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Simple Summary 

Respiratory problems in pigs are one of the important issues in pig farming, as they can affect both 

animal health and the overall productivity of the farm. Coughing is one of the noticeable symptoms 

and can be either productive or non-productive, but in practice, distinguishing between the two types 

can be difficult and often depends on the person’s experience. In this study, we aimed to use machine 

learning to help classify pig coughs and also find out if certain types of cough are linked with specific 

respiratory diseases. We recorded pig cough sounds and used a machine learning model to analyze 

them. We also compared its performance with the judgement from farmers and a pig specialist. The 

result showed that machine learning could classify coughs more accurately than people in most cases. 

Interestingly, we found that non-productive coughs are strongly related to one specific type of 

bacterial infection. This suggests that machine learning might be helpful as a tool for early detection 

of pig diseases in the future. We believe that this approach has potential to support swine health 

monitoring and improve disease management on pig farms. 

Abstract 

Respiratory infections are a major concern in pig farming as they negatively impact animal health 

and productivity. Coughing is a key symptom of respiratory disease and can be classified as 

productive or non-productive, but human assessment often leads to inconsistencies. This study 

aimed to use a machine learning model to classify pig coughs and investigate their association with 

respiratory infections. Cough sounds from 49 fattening pigs were recorded and analyzed using a 

Python-based machine learning system. The model’s accuracy in detecting coughs was 0.72, 

compared to 0.69 for farmers. For classification of non-productive coughs, the machine learning 

results showed strong agreement with infection status by Mycoplasma hyopneumoniae, with 

Spearman’s correlation of 0.80 and Cohen’s Kappa of 0.79. However, the association with Porcine 

Circovirus type 2 was weak, with correlation and Kappa values of 0.05 and 0.037, respectively. These 

findings indicate that machine learning can classify pig coughs more accurately than human 

evaluators and that non-productive coughs are strongly linked to Mycoplasma infection but not to 

PCV2. This suggests the potential use of machine learning for more reliable disease monitoring and 

early detection in swine production. 

Keywords: machine learning; pig coughs; respiratory diseases; fattening pig 

 

1. Introduction 

Respiratory problems are among the most common and critical health concerns in pig 

production systems. These conditions adversely impact key production indicators such as average 
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daily gain (ADG), feed conversion rate (FCR), and mortality rate, ultimately leading to increased 

production costs [8] and reduced carcass quality. Many small-scale swine farmers are particularly 

vulnerable to these effects, with some even being forced to cease production altogether. The most 

important pathogens associated with respiratory diseases in pigs include Porcine Reproductive and 

Respiratory Syndrome virus (PRRSv), Mycoplasma hyopneumoniae (Mh), Pasteurella spp., Porcine 

Circovirus type 2 (PCV2), Swine Influenza virus, and Streptococcus spp. Among these, PRRSv and 

Mh have been identified as the primary causes of respiratory illnesses in pigs, both globally and in 

Thailand [4,11,16,35]. 

PRRSv, an arterivirus, is classified into PRRSV-1 and PRRSV-2 genotypes [2]. The virus 

replicates in alveolar macrophages and respiratory epithelial cells and is often associated with 

productive coughing in infected pigs [35]. It can also cause systemic infections that result in 

reproductive failures [17]. In Thailand, both genotypes are prevalent in swine-dense regions [26]. For 

diagnostic purposes, blood samples were selected in this study due to their suitability for detecting 

infection in both acute and chronic stages [13]. RT-PCR was employed for viral detection, a method 

with high sensitivity and reliability—even in asymptomatic or preclinical animals [7,20]. Notably, 

PRRSv is a major contributor to the Porcine Respiratory Disease Complex (PRDC), often co-infecting 

with PCV2 and Mh [34]. 

