

1 Article

2 **Spectroscopic Evidence, Evaluation of Biological**
3 **Activity and Prediction of the Safety Profile of Fatty**
4 **Hydroxamic Acids Derived from Olive Oil**
5 **Triacylglycerides**

6 Monika Barbarić¹, Dražen Vikić-Topić², Željko Marinić², Danijela Bakarić³,
7 Marijana Zovko Končić⁴, Katarina Mišković Špoljarić⁵, Mirela Baus Lončar⁶ and
8 Milena Jadrijević-Mladar Takač^{1,*}

9 ¹ Department of Medicinal Chemistry, University of Zagreb, Faculty of Pharmacy and Biochemistry, A.
10 Kovačića 1, 10000 Zagreb, Croatia ; mbarbaric@pharma.hr (M.B.)

11 ² NMR Centre, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; vikic@irb.hr (D.V.T.);
12 zmarinic@irb.hr (Ž.M.)

13 ³ Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb,
14 Croatia; dvojta@irb.hr (D.B.)

15 ⁴ Department of Pharmacognosy, University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića
16 1, 10000 Zagreb, Croatia; mzovko@pharma.hr (M.Z.)

17 ⁵ Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, J. J. Strossmayer University,
18 Faculty of Medicine, J. Huttlera 4, 31000 Osijek, Croatia; kmiskovic@mefos.hr (K. M. Š.)

19 ⁶ Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
20 mbaus@irb.hr (M.B.L.)

21 * Correspondence: mjadrijevic@pharma.hr; Tel.: +385-1-4828-192; Fax: +385-1-6394-400

22 **Abstract:** A fatty hydroxamic acid (FHA) mixture synthesized from olive oil triacylglycerides by
23 hydroxylaminolysis and composed predominantly of oleyl and linoleyl hydroxamic acid (OHA
24 and LHA, respectively) was characterized by means of IR, Raman, MS and 1D and 2D ¹H- and
25 ¹³C-NMR spectroscopy. The ratio of OHA and LHA (4:1) was confirmed by MALDI TOF/TOF
26 mass spectrometry. The radical scavenging and the Fe²⁺-chelating activity, as well as antioxidant
27 activity in β-carotene-linoleic acid and the Fe³⁺-reducing power assays of the FHAs yielded
28 positive results. The results of FHA cell toxicity on normal fibroblast (BJ) and a tumour cell line
29 (HeLa) revealed that the normal cell line was sensitive to FHAs within the entire range of applied
30 concentrations (5 × 10⁻⁴ mg/mL to 5 × 10⁻¹ mg/mL), while the HeLa tumour cell line was sensitive
31 only at the highest FHA concentration (5 × 10⁻¹ mg/mL). *In silico* target prediction indicated
32 cannabinoid receptors 1 and 2, the fatty-acid amide hydrolase 1 and histone deacetylases as the
33 most probable targets of OHA and LHA. According to ADMET predictor analysis, the safety
34 profiles of OHA and LHA are comparable to that of SAHA (vorinostat) the histone deacetylase
35 inhibitor in use as an antineoplastic and immunomodulating agent.

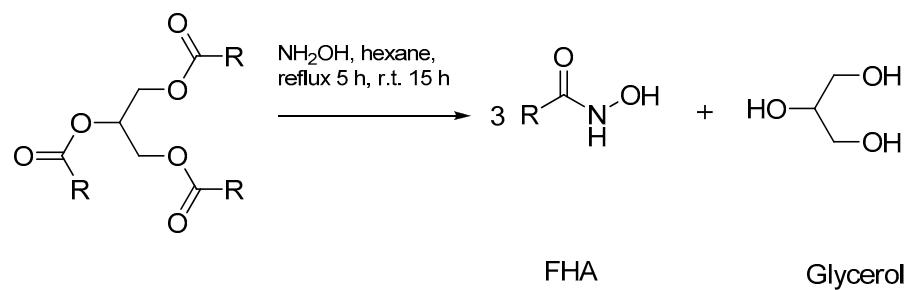
36
37 **Keywords:** fatty hydroxamic acids; synthesis; spectroscopy; antioxidant activity; cytotoxic activity;
38 biological targets; ADMET; safety profile

46 **1. Introduction**

47 Over the last decades there has been a rapid increase in literature dealing with the
48 development of hydroxamic acid-based derivatives and their potential therapeutic applications as
49 antibacterial [1-2], antifungal [3-5], antitumor [6-11], antihypertensive and antiinflammatory drugs
50 [12]. Several hydroxamic acids (HAs) are important therapeutic agents in diverse pharmacological
51 groups such as nonsteroidal antiinflammatory and antirheumatic drugs (*ibuprofam*, *oxametacib* and
52 *bufexamac*), psychoanaleptics (*adrafinil*), antineoplastic and immunomodulating agents
53 (*hydroxycarbamide* or *hydroxyurea*, *vorinostat*, *panobinostat* and *belinostat*), and iron chelating agents
54 which are used to remove excess iron from the body in anemia and thalassemia (*deferoxamine*) [13,
55 14]. Recently, HAs have attracted a lot of attention as their inhibitory effect on histone deacetylases
56 (HDACs) and the associated applicability in tumour treatment were observed [8, 10, 15-17].
57 Although many hydroxamic acid-based HDAC inhibitors [18] are currently in discovery and
58 undergoing preclinical phases, the number of HDACIs that have been approved for the market still
59 remains low.

60 Among the abundant available data on HAs, there is considerably less evidence about
61 biological activity and the potential pharmacotherapeutic usefulness of monounsaturated and
62 polyunsaturated fatty hydroxamic acids (MUFHAs and PUFHAs, respectively) that can also be of
63 pharmaceutical and biological interest [19, 20]. FHAs can be prepared by the usual methods used to
64 prepare HAs, *i.e.*, from fatty carboxylic acid ester or carboxylic acid chloride with either
65 hydroxylamine or its *O*- and *N*-substituted derivatives [14, 21]. For instance, LHA was synthesized
66 from linoleic acid (LA) *via* its reactive intermediates and hydroxylamine. The biological activity
67 evaluation of LHA revealed that it possesses an inhibitory activity against several enzymes
68 involved in the arachidonic acid metabolism relevant for lipid signalling in mammals, *e.g.*, various
69 lipoxygenases and iron-containing enzymes involved in the oxygenation of polyunsaturated fatty
70 acids (PUFAs) [22-24]. The other synthetic possibilities included convenient hydroxylaminolysis of
71 different vegetable oils, *e.g.*, *Jatropha Curcas* seed oil [25], canola, palm, and palm kernel oil [26-28]
72 as well as palm olein, palm stearin, or corn oil [20]. However, owing to the diversity of fatty acids
73 present in different vegetable oil triacylglycerides, a mixture of FHAs has been the resulting
74 product of this type of reaction, which is difficult to separate due to the physicochemical similarities
75 of its components. Therefore, FHAs prepared from different vegetable oils were tested as a mixture
76 for their antimicrobial activity against *E. coli* and *S. aureus* [29-31], antifungal activity [5], and
77 antioxidant activity [32].

78 The biological activity of hydroxamic acids, as well as their toxic potential is based on
79 hydroxamic acid moiety (R-CONHOH). Metabolites such as acyl nitroso, HNO, nitric oxide, and
80 metal complexes of the parent drug are designated as the main actors in the physiological effects
81 [33]. The carcinogenicity and mutagenicity of HAs following toxification either *via* Lossen
82 rearrangement to the corresponding reactive isocyanates or *via* *O*-sulfonation or *O*-acetylation of
83 hydroxyl moiety to the corresponding esters of great reactivity in aqueous media have also been
84 reported [34, 35].


85 Within the framework of our research on the synthesis and biological activity testing of diverse
86 derivatives bearing the HA moiety [7, 36, 37] as well as the content determination of olive oil from
87 autochthonous Croatian olive cultivars [38], the aim of this study was to evaluate the antioxidant
88 and cytotoxic activity of the FHA mixture and explore the safety profile of its main components, *i.e.*,
89 oleyl and linoleyl hydroxamic acid (OHA and LHA, respectively) *in silico*.

90

91 2. Results and Discussion

92 2.1. *Synthesis and spectroscopic evidence*

94 The fatty hydroxamic acid mixture (FHAs) used in this study was synthesized from olive oil
 95 triacylglycerides (TAG) by hydroxylaminolysis according to a previously published procedure
 96 (Scheme 1) [39].

98 Triacylglyceride (TAG)

RCO = oleoyl or linoleyl

Scheme 1. The synthesis of fatty hydroxamic acids (FHAs).

