Pre prints.org

Article Not peer-reviewed version

Machine Learning-Based Detection of
Pig Coughs and Their Association with
Respiratory Diseases in Fattening Pigs

Panuwat Yamsakul ~ , Terdsak Yano, Kiettipoch Junchum , Wijitra Anukul , Nattinee Kittiwan

Posted Date: 24 June 2025
doi: 10.20944/preprints202506.1843.v1

Keywords: machine learning; pig coughs; respiratory diseases; fattening pig

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4542806
https://sciprofiles.com/profile/4547543
https://sciprofiles.com/profile/4148603

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2025 d0i:10.20944/preprints202506.1843.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Machine Learning-Based Detection of Pig Coughs
and Their Association with Respiratory Diseases in
Fattening Pigs

Panuwat Yamsakul ¥, Terdsak Yano !, Kiettipoch Junchum 1, Wijitra Anukul 2
and Nattinee Kittiwan 2

1 School of Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Thailand

2 Veterinary Development and Research Center (Upper Northern Region), Department of Livestock
Development, Thailand

* Correspondence: panuwat.y@cmu.ac.th; Tel.: +6681-8387160

Simple Summary

Respiratory problems in pigs are one of the important issues in pig farming, as they can affect both
animal health and the overall productivity of the farm. Coughing is one of the noticeable symptoms
and can be either productive or non-productive, but in practice, distinguishing between the two types
can be difficult and often depends on the person’s experience. In this study, we aimed to use machine
learning to help classify pig coughs and also find out if certain types of cough are linked with specific
respiratory diseases. We recorded pig cough sounds and used a machine learning model to analyze
them. We also compared its performance with the judgement from farmers and a pig specialist. The
result showed that machine learning could classify coughs more accurately than people in most cases.
Interestingly, we found that non-productive coughs are strongly related to one specific type of
bacterial infection. This suggests that machine learning might be helpful as a tool for early detection
of pig diseases in the future. We believe that this approach has potential to support swine health
monitoring and improve disease management on pig farms.

Abstract

Respiratory infections are a major concern in pig farming as they negatively impact animal health
and productivity. Coughing is a key symptom of respiratory disease and can be classified as
productive or non-productive, but human assessment often leads to inconsistencies. This study
aimed to use a machine learning model to classify pig coughs and investigate their association with
respiratory infections. Cough sounds from 49 fattening pigs were recorded and analyzed using a
Python-based machine learning system. The model’s accuracy in detecting coughs was 0.72,
compared to 0.69 for farmers. For classification of non-productive coughs, the machine learning
results showed strong agreement with infection status by Mycoplasma hyopneumoniae, with
Spearman’s correlation of 0.80 and Cohen’s Kappa of 0.79. However, the association with Porcine
Circovirus type 2 was weak, with correlation and Kappa values of 0.05 and 0.037, respectively. These
findings indicate that machine learning can classify pig coughs more accurately than human
evaluators and that non-productive coughs are strongly linked to Mycoplasma infection but not to
PCV2. This suggests the potential use of machine learning for more reliable disease monitoring and
early detection in swine production.

Keywords: machine learning; pig coughs; respiratory diseases; fattening pig

1. Introduction

Respiratory problems are among the most common and critical health concerns in pig
production systems. These conditions adversely impact key production indicators such as average
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daily gain (ADG), feed conversion rate (FCR), and mortality rate, ultimately leading to increased
production costs [8] and reduced carcass quality. Many small-scale swine farmers are particularly
vulnerable to these effects, with some even being forced to cease production altogether. The most
important pathogens associated with respiratory diseases in pigs include Porcine Reproductive and
Respiratory Syndrome virus (PRRSv), Mycoplasma hyopneumoniae (Mh), Pasteurella spp., Porcine
Circovirus type 2 (PCV2), Swine Influenza virus, and Streptococcus spp. Among these, PRRSv and
Mh have been identified as the primary causes of respiratory illnesses in pigs, both globally and in
Thailand [4,11,16,35].

