
U

∑
u=1

νuGu(h)
)

X
]
+ inf

t

(
t + ∑U

u=1 νuQReq
u

t

)
− νPP (39)

= 2

√√√√ U

∑
u=1

νuQReq
u − νPP (40)

where (40) follows from the fact that Tr
[(

νPI−∑U
u=1 νuGu(h)

)
X
]
= 0 as well as νPI−∑U

u=1 νuGu(h) ⪰
0 must be satisfied in (39) to ensure that X ⪰ 0 is bounded below, and ∂L

(
{νu}U

u=1, νP
)
/∂t = 0 gives

t =
√

∑U
u=1 νuQReq

u in (39). We omit the details, since the derivations are well described in [3].
Consequently, the dual problem associated with PX

2 is formulated as

D.PX
2 : maximize

{νu}U
u=1, νP

2

√√√√ U

∑
u=1

νuQReq
u − νPP

s.t. νPI−
U

∑
u=1

νuGu(h) ⪰ 0,

νu ≥ 0, ∀u ∈ U , νP ≥ 0. (41)

The dual problem D.PX
2 can also be solved using well-known SDP solvers. By denoting {ν⋆u}U

u=1 and
ν⋆P as the optimal dual variables attained from the dual problem D.PX

2 , the optimal solution t⋆ of the
primal problem PX

2 becomes

t⋆ =

√√√√ U

∑
u=1

ν⋆uQReq
u . (42)

Here, we note that the computational complexity to solve the dual problem D.PX
2 approximates to

O
(

ln(1/ϵSDP)
√

N + U + 1U
(

N3 + N2U + U2)). (43)
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To compare (38) and (43) in terms of their computational complexity, we define the ratio between them
as

rO =
ln(1/ϵSDP)

√
N + U + 1U

(
N3 + N2U + U2)

ln(1/ϵSDP)
√

N + U + 1N2
(

N4 + N2U + U
)

=
U
(

N3 + N2U + U2)
N2
(

N4 + N2U + U
) . (44)

Substituting U = N(N − 1) into (44) with some manipulations, we obtain

rO |U=N(N−1) =
(N − 1)(2N2 − 2N + 1)
N3 + (N − 1)(N2 + 1)

⪅
(N − 1)(2N2 − 2N + 1)

N3 − 1 + (N − 1)(N2 + 1)

=
2N2 − 2N + 1
2N2 + N + 2

< 1. (45)

From (44) and (45), it is verified that the computational complexity to solve the dual problem D.PX
2

becomes much lower than that of the primal problem PX
2 when U ≤ N(N − 1), where the number of

EHDs, i.e., U, is much smaller than N(N − 1) when considering a practical scenario for UAV-enabled
WET [15–24]. Moreover, the gap in performance increases as U decreases from N(N − 1). For example,
when U = N, we obtain rO |U=N < 2

N2 from (44). Hence, the optimal altitude h⋆ is determined using
the proposed method, in which the dual problem D.PX

2 is solved based on applying the 1D exhaustive
line search method within the range of h ∈ [Hmin, Hmax].

Algorithm 3 Proposed method to obtain an optimal solution for the problem P2

1: Input: Parameters of the channel statistics (a1, b1, a2, b2, a3, c3), the minimum and

maximum altitude of Hmin and Hmax, the sample grid accuracy ∆,

the sum power constraint P, all EHDs’ horizontal distance, LoS component, and

energy requirements, i.e.,
[
ru, au, QReq

u
]U

u=1
2: Set: Hmin ≤ h ≤ Hmax with the sample grid ∆, the iteration number Iter = 1
3: for h = Hmin, Hmin + ∆, ..., Hmax do
4: Compute [Gu(h)]Uu=1 from (A5)
5: Obtain t⋆(h) from (42) by solving the dual problem D.PX

2
6: Iter← Iter + 1
7: end for
8: Total number of iterations: Itertot ← Iter
9: Obtain h⋆ = arg min

Hmin≤h≤Hmax
t⋆(h)

10: Obtain X⋆ and t⋆ by solving the primal problem PX
2 with [Gu(h⋆)]Uu=1

11: Output: The optimal altitude h⋆ and energy beamforming X⋆

On the other hand, when we solve the dual problem D.PX
2 with a fixed h, rather than the primal

problem PX
2 , we cannot obtain an exact solution for X⋆ and only the optimal condition for X⋆ [3],

i.e., Tr
[(

ν⋆PI− ∑U
u=1 ν⋆uGu(h)

