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Abstract

The convergence of operational technology (OT) and information technology (IT) in industrial environ-
ments, such as water treatment plants, has significantly increased the attack surface of Supervisory
Control and Data Acquisition (SCADA) systems. Traditional intrusion detection systems (IDS) that
focus solely on network traffic are often ineffective against stealthy, process-level attacks. This paper
proposes a Digital Twin-driven Intrusion Detection (DT-ID) framework that integrates high-fidelity
process simulation, real-time sensor modeling, adversarial attack injection, and hybrid anomaly de-
tection using both physical residuals and machine learning. We evaluate the DT-ID framework on a
simulated water treatment plant subjected to false data injection (FDI), denial-of-service (DoS), and
command injection attacks. The system achieves a detection F1-score of 96.3%, a false positive rate
below 2.5%, and an average detection latency under 500 milliseconds, demonstrating substantial
improvement over conventional rule-based and physics-only IDS in identifying stealthy anomalies.
Our results highlight the practical value of cyber-physical Digital Twins for enhancing SCADA security
in critical infrastructure applications.

Keywords: digital twin; SCADA security; cyber-physical systems; anomaly detection

1. Introduction
Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) net-

works are central to the operation of critical infrastructure in sectors such as water, energy, and oil and
gas. While these systems were originally deployed in isolated, air-gapped environments with minimal
cybersecurity, most ICS and SCADA installations now face increased cyber risk due to the integration
of operational technology (OT) with information technology (IT), enabled by the Industrial Internet of
Things (IIoT), remote monitoring, and data-driven optimization [1].

This growing connectivity introduces new vectors for sophisticated cyber-physical threats. High-
profile incidents such as Stuxnet, Industroyer, and Triton have shown that attackers can manipulate
control logic, falsify sensor readings, or disrupt communication protocols to cause real-world conse-
quences [2–4].

Most current intrusion detection systems (IDS) in industrial networks are adapted from IT security
practices, relying on signature-based methods or network anomaly detection [5–7]. However, these
solutions often fail to detect process-aware threats where attackers subtly manipulate sensor readings
or actuator commands to disrupt operations while keeping network traffic within expected norms,
thereby evading traditional alarms [8,9].

Recent research has begun to explore process-aware and hybrid IDS approaches, including those
based on Digital Twins (DTs) virtual replicas that simulate physical systems using process models
and real-time data [10–15]. Despite this progress, existing DT-based solutions still struggle to reliably
detect stealthy attacks that subtly alter process states.

To address these challenges, this paper introduces a novel Digital Twin-driven Intrusion Detection
(DT-ID) framework for SCADA systems, which integrates:
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• High-fidelity physical process simulation
• Real-time monitoring,
• Adversarial attack emulation and Hybrid anomaly detection using both physics-based and

machine learning techniques.

We develop a Digital Twin emulation for a multi-stage water treatment SCADA system, design
an adversarial attack simulation engine targeting both cyber and physical layers, and implement a
hybrid anomaly detection module that combines LSTM-attention networks with one-class SVMs for
robust identification of stealthy threats. The proposed approach is validated on a 72-hour dataset
comprising multiple attack scenarios, demonstrating significantly improved detection of advanced
threats compared to conventional rule-based and physics-only IDS solutions

The remainder of this paper is structured as follows: Section II reviews related work in SCADA
security, Digital Twin applications, and ML-based intrusion detection. Section III presents the architec-
ture of the proposed DT-ID framework. Section IV describes the case study setup and experimental
methodology. Section V discusses the results and system performance. Section VI concludes the paper
and outlines future work.