102 The structural analysis of the obtained FHA mixture was carried out by FTIR, Raman, one- and
 103 two-dimensional, homo- and hetero-nuclear ^1H - and ^{13}C -NMR spectroscopy, and by
 104 MALDI-TOF-TOF mass spectrometry. Here we report the main findings.

Since oleic acid (OA, 18:1n-9) is the most abundant monounsaturated fatty acid (MUFA) and linoleic acid (LA, 18:2n-6) the most abundant polyunsaturated fatty acid (PUFA) in olive oil triacylglycerides (TAG), where their concentrations in the total content of fatty acids (FAs) range from 55% to 83% for OA and from 3.5% to 21.0% for LA [40], their corresponding hydroxamic acids were expected to be present in the reaction product, *i.e.*, FHAs. And the question that has arisen is whether there are certain discernible amounts of LHA and/or other PUFHAs in addition to OHA in the synthesized FHAs mixture that may be of relevance for biological effects because small amounts of other PUFAs may also be present in olive oil TAGs, *e.g.*, linolenic acid (LNA, 18:3n-6) in 0.4% to 1.9%, while eicosanoic acids are present in trace amounts. As it is the case with the separation of MUFAa and PUFAs due to similarities in their physicochemical properties [41], we encountered such difficulty with our FHA mixture and therefore continued to study FHAs with different spectroscopic methods in order to elucidate its main components.

118 2.1.1. FTIR and Raman spectroscopy

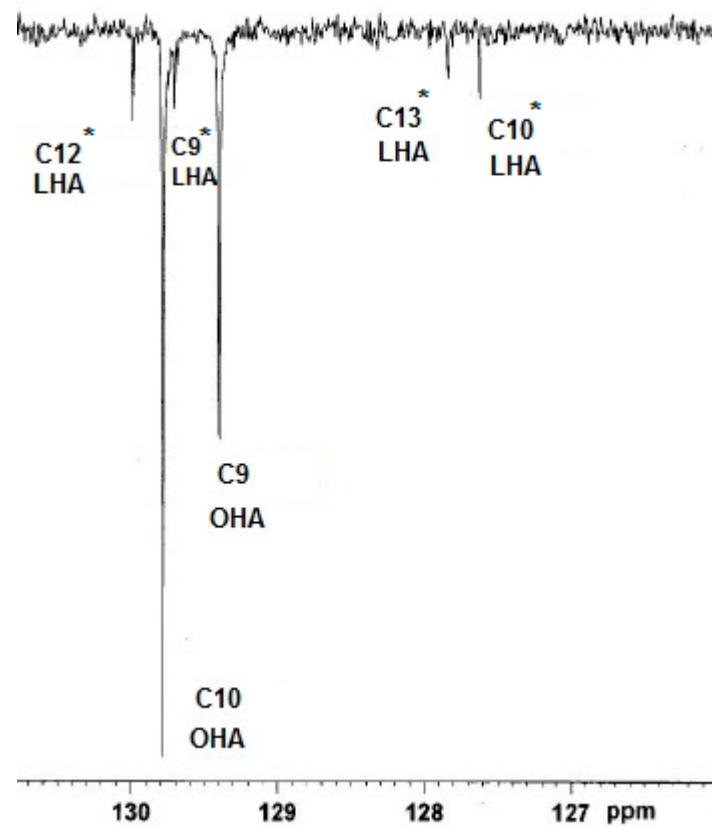
120 The FTIR spectra of precursor olive oil and FHAs are presented in Figure S1 and the most
 121 significant bands of FHAs in Table S1 in the supplementary material. The FTIR results provided
 122 clear and convincing evidence regarding the chemical structure of FHAs, mainly from amide type
 123 carbonyl and OH/NH stretching bands. The broad band from ν 3650 cm⁻¹ to 2500 cm⁻¹ corresponds

124 to $-\text{CONHOH}$ moiety, and the peak at ν 3285 cm^{-1} was assigned to N-H stretching vibrations. The
125 O-H moiety in $-\text{CONHOH}$ group was most likely associated *via* inter- and/or intra-molecular
126 hydrogen bonds and due to that produced a very broad vibration that overlapped with the
127 stretching of the methyl and methylene groups. In addition to these findings, in the FTIR spectrum
128 of the FHAs there were two stretching vibrations for the C=O group at ν 1664 cm^{-1} and 1624 cm^{-1}
129 that belonged to amide I and amide II vibrations, respectively. The weak band at ν 3001 cm^{-1}
130 originated from =C-H stretching, thus indicating the presence of one or more unsaturated moieties
131 in the alkyl chain. Vibration bands of the methyl group appeared at 2952 cm^{-1} and 2872 cm^{-1} , while
132 stretching bands of methylene groups appeared at 2918 cm^{-1} and 2849 cm^{-1} . Strong and medium
133 bands at 1464 cm^{-1} and 1441 cm^{-1} , respectively, were attributed to the deformation of C-H groups,
134 while the medium strong band at 1096 cm^{-1} , may have been due to skeletal vibrations, *e.g.*, the
135 stretching of $-\text{C-C-}$ bonds.

136 The most intense bands in the Raman spectrum of the FHAs (Table S1 in supplementary
137 material) have to do with the stretching of the CH_2 groups, ν_{as} 2932 cm^{-1} and ν_{sym} 2847 cm^{-1} . The C=O
138 stretching produced two bands that arose due to the stretching of the C=O group of amide moiety
139 in the Raman spectrum of the FHAs, the medium one at 1659 cm^{-1} and one very weak band at 1622
140 cm^{-1} . The bending of the C-H bond in the methylene group appeared at 1441 cm^{-1} as a very strong
141 and broad band. The strong band at 1295 cm^{-1} most likely arose due to C-N stretching. The
142 stretching of the $-\text{C-C-}$ group of medium intensity appeared at 1095 cm^{-1} and 1062 cm^{-1} . Bands at
143 lower wavenumbers were either weak or very weak. FTIR and Raman spectra of the FHAs may be
144 useful for the assessment of unsaturated moieties from which the FHAs mixture was composed.
145 Band positions and/or band shapes attributed to the stretching and/or bending modes that include
146 an H-atom imply the presence of hydrogen bonds.

147

148 2.1.2. NMR spectroscopy


149

150 The $^1\text{H-NMR}$ spectrum of the FHA mixture (in CDCl_3) and chemical structures of its main
151 components, *i.e.*, OHA and LHA, with labelled proton atoms are displayed in Figure S2 and Table
152 S2 in the supplementary material. Analogous protons in LHA are labelled with an asterisk (*)
153 (Figure S2, Table S2). The proton assignments were made on the basis of observed chemical shifts (δ
154 ppm) in the 1D $^1\text{H-NMR}$ spectrum and 2D HMQC (Heteronuclear Multiple Quantum Coherence),
155 2D HMBC (Heteronuclear Multiple Bond Coherence) and $^1\text{H-}^1\text{H}$ COSY (Correlated spectroscopy)
156 experiments (Figure S2, Figure S4, Figure S5 and Figure S6, respectively), as well. The observed
157 chemical shifts were in good agreement with the available literature data [42, 25]. The $^1\text{H-NMR}$
158 spectrum of the FHAs was characterized by eight signals that belong to eight chemically and
159 magnetically nonequivalent protons. Protons of the $-\text{CO-NHOH}$ group were observed as a broad
160 and very weak signal at δ 8.674 ppm, while the multiplet signal at δ 5.339 ppm was assigned to
161 olefinic protons ($-\text{HC=CH-}$) in OHA (H9, H10) and LHA (H9*, H10*, H12* and H13*). The signal at
162 δ 0.880 ppm (t) was assigned to protons in the methyl groups, *i.e.*, H-18 and H-18*. Methylene
163 protons ($-\text{CH}_2-$) in the OHA (H2, H3, H4 to H7, H8, H11, H12 to H17) and in LHA (H2*, H3*, H4* to
164 H7*, H8*, H11*, H15* to H17) were observed from δ 1.254 to 2.777 ppm depending on the position
165 of each methylene group in the alkyl chains of the FHAs. Thus methylene protons H4 to H7, H12 to
166 H17, H4* to H7*, H15* to H17* were observed at δ 1.250 to 1.290 ppm (m) while methylene protons

167 H8, H11, H8* and H14*, adjacent to the olefinic bond, *i.e.*, -CH₂-CH=CH- were observed as multiplet
168 (m) at δ 1.988 to 2.040 ppm. Methylene protons H2 and H2*, in the immediate vicinity to the
169 -CO-NHOH group were observed downfield as a triplet (t) at δ 2.135 ppm and methylene protons
170 H3 and H3* at 1.621 ppm (m). However, a triplet (t) signal of very low intensity at δ 2.766 ppm
171 indicated the presence of LHA and this signal corresponds to methylene protons H11*. Although
172 this signal may come from LHA (-CH=CH-CH₂-CH=CH-) and/or LNHA
173 (-CH=CH-CH₂-CH=CH-CH₂-CH=CH-) and these signals may be overlap to some extent, the
174 assignation was made in favour of LHA methylene protons H11* because of the lack of an
175 additional characteristic signal of methyl protons (-CH₃) of LNA (n-3) which is usually separated
176 from -CH₃ of n-9 and n-6 FAs and was found to be at δ 0.970 ppm compared to oleoyl and linoleyl
177 methyl protons observed at δ 0.880 ppm [43, 44].