PCV2 is known to cause Postweaning Multisystemic Wasting Syndrome (PMWS), which leads 

to poor growth, emaciation, and chronic respiratory lesions [10,21]. Although its direct relationship 

to coughing is not well-defined, it plays a key role in respiratory disease complexity. In contrast, Mh 

is the causative agent of enzootic pneumonia, which is typically characterized by non-productive 

coughs. This pathogen adheres to tracheal cilia, disrupting mucociliary clearance and predisposing 

the lung to secondary infections [18]. Transmission occurs via aerosols or direct contact. Diagnostic 

samples often include lungs, trachea, or tonsils and are examined through PCR or culture. 

Importantly, different pathogens may produce distinct cough types: viral infections often cause 

productive coughs, while bacterial infections such as Mh typically result in non-productive coughs 

[6]. However, identifying cough types based on sound remains challenging due to the subjective 

nature of human perception [23]. 

Because coughing is one of the earliest and most noticeable clinical signs of respiratory disease, 

the ability to detect and differentiate cough types accurately and early is crucial. Unfortunately, 

current diagnostic methods are reactive, invasive, and not always practical on commercial farms. This 

has driven interest in non-invasive, real-time surveillance tools. Syndromic surveillance, which 

emphasizes early recognition of abnormal signs before full outbreaks occur, provides a promising 

framework for such efforts. Recent technological developments in artificial intelligence (AI) have 

opened new possibilities for improving disease detection in swine production. AI has been used for 

activity monitoring, temperature analysis, weight estimation [29], and even analyzing pig 

vocalizations to assess stress or pain [27]. Importantly, machine learning algorithms have also been 

applied to classify pig coughing and background noise using spectrogram-based sound analysis [30]. 

This study builds upon these developments by investigating the use of machine learning to 

classify pig coughs into productive and non-productive types and to assess their association with 

specific respiratory pathogens. The findings could support early disease detection and more precise 

health monitoring in pig farms, contributing to improved welfare and productivity. 

2. Materials and Methods 

2.1. Animals and Sample Size for Coughing Pigs 

Fattening pigs aged between 3 and 5 months, crossbred from Large White × Landrace and Duroc, 

were selected from small-holder farms affiliated with the Chiang Mai–Lamphun Pig Farmers 

Cooperative Limited. These farms had documented histories of coughing symptoms among fattening 

pigs. The required sample size of pigs exhibiting coughing symptoms was determined using 

G*Power software. A one-tailed hypothesis was employed, with a significance level (α) set at 0.05 
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and a statistical power (1 − β) of 0.95. Based on these parameters, the minimum sample size was 

calculated to be 34 pigs. Data collection and sample usage were approved by each participating farm, 

and the study protocol was reviewed and approved by the Animal Care and Use Committee of the 

Faculty of Veterinary Medicine, Chiang Mai University, Thailand (Approval No. S15-2567). 

2.2. Recording of Pig Cough Sounds 

The observation of coughing symptoms in fattening pigs was carried out at the participating 

farms. The pigs were stimulated to move around inside the pen for approximately 3 to 5 minutes, 

and then the coughing behavior was carefully observed by the farm owner at each farm. When a 

fattening pig was identified as coughing, it was marked with color spray as an indicator for further 

observation. After that, the pig farmer recorded the cough sound of the identified pig. Each sound 

file was labeled with a code that matched the specific pig that showed coughing symptoms. Before 

being processed using AI to convert the sound into a spectrogram image, each sound file was 

reviewed by an expert to confirm whether it was truly a pig cough or not. Furthermore, the sounds 

confirmed as pig coughs were then assessed by both the farmer and the expert to determine whether 

the cough was productive cough or non-productive cough. The recorded and verified sounds were 

later analyzed in a studio room, where the files were converted and used for further classification 

and analysis of sound types. 