2. Related Work
Industrial control systems (ICS) and Supervisory Control and Data Acquisition (SCADA) networks

have traditionally relied on intrusion detection systems (IDS) derived from information technology (IT)
environments. Signature-based and network anomaly detection tools such as Snort [5] and Suricata
[6] have long served as primary defenses in industrial networks. While effective at detecting known
attack signatures and obvious network anomalies, these methods generally lack awareness of the
physical processes they protect, limiting their effectiveness against stealthy, process-level attacks that
manipulate sensor values or control logic without generating conspicuous network events [8,9,16].
Network monitors like Bro (now Zeek) [7] have improved protocol inspection granularity but still
primarily operate at the packet or flow level rather than at the process level.

To overcome these limitations, the research community has increasingly turned to process-aware
and hybrid intrusion detection frameworks. Early surveys by Mitchell and Chen [16] and Giraldo
et al.[8] emphasize the importance of integrating cyber-physical context into IDS, highlighting how
attacks exploiting the physical process layer can evade purely network-based monitoring. Residual-
based detection approaches, which use model-based or data-driven methods to estimate expected
sensor values and flag deviations as potential attacks, have shown promise. However, these methods
remain vulnerable to stealthy attacks that mimic the statistical properties of normal operation, as
shown in recent adversarial studies [9–15].

The emergence of Digital Twin (DT) technology has provided new opportunities to improve ICS
and SCADA security. DTs are high-fidelity, real-time virtual models of physical systems capable of
synchronizing with live data streams to simulate, monitor, and optimize process behavior. Oyekan and
Hu [11] demonstrated a DT-based cybersecurity monitoring framework for pipeline systems, showing
the potential for real-time state comparison and anomaly detection. Zhang et al. [12] expanded
on this by integrating DTs with process analytics for smart manufacturing. Recent studies, such as
Zhao et al.[13] and Lin et al.[14], have leveraged cloud-based DT platforms and edge analytics for
scalable anomaly detection in industrial IoT environments. Mohammadi et al.[15] further employed
generative adversarial networks (GANs) to enhance the robustness of DT-based anomaly detection
in water treatment plants, achieving higher sensitivity to certain classes of attacks. However, many
DT-driven solutions still focus on anomaly detection in simplified settings and may not generalize
well to adversarial scenarios involving carefully crafted false data injection (FDI) or zero-day threats.

Hybrid intrusion detection systems that combine machine learning (ML) with process models
have also gained momentum. Pan et al.[17] introduced a hybrid deep learning and physics-guided
DT architecture for detecting cyber-physical anomalies, demonstrating strong results on benchmark
datasets. Xu et al.[18] proposed a fusion approach combining DT representations with deep learning
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to detect zero-day attacks in smart manufacturing systems. Nonetheless, adversarial machine learning
remains a persistent challenge in ICS security. Creswell et al. [19] and related studies have shown that
GAN-based attacks can generate process-consistent yet malicious sensor data, successfully bypassing
even advanced hybrid detectors. This raises concerns about the resilience of current ML-based and
hybrid IDS in the face of adaptive, stealthy adversaries.

In addition, a review of recent industry incident reports [1] and benchmark datasets such as
SWaT [20], WADI [21], and BATADAL [22] indicate that most experimental validations remain confined
to testbed or simulated environments. Real-world deployments introduce further complexity, including
variable process dynamics, sensor drift, incomplete observability, and evolving adversarial tactics.
While some frameworks offer limited retraining or adaptive learning, continuous model updating to
address new threats remains an open problem.

In summary, although process-aware, Digital Twin, and hybrid IDS approaches have improved
the detection of certain cyber-physical threats, current solutions still struggle to reliably identify
stealthy or adversarial attacks in realistic SCADA environments. They often lack adaptive mechanisms
for evolving attack strategies and have not yet achieved comprehensive validation against a broad
spectrum of real-world adversarial scenarios.

This work addresses these limitations by proposing a Digital Twin-driven Intrusion Detection
(DT-ID) framework that combines high-fidelity process simulation, adversarial attack injection, and
hybrid anomaly detection modules, enabling robust and adaptive identification of advanced threats in
modern industrial SCADA systems.