)
X
]
= 0, which is further equivalent to

(
ν⋆PI− ∑U

u=1 ν⋆uGu(h)
)

X = 0.
Although this optimal condition provides the structure for an optimal covariance matrix X⋆ with
its rank profile, obtaining a closed-form solution for X⋆ is generally not available and known to be
NP-hard [3,38]. Therefore, as we determine the optimal value of h⋆ from the dual problem D.PX

2 , the
optimal covariance matrix X⋆ is then obtained by solving the primal problem PX

2 using the given
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optimal h⋆ value. The detailed procedure of the proposed method to obtain the optimal altitude h⋆

and optimal energy beamforming X⋆ is described in Algorithm 3.

4.2. Efficient Near-Optimal Altitude and Energy Beamforming Design with Low Complexity

In this subsection, we propose a low-complexity method for obtaining a near-optimal solution by
avoiding the 1D exhaustive line search method, which results in high complexity when using an SDP
solver. Motivated by insights from the method to obtain the near-optimal solution for a single-EHD
case in Section 3, we devise the golden-section (GS) line search method with search space reduction,
which determines the solution much faster. The details are as follows.

At the u-th EHD, from Lemma 1, the optimal energy beamforming to minimize the expected
required charging time, denoted by X⋆

u, is given by

X⋆
u = PãuãH

u , ∀u ∈ U . (46)

Moreover, the near-optimal UAV altitude to minimize the required charging time, denoted by h⋆Prop,u,
is obtained from Algorithm 1.

When the UAV adopts its altitude and energy beamforming as the optimal altitude and energy
beamforming, respectively, for the u-th EHD, i.e., h = h⋆Prop,u and X = X⋆

u at the UAV, the expected
required charging time at the k-th EHD (k ∈ U ), denoted by τ⋆,u

k (h⋆Prop,u, X⋆
u), then becomes

τ⋆,u
k (h⋆Prop,u, X⋆

u) =
QReq

k

Tr
(

Gk
(
h⋆Prop,u

)
X⋆

u

) , ∀k ∈ U . (47)

In this case, the overall charging time required to meet the energy demands of all EHDs (i.e., ∀k ∈ U ),
denoted by tmax

⋆,u , is expressed as

tmax
⋆,u = max

(
τ⋆,u

1 (h⋆Prop,u, X⋆
u), ..., τ⋆,u

U (h⋆Prop,u, X⋆
u)
)

, ∀u ∈ U , (48)

which signifies the overall charging time corresponding to the pair (h⋆Prop,u, X⋆
u) at the UAV.

Among all overall charging times obtained from (48), i.e., tmax
⋆,1 , tmax

⋆,2 ,..., and tmax
⋆,U , we can identify

the lowest time among those achieved by all pairs, i.e., (h⋆Prop,1, X⋆
1), (h

⋆
Prop,2, X⋆

2),..., and (h⋆Prop,U , X⋆
U),

as follows:

umin,1 = arg min
u∈U

(
tmax
⋆,1 , ..., tmax

⋆,u , ..., tmax
⋆,U
)
, (49)

with its corresponding pair (h⋆Prop,umin,1
, X⋆

umin,1
). From (49), we infer that the overall charging time is

most effectively reduced for h⋆Prop,umin,1
compared with the other pairs [h⋆Prop,k]

U
k ̸=umin,1

. Moreover, the
second lowest time is also obtained using

umin,2 = arg min
u∈U\umin,1

(
tmax
⋆,1 , ..., tmax

⋆,u , ..., tmax
⋆,U
)
, (50)

with its corresponding pair (h⋆Prop,umin,2
, X⋆

umin,2
). From (49) and (50), we determine the effective altitude

range between h⋆Prop,umin,1
and h⋆Prop,umin,2

, which is represented by

[
min

(
h⋆Prop,umin,1

, h⋆Prop,umin,2

)
, max

(
h⋆Prop,umin,1

, h⋆Prop,umin,2

)]
. (51)