2.3. Conversion of Sound Data into Image 

The recorded sound files were analyzed using a software program that was developed with 

Python programming language. The sound files were converted into wave plot images by using 

specific commands as shown below. 

def plot_waves(y, sr): 

file_path = 'sound_name.wav' 

y, sr = librosa.load(file_path) 

fig = plt.figure(figsize=(60,25)) 

librosa.display.waveshow(np.array(y),sr=sr) 

step = 0.2 

duration = librosa.get_duration(y=y, sr=sr) 

xticks = math.ceil(duration / step) 

xticks = [x * step for x in range(xticks + 1)] 

plt.suptitle("Figure 1: Waveplot",x=0.5, y=0.915,fontsize=16) 

plt.xlim(left=0, right=4) 

plt.show() 

plot_waves(y, sr) 

Training the AI System 

In this process, the AI system was instructed to classify the spectrogram images into two 

categories: cough and non-cough. Once the images identified as cough were separated, the AI was 

further trained to distinguish between productive and non-productive cough images. These 

classifications were used to analyze correlations in subsequent steps. The wave plot images obtained 

from the sound data were used to train the AI system. The training process was conducted using 

Google Teachable Machine. The model was trained for 50 epochs, with a batch size of 32 and a 

learning rate set at 0.06, which was identified as the optimal parameter configuration based on 

preliminary analysis. 
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Figure 1. Training the AI system to analyze pig cough sounds; (a) A wave plot representing a reference pig cough 

sound, (b) A wave plot of a non-cough sound used as a comparison, (c) Configuration parameters used in the 

AI training process via Google Teachable Machine, including 50 epochs, batch size of 32, and a learning rate of 

0.06, (d) Example of the model code used to deploy the trained AI model for classification, (e) Output result from 

the AI analysis indicating classification confidence between "cough" and "non-cough" categories. 

In the next step, the system was trained to distinguish between non-productive and productive 

coughs (Figure 2). The method used was the same as the one for separating cough from non-cough 

sounds. However, the reference sounds used for training were changed to clearly identified samples 

of either non-productive or productive coughs, which had been reviewed and agreed upon by both 

the farmers and the veterinary experts. These sounds were then converted into spectrogram images 

and used to teach the AI to recognize the differences between the two types. This allowed for more 

accurate classification of pig coughs and helped support further analysis of pig health conditions on 

the farms. 

 

Figure 2. The wave plot comparison of cough sounds; (a) Non-productive cough: Monophasic amplitude pattern 

with reduced peak amplitude (0.5 to -0.5 arbitrary units), (b) Productive cough: Polyphasic oscillations with 

higher amplitude variability (Adaptation from [1]). 

2.4. Collection of Blood and Tonsil Swab Samples 

The pigs that showed coughing symptoms were restrained using a snare, which was placed 

between the upper and lower jaw teeth. Then, a mouth gag was inserted into the pig’s mouth to keep 

it open. After that, a sterilized cotton swab was used to rub the surface of the tonsil gland, and the 

swab was placed into BHL medium broth. The sample was kept at a temperature of 4-8°C before 

being sent for laboratory analysis to detect Mh. For blood sample collection, 2 mL of blood was drawn 
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from the pig’s jugular vein using a sterile EDTA tube. The blood samples were also kept at 4-8°C and 

then sent to the laboratory for further diagnosis of PRRS virus and PCV2 virus. 

2.5. Real-Time RT-PCR Method for Diagnosis of PRRS Virus 

The detection of PRRS virus (PRRSv) was performed using the real-time reverse transcription 

polymerase chain reaction (real-time RT-PCR) technique. The process began with the extraction of 

viral RNA, followed by amplification of the target RNA using PCR, which allows the monitoring of 

RNA amplification in real-time. RNA was extracted from the samples using a commercial RNA 

extraction kit. The extracted RNA solution was kept on ice during the entire testing process to prevent 

RNA degradation. The master mix for the one-step real-time RT-PCR reaction was prepared, 

including three control samples: positive control for Type 1, positive control for Type 2, and a negative 

control. The reaction was conducted using the LightCycler® multiplex RNA virus master (Roche 

GmbH, Germany). The 20 µl one-step real-time RT-PCR reaction included the following components: 

1) 4.0 µl of 5 x RT-qPCR reaction mix, 2) 0.1 µl of 200x RT enzyme solution, 3) Primers at a final 

concentration of 500-600 nM, and 4) Probes at a final concentration of 250-300 nM. 