PRRSv, an arterivirus, is classified into PRRSV-1 and PRRSV-2 genotypes [2]. The virus
replicates in alveolar macrophages and respiratory epithelial cells and is often associated with
productive coughing in infected pigs [35]. It can also cause systemic infections that result in
reproductive failures [17]. In Thailand, both genotypes are prevalent in swine-dense regions [26]. For
diagnostic purposes, blood samples were selected in this study due to their suitability for detecting
infection in both acute and chronic stages [13]. RT-PCR was employed for viral detection, a method
with high sensitivity and reliability —even in asymptomatic or preclinical animals [7,20]. Notably,
PRRSv is a major contributor to the Porcine Respiratory Disease Complex (PRDC), often co-infecting
with PCV2 and Mh [34].

PCV2 is known to cause Postweaning Multisystemic Wasting Syndrome (PMWS), which leads
to poor growth, emaciation, and chronic respiratory lesions [10,21]. Although its direct relationship
to coughing is not well-defined, it plays a key role in respiratory disease complexity. In contrast, Mh
is the causative agent of enzootic pneumonia, which is typically characterized by non-productive
coughs. This pathogen adheres to tracheal cilia, disrupting mucociliary clearance and predisposing
the lung to secondary infections [18]. Transmission occurs via aerosols or direct contact. Diagnostic
samples often include lungs, trachea, or tonsils and are examined through PCR or culture.
Importantly, different pathogens may produce distinct cough types: viral infections often cause
productive coughs, while bacterial infections such as Mh typically result in non-productive coughs
[6]. However, identifying cough types based on sound remains challenging due to the subjective
nature of human perception [23].

Because coughing is one of the earliest and most noticeable clinical signs of respiratory disease,
the ability to detect and differentiate cough types accurately and early is crucial. Unfortunately,
current diagnostic methods are reactive, invasive, and not always practical on commercial farms. This
has driven interest in non-invasive, real-time surveillance tools. Syndromic surveillance, which
emphasizes early recognition of abnormal signs before full outbreaks occur, provides a promising
framework for such efforts. Recent technological developments in artificial intelligence (Al) have
opened new possibilities for improving disease detection in swine production. Al has been used for
activity monitoring, temperature analysis, weight estimation [29], and even analyzing pig
vocalizations to assess stress or pain [27]. Importantly, machine learning algorithms have also been
applied to classify pig coughing and background noise using spectrogram-based sound analysis [30].

This study builds upon these developments by investigating the use of machine learning to
classify pig coughs into productive and non-productive types and to assess their association with
specific respiratory pathogens. The findings could support early disease detection and more precise
health monitoring in pig farms, contributing to improved welfare and productivity.

2. Materials and Methods

2.1. Animals and Sample Size for Coughing Pigs

Fattening pigs aged between 3 and 5 months, crossbred from Large White x Landrace and Duroc,
were selected from small-holder farms affiliated with the Chiang Mai-Lamphun Pig Farmers
Cooperative Limited. These farms had documented histories of coughing symptoms among fattening
pigs. The required sample size of pigs exhibiting coughing symptoms was determined using
G*Power software. A one-tailed hypothesis was employed, with a significance level (o) set at 0.05
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and a statistical power (1 — 3) of 0.95. Based on these parameters, the minimum sample size was
calculated to be 34 pigs. Data collection and sample usage were approved by each participating farm,
and the study protocol was reviewed and approved by the Animal Care and Use Committee of the
Faculty of Veterinary Medicine, Chiang Mai University, Thailand (Approval No. 515-2567).