The overall charging time cannot be effectively reduced for altitudes outside this range, which is taken
into account in our proposed method, where the search space [Hmin, Hmax] is reduced.
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Next, in determining the optimal altitude, we adopt the GS line search method within[
min

(
h⋆Prop,umin,1

, h⋆Prop,umin,2

)
, max

(
h⋆Prop,umin,1

, h⋆Prop,umin,2

)]
, rather than the 1D exhaustive line search

method, in order to reduce the computational complexity. Similarly to the procedures for Algorithm
3 and Section 4.1, we determine the optimal altitude h⋆Prop by solving the dual problem D.PX

2 . The
detailed procedure for the proposed method to determine near-optimal altitude h⋆Prop and energy
beamforming X⋆

Prop is described in Algorithm 4.

Algorithm 4 Proposed method to obtain a near-optimal solution for the problem P2

1: Input: Parameters of the channel statistics (a1, b1, a2, b2, a3, c3), the minimum and

maximum altitude of Hmin and Hmax, the error tolerance ϵGS, δ = (
√

5−1)
2 ,

the sum power constraint P, all EHDs’ horizontal distance, LoS component, and

energy requirements, i.e.,
[
ru, au, QReq

u
]U

u=1
2: for u = 1 : U do
3: Obtain h⋆Prop,u from the Algorithm 2
4: Compute X⋆

u = PãuãH
u from (46)

5: Compute tmax
⋆,u = max

(
τ⋆,u

1 (h⋆Prop,u, X⋆
u), ..., τ⋆,u

U (h⋆Prop,u, X⋆
u)
)

from (48)
6: end for
7: Obtain: umin,1 = arg min

u∈U
tmax
⋆,u and then umin,2 = arg min

u∈U\umin,1

tmax
⋆,u , respectively

8: Set: ha = min
(
h⋆Prop,umin,1

, h⋆Prop,umin,2

)
and hb = max

(
h⋆Prop,umin,1

, h⋆Prop,umin,2

)
,

hs,a = ha + (1− δ)(hb − ha) and hs,b = hb − (1− δ)(hb − ha), Iter = 1
9: Obtain: ts,a = t⋆(hs,a) and ts,b = t⋆(hs,b), respectively, from (42), by solving

the dual problem D.PX
2 with [Gu(hs,a)]Uu=1 and [Gu(hs,b)]

U
u=1, respectively

10: while |hb − ha| < ϵGS do
11: if ts,a < ts,b, then
12: hb ← hs,b, hs,b ← hs,a, and gs,b ← gs,a
13: hs,a ← ha + (1− δ)(hb − ha)
14: ts,a ← t⋆(hs,a) from (42) by solving the D.PX

2 with [Gu(hs,a)]Uu=1
15: else
16: ha ← hs,a, hs,a ← hs,b, and gs,a ← gs,b
17: hs,a ← hb − (1− δ)(hb − ha)
18: ts,b ← t⋆(hs,b) from (42) by solving the D.PX

2 with [Gu(hs,b)]
U
u=1

19: end if
20: Iter← Iter + 1
21: end while
22: Total number of iterations: Itertot ← Iter
23: Obtain h⋆Prop = (ha + hb)/2
24: Obtain X⋆

Prop and t⋆Prop by solving the primal problem PX
2 with [Gu(h⋆Prop)]

U
u=1

25: Output: The proposed near-optimal altitude h⋆Prop and energy beamforming X⋆
Prop

4.3. Sub-Optimal Design with Weighted-Sum Energy Beamforming in A Closed-form Solution

In this subsection, motivated by the insights from Lemma 1, we further devise a solution for
weighted-sum energy beamforming that is obtained in closed form, thereby avoiding the computational
complexity introduced by the SDP solver in Algorithm 4.

