

	4 of 5
Supplementary Material
Code listing 1 – docker-compose.yml
	services:
 triage-agent:
 build:
 context: .
 dockerfile: Dockerfile
 container_name: triage-agent
 ports:
 - "8000:8000"
 environment:
 - OPENAI_API_KEY=${OPENAI_API_KEY}
 - AZURE_CLIENT_ID=${AZURE_CLIENT_ID}
 - AZURE_CLIENT_SECRET=${AZURE_CLIENT_SECRET}
 - AZURE_TENANT_ID=${AZURE_TENANT_ID}
 - DEFAULT_DOCTOR_ID=${DEFAULT_DOCTOR_ID}
 - LOG_LEVEL=${LOG_LEVEL:-INFO}
 - ENVIRONMENT=${ENVIRONMENT:-development}
 volumes:
 - ./app:/app
 - ./logs:/app/logs
 networks:
 - triage-network

networks:
 triage-network:
 driver: bridge
 name: triage-network

Code listing 2 – Dockerfile
	FROM python:3.9-slim

Set the working directory
WORKDIR /app

Copy the requirements file
COPY requirements.txt .

Install the dependencies
RUN pip install --no-cache-dir -r requirements.txt

Copy the rest of the application code
COPY . .

Expose the port the app runs on
EXPOSE 8000

Command to run the application
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]

Code listing 3 – requirements.txt
	fastapi
uvicorn
pydantic
azure-identity
msgraph-sdk
microsoft-kiota-authentication-azure
openai
asyncio
pyautogen

Code listing 4 – app/docker-entrypoint.sh
	#!/bin/sh
set -e

Start the FastAPI application
uvicorn main:app --host 0.0.0.0 --port 8000 --log-level info

Code listing 5 – app/main.py
	"""main.py

This demonstration code gives a template for how to integrate the autogen library with FastAPI
to create a medical triage assistant. The demo assistant can interact with users
to gather symptoms and provide triage recommendations. Placeholder code is also provided
that demonstrates how the assistant may also be made to analyze medical images, retrieve
electronic health records, and check doctor availability to help make a booking.
"""

import os
import logging
from contextlib import asynccontextmanager
from typing import Optional, Dict, Any, List
from fastapi import FastAPI, HTTPException, Depends
from fastapi import Security
from fastapi.security import OAuth2PasswordBearer
from pydantic import BaseModel
import autogen
from azure.identity.aio import ClientSecretCredential
from kiota_authentication_azure.azure_identity_authentication_provider import (
 AzureIdentityAuthenticationProvider,
)
from msgraph import GraphRequestAdapter, GraphServiceClient
from datetime import datetime, timedelta
import openai
import asyncio

Set up logging
logging.basicConfig(
 level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

Create a console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
logger.addHandler(console_handler)

Few-shot examples that demonstrate possible triage assessments
TRIAGE_EXAMPLES = """\
Example 1:
Patient symptoms: Persistent cough for 3 days, mild fever (37.8°C), and fatigue
Analysis:
- Severity: Low to Moderate
- Urgency: Non-urgent, but should be seen within 48-72 hours
- Specialist Type: General Practitioner
- Duration: 15-minute appointment
- Reasoning: Common respiratory symptoms without severe features. No emergency warning signs.

Example 2:
Patient symptoms: Severe abdominal pain, nausea, and vomiting for the past 6 hours
Analysis:
- Severity: High
- Urgency: Urgent, should be seen within 4-6 hours
- Specialist Type: Emergency Medicine or General Surgery
- Duration: 30-minute appointment or potential hospital admission
- Reasoning: Severe abdominal pain could indicate a serious condition like appendicitis or bowel obstruction. Prompt evaluation is necessary.

Example 3:
Patient symptoms: Gradual onset of joint pain and stiffness in hands and wrists over the past 2 months
Analysis:
- Severity: Moderate
- Urgency: Non-urgent, but should be seen within 2 weeks
- Specialist Type: Rheumatologist
- Duration: 30-minute appointment
- Reasoning: Chronic joint symptoms may suggest an underlying rheumatologic condition. Specialist evaluation is recommended for proper diagnosis and management.