2.2. Recording of Pig Cough Sounds

The observation of coughing symptoms in fattening pigs was carried out at the participating
farms. The pigs were stimulated to move around inside the pen for approximately 3 to 5 minutes,
and then the coughing behavior was carefully observed by the farm owner at each farm. When a
fattening pig was identified as coughing, it was marked with color spray as an indicator for further
observation. After that, the pig farmer recorded the cough sound of the identified pig. Each sound
file was labeled with a code that matched the specific pig that showed coughing symptoms. Before
being processed using Al to convert the sound into a spectrogram image, each sound file was
reviewed by an expert to confirm whether it was truly a pig cough or not. Furthermore, the sounds
confirmed as pig coughs were then assessed by both the farmer and the expert to determine whether
the cough was productive cough or non-productive cough. The recorded and verified sounds were
later analyzed in a studio room, where the files were converted and used for further classification
and analysis of sound types.

2.3. Conwersion of Sound Data into Image

The recorded sound files were analyzed using a software program that was developed with
Python programming language. The sound files were converted into wave plot images by using
specific commands as shown below.
def plot_waves(y, sr):

file_path = 'sound_name.wav'

y, st = librosa.load(file_path)

fig = plt.figure(figsize=(60,25))

librosa.display.waveshow(np.array(y),sr=sr)

step=0.2

duration = librosa.get_duration(y=y, sr=sr)

xticks = math.ceil(duration / step)

xticks = [x * step for x in range(xticks + 1)]

plt.suptitle("Figure 1: Waveplot",x=0.5, y=0.915,fontsize=16)

plt.xlim(left=0, right=4)

plt.show()

plot_waves(y, sr)

Training the AI System

In this process, the Al system was instructed to classify the spectrogram images into two
categories: cough and non-cough. Once the images identified as cough were separated, the Al was
further trained to distinguish between productive and non-productive cough images. These
classifications were used to analyze correlations in subsequent steps. The wave plot images obtained
from the sound data were used to train the Al system. The training process was conducted using
Google Teachable Machine. The model was trained for 50 epochs, with a batch size of 32 and a
learning rate set at 0.06, which was identified as the optimal parameter configuration based on
preliminary analysis.
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Figure 1. Training the Al system to analyze pig cough sounds; (a) A wave plot representing a reference pig cough
sound, (b) A wave plot of a non-cough sound used as a comparison, (c) Configuration parameters used in the
Al training process via Google Teachable Machine, including 50 epochs, batch size of 32, and a learning rate of

0.06, (d) Example of the model code used to deploy the trained Al model for classification, (e) Output result from

the Al analysis indicating classification confidence between "cough" and "non-cough" categories.

In the next step, the system was trained to distinguish between non-productive and productive
coughs (Figure 2). The method used was the same as the one for separating cough from non-cough
sounds. However, the reference sounds used for training were changed to clearly identified samples
of either non-productive or productive coughs, which had been reviewed and agreed upon by both
the farmers and the veterinary experts. These sounds were then converted into spectrogram images
and used to teach the Al to recognize the differences between the two types. This allowed for more
accurate classification of pig coughs and helped support further analysis of pig health conditions on
the farms.

Amplitude

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time (sc.) Time (sc.)

Figure 2. The wave plot comparison of cough sounds; (a) Non-productive cough: Monophasic amplitude pattern
with reduced peak amplitude (0.5 to -0.5 arbitrary units), (b) Productive cough: Polyphasic oscillations with
higher amplitude variability (Adaptation from [1]).

2.4. Collection of Blood and Tonsil Swab Samples

The pigs that showed coughing symptoms were restrained using a snare, which was placed
between the upper and lower jaw teeth. Then, a mouth gag was inserted into the pig’s mouth to keep
it open. After that, a sterilized cotton swab was used to rub the surface of the tonsil gland, and the
swab was placed into BHL medium broth. The sample was kept at a temperature of 4-8°C before
being sent for laboratory analysis to detect Mh. For blood sample collection, 2 mL of blood was drawn

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1843.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2025 d0i:10.20944/preprints202506.1843.v1

5 of 11

from the pig’s jugular vein using a sterile EDTA tube. The blood samples were also kept at 4-8°C and
then sent to the laboratory for further diagnosis of PRRS virus and PCV2 virus.