Since an optimal energy beam for a single EHD to minimize its required charging time is given
in (46) from Lemma 1, we consider energy beamforming that consists of the weighted-sum of the
optimal beam for each EHD, which has the structure XWS = ∑U

u=1 wuãuãH
u , where wu ≥ 0 (u ∈ U)

denotes the energy weight for the u-th EHD. In this case, it is desirable to guarantee a certain fairness
between all EHDs to reduce the overall charging time. Hence, we aim to assign a higher energy
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weight to EHDs for which longer charging times are anticipated such that all charging times are the
same, i.e., τ1 = · · · = τU . For a fixed h ∈ [Hmin, Hmax], by ignoring the amount of energy harvested
from other beams, the expected required charging time of the u-th EHD obtained from XWS becomes

τu =
QReq

u

wu Tr
(
Gu(h)ãuãH

u
) =

QReq
u

wuβ0 fu(h)
. Accordingly, by omitting the common constant term β0, we

set the energy weight for u-th EHD as

wu =
QReq

u
fu(h)

, ∀u ∈ U . (52)

As a result, for a given UAV altitude h, our proposed expression for weighted-sum energy beamforming
that satisfies a transmit sum power constraint, i.e., Tr(XWS

Prop) = P, is

XWS,⋆
Prop =

P ∑U
u=1 wuãuãH

u

Tr
(

∑U
u=1 wuãuãH

u

) (53)

where XWS
Prop ⪰ 0 is always ensured considering that wu > 0. In addition, we determine the optimal

UAV altitude for weighted-sum energy beamforming using the golden-section (GS) line search method
together with search space reduction, similarly as for Algorithm 4 in Section 4.2. The detailed procedure
is described in Algorithm 5.

Algorithm 5 Algorithm to find a sub-optimal solution

1: Lines 1–8 in Algorithm 4
2: Obtain: ts,a = max

([
τu(hs,a, XWS

Prop)
]U

u=1

)
and ts,b = max

([
τu(hs,b, XWS

Prop)
]U

u=1

)
,

respectively, from (52) and (53)
3: while |hb − ha| < ϵGS do
4: if ts,a < ts,b, then
5: Same as Lines 12–13 in Algorithm 4
6: ts,a ←max

([
τu(hs,a, XWS

Prop)
]U

u=1

)
from (52) and (53)

7: else
8: Same as Lines 16–17 in Algorithm 4
9: ts,b ←max

([
τu(hs,b, XWS

Prop)
]U

u=1

)
from (52) and (53)

10: end if
11: Iter← Iter + 1
12: end while
13: Total number of iterations: Itertot ← Iter
14: Obtain hWS,⋆

Prop = (ha + hb)/2, and then XWS,⋆
Prop from (52) and (53)

15: Output: The proposed altitude hWS,⋆
Prop and weighted-sum energy beamforming XWS,⋆

Prop

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2024 doi:10.20944/preprints202410.2109.v1

https://doi.org/10.20944/preprints202410.2109.v1


16 of 25

5. Numerical Results

In this section, we evaluate the joint design of UAV altitude and energy beamforming along
with our proposed methods. The simulation settings are similar to those in [8–14], and the detailed
parameters used for the numerical results are listed in Table 1. Presented in Sections 5.1 and 5.2 is the
performance evaluation for single- and multiple-EHD scenarios, respectively.

Table 1. Environment for evaluation.

Description Symbol Value
The transmit sum power P 1 W
The path loss at the reference distance β0 1
The path loss exponents of ground links α0 3.5
The path loss exponents of aerial links α π

2
2

The Rician factor-related parameters KdB
0 5 dB
KdB

π
2

15 dB

The minimum altitude of a UAV Hmin 50 m
The maximum altitude of a UAV Hmax 250 m
The number of antennas at a UAV N 16

5.1. Performance Evaluation for a Single-EHD Scenario

In this subsection, we evaluate our proposed method for a single-EHD scenario. For the Rician
fading channel, the EHD’s deterministic LoS component aU is obtained from (4) with da

λc
= 0.5 and an

AoD of ϕU = π
3 .

Figure 2 compares the value of the objective function in the problem Ph
3′ with respect to the UAV

altitude (i.e., a variable h) for different horizontal distances of an EHD, i.e., rU = {50, 100, 250}m. As
shown in Figure 2, the objective fucntion depends on the UAV altitude as well as the horizontal distance
of an EHD. In specific, when rU = 50 m and rU = 250 m, the objective function is monotonically
decreasing and increasing, respectively, as the UAV altitude increases. On the other hand, it is increasing
and then decreasing when rU = 100 m.

50 100 150 200 250

UAV altitude (m)

10
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U
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U
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Figure 2. Comparison of the objective function for different horizontal distances of the EHD.