3. Core Components
The architecture of the proposed DT-ID system is shown in Figure 1. The system is composed of

four tightly integrated modules: a high-fidelity virtual SCADA model (Digital Twin), an adversarial
attack simulation engine, a hybrid anomaly detector, and a multi-stage response module. Together,
these modules enable real-time monitoring, robust adversarial testing, adaptive anomaly detection,
and automated mitigation in industrial SCADA environments.

Virtual SCADA Model

Attack Simulation
Engine

Hybrid Anomaly
Detector

Cyber Module Physical Module

Decision Fusion

Response Module

Figure 1. DT-ID System Architecture: Integration of Virtual SCADA, attack simulation, hybrid detection modules,
and response coordination.

3.1. Virtual SCADA Model

The Virtual SCADA Model serves as a high-fidelity digital twin, emulating the core dynamics of a
water treatment process, including tank hydraulics and chemical dosing. The digital twin and process
simulation were implemented in MATLAB Simulink, with all data handling and synchronization
routines executed in Python 3.10. This dual-environment setup enables flexible model development,
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rapid prototyping, and integration with external attack libraries. The module leverages established
physical models to provide process aware context for anomaly detection and attack simulation.

The hydraulic behavior of each storage tank is modeled by Bernoulli’s principle:

dH
dt

=
Qin − β

√
H

A
(1)

where H denotes the tank level, Qin the inflow rate, β the valve coefficient, and A the cross-sectional
area.

pH control dynamics are captured as:

dpH
dt

= k(Cacid − Cbase)− γpH (2)

where k and γ are kinetic parameters, and Cacid and Cbase are dosing concentrations.
To maintain alignment with the real or simulated plant, the digital twin performs state synchro-

nization at 100 Hz using a delta-based update. A synchronization frequency of 100 Hz was chosen to
ensure that the virtual model remains tightly coupled to real-world or simulated process dynamics,
thereby enabling the prompt detection of rapid, stealthy attacks that could otherwise evade slower
polling rates. This high update rate is critical for capturing transient anomalies in critical infrastructure.
If the absolute difference between the physical and virtual parameters exceeds a specified tolerance,
the virtual state is resynchronized.

The tolerance for state resynchronization is set according to sensor resolution and expected
physical noise levels (e.g., ±0.5 % for tank level sensors), ensuring the digital twin is robust to normal
fluctuations while remaining sensitive to anomalous deviations caused by attacks. This process is
formalized in Algorithm 1.

Algorithm 1 Delta-Based Twin Synchronization

Require: physical state, virtual state, tolerance
1: for each parameter x in physical state do
2: δ← |physical state[x]−virtual state[x]|
3: if δ >tolerance[x] then
4: virtual state[x]←physical state[x]
5: end if
6: end for

3.2. Attack Simulation Engine

The Attack Simulation Engine systematically injects adversarial scenarios into the system to
rigorously validate the DT-ID framework. Three representative classes of cyber-physical threats are
implemented:

• False Data Injection (FDI): Introduces up to ±20% sensor bias or ramps in tank level and pH
readings.

• Denial of Service (DoS): Floods the PLC-HMI channel with 104 malformed Modbus packets per
second.

• Reconnaissance/Command Injection: Performs automated port scans and injects unauthorized
commands, e.g., remote actuator manipulation.

The attack library includes both standard industrial threats (such as typical FDI and DoS
patterns) and advanced adversarial scenarios, including stealthy zero-day attacks generated using
adversarial techniques. This approach allows evaluation of both signature-based and anomaly-
based detection capabilities within the testbed.

The full set of attack types and parameters used in the simulation are summarized in Table 1.
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Table 1. Attack Types and Parameters Used in Simulation.

Attack Type Description Parameters Target

FDI Sensor bias/ramp Bias: ±20% Level, pH
DoS Modbus packet flood 104/sec PLC-HMI

Recon/Command Port scan, command
injection Scan, STOP command PLC, Actuator

Attack events are scheduled in non-overlapping 10-minute intervals, randomized over a 72-hour
simulation period. The start time, duration, and affected system component for each attack are drawn
from a uniform random distribution to prevent bias and more realistically simulate unpredictable
adversary behavior.