2.5. Real-Time RT-PCR Method for Diagnosis of PRRS Virus

The detection of PRRS virus (PRRSv) was performed using the real-time reverse transcription
polymerase chain reaction (real-time RT-PCR) technique. The process began with the extraction of
viral RNA, followed by amplification of the target RNA using PCR, which allows the monitoring of
RNA amplification in real-time. RNA was extracted from the samples using a commercial RNA
extraction kit. The extracted RNA solution was kept on ice during the entire testing process to prevent
RNA degradation. The master mix for the one-step real-time RT-PCR reaction was prepared,
including three control samples: positive control for Type 1, positive control for Type 2, and a negative
control. The reaction was conducted using the LightCycler® multiplex RNA virus master (Roche
GmbH, Germany). The 20 pl one-step real-time RT-PCR reaction included the following components:
1) 4.0 pl of 5 x RT-qPCR reaction mix, 2) 0.1 ul of 200x RT enzyme solution, 3) Primers at a final
concentration of 500-600 nM, and 4) Probes at a final concentration of 250-300 nM.

The amplification of the target RNA was monitored in real-time by detecting the increase in
specific fluorescence signals. For PRRS virus type 1, fluorescence was detected in the Cy5 channel,
while for type 2, the HEX channel was used (Table 1). The results were reported as cycle threshold
(Ct or Cq), which indicates the cycle number at which a significant increase in fluorescence was
observed. A typical amplification curve appeared in the form of an S-shaped (sigmoid or exponential)

graph.

Table 1. Primer sequences and their specificity used for real-time RT-PCR detection of PRRSv (adapted from

[12).
Primer/Prob
Nucleoti -3
. ucleotide Sequence (5'-3") Target (Specificity)
PRRS-Eu/F GCA CCA CCT CAC CCRRAC PRRSV Type 1 (ORF?7)
PRRS-Eu/R CAGTTC CTG CRC CYT GAT PRRSV Type 1 (ORF7)
Cy5-CCT CTG YYT GCA ATC GAT CCA
PRRS-Eu/Pr GAC-BHQI1 PRRSV Type 1 (ORF?7)
PRRS-Us/F ATR ATG RGC TGG CAT TCC PRRSV Type 2 (ORF?7)
PRRS-Us/R ACA CGGTCG CCCTAATTG PRRSV Type 2 (ORF7)
HEX-TGT GGT GAA TGG CACTGA TTG
PRRS-US/Pr ACA-BHO1 PRRSV Type 2 (ORF?7)

Remake: ORF7=Open Reading Frame 7.

2.6. Quantitative PCR (gPCR) for Detection of Porcine Circovirus Type 2 (PCV2)

Detection of porcine circovirus type 2 (PCV2) DNA was performed using a quantitative PCR
(qPCR) protocol adapted from Franzo et al. (2018) [9] and Yuan et al. (2014) [31] (Table 2). It is started
that DNA was extracted from tonsil swab samples preserved in broth medium using a commercial
DNA extraction kit according to the manufacturer’s protocol. The extracted DNA was kept on ice
during preparation to prevent degradation. Then, the qPCR reaction was prepared in a total volume
of 20 ul, comprising the following components: 10.0 pl of 2x qPCR reaction mix, 400 nM of each
forward and reverse primer and 200 nM of probe specific for PCV2. 1.0 pl of DNA template or control
(positive or negative), Nuclease-free water to adjust to final volume Master mix (12.5 pl per tube) was
aliquoted into PCR tubes, followed by the addition of 1.0 ul of extracted DNA. Positive and negative
controls were included in each run. The negative control consisted of nuclease-free water. Thermal
Cycling Conditions, the qPCR was conducted using a real-time thermal cycler under the following
conditions: Initial denaturation: 95 °C for 10 minutes (1 cycle), Amplification: 95 °C for 15 seconds (45
cycles), Cooling: 25 °C for 45 seconds (1 cycle). And then fluorescence signals were monitored at each
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cycle to detect the specific amplification of the PCV2 target sequence. Results were reported based on
the cycle threshold (Ct) values corresponding to exponential amplification curves.