Figure 3 shows the optimal UAV altitude according to the horizontal distance of the EHD, obtained
from the 1D exhaustive line search method (Algorithm 1) and proposed method with low complexity
(Algorithm 2), respectively. Moreover, Table 2 presents the corresponding average execution time to
obtain an optimal value, where we set the same value for the sample grid accuracy ∆ and the error
tolerance ϵGS, respectively, i.e., ∆ = ϵGS = 10−5, in Algorithms 1 and 2 for performance comparison.
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As expected, the proposed method yields almost identical results to the 1D exhaustive line search
method with considerably reduced execution time. Specifically, it is verified that the optimal UAV
altitude is the minimum altitude for horizontal distances of up to 50 m, and then it increases from 50
m to 250 m for horizontal distances up to 235 m. Beyond than range, it becomes the maximum altitude.
This is because the minimum and maximum altitudes of the UAV are 50 m to 250 m, respectively.

Table 2. Comparison of the average execution time (seconds).

Average execution time (seconds)
1D exhaustive line searching (Algorithm 1) 1
Proposed method (Algorithm 2) 7× 10−5
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Figure 3. Comparison of the optimal UAV altitude determined from the 1D exhaustive line search
method (Algorithm 1) and the proposed method (Algorithm 2).

5.2. Performance Evaluation for a Multiple-EHD Scenario

In this subsection, we evaluate our proposed methods in a multiple-EHD scenario. For the Rician
fading channel, the u-th EHD’s deterministic LoS component au is obtained from (4) with da

λc
= 0.5.

To evaluate the average overall charging time, we take the average of 100 independent realizations,
varying the energy requirements [QReq

u ]Uu=1, horizontal distances [ru]Uu=1, and AoD [ϕu]Uu=1 for each

realization. For this purpose, the parameters [QReq
u ]Uu=1, [ru]Uu=1 , and [ϕu]Uu=1 are uniformly sampled

within specified ranges to capture variability. Specifically,the energy requirements [QReq
u ]Uu=1 are chosen

from [1, 10] mJ, the horizontal distances [ru]Uu=1 are chosen from [0, rmax]Uu=1 where rmax ∈ [100, 150]
m, and the angles of departure (AoD) [ϕu]Uu=1 are chosen from [−π/2, π/2] radians. Moreover, our
proposed methods are evaluated according to the number of EHDs. For performance comparison, we
consider the following six methods:

• A weighted sum-power maximization energy beamforming (W-sum EB) with optimal altitude
HOpt.

• Optimal energy beamforming (EB) for the UAV altitude of Hmin.
• Optimal EB for the UAV altitude of Hmax.
• Proposed method #1—Efficient near-optimal altitude and EB design with low complexity, i.e.,

Algorithm 4.
• Proposed method #2—Sub-optimal design with weighted-sum EB in a closed-form solution, i.e.,

Algorithm 5.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2024 doi:10.20944/preprints202410.2109.v1

https://doi.org/10.20944/preprints202410.2109.v1


18 of 25

• Optimal design: Optimal EB with optimal altitude, i.e., Algorithm 31.

Notably, we consider the widely adopted W-sum EB for a comparative analysis with other methods in
terms of energy beamforming performance. The W-sum EB was proposed to maximize the weighted
sum-power transferred to the EHDs by an energy beam directed toward the dominant eigenvector of
the composite weighted channel gain matrix of the EHDs [1,2]. The optimal altitude for the W-sum EB
is obtained using a 1D exhaustive line search method.

To examine the robustness of our proposed methods across various practical scenarios, we
consider both Urban and Dense Urban environments for the A2G Rician fading channel model. In this
case, the environment-dependent LoS probability parameters are given by (a1, b1) = (9.61, 0.16) for
the Urban environment and (a1, b1) = (12.08, 0.11) for the Dense Urban environment, respectively
[8,9]. First, we evaluate the proposed methods in an Urban environment, and then consider a Dense
Urban environment.