178 On the basis of these findings, it was concluded that the obtained FHAs mixture was either free
179 of LNHA or its minor presence was below the discernible amount relevant to the ¹H-NMR
180 spectroscopy.

181 The experimental ¹³C-NMR data of FHAs recorded in deuterated chloroform (CDCl₃) (Figure
182 S3 in supplementary material) and theoretical data computed for OHA and LHA using nmrshiftdb
183 (<http://nmrshiftdb.nmr.uni-koeln.de>) and ChemDraw Ultra v. 11.0 ¹³C NMR software packages,
184 together with available literature data for ¹³C-NMR of LHA are presented in Table S2 in the
185 supplementary material. Analysis of the ¹³C-NMR spectrum of FHAs confirmed the presence of
186 signals characteristic for 18:1 and 18:2 FHAs (Figure 1). The distinction and assignments of carbon
187 atoms that belong to OHA from those of LHA were made on the basis of characteristic chemical
188 shifts (δ ppm), signal intensities, and by comparing experimental data with the computed
189 theoretical spectra of OHA and LHA, as well as with the available literature data for ¹³C-NMR of
190 LHA [24]. The carbon atoms involved in the carbonyl (C=O) and methyl (-CH₃) groups were
191 observed as singlets at δ 171.73 and 13.99 ppm, respectively, for both, OHA and LHA, while all
192 other carbon atoms were separated with intensities that were in favour of the OHA as a
193 predominant component in the FHA mixture. The observed six signals of olefinic carbon atoms in
194 the region of δ 127.78 to 130.14 ppm (Table S2, Figure 1) in the ¹³C-NMR spectrum of FHAs
195 indicated the presence of six nonequivalent carbon atoms involved in the C=C bonds. Although
196 ¹³C-NMR cannot be considered a quantitative technique compared to ¹H-NMR, the observed signals
197 at distinct chemical shifts with obviously different signal intensities were assigned so that the OHA
198 (C9, δ 129.56 ppm and C10, 129.94 ppm) was determined as the prevailing component of FHAs with
199 lower proportions of LHA (C9*, C10*, C12* and C13*, δ 129.86, 127.78, 130.14 and 127.99,
200 respectively). No signs of inadvertent Z→E isomerization of OHA and LHA during the synthesis
201 were observed.

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

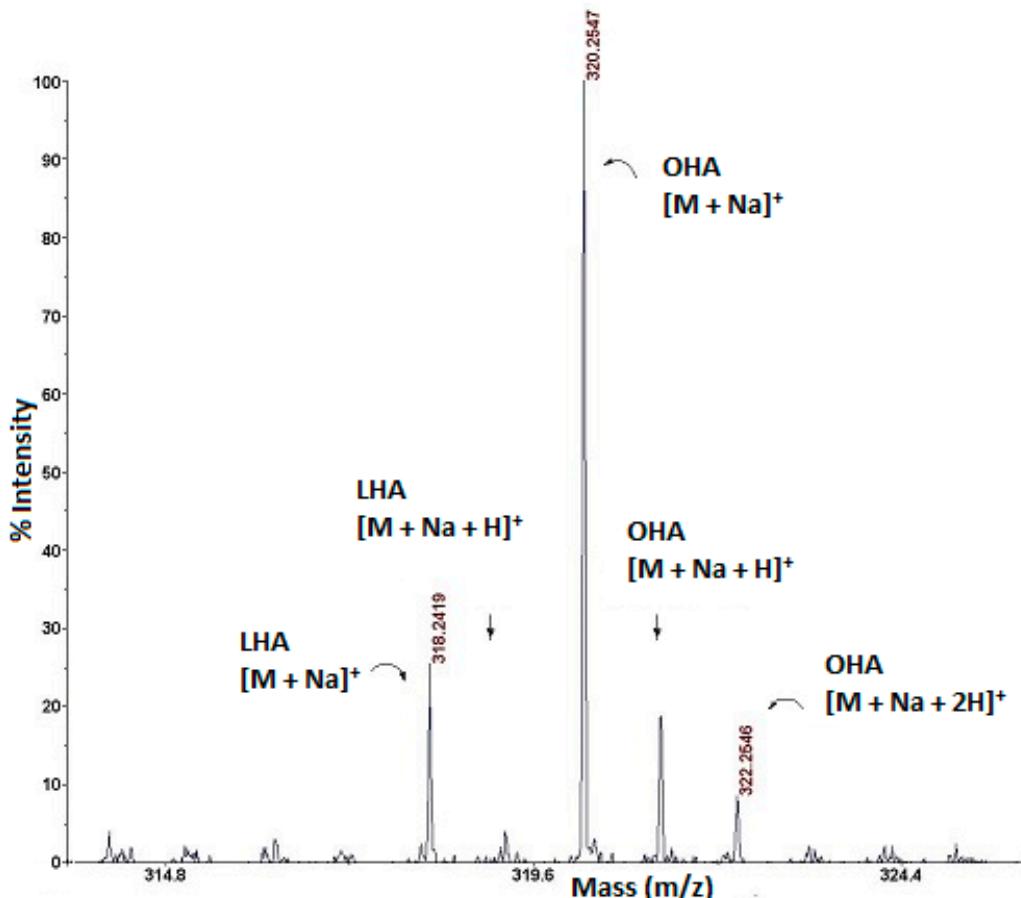
222

223

224

225

Figure 1. A part of ^{13}C APT (Attached-Proton-Test) spectrum of FHAs mixture recorded in CDCl_3 , displaying olefinic carbons of OHA (a pair of larger signals, *i.e.*, C9 129.56 ppm and C10 129.94 ppm) and LHA (two pairs of smaller signals, *i.e.*, C9* 129.86, C10* 127.78, C12* 130.14 and C13* 127.99 ppm).


Obviously, NMR techniques alone were not able to provide detailed information about the molar proportion of different fatty hydroxamic acids in the FHA mixture which was also due to the fact that NMR is a less sensitive technique compared to traditional chromatographic methods and mass spectrometry. Therefore, we continued to study the FHA mixture by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF-TOF) high resolution tandem mass spectrometry (MS).

2.1.3. MALDI-TOF/TOF MS spectrometry

In order to obtain a more precise ratio of components in the FHA mixture, MALDI-TOF-TOF MS was applied. A part of the MALDI-TOF/TOF tandem mass spectrum of synthesized FHAs in the region of mono- and polyunsaturated FHAs, *i.e.*, m/z 310 – 325, is presented in Figure 2. A broader MS spectrum is presented in Figure S7 in the supplementary material, as well. Components of the FHA mixture, *i.e.*, OHA and LHA were observed as singly charged sodium alkali adducts, therefore their molecular ions were shifted by the mass of sodium, *i.e.*, 22.99. Thus the molecular ions of the predominantly present OHA were observed as their sodium adducts $[\text{M} + \text{Na}]^+$ at m/z 320.25 and $[\text{M} + \text{Na} + \text{H}]^+$ at m/z 321.25 while molecular ions of LHA, *i.e.*, $[\text{LHA} + \text{Na}]^+$ at 318.24 and $[\text{LHA} + \text{Na} + \text{H}]^+$ at 319.24. The ratio of the two main m/z intensities, *i.e.*, $I_{m/z [\text{OHA} + \text{Na}^+]} / I_{m/z [\text{LHA} + \text{Na}^+]}$ was found to be 4:1. On the basis of the results of the MALDI TOF/TOF MS analysis it was

226 concluded that the amount of LHA in the FHA mixture was 20% and of OHA 80%. The signal at
 227 m/z 322.25 was attributed to the $[OHA + Na + 2H]^+$ however, the possible presence of saturated
 228 stearic hydroxamic acid (SHA) due to its presence in olive oil TAG (0.5% to 5.0%) cannot be
 229 completely excluded through this finding since its molecular ion sodium adduct m/z $[SHA + Na]^+$
 230 has the same m/z as $[OHA + Na + 2H]^+$.