Table 2. Primer and probe nucleotide sequences used for quantitative PCR (qPCR) detection of PCV2 and PCV3

[9,31].
Prlrr;)e:/Pro Nucleotide Sequence (5'-3") Target
(Specificity)
PCV2-F AAGTAG CGG GAG TGG TAG GA OREF2
PCV2-R GGG CTC CAGTGC TGT TAT TC ORF2
PCV2-Pr FAM-TCC CGC CAT ACC ATA ACC CAG C-TAMRA ORF2
PCV3-F TGA CGG AGA CGT CGG GAA AT REP
PCV3-R CGGTTT ACC CAA CCC CAT CA REP
PCV3-Pr FAM-GGG CGG GGT TTG CGT GAT TT-TAMRA REP

Remake: ORF2= Open Reading Frame 2 of PCV2, REP=Replication-associated protein gene of PCV3.

2.7. Bacterial Culture and qPCR-Based Confirmation of Mycoplasma Hyopneumoniae.

The presence of Mh was initially assessed by culturing samples in BBL™ Mycoplasma broth
(BHL medium) at 37 °C. Cultures were monitored for color change, which indicates metabolic
activity. In the absence of visible color change, blind passages were performed every 5-7 days for a
total of 21 days to enhance bacterial recovery [26]. DNA was extracted from the cultured broth using
a commercial DNA extraction kit according to the manufacturer’s instructions. Quantitative PCR
(qPCR) targeting the Mhp183 gene, which is specific to Mh to confirm the presence of the pathogen
(Table 3).

The qPCR amplification was performed under the following thermal cycling conditions: DNA
polymerase activation at 95 °C for 15 minutes to activate the enzyme. Forty cycles of: Denaturation
at 95 °C for 15 seconds, Combined annealing and extension at 60 °C for 60 seconds.

Table 3. Nucleotide sequences of primers and probe used for qPCR detection of Mycoplasma hyopneumoniae.

Primer/Probe Nucleotide Sequence (5'-3’) Description
Mhp183 F CCA GAA CCA AATTCCTTC GCT G Forward primer
Mhp183 R ACT GGC TGA ACT TCA TCT GGG CTA Reverse primer

FAM- .
Mhpl83P  AGCAGATCTTAGTCAAAGTGCCCGTG- 1 robe labeled with
BHO 1 FAM/BHQ 1

2.8. Statistical Analysis of the Relationship Between Coughing Symptoms and Pathogen Detection

Three types of evaluators including pig farmers, an artificial intelligence (Al) system, and the
swine pratictioner expert were asked to interpret wave plots in order to determine whether the sound
represented a cough and, if so, to classify the type of cough. The results of the analysis were used to
calculate the sensitivity and specificity of cough detection, as well as detection of non-productive
coughs. These evaluations were performed for pig farmers vs. the Al system and the swine
pratictioner expert vs. the Al system. The accuracy of cough identification and cough type
classification was then compared using Bayesian probability theory. And also, the classification
results for non-productive coughs were statistically analyzed in relation to PCR test results using
Spearman’s correlation coefficient and the Kappa coefficient, implemented in the R statistical
software. A p-value of less than 0.05 was considered statistically significant.

3. Results
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3.1. Detection Results for Mycoplasma Hyopneumoniae (Mh), Porcine Circovirus Type 2 (PCV2), and
Porcine Reproductive and Respiratory Syndrome Virus (PRRSv)

Out of 49 tonsil swab samples, 10 samples tested positive for Mh. For Porcine Circovirus Type 2
(PCV2), 29 out of 49 blood samples showed positive results. In contrast, no positive results were
found for PRRSv in any of the tested samples.