For each attack, the target system component (e.g., PLC, sensor, HMI) is selected at random
from the pool of available devices to increase the diversity and unpredictability of the adversarial
evaluation. This process ensures that the detection framework is rigorously challenged by a range of
both conventional and novel threat scenarios.

The attack injection logic is detailed in Algorithm 2, and the decision workflow is illustrated in
Figure 2.

Algorithm 2 Attack Simulation

Require: attack type, randomly chosen target device, sensor data
1: if attack type = FDI then
2: spoofed← sensor data[Level1] ×1.2
3: Inject spoofed Modbus packet to target device
4: else if attack type = DoS then
5: Send 104 malformed TCP packets to target device
6: else if attack type = Recon then
7: Scan target device ports; enumerate Modbus function codes
8: else
9: No attack performed

10: end if

Start Select Attack Type

FDI

DoS

Recon

Modify Sensor Value

Flood Network

Scan Ports

Inject Packet End

Figure 2. Attack Injection Workflow: Decision branches for each attack type leading to payload execution.

3.3. Hybrid Anomaly Detector

The Hybrid Anomaly Detector is designed to capture both cyber (network-level) and physical
(process-level) anomalies in SCADA environments by integrating deep learning and physics-based
machine learning.

Cyber Module:

The cyber module processes sliding windows of Modbus/TCP traffic data using a three-layer
Long Short-Term Memory (LSTM) network (each layer with 128 units) augmented by an attention
mechanism. Input features include packet sizes, function codes, inter-arrival times, and statistical
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summaries (mean, variance, and maximum) computed over 60-timestep (one-minute) windows. This
module outputs a probability score Pcyber indicating the likelihood of a cyber anomaly.

Physical Module:

The physical module analyzes process residuals, calculated as r(t) = |ysensor(t)− yDT(t)|, where
ysensor(t) is the actual process reading and yDT(t) is the digital twin’s prediction. The residual sequence
and its derived statistics (mean, standard deviation, and change over rolling 1-second intervals) are
provided as input to a one-class Support Vector Machine (SVM) with a radial basis function (RBF)
kernel (ν = 0.01, γ = 0.1). The SVM produces a probability score Pphysical for physical anomaly
detection.

Decision Fusion:

The outputs of the cyber and physical modules are combined into a single anomaly score by
weighted summation:

Pfinal = 0.3 Pcyber + 0.7 Pphysical (3)

The fusion weights (0.3 for cyber, 0.7 for physical) were selected via grid search to maximize F1-score
on a held-out validation dataset, reflecting the higher reliability of process residuals in this case study.
The detection threshold (Pfinal > 0.85) was similarly optimized using ROC curve analysis to balance
sensitivity and specificity, ensuring low false positive rates while maintaining high detection accuracy.

The complete data flow of the hybrid anomaly detector is depicted in Figure 3, illustrating
the parallel extraction of cyber and physical features and their integration into a unified alerting
mechanism.

Network Data
(Packet sizes, codes, IATs)

Cyber Module
LSTM + Attention

Process Data
(Sensor, Twin outputs)

Physical Module
Residuals + SVM

Decision Fusion
Weighted Ensemble

Final Output
(Alert if Pfinal > 0.85)

Figure 3. Hybrid Anomaly Detector Data Flow: Cyber and physical paths are processed independently and fused
to produce an alert decision.