5.2.1. Performance Evaluation in an Urban Environment

First, we evaluate the various methods when the horizontal distance is 100 m, i.e., rmax = 100 m.
Figure 4a,b show the average UAV altitude and its standard deviation obtained from proposed method
#1, proposed method #2, and the optimal design. Using proposed method #1, the near-optimal altitude
of the design is obtained considering the entire range. The performance gap between proposed method
#1 and the optimal design is less than 4 m. The performance gap of proposed method #2 is larger than
that of proposed method #1. In addition, the UAV altitude is within [70, 80] m, and it increases as the
number of EHDs increases. Moreover, Figure 4b demonstrates that the standard deviation is within
[4, 15] m, and it increases as the number of EHDs increases.
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Figure 4. Average UAV altitude and its standard deviation of various methods when rmax = 100 m in
an Urban environment.

In Figure 5a,b, the average overall charging times and the average execution times of various
methods are compared with respect to the number of EHDs. In Figure 5a, the charging time perfor-
mance for each method is presented, with values of [279, 1062] seconds for W-sum EB with HOpt,
[43, 173] seconds for optimal EB with Hmin, [79, 267] seconds for optimal EB with Hmax, [14.6, 53.5]
seconds for proposed method #1, [17.6, 101.3] seconds for proposed method #2, and [14.2, 52.4] seconds
for the optimal design. As expected, proposed method #1 outperforms the other methods and achieves

1 We set the sample grid accuracy ∆ = 0.5 m for the 1D exhaustive line search by considering a practical scenario while
avoiding high execution times that make it impossible to use.
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a near-optimal charging time over the entire range. The performance gap increases as the number
of EHDs increases. Specifically, W-sum EB with HOpt significantly extends the charging time, as the
energy beam is not optimized for minimizing charging time. On the other hand, the optimal design
yields a large execution time, increasing from 120 seconds to 180 seconds as the number of EHDs
increases. By contrast, the execution times range from 7 seconds to 11 seconds for proposed method #1,
a considerable reduction compared to the optimal design. Meanwhile, proposed method #2, which
leverages the weighted-sum EB solution in closed form, yields the shortest execution time of below
0.02 seconds while yielding lower charging times than the other methods with Hmin and Hmax.
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(a) The average overall charging time.
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Figure 5. Performance comparison of various methods when rmax = 100 m in an Urban environment:
(a) the average overall charging time; (b) the average execution time.

Next, we also evaluate the various methods when the horizontal distance is 150 m, i.e., rmax = 150
m. Figure 6a,b show the average UAV altitude and its standard deviation obtained from proposed
method #1, proposed method #2, and the optimal design. Proposed method #1 achieves near-optimal
performance, with the performance gap within 1.5 m. In addition, proposed method #1 performs
comparably to proposed method #2, with the performance gap within 2.5 m. As expected, the UAV
altitude increases as the number of EHDs increases. The UAV altitude is within [108, 122] m, which
is higher than the average altitude when rmax = 100 m, such as in Figure 4a. In addition, Figure 6b
exhibits that the standard deviation is within [8, 25] m, which is larger than the standard deviation
when rmax = 100 m, such as in Figure 4b.

Figure 7a,b show a comparison of the average overall charging time and the average execution
time of various methods with respect to the number of EHDs. In Figure 7a, the charging time perfor-
mance for each method is presented, such as with values of [627, 2461] seconds for W-sum EB with
HOpt, [1370, 13710] seconds for optimal EB with Hmin, [85, 288] seconds for optimal EB with Hmax,
[33.1, 120] seconds for proposed method #1, [39.8, 229] seconds for proposed method #2, and [32.3, 119]
seconds for the optimal design. Proposed method #1 achieves significantly reduced charging time and
near-optimal performance, with a considerable gap compared with other methods as the number of
EHDs increases. In particular, there is a substantial increase in the charging time with Hmin, which is
much lower than the optimal altitude, as seen in Figure 6. Compared to the charging time performance
when rmax = 100, as seen in Figure 5a, the overall charging time increases when rmax = 150. For
example, the charging time for the optimal design increases from [14.2, 52.4] to [32.3, 119]. Also, it is
shown that the conventional EB, i.e., W-sum EB, yields substantial performance degradation compared
to the proposed EB. On the other hand, the performance in terms of execution time is similar for
rmax = 150 (Figure 7b) and rmax = 100 (Figure 5b). As expected, proposed method #1 yields a much
shorter execution time compared to the optimal design, and the shortest execution time for all methods
is achieved using proposed method #2.
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Figure 6. Average UAV altitude and its standard deviation of various methods when rmax = 100 m in
an Urban environment.
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(a) The average overall charging time.
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Figure 7. Performance comparison of various methods when rmax = 150 m in an Urban environment:
(a) the average overall charging time; (b) the average execution time.