3.2. Probability Analysis of General Cough Detection

The sensitivity and specificity of pig farmers in identifying coughing sounds, as compared with
the swine pratictioner expert, were 1.00 and 0.056, respectively. For the Al-based cough detection
system, the sensitivity and specificity were 1.00 and 0.50, respectively, when benchmarked against
swine experts. Bayesian probability analysis was used to determine the likelihood that each system
correctly identified cough events. The posterior probabilities for accurate cough detection by pig
farmers and by the Al system were 0.31 and 0.46, respectively. These results suggest that although
both observers and Al systems are capable of recognizing cough events (high sensitivity), the Al
system demonstrates greater ability in avoiding false positives (higher specificity), thereby providing
a more balanced and reliable diagnostic outcome.

3.3. Probability Analysis of Non-Productive Cough Detection

In the identification of non-productive coughs (i.e., dry coughs), the sensitivity and specificity
of pig farmers, compared to swine experts, were 0.80 and 0.85, respectively. The Al system showed
slightly higher sensitivity (0.90) and equal specificity (0.85). Bayesian analysis of posterior
probabilities revealed that the likelihood of correctly detecting a non-productive cough was 0.69 for
pig farmers and 0.72 for the Al system (Figure 3). These findings indicate that both human and Al
systems have strong diagnostic performance in detecting non-productive coughs, with the Al system
showing slightly better overall probability due to higher sensitivity.

Posterior probability
o
ot y
[4)] [4)]

o

)

o
T

Al Farmers
Model

Figure 3. presents a visual comparison of Bayesian posterior probabilities for non-productive cough detection
between pig farmers and the Al system. The graph highlights the Al system's superior performance in balancing
sensitivity and specificity for this cough type.

3.4. Correlation Between Infection (PCV2 and Mh) and Coughing or Non-Productive Cough

To evaluate the relationship between respiratory infections and coughing symptoms, both
Spearman’s rank correlation coefficient (to assess monotonic association) and Cohen’s kappa
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coefficient (to assess agreement beyond chance) were used. The correlation between either PCV2 or
Mh infection and general coughing symptoms yielded a Spearman’s coefficient of 0.40 and a Cohen’s
kappa of 0.36, indicating a moderate level of association and agreement between infection status and
observed cough. In contrast, the correlation between PCV2 infection and non-productive cough was
low, with a Spearman’s coefficient of 0.05 and a Cohen’s kappa of 0.037 (Table 4).

Table 4. Spearman’s Rank Correlation Coefficient and Cohen’s Kappa Coefficient.

Correlation between Correlation between

lati
Correlation between PCV2infection and Mh infection and

Statistical Analysis infection and

coughing symptoms non-productive non-productive
§Hing symp cough cough
’ k
Spearman’s ran 0.40 0.05 0.80
correlation coefficient
Cohen’s kappa ] ‘ '
coefficient (95% CI) 0.36 (CI: 0.10-0.62)  0.037 (CIL: -0.20-0.27)  0.79 (CI: 0.56-1.00)

4. Discussion

Respiratory diseases in swine production remain one of the major concerns due to their impact
on animal welfare and productivity. Among the early clinical signs, coughing is commonly observed;
however, identifying and interpreting cough characteristics can be subjective when relying solely on
human observers. In this study, we explored the potential of artificial intelligence (AI) to detect and
classify coughs in pigs and investigated the association between cough characteristics and two major
respiratory pathogens: Mycoplasma hyopneumoniae (Mh) and Porcine Circovirus type 2 (PCV2). Dry,
non-productive cough is a characteristic clinical symptom of Mh infection in pigs, especially when
pigs are stimulated to move, as noted in clinical observations [25]. Spectrogram and wave plot
analysis has been shown to reliably distinguish infectious pig coughs from other ambient farm noises.
In particular, Berckmans et al. (2008)[3] demonstrated that coughs from infected pigs display
distinctive wave plot patterns with longer duration and altered frequency content compared to
healthy coughing or ambient sounds, as visualized in both time and frequency domain
representations.