3.4. Response Module

The response module is responsible for initiating mitigation actions upon the detection of a
confirmed anomaly. Responses are staged to minimize operational disruption and risk, while also
enabling forensic traceability and adaptive system improvement.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 July 2025 doi:10.20944/preprints202507.0172.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0172.v1
http://creativecommons.org/licenses/by/4.0/


7 of 14

Alerting and Human-in-the-Loop:

When an anomaly is detected, the system automatically generates real-time alerts on the operator’s
Human-Machine Interface (HMI) dashboard. These alerts are accompanied by detailed log entries and
can be optionally configured to trigger email or SMS notifications for engineering and security teams.
While the system is capable of executing all response actions automatically, it can also be configured
for human-in-the-loop operation—requiring operator confirmation before critical interventions such
as process lockdown or controller failover.

Mitigation Actions:

The mitigation process comprises three escalation stages:

• Stage 1: The system raises visual and audible alarms on the HMI, while logging all relevant
forensic data (such as network packet captures and process sensor snapshots) for post-incident
analysis.

• Stage 2: If the anomaly persists or is classified as critical, the system enforces PLC command
lockdown by restricting process control to a predefined whitelist of safe operations, preventing
further unauthorized manipulation.

• Stage 3: In the event of sustained or high-severity attack, the system can automatically trigger fail
over to redundant backup controllers to maintain process continuity and safety.

Adaptive Learning and Concept Drift:

To maintain detection performance over time, the anomaly detection models (LSTM and SVM)
are retrained every 24 hours using a combination of newly collected operational data and synthetically
generated attack samples. Retraining can also be triggered on-demand in response to significant shifts
in process statistics. Concept drift is monitored using the Page-Hinkley test applied to the residual and
anomaly score distributions; if drift is detected, retraining is prioritized and operators are notified.

This multi-layered, adaptive response approach ensures robust defense against evolving cyber-
physical threats while supporting both automated and operator-supervised interventions.

4. Case Study: Water Treatment Plant
4.1. Testbed Configuration

The proposed DT-ID framework is evaluated using a simulated water treatment plant (WTP)
environment. The simulation is developed with Python (SimPy) for discrete-event process modeling
and Scapy for network attack emulation. The testbed architecture, shown in Figure 4, includes three
500 L storage tanks instrumented with ultrasonic level sensors, two chemical dosing pumps for pH
adjustment, and Siemens S7-1200 programmable logic controllers (PLCs) running conventional PID-
based control strategies. The plant network adopts a star topology with Cisco 2960 switches, supporting
both Modbus/TCP (PLC-HMI) and Ethernet/IP (PLC-PLC) protocols. The baseline network traffic
load is approximately 1,200 packets per second, reflecting values found in industry deployments and
ICS security benchmarks [1].

The simulation framework supports dynamic scaling of tanks, sensors, and actuators, enabling
evaluation under diverse attack and operational conditions. All simulation scripts, configuration
files, and evaluation parameters are available from the authors upon reasonable request to facilitate
reproducibility and future research.
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Physical Domain Cyber Domain

Tank 1

Tank 2

Tank 3

Level

Level

pH

PLC (S7-1200)

Pump 1 Pump 2

Cisco Switch HMI / Operator

Digital Twin
Simulink + Python

Attack Simulator

Figure 4. Redesigned schematic of the water treatment plant testbed showing clear separation of physical
and cyber domains, sensor/actuator flows, cyber-physical interface, digital twin synchronization, and attack
simulation.

4.2. Digital Twin Implementation

The digital twin (DT) module emulates the physical behavior of the water treatment process using
physics-based models for tank hydraulics and chemical dosing, as described in Equations (1) and
and (2). The models are implemented in MATLAB Simulink, while real-time data synchronization and
external interfacing are handled via Python scripts utilizing the opcua and pymodbus libraries.

To ensure consistent state tracking, the DT synchronizes with the simulated plant at a frequency
of 100 Hz using a delta-based synchronization strategy. At each cycle, state deviations between the
digital twin and the physical simulation are checked. If the difference exceeds a predefined threshold
(derived from sensor resolution and physical noise tolerance), the DT state is updated accordingly (see
Algorithm 1). This high-frequency synchronization is essential for capturing stealthy or fast-acting
cyber-physical attacks in near real time.