The amplification of the target RNA was monitored in real-time by detecting the increase in 

specific fluorescence signals. For PRRS virus type 1, fluorescence was detected in the Cy5 channel, 

while for type 2, the HEX channel was used (Table 1). The results were reported as cycle threshold 

(Ct or Cq), which indicates the cycle number at which a significant increase in fluorescence was 

observed. A typical amplification curve appeared in the form of an S-shaped (sigmoid or exponential) 

graph. 

Table 1. Primer sequences and their specificity used for real-time RT-PCR detection of PRRSv (adapted from 

[12]). 

Primer/Prob

e 
Nucleotide Sequence (5′–3′) 

 

Target (Specificity) 

PRRS-Eu/F GCA CCA CCT CAC CCR RAC PRRSV Type 1 (ORF7) 

PRRS-Eu/R CAG TTC CTG CRC CYT GAT PRRSV Type 1 (ORF7) 

PRRS-Eu/Pr 
Cy5-CCT CTG YYT GCA ATC GAT CCA 

GAC-BHQ1 
PRRSV Type 1 (ORF7) 

PRRS-Us/F ATR ATG RGC TGG CAT TCC PRRSV Type 2 (ORF7) 

PRRS-Us/R ACA CGG TCG CCC TAA TTG PRRSV Type 2 (ORF7) 

PRRS-US/Pr 
HEX-TGT GGT GAA TGG CAC TGA TTG 

ACA-BHQ1 
PRRSV Type 2 (ORF7) 

Remake: ORF7=Open Reading Frame 7. 

2.6. Quantitative PCR (qPCR) for Detection of Porcine Circovirus Type 2 (PCV2) 

Detection of porcine circovirus type 2 (PCV2) DNA was performed using a quantitative PCR 

(qPCR) protocol adapted from Franzo et al. (2018) [9] and Yuan et al. (2014) [31] (Table 2). It is started 

that DNA was extracted from tonsil swab samples preserved in broth medium using a commercial 

DNA extraction kit according to the manufacturer’s protocol. The extracted DNA was kept on ice 

during preparation to prevent degradation. Then, the qPCR reaction was prepared in a total volume 

of 20 µl, comprising the following components: 10.0 µl of 2× qPCR reaction mix, 400 nM of each 

forward and reverse primer and 200 nM of probe specific for PCV2. 1.0 µl of DNA template or control 

(positive or negative), Nuclease-free water to adjust to final volume Master mix (12.5 µl per tube) was 

aliquoted into PCR tubes, followed by the addition of 1.0 µl of extracted DNA. Positive and negative 

controls were included in each run. The negative control consisted of nuclease-free water. Thermal 

Cycling Conditions, the qPCR was conducted using a real-time thermal cycler under the following 

conditions: Initial denaturation: 95 °C for 10 minutes (1 cycle), Amplification: 95 °C for 15 seconds (45 

cycles), Cooling: 25 °C for 45 seconds (1 cycle). And then fluorescence signals were monitored at each 
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cycle to detect the specific amplification of the PCV2 target sequence. Results were reported based on 

the cycle threshold (Ct) values corresponding to exponential amplification curves. 

Table 2. Primer and probe nucleotide sequences used for quantitative PCR (qPCR) detection of PCV2 and PCV3 

[9,31]. 