231

232

233 **Figure 2.** A part of the MALDI-TOF/TOF tandem mass spectrum of the FHA mixture in the region of m/z 314.0
 234 – 325.0 with molecular ions of OHA and LHA represented as their sodium alkali adducts $[M + Na]^+$, $[M + Na +$
 235 $H]^+$ and $[M + Na + 2H]^+$.

236

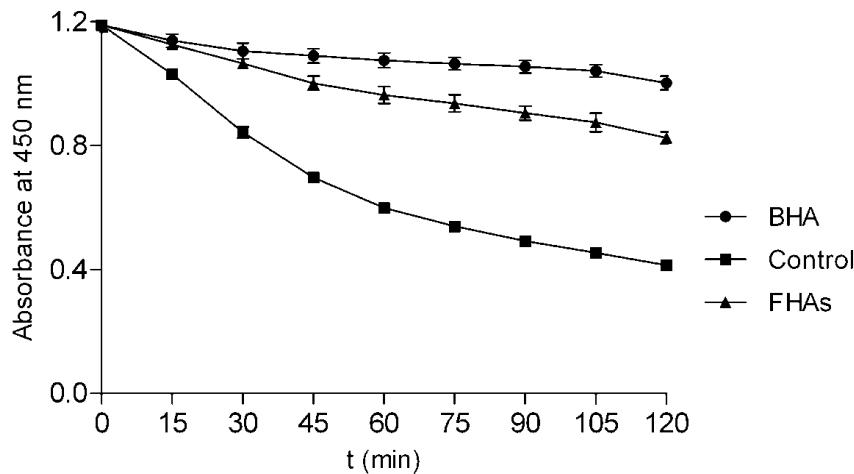
237 2.2. Biological evaluation in vitro

238

239 So far, FHA products prepared from different plant oils have been evaluated for their
 240 biological activity mostly without specifying the exact composition of the mixture, and so have
 241 asserted that the fatty hydroxamic acid (FHA) from the seed oil of *Cyperus esculentus* showed
 242 antioxidant activity tested by DPPH radical scavenging assay as the concentration reduced below
 243 0.05 mg/mL while the antioxidant capacity reduced once the concentration became higher and FHA
 244 tended toward being a pro-oxidant. *C. esculentus* has been also presented as a potential source of
 245 feed stock for the synthesis of a relatively cheap and non-toxic FHA [32]. Here we report the
 246 antioxidant and cytotoxic activity of a FHA mixture obtained from olive oil triacylglycerides with its
 247 main components OHA and LHA (80 : 20, ww).

248

249 2.2.1. *Antioxidant activity*

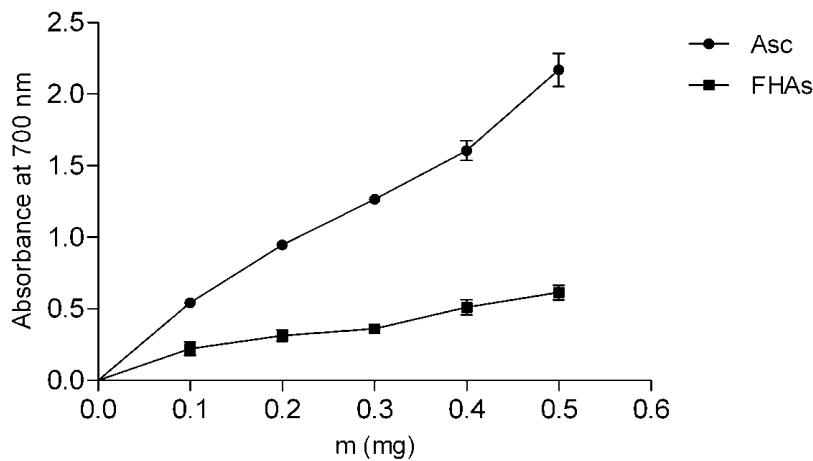

250

251 Four different methods for the assessment of FHA antioxidant activity were used in this study:
252 radical scavenging activity (RSA), chelating activity of Fe^{2+} ions (ChA), antioxidant activity in
253 β -carotene bleaching assay (AOA), and the reducing power assay (RP).

254 The capability of FHAs to scavenge free radicals was assessed in reaction with the relatively
255 stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. FHAs demonstrated notable antiradical
256 activity, albeit lower than butylated hydroxyanisol (BHA), a widely used food antioxidant. The
257 obtained result for FHAs, RSA $\text{EC}_{50} = 235.66 \pm 54.01 \mu\text{g/mL}$, corresponds to the concentration that
258 scavenges 50% of the DPPH free radicals present in the solution (Table 1).

259 The chelation of metal ions (ChA) such as copper and especially iron ions by certain
260 compounds decreases their pro-oxidant activity [45]. This aspect of antioxidant activity is
261 particularly important because in the Fenton reaction hydroxyl radical production is directly
262 related to the concentration of the iron ion or other transition ions [46]. The results are expressed as
263 ChA EC_{50} , the concentration that chelates 50% of the Fe^{2+} ions present in the solution. In this study
264 the chelating activity of FHAs was compared with two chelating standards,
265 ethylenediaminetetraacetic acid (EDTA) and quercetin (Qn) (Table 1). FHAs showed lower activity
266 (ChA $\text{EC}_{50} = 1226.53 \pm 58.33 \mu\text{g/mL}$) than the strong ion chelator, EDTA (ChA $\text{EC}_{50} = 12.64 \pm 2.81$
267 $\mu\text{g/mL}$). However, the FHA mixture was as active as Qn ($\text{EC}_{50} = 1177.96 \pm 175.73 \mu\text{g/mL}$), a natural
268 ion chelator, present in many types of fruits and vegetables.

269 Antioxidant activity in β -carotene linoleic acid assay is frequently employed as a test for
270 measuring total antioxidant activity (AOA) of plant extracts by the oxidation of the aqueous
271 emulsion of β -carotene and linoleic acid [47, 48]. This assay measures the capacity of antioxidants to
272 inhibit the formation of conjugated diene hydroperoxide arising from linoleic acid oxidation. Thus,
273 the assay gives insight into the inhibitory effect of substances on lipid peroxidation [49].
274 Antioxidant activity is expressed as percentage (%) of inhibition relative to the control and AOA
275 EC_{50} ($\mu\text{g/mL}$) is defined as the concentration of an antioxidant required to inhibit the 50%
276 degradation of beta-carotene relative to the control under the given experimental conditions. The
277 FHA concentration (AOA $\text{EC}_{50} = 55.71 \pm 1.29 \mu\text{g/mL}$) (Table 1) showed that the FHAs were able to
278 significantly reduce the rate of degradation of β -carotene in comparison with water as control.
279 However, FHAs activity is comparable but somewhat lower than the activity of BHA (AOA $\text{EC}_{50} =$
280 $45.61 \pm 0.11 \mu\text{g/mL}$) (Figure 3, Table 1).


281

282 **Figure 3.** Inhibition of β -carotene-linoleic acid emulsion bleaching by the FHAs and BHA. Values are presented
283 as mean \pm SD ($n = 3$).

284

285 Literature reports suggest that the antioxidant activity of some antioxidants and plant extracts
286 is associated with their reducing power (RP EC_{0.5}) which terminates free radical chain reactions [50].
287 The reducing power of the investigated FHAs mixture increased linearly with the concentration
288 (Figure 4). Coefficients of determination (r^2) for ascorbic acid (Asc) and FHAs were 0.9807 and
289 0.9166, respectively. In this assay, ascorbic acid demonstrated significantly better reducing power
290 (RP EC_{0.5} = 97.028 ± 10.87 μ g/mL) than FHAs (RP EC_{0.5} = 395.71 ± 47.37 μ g/mL) (Table 1). The RP EC_{0.5}
291 as a sample concentration providing 0.5 of absorbance (EC₅₀) was calculated by plotting absorbance
292 at 700 nm against the corresponding sample concentration.

293

294

295 **Figure 4.** Reducing power activities of FHAs and ascorbic acid (Asc). Values are presented as mean \pm SD ($n =$
296 3).

297

298

299

300

301

302

303
304
305
306
307

Table 1. The results of DPPH radical scavenging activity (RSA EC₅₀), Fe²⁺ chelating activity (Ch EC₅₀), antioxidant activity in β-carotene-linoleic acid assay (AOA EC₅₀) and Fe³⁺reducing power (RP EC_{0.5}) of FHAs composed of OHA and LHA (4 : 1). Values (μg/ml) are presented as means ± SD (n = 3).