All sensor and network data including Modbus packet contents, process variable trends, and
actuator states are continuously logged into a structured time-series database (InfluxDB). This persis-
tent logging supports not only online anomaly detection (see Section 3) but also forensic replay and
validation. Replay functionality is implemented using a time-indexed buffer system, enabling both
real-time streaming and offline reconstruction of system states during and after attack events.

Visual monitoring and operator interaction are facilitated through Unity 3D, which renders a
real-time 3D digital model of the plant. Additionally, AWS IoT TwinMaker is used to manage digital
twin state updates, metadata, and asset relationships throughout the architecture.

This implementation provides dual support: real-time monitoring for anomaly detection and
continuous historical logging for forensic analysis. It enables a robust, defense-in-depth capability
against complex cyber-physical threats.

4.3. Attack Scenarios

To evaluate the robustness of the DT-ID framework, three principal classes of cyber-physical
attacks are implemented: False Data Injection (FDI), Denial-of-Service (DoS), and Reconnais-
sance/Command Injection. These scenarios reflect both common industrial threats and novel stealthy
attacks increasingly relevant in critical infrastructure settings [23].

Scheduling Strategy: Attack events are scheduled in non-overlapping 10-minute windows over a
continuous 72-hour simulation period. The timing, target system component (e.g., PLC, sensor, HMI),
and duration of each attack are drawn from a uniform random distribution. This randomized and
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temporally isolated scheduling ensures (i) fair attribution of alerts to individual attack events and (ii)
balanced representation of attack types across the timeline. This setup also avoids confounding effects
from attack overlaps while maintaining realistic unpredictability from the defender’s perspective.

Attack Generation: In addition to canonical attacks (e.g., bias injection, Modbus flooding),
we incorporated stealthy zero-day attacks using adversarial techniques inspired by GAN-based
approaches to falsify sensor readings while preserving statistical normalcy [23]. This ensures the
framework is tested not only on known threat signatures but also on adaptive, statistically evasive
threats that challenge anomaly-based systems. In addition to canonical attacks (e.g., bias injection,
Modbus flooding), stealthy zero-day attacks are incorporated using adversarial techniques inspired
by GAN-based approaches to falsify sensor readings while preserving statistical normalcy [23]. This
ensures the framework is tested not only on known threat signatures but also on adaptive, statistically
evasive threats that challenge anomaly-based systems.

Timeline Visualization: Figure 5 illustrates the distribution of different attack types across the
simulation timeline. Each color-coded block corresponds to a distinct attack event, and gaps represent
periods of normal operation. This view supports clarity in evaluating system response and detection
latency under varying threat conditions.

Figure 5. Attack Schedule Timeline: Randomized, non-overlapping attack windows over 72 hours. Each color
represents a different attack type.

Table 2 summarizes the characteristics and objectives of each simulated attack type.

Table 2. Summary of Simulated Attack Types and Objectives.

Attack Type Description Parameters Objective

FDI Sensor spoofing Bias: ±20% Trigger false tank/pH
states

DoS Packet flood 104/sec Disrupt PLC-HMI
communication

Recon/Cmd Port scan, STOP
cmd

Scan, Unauthorized
cmd

Compromise process
control

4.4. Validation Metrics and Baselines

The performance of the DT-ID system is evaluated using a comprehensive set of statistical metrics:
detection F1-score, precision, recall, false positive rate (FPR), and average detection latency (measured
from attack onset to alert). Ground truth labels are derived from the attack scheduler’s event logs and
timestamped system traces.

Thresholds for binary classification are selected using Receiver Operating Characteristic (ROC)
curve analysis on a held-out validation set, optimizing for the point closest to the top-left corner (i.e.,
high true positive rate, low false positive rate). The detection threshold for the final ensemble output,
Pfinal > 0.85, is selected based on this ROC analysis.