The results demonstrated that the Al system outperformed pig farmers in identifying general
coughing sounds (0.46 vs. 0.31) and was particularly more effective in detecting non-productive (dry)
coughs (0.72 vs. 0.69). Although the difference appears modest, the Al's consistent and objective
ability to classify cough types offers a clear advantage, especially in large-scale or continuous
monitoring contexts. This finding aligns with prior research showing that Al-based acoustic
monitoring systems can significantly enhance real-time animal health surveillance. For example,
Zhao et al. (2020)[33] developed a DNN-HMM acoustic model that effectively distinguished pig
coughs, non-coughs, and silence segments with an improved Word Error Rate compared to
conventional models. Similarly, a systematic review found that microphone-based cough detection
systems can achieve accuracies between 73% and 93% in detecting respiratory distress in pigs,
demonstrating their potential for welfare and health monitoring [28].

When analyzing the relationship between cough type and pathogen detection, our findings
indicated a moderate association between general coughing and combined detection of respiratory
pathogens (PCV2 and Mh), with Spearman’s rho of 0.40 and Cohen’s kappa of 0.36 (95% CI: 0.10—
0.62). In contrast, the correlation between PCV2 and non-productive cough was weak (rho = 0.05;
kappa =0.037, 95% CI: -0.20-0.27), suggesting that PCV2 infection alone is not a reliable predictor of
this clinical sign. These results align with previous reports demonstrating that PCV2 often plays a
subclinical role or acts synergistically rather than as a primary respiratory pathogen. Notably, co-
infection of PCV2 and Mh has been experimentally shown to exacerbate lung lesions in PRDC models
[22,32]. Conversely, some findings report minimal lung pathology in PCV2-only infections (Such

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1843.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2025 d0i:10.20944/preprints202506.1843.v1

9 of 11

variability underscores the complex interplay between PCV2 and other respiratory pathogens,
reinforcing the need for longitudinal field studies to better delineate these relationships [15].

In contrast, a strong correlation was observed between Mh infection and non-productive coughs
(Spearman’s rho = 0.80; kappa = 0.79, CI: 0.56-1.00). This finding is consistent with the
pathophysiology of Mh, which typically causes dry, persistent coughing due to the organism's ability
to adhere to and damage ciliated epithelial cells in the respiratory tract [14,24]. In experimental co-
infection studies, Mh has been shown to induce chronic coughing when combined with other
pathogens such as PCV2, reinforcing its role in respiratory disease complexes [32]. Moreover, the
high agreement between Al-detected dry coughs and laboratory-confirmed M#h infection supports
the potential of Al systems as effective screening tools. Recent studies have demonstrated that deep
learning models can detect pig coughs with high accuracy, sensitivity, and specificity under
commercial farm conditions [5]. Al-based cough monitoring also enables earlier detection of Mh
outbreaks, which is crucial for timely intervention and reducing antibiotic use [19]. The high kappa
value observed in this study further reinforces the utility of Al as a proxy for clinical diagnosis,
particularly in field settings where routine diagnostic testing is not always feasible.

These findings emphasize the usefulness of Al in pig farms, particularly for continuous and
objective monitoring of respiratory symptoms. The ability to differentiate cough types and correlate
them with specific pathogens like Mh provides a promising avenue for non-invasive early warning
systems. However, some limitations should be noted. The relatively small sample size (n = 49) may
have influenced the statistical power, especially regarding the PCV2 group. Additionally,
environmental noise and the presence of multiple pigs in the same enclosure could affect acoustic
detection accuracy.

5. Conclusions

In conclusion, this study highlights the potential of artificial intelligence systems in improving
the detection and classification of coughs in pigs, with a particular strength in identifying non-
productive coughs associated with Mycoplasma hyopneumoniae. Future research should focus on
expanding sample sizes, incorporating real-time AI models in farm environments, and integrating
multimodal data such as temperature, behavior, and video imaging to enhance diagnostic precision.
Additionally, longitudinal studies can assess the predictive value of Al-detected coughs over time
and determine whether such systems can be integrated into automated decision-support tools for
veterinarians and farm managers.
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