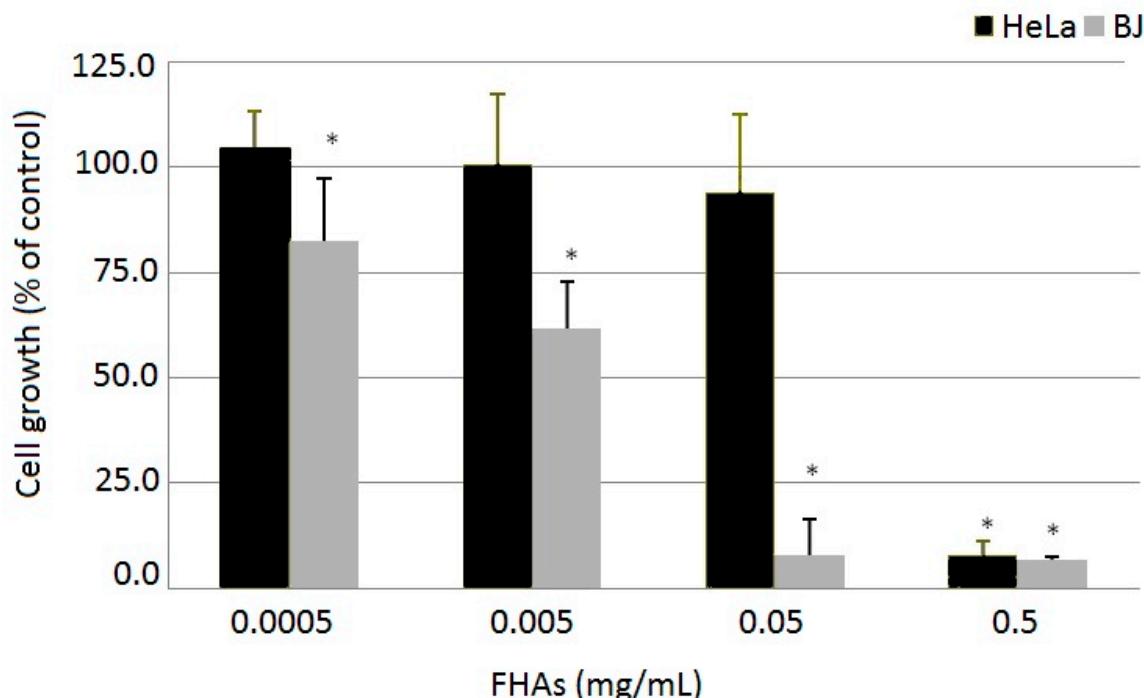
Sample	RSA EC ₅₀ (μg/mL)	ChA EC ₅₀ (μg/mL)	AOA EC ₅₀ (μg/mL)	RP EC _{0.5} (μg/mL)
FHAs	235.66 ± 54.01 ^{1*}	1226.53 ± 58.33 ^{2*}	55.71 ± 1.29 ^{1*}	395.71 ± 47.37 ^{3*}
Standard	24.46 ± 2.54 ¹	12.64 ± 2.81 ²	45.61 ± 0.11 ¹	97.028 ± 10.87 ³

308 ¹Butylated hydroxyanisol309 ²EDTA310 ³Ascorbic acid311 ⁴Quercetin

312 *Statistical differences with the corresponding standards (P < 0.05) within the column.

313

314 The results of these studies demonstrated that the FHA mixture possessed moderate antioxidant
315 activity.


316

317

318 *2.2.2. Cytotoxic activity*

319

320 The results of the MTT colorimetric assay revealed that the addition of the FHAs to normal (BJ)
321 and tumour (HeLa) cell lines at a final concentration of 0.5 mg/mL suppressed the cell growth of
322 both of the tested lines by more than 90% (Figure 5). The antiproliferative effect on the normal cell
323 line at 0.05 mg/mL was strong (92% of cell died), while moderate growth suppression (8% of dead
324 cells) was observed in the tumour cell line. The BJ and Hela cell line have different modes of
325 biological response to the FHAs applied at the tested concentration, *i.e.*, the growth of normal cells
326 was strongly suppressed while the tested tumour cell line was not as sensitive. The established IC₅₀
327 value for HeLa (80.5 μg/mL) and BJ (7.92 μg/mL) confirmed a ten times higher FHA cytotoxicity for
328 normal cells compared with malignant HeLa cells.

329

330

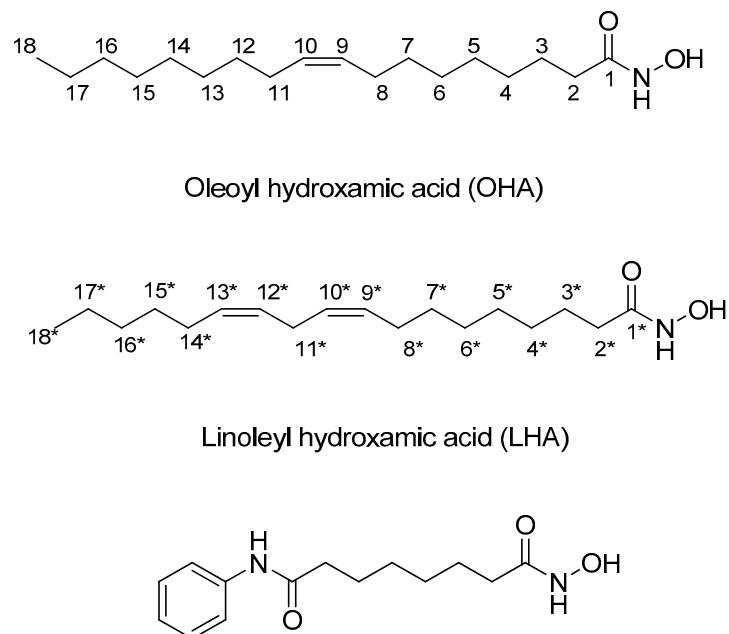
331 **Figure 5.** The cytotoxic effects of the FHAs. Cell line growth is displayed as percentage (%) after 72 h of
 332 incubation at the final concentration range (0.0005 - 0.5 mg/mL) evaluated by MTT colorimetric technique.
 333 Data represent the mean value of three independent experiments done in triplicate. Statistically significant
 334 change ($p < 0.05$) is presented by an asterisk (*).

335

336

337 2.3. *In silico* prediction of biological targets and safety profile

338


339 2.3.1. *Target prediction*

340

341 Potential biological on- and off-targets of OHA and LHA molecules were evaluated by the
 342 SwissTargetPrediction web server that provides a prediction for small molecules using a
 343 combination of 2D and 3D similarity measures (<http://www.swisstargetprediction.ch>). It compares
 344 the query molecule against a library of 280000 compounds active on more than 2000 targets of 5
 345 different organisms [51, 52]. The outcome of this analysis yielded fifteen of the most probable
 346 targets in *Homo sapiens* for each query molecule. Three main target classes were revealed: the
 347 'enzyme other' with an overall frequency of 80% for OHA and 87% for LHA, the 'membrane
 348 receptor' class with a frequency of 13% for both OHA and LHA, and the 'ion channel' class with a
 349 7% frequency for OHA. The revealed specific targets and their probabilities are displayed in Table
 350 2.