Primer/Pro

be 
Nucleotide Sequence (5′–3′) 

 

Target 

(Specificity) 

PCV2-F AAG TAG CGG GAG TGG TAG GA ORF2 

PCV2-R GGG CTC CAG TGC TGT TAT TC ORF2  

PCV2-Pr FAM-TCC CGC CAT ACC ATA ACC CAG C-TAMRA ORF2  

PCV3-F TGA CGG AGA CGT CGG GAA AT REP  

PCV3-R CGG TTT ACC CAA CCC CAT CA REP  

PCV3-Pr FAM-GGG CGG GGT TTG CGT GAT TT-TAMRA REP  

Remake: ORF2= Open Reading Frame 2 of PCV2, REP=Replication-associated protein gene of PCV3. 

2.7. Bacterial Culture and qPCR-Based Confirmation of Mycoplasma Hyopneumoniae. 

The presence of Mh was initially assessed by culturing samples in BBL™ Mycoplasma broth 

(BHL medium) at 37 °C. Cultures were monitored for color change, which indicates metabolic 

activity. In the absence of visible color change, blind passages were performed every 5–7 days for a 

total of 21 days to enhance bacterial recovery [26]. DNA was extracted from the cultured broth using 

a commercial DNA extraction kit according to the manufacturer’s instructions. Quantitative PCR 

(qPCR) targeting the Mhp183 gene, which is specific to Mh to confirm the presence of the pathogen 

(Table 3). 

The qPCR amplification was performed under the following thermal cycling conditions: DNA 

polymerase activation at 95 °C for 15 minutes to activate the enzyme. Forty cycles of: Denaturation 

at 95 °C for 15 seconds, Combined annealing and extension at 60 °C for 60 seconds. 

Table 3. Nucleotide sequences of primers and probe used for qPCR detection of Mycoplasma hyopneumoniae. 

Primer/Probe Nucleotide Sequence (5’–3’) Description 

Mhp183 F CCA GAA CCA AAT TCC TTC GCT G Forward primer 

Mhp183 R ACT GGC TGA ACT TCA TCT GGG CTA Reverse primer 

Mhp183 P 

FAM-

AGCAGATCTTAGTCAAAGTGCCCGTG-

BHQ_1 

Probe labeled with 

FAM/BHQ_1 

2.8. Statistical Analysis of the Relationship Between Coughing Symptoms and Pathogen Detection 

Three types of evaluators including pig farmers, an artificial intelligence (AI) system, and the 

swine pratictioner expert were asked to interpret wave plots in order to determine whether the sound 

represented a cough and, if so, to classify the type of cough. The results of the analysis were used to 

calculate the sensitivity and specificity of cough detection, as well as detection of non-productive 

coughs. These evaluations were performed for pig farmers vs. the AI system and the swine 

pratictioner expert vs. the AI system. The accuracy of cough identification and cough type 

classification was then compared using Bayesian probability theory. And also, the classification 

results for non-productive coughs were statistically analyzed in relation to PCR test results using 

Spearman’s correlation coefficient and the Kappa coefficient, implemented in the R statistical 

software. A p-value of less than 0.05 was considered statistically significant. 

3. Results 
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3.1. Detection Results for Mycoplasma Hyopneumoniae (Mh), Porcine Circovirus Type 2 (PCV2), and 

Porcine Reproductive and Respiratory Syndrome Virus (PRRSv) 

Out of 49 tonsil swab samples, 10 samples tested positive for Mh. For Porcine Circovirus Type 2 

(PCV2), 29 out of 49 blood samples showed positive results. In contrast, no positive results were 

found for PRRSv in any of the tested samples. 

3.2. Probability Analysis of General Cough Detection 

The sensitivity and specificity of pig farmers in identifying coughing sounds, as compared with 

the swine pratictioner expert, were 1.00 and 0.056, respectively. For the AI-based cough detection 

system, the sensitivity and specificity were 1.00 and 0.50, respectively, when benchmarked against 

swine experts. Bayesian probability analysis was used to determine the likelihood that each system 

correctly identified cough events. The posterior probabilities for accurate cough detection by pig 

farmers and by the AI system were 0.31 and 0.46, respectively. These results suggest that although 

both observers and AI systems are capable of recognizing cough events (high sensitivity), the AI 

system demonstrates greater ability in avoiding false positives (higher specificity), thereby providing 

a more balanced and reliable diagnostic outcome. 