Example 4:
Patient symptoms: Sudden onset of severe headache, neck stiffness, and sensitivity to light
Analysis:
- Severity: High
- Urgency: Emergency, should be seen immediately
- Specialist Type: Emergency Medicine or Neurology
- Duration: Immediate hospital admission and evaluation
- Reasoning: Symptoms are concerning for meningitis, a potentially life-threatening condition. Immediate medical attention is crucial for prompt diagnosis and treatment.
"""

SYSTEM_PROMPT = f"""\
You are a medical triage chatbot assistant helping to assess patient symptoms and schedule care.
Patients will interact with you via a clinic's website to describe their symptoms and arrange a booking.

The current date and time is {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}

When patients describe symptoms:
1. Ask about symptom severity, duration, and characteristics
2. Inquire about associated symptoms
3. Ask about relevant medical history and current medications
4. Check if they've tried any treatments

Always respond with clear, focused questions.
Avoid overwhelming the patient with too many questions at once.
Avoid making premature assessments until you have gathered sufficient information.

After gathering sufficient information, provide a summary of the gathered symptoms, andn assessment including:
- Severity level (Low/Medium/High)
- Urgency (Non-urgent/Urgent/Emergency)
- Recommended specialist type
- Suggested appointment duration

Example triage assessments are provided here to guide you;

{TRIAGE_EXAMPLES}

"""

@asynccontextmanager
async def lifespan(app: FastAPI):
 """Context manager to handle application startup and shutdown activities"""

 # Print the current environment to the console
 current_environment = os.getenv("ENVIRONMENT", "production")
 logger.info(f"Application started in '{current_environment}' environment")

 yield

 # Do any shutdown activities now
 pass

Initialize the FastAPI app with the lifespan context manager
app = FastAPI(lifespan=lifespan)
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")

Load environment variables - these should be set via a .env file
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
AZURE_CLIENT_ID = os.getenv("AZURE_CLIENT_ID")
AZURE_CLIENT_SECRET = os.getenv("AZURE_CLIENT_SECRET")
AZURE_TENANT_ID = os.getenv("AZURE_TENANT_ID")
DEFAULT_DOCTOR_ID = os.getenv("DEFAULT_DOCTOR_ID") # Default doctor ID

Initialize OpenAI client
openai.api_key = OPENAI_API_KEY

Initialize Microsoft Graph client
credential = ClientSecretCredential(
 tenant_id=AZURE_TENANT_ID,
 client_id=AZURE_CLIENT_ID,
 client_secret=AZURE_CLIENT_SECRET,
)
auth_provider = AzureIdentityAuthenticationProvider(credential)
adapter = GraphRequestAdapter(auth_provider)
graph_client = GraphServiceClient(adapter)

class EHRResponse(BaseModel):
 """Model for EHR response"""

 records: Dict[str, Any]
 timestamp: datetime

class ImageAnalysisResponse(BaseModel):
 """Model for image analysis response"""

 analysis: Dict[str, Any]
 timestamp: datetime

class ChatMessage(BaseModel):
 """Model for chat messages"""

 sender: str
 message: str

 class Config:
 json_schema_extra = {
 "example": {
 "sender": "user",
 "message": "I've been having a severe headache and fever for the past 2 days",
 }
 }

async def ehr_retrieve(patient_id: str) -> EHRResponse:
 """Retrieve patient EHR record"""
 try:
 return EHRResponse(
 records={"status": "retrieved"},
 timestamp=datetime.now(),
)
 except Exception as e:
 raise HTTPException(status_code=500, detail=f"Failed to retrieve EHR: {str(e)}")

async def user_image_assessment(
 image_data: bytes, content_type: str
) -> ImageAnalysisResponse:
 """Analyze patient-provided medical images"""
 try:
 return ImageAnalysisResponse(
 analysis={"status": "analyzed"},
 timestamp=datetime.now(),
)
 except Exception as e:
 raise HTTPException(
 status_code=500, detail=f"Failed to process image: {str(e)}"
)

async def check_calendar_availability(
 start_time: datetime, doctor_id: str, duration: timedelta = timedelta(minutes=30)
) -> Dict[str, Any]:
 """Check calendar availability using Microsoft Graph API"""
 try:
 end_time = start_time + duration
 time_zone = "Pacific Standard Time"

 request_body = {
 "schedules": [doctor_id],
 "startTime": {
 "dateTime": start_time.strftime("%Y-%m-%dT%H:%M:%S"),
 "timeZone": time_zone,
 },
 "endTime": {
 "dateTime": end_time.strftime("%Y-%m-%dT%H:%M:%S"),
 "timeZone": time_zone,
 },
 "availabilityViewInterval": 30,
 }

 response = await graph_client.me.calendar.get_schedule.post(
 body=request_body, headers={"Prefer": f'outlook.timezone="{time_zone}"'}
)

 return response
 except Exception as e:
 raise HTTPException(status_code=500, detail=f"Calendar API error: {str(e)}")