351 In addition to histone deacetylases 1 to 9 (HDAC1 – HDAC9) with probabilities (P) from 0.4 to
 352 0.5 for both OHA and LHA, the most probable targets that include cannabinoid receptor 1 (CB1) (P
 353 = 0.6 for OHA and 0.8 for LHA) and cannabinoid receptor 2 (CB2) (P = 0.4 for OHA and 0.3 for
 354 LHA) as well as fatty-acid amide hydrolase 1 (FAAH) (P = 0.6 for OHA and 0.5 for LHA) were also
 355 predicted (Table 2). The prediction for SAHA (suberoylanilide hydroxamic acid, vorinostat) the first

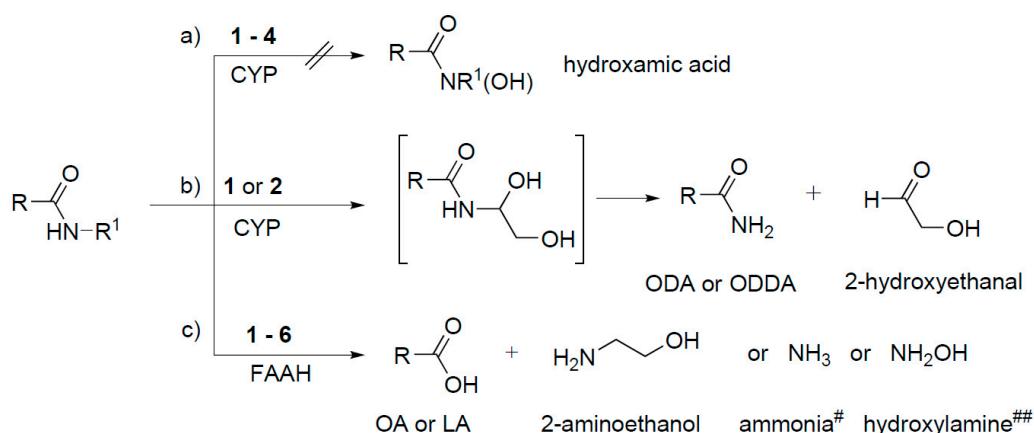
356 HDAC inhibitor registered by the FDA, revealed that histone deacetylases 1 to 11 (HDAC1 -
 357 HDAC11) are the main targets of this molecule with the highest probability ($P = 1.0$). Although not
 358 as high, the probabilities of interactions of OHA and LHA with histone deacetylases could be a
 359 good starting point for further research regarding the development of more prominent HDAC
 360 inhibitor properties for tumour treatment. Chemical structures of oleoyl hydroxamic acid (OHA),
 361 linoleyl hydroxamic acid (LHA) and suberoylalide hydroxamic acid (SAHA) are displayed in
 362 Figure 6.

363 Vorinostat (Suberoylalide hydroxamic acid, SAHA)

364

365 **Figure 6.** Chemical structures of oleoyl hydroxamic acid (OHA), linoleyl hydroxamic acid
 366 (LHA) and suberoylalide hydroxamic acid (SAHA)

367


368 The probability of interactions with FAAH in humans assumes the inhibition of this enzyme,
 369 which is involved in hydrolytic degradation of endogenous fatty acid amides (FAAs) and among
 370 them the signalling endocannabinoid molecule anandamide (*N*-arachidonylethanolamine, AEA)
 371 to arachidonic acid and ethanolamine [53, 54], as well as oleamide (*cis*-9,10-octadecanoamide,
 372 ODA), the primary amide of oleic acid which is an endogenous sleep-inducing substance, to oleic
 373 acid and ammonia [55].

374 Anandamide was also found in chocolate together with two substances that might mimic the
 375 effects of anandamide, *N*-oleoylethanolamide (OEA) and *N*-linoleoylethanolamide (LEA) [56]. More
 376 recently, many new molecules have been investigated as possible FAAH inhibitors [57]. From the
 377 predicted interactions of OHA and LHA with CB1 and CB2, as well as with FAAH, it could be
 378 assumed that these molecules may also mimic the effects of *N*-oleoylethanolamide and
 379 *N*-linoleoylethanolamide on anandamide, as well as oleamide in the body based on their
 380 similarities with these endogenous messengers.

381 By increasing the anandamide level, its physiological effects either in the central or peripheral
 382 nervous system, *via* cannabinoid receptors CB1 or CB2, respectively, will consequently be increased

383 as will the influence on its many physiological functions to *e.g.*, eating, sleep patterns or pain *via*
 384 CB1 as well as immunity, mainly via CB2 receptors. The potential metabolic pathways of FAAs
 385 normally present in the body (**1** – OEA, **2** – LEA, **3** – OA and **4** – LA) as well as xenobiotic OHA (**5**)
 386 and LHA (**6**) are displayed in Scheme 2.

387

1 RCO = oleoyl, R¹ = CH₂CH₂OH, *N*-oleoylethanolamide (OEA)

2 RCO = linoleyl, R¹ = CH₂CH₂OH, *N*-linoleoylethanolamide (LEA)

3 RCO = oleoyl, R¹ = H, oleamide (9-octadecadienamide, ODA)

4 RCO = linoleyl, R¹ = H, linoleamide (9,12-octadecadienamide, ODDA)

5 RCO = oleoyl, R¹ = OH, oleyl hydroxamic acid (OHA)

6 RCO = linoleyl, R¹ = H, linoleyl hydroxamic acid (LHA)

hydrolysis of **3** and **4**

hydrolysis of **5** and **6**

388

389

Scheme 2. The possible metabolic pathway of endogenous fatty acid amides (FAAs) and FHAs to corresponding metabolites *via*: a) *N*-hydroxylation, b) *N*-dealkylation, and c) hydrolysis.

390

391

392 While *N*-hydroxylation of aromatic amides by CYP enzymes to corresponding hydroxamic acids is common reaction [34], the *N*-hydroxylation of aliphatic amides is not usual therefore the 393 potential formation of OHA and LHA from endogenous amides (**1** – **4**) will not be possible (Scheme 394 2, pathway **a**). On the other hand, OA and LA can be formed by CYP enzymes from OEA and LEA, 395 respectively *via* *N*-dealkylation of amides **1** and **2** (Scheme 2, pathway **b**). All these endogenous and 396 xenobiotic substances (**1** – **6**) bearing the -C(=O)NH- moiety are subject to hydrolysis by FAAH 397 (Scheme 2, pathway **c**). 398

399

400

Table 2. The biological targets for OHA, LHA, as well as for histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid, vorinostat) predicted by SwissTargetPrediction.

401

402

Target class	Target	Probability (P)		
		OHA	LHA	SAHA
Membrane receptor	Cannabinoid receptor 1	0.6	0.8	
Membrane receptor	Cannabinoid receptor 2	0.4	0.3	
Enzyme	Fatty-acid amide hydrolase 1	0.6	0.5	
Enzyme	Histone deacetylase 1 to 11	0.4 - 0.5 ¹	0.4 - 0.5 ¹	1.0

Enzyme	Corticosteroid 11-beta-dehydrogenase isozyme 1 and 2	0.3	0.3
Enzyme	Hydroxysteroid 11-beta-dehydrogenase 1-like protein		0.3
Ion channel	Transient receptor potential cation channel subfamily V member 1	0.3	
Enzyme/Unclassified	Complex		1.0
Serine protease	Lipid-phosphate phosphatase		0.6
Enzyme	FAD-linked sulfhydryl oxidase ALR		0.6
Metallo protease	22 kDa interstitial collagenase		0.5

403 ¹ Histone deacetylase 1 to 9 (HDAC1 to HDAC9)

404 ² Fatty acid-binding protein liver/Unclassified

405

406

407 2.3.2. ADMET properties prediction and safety profile of OHA and LHA

408

409 Although many studies have been published on the preparation and biological evaluation of
 410 FHAs obtained from plant oils, there is insufficient evidence about their safety profile. Therefore,
 411 the results of an oral administration of FHA from *Cyperus esculentus* seed oil in rats receiving a dose
 412 of 5 mg/kg/day showed no adverse effects [32]. However, in rats receiving a dose of 15 mg/kg/day
 413 (the least observed adverse effect level) a significant increase in alkaline phosphatase activity and
 414 triglycerides and creatinine levels were observed together with moderate hyper-albuminemia and
 415 hypoalbuminemia that resulted in an increased albumin/globulin ratio. In addition, the study on
 416 the aquatic toxicity of the golden algae *Prymnesium parvum*, implicated in fish and aquatic animal
 417 deaths globally revealed six fatty acid amides (FAAs) and LHAs as the toxins responsible for the
 418 observed aquatoxicity [58]. The poor pharmacokinetics and toxicity are important causes of costly
 419 late-stage failures in drug development and these areas should be considered as early as possible in
 420 the drug discovery process. Therefore, early data on absorption, distribution, metabolism, excretion
 421 and toxicity (ADMET) are needed. Regarding the aforementioned issues, *in silico* approaches are
 422 valuable tools as they increase our ability to predict and model the most relevant pharmacokinetic,
 423 metabolic, and toxicity endpoints that accelerate the drug discovery process [59].