3.3. Probability Analysis of Non-Productive Cough Detection 

In the identification of non-productive coughs (i.e., dry coughs), the sensitivity and specificity 

of pig farmers, compared to swine experts, were 0.80 and 0.85, respectively. The AI system showed 

slightly higher sensitivity (0.90) and equal specificity (0.85). Bayesian analysis of posterior 

probabilities revealed that the likelihood of correctly detecting a non-productive cough was 0.69 for 

pig farmers and 0.72 for the AI system (Figure 3). These findings indicate that both human and AI 

systems have strong diagnostic performance in detecting non-productive coughs, with the AI system 

showing slightly better overall probability due to higher sensitivity. 

 

Figure 3. presents a visual comparison of Bayesian posterior probabilities for non-productive cough detection 

between pig farmers and the AI system. The graph highlights the AI system's superior performance in balancing 

sensitivity and specificity for this cough type. 

3.4. Correlation Between Infection (PCV2 and Mh) and Coughing or Non-Productive Cough 

To evaluate the relationship between respiratory infections and coughing symptoms, both 

Spearman’s rank correlation coefficient (to assess monotonic association) and Cohen’s kappa 
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coefficient (to assess agreement beyond chance) were used. The correlation between either PCV2 or 

Mh infection and general coughing symptoms yielded a Spearman’s coefficient of 0.40 and a Cohen’s 

kappa of 0.36, indicating a moderate level of association and agreement between infection status and 

observed cough. In contrast, the correlation between PCV2 infection and non-productive cough was 

low, with a Spearman’s coefficient of 0.05 and a Cohen’s kappa of 0.037 (Table 4). 

Table 4. Spearman’s Rank Correlation Coefficient and Cohen’s Kappa Coefficient. 

Statistical Analysis 

Correlation between 

infection and 

coughing symptoms 

Correlation between 

PCV2 infection and 

non-productive 

cough 

Correlation between 

Mh infection and 

non-productive 

cough 

Spearman’s rank 

correlation coefficient 
0.40 0.05 0.80 

Cohen’s kappa 

coefficient (95% CI) 
0.36 (CI: 0.10–0.62) 0.037 (CI: –0.20–0.27) 0.79 (CI: 0.56–1.00) 

4. Discussion 

Respiratory diseases in swine production remain one of the major concerns due to their impact 

on animal welfare and productivity. Among the early clinical signs, coughing is commonly observed; 

however, identifying and interpreting cough characteristics can be subjective when relying solely on 

human observers. In this study, we explored the potential of artificial intelligence (AI) to detect and 

classify coughs in pigs and investigated the association between cough characteristics and two major 

respiratory pathogens: Mycoplasma hyopneumoniae (Mh) and Porcine Circovirus type 2 (PCV2). Dry, 

non-productive cough is a characteristic clinical symptom of Mh infection in pigs, especially when 

pigs are stimulated to move, as noted in clinical observations [25]. Spectrogram and wave plot 

analysis has been shown to reliably distinguish infectious pig coughs from other ambient farm noises. 

In particular, Berckmans et al. (2008)[3] demonstrated that coughs from infected pigs display 

distinctive wave plot patterns with longer duration and altered frequency content compared to 

healthy coughing or ambient sounds, as visualized in both time and frequency domain 

representations. 