5.2.2. Performance Evaluation in a Dense Urban Environment

Next, we evaluate our proposed methods in a Dense Urban environment with rmax = 100 m and
rmax = 150 m, respectively.

Figure 8a,b exhibit a comparison of the average overall charging time and the average execution
time of various methods when rmax = 100 m. It is shown that proposed method #1 achieves a near-
optimal charging time over the entire range, while significantly reducing the execution time compared
to the optimal design. Moreover, proposed method #2 achieves the shortest execution time among all
methods, while outperforming the conventional methods in terms of overall charging time. However,
it results in a longer charging time than proposed method #1. In comparison to the charging time
performance when rmax = 100 in the Urban environment, as shown in Figure 5a, the overall charging
time increases in the Dense Urban environment. The reason is that the LoS probability decreases in the
Dense Urban environment compared to the Urban environment. On the other hand, Figure 8b shows
that the average execution time in the Dense Urban environment demonstrates similar performance
to that in the Urban environment, as depicted in Figure 5b. This result confirms that the proposed
methods reduce computational complexity compared to other methods, even in the Dense Urban
environment.
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Figure 8. Performance comparison of various methods when rmax = 100 m in a Dense Urban environ-
ment: (a) the average overall charging time; (b) the average execution time.

We also evaluate the various methods when rmax = 150 m. Proposed method #1 achieves
significantly reduced charging time and yields a much shorter execution time compared to the optimal
design. Also, the shortest execution time for all methods is achieved using proposed method #2.
However, proposed method #2 is outperformed by the optimal EB with Hmax in terms of overall
charging time when the number of EHDs exceeds 12. Figure 9a also shows that the overall charging
time increases in the Dense Urban environment compared to the charging time performance when
rmax = 150 in the Urban environment, as depicted in Figure 7a. Notably, Figure 9b shows that the
average execution time in the Dense Urban environment demonstrates similar performance to that in
the Urban environment, that verifies the robustness of the proposed methods in terms of complexity
reduction.

0 5 10 15 20 25 30

Number of EHDs

10
1

10
2

10
3

10
4

10
5

A
v
e
ra

g
e
 o

v
e
ra

ll 
c
h
a
rg

in
g
 t
im

e
 (

S
e
c
o
n
d
s
)

W-sum EB with H
Opt

Optimal EB with H
min

Optimal EB with H
max

Proposed method #1

Proposed method #2

Optimal EB with H
Opt

(a) The average overall charging time.

0 5 10 15 20 25 30

Number of EHDs

10
-2

10
0

10
2

A
v
e
ra

g
e
 e

x
c
e
c
u
ti
o
n
 t
im

e
 (

S
e
c
o
n
d
s
)

W-sum EB with H
Opt

Optimal EB with H
min

Optimal EB with H
max

Proposed method #1

Proposed method #2

Optimal EB with H
Opt

(b) The average execution time.

Figure 9. Performance comparison of various methods when rmax = 150 m in a Dense Urban environ-
ment: (a) the average overall charging time; (b) the average execution time.

These results verify that our proposed methods significantly outperforms conventional methods in
terms of overall charging time, while achieving near-optimal performance and substantially reducing
execution time across various practical scenarios.
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6. Conclusion

In this paper, we propose the joint design of UAV altitude- and channel statistics-based energy
beamforming in order to minimize the overall charging time required for all EHDs by considering
the A2G Rician fading channel. To solve the formulated problem, which is highly non-convex and
non-linear, we first optimized our design for a single EHD by deriving optimal energy beamforming
in closed form, thereby developing the low-complexity algorithm to obtain the optimal altitude. Then,
considering multiple EHDs, we developed efficient algorithms for the joint design of altitude and
energy beamforming based on the dual problem. We further explored two efficient methods with
low complexity, yielding a near-optimal solution driven by insights from the design for a single-EHD
scenario, as well as a sub-optimal solution by leveraging closed-form weighted-sum energy beamform-
ing. The numerical results demonstrate that compared to conventional methods, the proposed joint
design can be used to substantially reduce both the overall charging time as well as the computational
complexity. While the overall charging time increases in the Dense Urban environment compared to
the Urban environment due to a lower LoS probability, the average execution time remains similar,
highlighting the robustness of the proposed methods in terms of complexity reduction.