Create assistant with proper configuration for chat
assistant = autogen.AssistantAgent(
 name="triage_assistant",
 system_message=SYSTEM_PROMPT,
 llm_config={
 "config_list": [
 {
 "model": "gpt-4",
 "api_key": OPENAI_API_KEY,
 }
],
 "temperature": 0.7,
 },
 function_map={
 "ehr_retrieve": ehr_retrieve,
 "user_image_assessment": user_image_assessment,
 "check_calendar_availability": check_calendar_availability,
 },
)

class CustomUserProxyAgent(autogen.UserProxyAgent):
 """Custom UserProxyAgent class that stores the chat messages for each agent"""

 async def get_human_input(self, prompt: str) -> str:
 """Override the get_human_input method to return the stored message instead of asking for console input"""
 if hasattr(self, "stored_message"):
 message = self.stored_message
 del self.stored_message # Clear the stored message
 return message
 return ""

 async def a_send(
 self,
 message: str,
 recipient: autogen.ConversableAgent,
 request_reply: bool = True,
 **kwargs,
) -> Dict[str, Any]:
 """Async version of send"""
 self.stored_message = message
 return await recipient.a_receive(message, self, request_reply, **kwargs)

Disable authentication if the development environment is active
if os.getenv("ENVIRONMENT") == "development":

 async def token_dependency():
 return "development_user"

else:

 async def token_dependency(token: str = Depends(oauth2_scheme)):
 # Implement your production token validation logic here
 if not token:
 raise HTTPException(status_code=401, detail="Not authenticated")
 return token

@app.post("/chat")
async def chat(chat_message: ChatMessage, token: str = Depends(token_dependency)):
 """Main endpoint for chat processing"""
 try:
 # Only process user messages
 if chat_message.sender != "user":
 return chat_message

 # Create a new user proxy if it doesn't exist
 if not hasattr(app, "user_proxy"):
 app.user_proxy = CustomUserProxyAgent(
 name="user_proxy",
 human_input_mode="NEVER",
 max_consecutive_auto_reply=0,
 code_execution_config=False,
)
 app.user_proxy.chat_initiated = False

 try:
 if not app.user_proxy.chat_initiated:
 # First initialize the conversation context
 await app.user_proxy.a_send(
 message="""You are a medical triage assistant helping to assess patient symptoms and schedule care.
 When patients describe symptoms, ask a single relevant follow-up question, for instance about one of the following:
 - Severity and nature of symptoms
 - Duration and onset
 - Associated symptoms
 - Medical history
 - Previous treatments tried.

 Do not overwhelm the patient by asking more than one question at a time. Instead, gradually elicit more symptom informaiton by asking simple, focused follow up questions.""",
 recipient=assistant,
)

 # Send the actual user message
 await app.user_proxy.a_send(
 message=chat_message.message,
 recipient=assistant,
)
 app.user_proxy.chat_initiated = True
 else:
 # Continue existing chat
 await app.user_proxy.a_send(
 message=chat_message.message,
 recipient=assistant,
)

 # Get the most recent messages
 chat_messages = app.user_proxy.chat_messages.get(assistant, [])
 logger.info(f"Chat messages: {chat_messages}")

 if chat_messages:
 # Get the last message that has content, regardless of role
 messages_with_content = [
 msg
 for msg in chat_messages
 if msg.get("content") and msg.get("name") == "triage_assistant"
]

 if messages_with_content:
 last_message = messages_with_content[-1]
 message_content = last_message["content"].strip()

 return {"sender": "assistant", "message": message_content}

 # If we couldn't get a valid message
 logger.error("No valid message content found in chat history")
 return {
 "sender": "assistant",
 "message": "I apologize, but I wasn't able to process your message. Could you please describe your symptoms again?",
 }

 except Exception as e:
 logger.error(f"Chat processing error: {str(e)}", exc_info=True)
 return {
 "sender": "assistant",
 "message": "I apologize, but there was an error processing your message. Please try again.",
 }

 except Exception as e:
 logger.error(f"Chat error: {str(e)}", exc_info=True)
 raise HTTPException(status_code=500, detail=f"Chat error: {str(e)}")