The 72-hour simulation trace is partitioned into 70% training and 30% testing data. Two baselines
are compared:

• Snort IDS (Rule-Based): A signature-based intrusion detection engine using Modbus/TCP rules.
• Physics-Only Residual Detector: Flags physical anomalies using residual thresholds without

learning or cyber analysis.
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Figure 6 presents a side-by-side comparison of performance metrics across detection methods.
Figure 7 shows detection probabilities across time for FDI, DoS, and Recon attacks, illustrating the
responsiveness of DT-ID. Figure 8 depicts the confusion matrix for the DT-ID classifier.

Figure 6. Detection probability curves for representative FDI, DoS, and Recon attacks. The DT-ID system
demonstrates rapid and robust detection across attack types.

Figure 7. Detection Probability Curves for FDI, DoS, and Recon Attacks. The DT-ID system provides faster and
more robust anomaly detection compared to baseline methods, particularly during attack windows (gray regions).
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Figure 8. Confusion matrix of DT-ID predictions vs. ground truth.

4.5. Simulation Results

Table 3 presents the detection performance of the DT-ID system compared to two baseline
methods: a rule-based Snort IDS and a physics-only anomaly detector. The DT-ID framework achieves
an F1-score of 96.3%, a false positive rate (FPR) below 2.5%, and an average detection latency under
500 milliseconds. These results demonstrate a significant improvement over traditional detection
approaches.

Figure 7 illustrates the detection probability curves for three representative attack types: False
Data Injection (FDI), Denial of Service (DoS), and Reconnaissance/Command Injection. The DT-ID
system consistently provides timely and robust alerts.

Figure 8 presents the confusion matrix for the DT-ID system on the test dataset. The high true
positive rate and low false negative counts across all attack types highlight the robustness of the hybrid
detection approach.

Table 3. Performance Comparison: DT-ID vs. Baselines

Method F1-score FPR (%) Latency (ms)

DT-ID (Ours) 96.3 2.4 480
Snort IDS 80.5 4.7 1650
Physics-Only 89.2 7.8 510

4.6. Implementation Challenges and Solutions

During the deployment and simulation of the DT-ID framework, two primary implementation
challenges were identified and addressed to ensure system robustness and fidelity.

1. Sensor Drift and False Residuals: Over time, minor drifts in sensor calibration introduced
discrepancies between the physical sensor values and the digital twin outputs, occasionally leading
to false residual spikes and false positives in the physical anomaly detector. To mitigate this, we
implemented a periodic auto-calibration mechanism that synchronizes the digital twin with recent
attack-free data windows. This strategy builds upon the delta-synchronization algorithm described in
Section 3.1, and ensures that benign fluctuations in sensor behavior do not trigger unnecessary alerts.
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2. False Negatives in Cyber Module: The LSTM-based cyber module initially struggled to detect
novel or stealthy Modbus/TCP attack patterns, particularly those not seen during training. To improve
model generalization and robustness, we augmented the training dataset with synthetically generated
attack traces using a GAN-based approach. These adversarial examples exposed the LSTM to diverse
anomalies beyond traditional statistical profiles, improving its sensitivity to zero-day attack behaviors.
This aligns with recent findings on adversarial training for anomaly detection [15].

3. Real-Time Synchronization Bottlenecks: Maintaining high-frequency (100 Hz) synchroniza-
tion between the digital twin and the live SCADA process initially caused I/O delays and data handling
bottlenecks in the Python-OPC UA interface. To overcome this, we optimized the synchronization
pipeline by caching redundant state updates and batching non-critical telemetry, reducing overhead
without compromising anomaly detection fidelity.

4. Response Module Trigger Sensitivity: Initial response thresholds led to excessive alerting
during process transients (e.g., tank refills, pump startup). To address this, anomaly scores were
smoothed using a moving average filter (window size = 3) before triggering mitigation actions.
Additionally, escalation stages were tuned to incorporate a hold time (e.g., 5 seconds) before initiating
higher-severity actions, reducing false triggers while retaining rapid response to sustained threats.