424 In this study, FHAs were screened for undesirable ADMET properties *in silico*, using the
 425 liability scoring system known as ADMET Risk™ (ADMET Predictor™ 8.1, Simulations Plus, Inc.,
 426 USA). Here we report the results of this *in silico* study in which the ADMET properties relevant to
 427 the toxic profile of OHA and LHA, the main components of the FHA mixture, were predicted by
 428 ADMET Predictor™ [60]. The obtained results were compared with the predicted parameters
 429 obtained for their precursor fatty acids (OA and LA). Since HDACs were predicted as potential
 430 biological targets of OHA and LHA (with probabilities P = 0.4 – 0.5), SAHA (P = 1.0) was also
 431 included *in silico* study. The results are presented in Table 3. In addition to these predicted data, the
 432 ADMET Predictor Metabolism Module (Human Cytochrome P450) which contains two models (the
 433 classification of compounds as general inhibitors of 5 major CYP isoforms and the qualitative and
 434 quantitative inhibition models for CYP3A4 with either midazolam or testosterone as the substrate)
 435 predicted the extensive LHA CYP metabolism in comparison to other investigated molecules. Thus

436 sites of the CYP 1A2 metabolism in LHA were predicted at the following C-atoms with
437 corresponding hydroxylated metabolites: C18* (ω), C17* (ω -1), C16* (ω -2), C14*, and C11* and
438 additionally, a site of CYP3A4 at C8*. The predicted CYP metabolism of OA and LA by CYP 2E1
439 and CYP 1A1, respectively, involved the hydroxylation of corresponding C-atoms in each molecule:
440 C18 and C18* (ω), C17 and C17* (ω -1), as well as C16 and C16* (ω -2). Interestingly, for OHA no
441 atoms were predicted to be sites of the CYP metabolism. The main sites (C-atoms) of the CYP
442 metabolism of SAHA were aromatic C-atoms at positions *ortho* and *para* (C2' and C4', respectively)
443 towards the alkyl chain substitution in the SAHA molecule. The ADMET analysis predicted the
444 inhibition of the testosterone (ti) metabolism by CYP 3A4 for LHA and LA as well as SAHA.

445 Both pairs, *i.e.*, OHA and LHA as well as OA and LA were characterized by high lipophilicity
446 ($M_{logP} = 4.141$ to 4.261) compared to the lipophilicity of SAHA ($M_{logP} = 2.057$) (Table 3). The low
447 absorption scores expressed as S-Absn Risk (Table 3) were predicted for all of the investigated
448 molecules and the highest score was obtained for OA (S-Absn Risk = 3). The common predicted
449 parameters of overall ADMET risk for all of the investigated molecules (except for SAHA)
450 according to these predictions corresponded to the big number of rotational bonds (RB),
451 lipophylicity (ow , M_{log}) and water solubility (Sw).

452 TOX RiskTM, the toxicity liability score composed of 7 rules (hERG, acute rat toxicity, rat and
453 mouse carcinogenicity, hepatotoxicity, liver enzyme elevation, and Ames mutagenicity) predicted the
454 highest score of 3 that corresponded to hepatotoxicity (SG and Hp) and mutagenicity (Mu) for
455 LHA, the score of 2 for SAHA (Hp and Mu) and the lowest score of 1 for OHA, OA and LA (Mu,
456 Hp and Hp, respectively) (Table 3).

457 On the basis of an *in silico* Ames test of the ADMET PredictorTM modules, mutagenicity in *S.*
458 *typhimurium* was predicted for hydroxamic acids (OHA, LHA and SAHA) and not for carboxylic
459 acids (OA and LA) which implies that CONHOH moiety contributes to the potential mutagenic
460 effect of the FHAs.

461 Regarding the environmental toxicity observed with LHA [58], in this study biodegradable
462 toxicity was predicted for all of the investigated molecules except for SAHA. The environmental
463 toxicity as a consequence of a high bioconcentration factor (BCF) defined as the ratio of the chemical
464 concentration in biota to that in water at steady state, as a result of absorption *via* the respiratory
465 surface, was predicted to be as follows: TOX BCFTM of LA (48.945) > OA (31.734) > LHA (6.280) >
466 OHA (4.453) > SAHA (1.275) (Table 3).

467 On the basis of the predicted TOX RiskTM scores, as well as overall ADMET RiskTM scores
468 displayed in this order: LHA (6.846) > LA (5.987) > OA (5.000) > OHA (4.130) > SAHA (3.197), it can
469 be concluded that LHA is the most toxic molecule in this study with the worse safety profile (Table
470 3).

471
472

473
474
475
476Table 3. Computed molecular descriptors and the predicted ADMET properties of FHAs *i.e.*, OHA and LHA, for their corresponding precursor fatty acids, oleic
and linoleic acid (OA and LA, respectively) and SAHA (suberoylanilide hydroxamic acid, vorinostat) by ADMET Predictor™ [60]

Acid	ADMET				CYP	CYP	TOX	TOX	TOX	S-Absn	S-Absn	TOX Rat ¹⁷	TOX	TOX BRM	BCF ²⁰										
	<i>M_r</i> ¹	MlogP ²	Risk ³	ADMET Code										BRM	Mouse ¹⁹										
OHA	297.484	4.238	4.130	RB ⁸ , ow ⁹ , Sw ¹⁰ , fu ¹¹ , Mu ¹²	0	None	2	m1 ²⁰ ,	1	Mu	2.966	RB, ow, Sw	4015.411	111.18	1034.993	4.453									
LHA	295.468	4.141	6.846	RB, ow, Sw, SG ¹³ , Hp ¹⁴ Mu, 1A ¹⁵ , ti ¹⁶	1.225	1A, ti	2	m1, S2	3	SG, Hp,	2.621	RB, ow, Mu	2722.121	79.991	1056.419	6.28									
OA	282.470	4.261	5.000	RB, ow, Sw, fu, Hp	0	None	0	None	1	Hp	3.000	RB, ow, Sw	7019.417	536.65	743.482	31.734									
LA	280.454	4.165	5.987	RB, ow, Sw, fu, Hp, ti	1.000	ti	0	None	1	Hp	1.000	RB, ow, Sw	5050.166	411.21	761.805	48.945									
SAHA	297.484	2.057	3.197	RB, Hp, Mu, 1A	0.697	1A	2	m1, S2	2	Hp, Mu	0.500	RB	1460.041	10.165	1522.536	1.275									

¹ Relative molecular mass; ² Lipophilicity (according to Moriguchi); ³ Overall ADMET toxicity; ⁴ Risk of the toxicity due to biotransformation by CYP enzymes; ⁵ The risk of mutagenicity in *S. Typhimurium*; ⁶ Risk of overall toxicity, including mutagenicity; ⁷ Low absorption risk; ⁸ RB – number of rotatable bonds (too flexible); ⁹ ow S+logP, S+logD at pH 7,4 and MlogP (too lipophilic); ¹⁰ Sw (low water solubility); ¹¹ fu – low fraction unbound in plasma; ¹² Mu – mutagenicity in a panel of *in silico* Ames tests with and without metabolic activation; ¹³ SG – hepatotoxicity based on another kind of serum enzyme profile; ¹⁴ Hp – hepatotoxicity based on one kind of serum enzyme profile; ¹⁵ excessive clearance by CYP 1A2; ¹⁶ ti – inhibition of testosterone metabolism by CYP 3A4. ¹⁷ Acute lethal toxicity in rat, the TD₅₀ value of a particular compound in units of mg/kg/day; ¹⁸ TD₅₀ value of a particular compound in units of mg/kg/day, TD₅₀ – dose of a substance administered orally to rats over the course of their lifetimes that results in the appearance of tumours in 50% of their population; ¹⁹ TD₅₀ value in mice mg/kg/day; ²⁰ BCF – environmental bio-concentration factor;

477
478
479
480
481
482
483

484

485 **4. Materials and Methods**

486

487 The olive oil from autochthonous Croatian olive cultivars was donated from a producer in the
488 town of Brela (Dalmatia, Croatia) and it served as the main source material for the preparation of
489 the FHAs. Reagents, starting materials and solvents were purchased from common commercial
490 suppliers: sodium hydroxide p.a. from Kemika (Croatia), hydroxylamine hydrochloride p.a., ferric
491 (III) chloride and hydrochloric acid 37% from Merck (Germany), methanol for HPLC, hexane p.p.a.
492 and dichloromethane p.p.a. from Sigma-Aldrich (Germany). Butylated hydroxyanisole (BHA),
493 2,2-diphenyl-1-picrylhydrazyl (DPPH), β -carotene, linoleic acid, Tween-40 (polyoxyethylene
494 sorbitan monopalmitate) and quercetin were purchased from Sigma-Aldrich Chemical Co. (USA).
495 The other chemicals and solvents used in this study were of analytical grade. Precoated Merck silica
496 gel 60 F₂₅₄ plates were used for thin-layer chromatography. The HeLa (ATCC® CCL-2™) tumor cell
497 line (human, cervix, epithelial adenocarcinoma) and BJ (ATCC® CRL-2522™) normal cell line
498 (human, skin, foreskin, fibroblast) were purchased from American Type Culture Collection,
499 Manassas, VA, USA.