Although the proposed methods are based on long-term channel statistics, they can be extended
to scenarios with perfect CSI by replacing the long-term channel statistics with instantaneous CSI.
In addition, the proposed method can be adapted to different channel models, such as Nakagami
fading, by redefining statistical expectations and modifying the algorithm with necessary mathematical
derivations to incorporate new fading characteristics. Extending the proposed methods to provide a
comprehensive analysis of scalability, especially when dealing with large numbers of EHDs in diverse
environmental conditions, remains one of our ongoing research topics. Additionally, the joint design
of altitude and energy beamforming, taking into account practical factors such as the UAV’s energy
consumption, is also part of our ongoing work for future research. Moreover, future work will focus
on enhancing the proposed model to adapt to dynamic environmental changes that may impact the
UAV’s ability to maintain optimal altitude, ensuring robustness in real-world scenarios
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Appendix A. Proof of Lemma 1

For a fixed h ∈ [Hmin, Hmax], we obtain an optimal solution for X by solving the following SDP
problem:

PX
3′ : max

X
Tr
(
GU(h)X

)
s.t. Tr(X) ≤ P, X ⪰ 0. (A1)

The problem PX
3′ is the well-known maximum eigenvalue problem. Thus, the optimal value and optimal

solution for X are obtained in closed form as follows [1,2]:

Tr
(
GU(h)X⋆

)
= PΛmax

(
GU(h)

)
(A2)

X⋆ = Pvmax
(
GU(h)

)
vH

max
(
GU(h)

)
(A3)

where Λmax
(
GU(h)

)
and vmax

(
GU(h)

)
denote the maximum eigenvalue of Gu(h) and its correspond-

ing eigenvector, respectively.
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From (19), GU(h) can be rewritten by

GU(h) = β0d−αU
U

 KU
KU + 1

aUaH
U︸ ︷︷ ︸

LoS

+
1

KU + 1
IN︸ ︷︷ ︸

NLoS


=

β0d−αU
U

KU + 1

KU∥aU∥2ãU ãH
U︸ ︷︷ ︸

LoS

+ [ãU , A⊥U ][ãU , A⊥U ]H︸ ︷︷ ︸
NLoS

 (A4)

=
β0d−αU

U
KU + 1


(
KU∥aU∥2︸ ︷︷ ︸

LoS

+ 1︸︷︷︸
NLoS

)
ãU ãH

U +
U−1

∑
j=1

ã⊥U,j(ã
⊥
U,j)

H

︸ ︷︷ ︸
NLoS

, (A5)

where ãU = aU/∥aU∥ and A⊥U ∈ CN×(N−1) are the orthonormal basis of the null space of ãU ; (A4)
follows from the fact that IN can be decomposed into IN = [ãU , A⊥U ][ãU , A⊥U ]H . By denoting A⊥U =

[ã⊥U,j]
U−1
j=1 , (A5) is obtained from (A⊥U)HA⊥U = IN−1.

Since [ãU , A⊥U ] ∈ CN×N is the orthonormal basis of the N-dimensional complex hypersphere,
such as for [ãU , A⊥U ][ãU , A⊥U ]H = [ãU , A⊥U ]H [ãU , A⊥U ] = IN and KU∥aU∥2 > 0 in (A5), the maximum
eigenvalue of GU(h) and its corresponding eigenvector are obtained as

Λmax
(
GU(h)

)
= β0d−αU

U
KU∥aU∥2 + 1
KU + 1

, (A6)

vmax
(
GU(h)

)
= ãU . (A7)

Inserting (A6) and (A7) into (A2) and (A3), respectively, we obtain the optimal solution for the
problem PX

3′ as follows:

Tr
(
GU(h)X⋆

)
= Pβ0d−αU

U
KU∥aU∥2 + 1
KU + 1

, (A8)

X⋆ = PãU ãH
U . (A9)

As shown in (A9), the optimal covariance matrix of X⋆ does not depend on the UAV’s altitude h. Thus,
(A9) is the optimal solution for the problem P3′ , regardless of the value of h. This completes the proof.
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