Overall, these solutions contributed to stable, low-latency performance and significantly improved
the robustness of the DT-ID framework under real-time simulation.

The proposed DT-ID framework introduces several technical innovations that enhance its capa-
bility to detect, respond to, and adapt against stealthy cyber-physical attacks in industrial SCADA
systems:

• Physics-Guided Hybrid Detection: By fusing model-based residual analysis from a high-fidelity
digital twin with cyber anomaly scores from LSTM-based learning, the framework combines the
precision of process-aware monitoring with the adaptability of data-driven detection. This hybrid
architecture improves detection sensitivity, especially for stealthy false data injection (FDI) attacks
that may evade purely signature-based or statistical methods.

• Adversarial-Aware Attack Simulation: The framework features a configurable attack simulation
engine that supports both conventional ICS threats and synthetically generated zero-day scenarios
using adversarial machine learning techniques. This design provides rigorous, repeatable testing
of IDS performance under a broad spectrum of threat conditions, including adaptive adversaries.

• Adaptive Decision Fusion and Threshold Optimization: A dynamic decision fusion mechanism
combines cyber and physical anomaly scores with empirically tuned weights (0.3/0.7), optimized
via grid search to maximize F1-score. Thresholds for detection (e.g., Pfinal > 0.85) are calibrated
using ROC analysis on validation data, ensuring a strong tradeoff between sensitivity and
specificity.

• Edge-Cloud Operational Synergy: The system architecture supports distributed deployment:
real-time anomaly scoring is handled at the edge (near PLCs and sensors), while batch retraining
and forensic analysis are conducted in the cloud. This hybrid execution model enables both
low-latency response and scalable analytics.

• Resilience via Concept Drift Adaptation: The detection models (LSTM and SVM) are retrained
periodically using recent data and evaluated for performance drift using the Page-Hinkley test.
This ensures that the DT-ID system maintains relevance in evolving operational conditions
without manual recalibration.

• Integrated Replay and Visualization: The use of Unity 3D for visual twin representation and
AWS IoT TwinMaker for state orchestration enables comprehensive replay of attack scenarios,
operator insight, and real-time visualization bridging the gap between technical anomaly alerts
and actionable engineering decisions.

Together, these innovations make the DT-ID framework not only more accurate but also more
practical for deployment in critical infrastructure environments where adaptive and low-latency
protection is essential.
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5. Conclusions
This study introduced a Digital Twin-driven Intrusion Detection (DT-ID) framework to enhance

cybersecurity in industrial SCADA systems. By integrating high-fidelity process simulation, real-time
state synchronization, adversarial attack emulation, and a hybrid anomaly detection pipeline, the
proposed approach effectively detects both conventional and stealthy cyber-physical threats. The
framework fuses physical process modeling with cyber analytics, employing LSTM-based detection
on network features and one-class SVM classification on physical residuals, with a weighted fusion
strategy to maximize robustness.

Through a detailed case study of a simulated water treatment plant, the DT-ID system demon-
strated superior detection performance compared to traditional methods. It achieved a 96.3% F1-score,
a false positive rate below 2.5%, and an average detection latency under 500 milliseconds demonstrat-
ing reliable real-time operation and high accuracy, even against sophisticated adversarial behaviors.

Beyond strong performance, this work underscores the value of combining data-driven and
physics-informed techniques for secure SCADA operation. The inclusion of adversarially generated
attack scenarios provided rigorous evaluation, ensuring the detection system is challenged by diverse
and realistic threats. Additionally, the digital twin’s real-time replay and forensic analysis capabilities
improve operator situational awareness and response.

Future research will extend the DT-ID framework to support multi-plant and distributed co-
ordination, develop advanced adaptive learning mechanisms to address concept drift, and explore
deployment strategies on edge computing platforms for ultra-low-latency environments. To promote
reproducibility and collaboration, all code and simulation resources are available upon request.
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