The results demonstrated that the AI system outperformed pig farmers in identifying general 

coughing sounds (0.46 vs. 0.31) and was particularly more effective in detecting non-productive (dry) 

coughs (0.72 vs. 0.69). Although the difference appears modest, the AI’s consistent and objective 

ability to classify cough types offers a clear advantage, especially in large-scale or continuous 

monitoring contexts. This finding aligns with prior research showing that AI-based acoustic 

monitoring systems can significantly enhance real-time animal health surveillance. For example, 

Zhao et al. (2020)[33] developed a DNN–HMM acoustic model that effectively distinguished pig 

coughs, non-coughs, and silence segments with an improved Word Error Rate compared to 

conventional models. Similarly, a systematic review found that microphone-based cough detection 

systems can achieve accuracies between 73% and 93% in detecting respiratory distress in pigs, 

demonstrating their potential for welfare and health monitoring [28]. 

When analyzing the relationship between cough type and pathogen detection, our findings 

indicated a moderate association between general coughing and combined detection of respiratory 

pathogens (PCV2 and Mh), with Spearman’s rho of 0.40 and Cohen’s kappa of 0.36 (95% CI: 0.10–

0.62). In contrast, the correlation between PCV2 and non-productive cough was weak (rho = 0.05; 

kappa = 0.037, 95% CI: –0.20–0.27), suggesting that PCV2 infection alone is not a reliable predictor of 

this clinical sign. These results align with previous reports demonstrating that PCV2 often plays a 

subclinical role or acts synergistically rather than as a primary respiratory pathogen. Notably, co-

infection of PCV2 and Mh has been experimentally shown to exacerbate lung lesions in PRDC models 

[22,32]. Conversely, some findings report minimal lung pathology in PCV2-only infections (Such 
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variability underscores the complex interplay between PCV2 and other respiratory pathogens, 

reinforcing the need for longitudinal field studies to better delineate these relationships [15]. 

In contrast, a strong correlation was observed between Mh infection and non-productive coughs 

(Spearman’s rho = 0.80; kappa = 0.79, CI: 0.56–1.00). This finding is consistent with the 

pathophysiology of Mh, which typically causes dry, persistent coughing due to the organism's ability 

to adhere to and damage ciliated epithelial cells in the respiratory tract [14,24]. In experimental co-

infection studies, Mh has been shown to induce chronic coughing when combined with other 

pathogens such as PCV2, reinforcing its role in respiratory disease complexes [32]. Moreover, the 

high agreement between AI-detected dry coughs and laboratory-confirmed Mh infection supports 

the potential of AI systems as effective screening tools. Recent studies have demonstrated that deep 

learning models can detect pig coughs with high accuracy, sensitivity, and specificity under 

commercial farm conditions [5]. AI-based cough monitoring also enables earlier detection of Mh 

outbreaks, which is crucial for timely intervention and reducing antibiotic use [19]. The high kappa 

value observed in this study further reinforces the utility of AI as a proxy for clinical diagnosis, 

particularly in field settings where routine diagnostic testing is not always feasible. 

These findings emphasize the usefulness of AI in pig farms, particularly for continuous and 

objective monitoring of respiratory symptoms. The ability to differentiate cough types and correlate 

them with specific pathogens like Mh provides a promising avenue for non-invasive early warning 

systems. However, some limitations should be noted. The relatively small sample size (n = 49) may 

have influenced the statistical power, especially regarding the PCV2 group. Additionally, 

environmental noise and the presence of multiple pigs in the same enclosure could affect acoustic 

detection accuracy. 

5. Conclusions 

In conclusion, this study highlights the potential of artificial intelligence systems in improving 

the detection and classification of coughs in pigs, with a particular strength in identifying non-

productive coughs associated with Mycoplasma hyopneumoniae. Future research should focus on 

expanding sample sizes, incorporating real-time AI models in farm environments, and integrating 

multimodal data such as temperature, behavior, and video imaging to enhance diagnostic precision. 

Additionally, longitudinal studies can assess the predictive value of AI-detected coughs over time 

and determine whether such systems can be integrated into automated decision-support tools for 

veterinarians and farm managers. 
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