500 The melting point was determined at Stuart SMP3 melting point (Bibby Sterilin Ltd, Stone,
501 Strakodshire, UK) and is uncorrected. Mid-IR (MIR) spectra were recorded in KBr pellets using
502 ABB Bomem MB102 Fourier-transform infrared spectrometer (Quebec, Canada). The FT Raman
503 spectrum was recorded on a Bruker Equinox 55 IR spectrometer (Germany) equipped with a FRA
504 106/S module and Nd-YAG laser (1064 nm the wavelength of excitation). 1D and 2D homo- and
505 hetero-nuclear ¹H- and ¹³C-NMR spectra were recorded on a Bruker-Avance 600 MHz NMR
506 spectrometer (Germany) operating at 600.133 MHz for the ¹H nucleus and 150.917 MHz for the ¹³C
507 nucleus. Samples were measured from CDCl₃ solution at 25 °C (298 K). Chemical shifts (δ) are in ppm,
508 and are referred to the tetramethylsilane (TMS). The following 1D and 2D measurement techniques
509 were used: standard ¹H and ¹³C gated proton decoupling, APT, COSY, HMQC and HMBC. The 2D
510 NMR spectra were measured in pulsed field gradient mode (z-gradient). Theoretical NMR data were
511 computed for OHA and LHA using nmrshiftdb (<http://nmrshiftdb.nmr.uni-koeln.de>) and
512 ChemDraw Ultra v. 11.0 ¹³C NMR software packages. The analyses of the FHAs were achieved
513 using matrix-assisted laser desorption/ionization time-of-flight/time-of flight mass spectrometry
514 (MALDI TOF/TOF MS). A model 4800 Plus MALDI TOF/TOF analyser (Applied Biosystems Inc.,
515 Foster City, CA, USA) equipped with the Nd:YAG laser (355 nm wavelength frequency 200 Hz and
516 the pulse of 3-7 ns) was used. Colorimetric measurements were made by an Elisa microplate reader
517 (iMark, BIO RAD, Hercules, CA, USA). Biological targets were predicted using the
518 SwissTargetPrediction web server at <http://www.swisstargetprediction.ch/> and ADMET properties
519 were predicted using ADMET Predictor™ (Simulations Plus, USA).

520

521

522 *4.1. Synthesis of fatty hydroxamic acids (FHAs)*

523

524 To a solution of olive oil (1.00 g) in hexane (15 mL), 5 mL of 2 M hydroxylamine in methanol
525 solution prepared according to a previously published procedure [39] was added (Scheme 1). The
526 reaction mixture was stirred at 130 rpm and 72 °C for 5 h and then at room temperature for 15 h.

527 The residue was filtered off and the hexane layer was separated and washed with 2 M HCl and
528 water, dried over sodium sulphate, and evaporated in a vacuum. The crude product was purified
529 by column chromatography (silica gel, dichloromethane/methanol, 9:1) to obtain the FHA product
530 as a white solid residue (100 mg/g, expressed in mg per 1 g of olive oil). Following isolation and
531 purification, the qualitative analysis test was performed by addition of iron (III) ions dissolved in
532 hydrochloric acid to the solution of FHAs in methanol and the resulting purple coloured complex
533 indicated the presence of hydroxamic acid groups.

534

535 *4.2. Characterization of fatty hydroxamic acids by spectroscopic methods*

536

537 *Fatty hydroxamic acid mixture:* white solid; m.p. 64-69 °C;
538 FT-IR (KBr) ν_{max} : 3285 (-NH-OH), 3001 (-CH=CH-), 2952 (-CH₃), 2918 (-CH₂-), 1664 (-CO-, amide I),
539 1624 (-CO-, amide II) cm⁻¹; data see in Table S-1 in the supplementary material;
540 Raman (ν_{max} / cm⁻¹): data see in Table S-1 in the supplementary material.
541 ¹H-NMR (CDCl₃, 600 MHz) data see in Table S-2 and Figure S-2 in the supplementary material
542 ¹³C-NMR (CDCl₃, 150 MHz) data see in Table S-2 and Figure S-3 in the supplementary material
543 MALDI TOF/TOF MS: m/z 320 (100) [M₀H₀ + Na]⁺, m/z 318 (25) [M₁H₁ + Na]⁺; all data see in Figure 2
544 and Figure S-7 in the supplementary material).

545

546 *4.3. Biological evaluation in vitro*

547

548 *4.3.1. Antioxidant activity*

549

550 *Free radical scavenging activity (RSA)* was evaluated by the scavenging of 1,1-diphenyl-2-
551 picrylhydrazyl (DPPH) radicals according to a previously described method [61] with some
552 modifications. A methanolic solution of DPPH (20 μ L, 0.735 mg/mL) was added to 130 μ L of either
553 methanol (negative control) or FHA methanolic solutions of various concentrations. The mixture
554 was vortexed for 1 min and then left to stand at room temperature in the dark. After 30 min
555 absorbance was read at 545 nm. A standard antioxidant, the butylated hydroxyanisole (BHA), was
556 used as positive control. RSA was expressed as the concentration that scavenges 50% of DPPH free
557 radicals (EC₅₀). RSA was calculated using the following equation:

558
$$X(\%) = \frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \cdot 100 \quad (\text{Equation 1}), \text{ where } X \text{ represents the RSA in percentage (\%)}$$

559 while A_{control} is methanol and A_{sample} is FHAs solution in methanol. The concentration of FHAs
560 sample that provides 50 % inhibition (EC₅₀) was calculated by plotting the inhibition percentages
561 against the concentrations of the sample.

562

563 *The chelating activity (ChA)* of FHAs toward ferrous ions (Fe²⁺) was studied according to
564 modified literature procedures [62]. In brief, to an aliquot of the methanolic solution of FHAs (150
565 μ L), 0.25 mM FeCl₂ solution (50 μ L) was added. After 5 min, the reaction was initiated by adding 1.0
566 mM ferrozine solution (100 μ L). Absorbance at 545 nm was recorded after 10 min of incubation at
567 room temperature. A reaction mixture containing methanol (150 μ L) instead of FHA solution

568 served as control. Quercetin (Qn) and EDTA were used as the chelating standards. The chelating
569 activity (ChA) was expressed as the concentration that chelates 50% of Fe^{2+} ions (EC_{50}). ChA was
570 calculated using Equation 1, where X represents ChA while A_{control} is the absorbance of the negative
571 control, *i.e.*, blank solution without test compound and A_{sample} is the absorbance of the FHAs
572 solution in methanol.

573 *The antioxidant activity (AOA) in β -carotene-linoleic acid assay* of FHAs was evaluated as
574 described previously [62]. Tween 40 (200 mg) and β -carotene solution in chloroform (1.0 mL, $\gamma = 0.2$
575 mgL^{-1}) were mixed. After removing chloroform in a rotary evaporator, linoleic acid (20 mg) and
576 aerated distilled water (30 mL) were added to the oily residue with vigorous stirring. Aliquots (200
577 μL) of the thus obtained emulsion were added to sample solutions in methanol (50 μL). After adding
578 the emulsion to the FHA solution in methanol (sample solution), the reaction mixture was
579 incubated at 50 °C for 1 h. During that period, the absorbance was measured at 450 nm at 15-minute
580 intervals, starting immediately after sample preparation ($t = 0 \text{ min}$) until the end of the experiment
581 ($t = 120 \text{ min}$). A reaction mixture containing methanol (50 μL) instead of the sample solution served
582 as control. Butylated hydroxyanisol (BHA) was used as an antioxidant standard. The antioxidant
583 activity was calculated using Equation 1 where X represents AOA, while R_{control} and R_{sample} are the
584 average bleaching rates of the water control and antioxidant (test compound or BHA standard),
585 respectively.

586 *The reducing power (RP) assay* of FHAs was conducted as previously described [63] with
587 some modifications. In brief, each FHA solution of different concentrations (0.1 – 0.5 mg/mL) in
588 distilled water (0.5 mL) was mixed with 1.25 mL of 0.2 M sodium phosphate buffer (pH 6.6) and
589 1.25 mL of 1% (m/v) potassium ferricyanide. The mixture was incubated for 20 min at 50°C after
590 which 1.25 mL of 10% trichloroacetic acid (m/v) was added and the mixture was centrifuged at 2795
591 rpm. The upper layer (1.25 mL) was mixed with 1.25 mL of deionized water and 0.25 mL of 0.1%
592 (m/v) ferric chloride. Absorbance was measured at 700 nm against water as a blank. Ascorbic acid
593 was used for comparison.

594 *Statistical analysis.* All assays regarding *antioxidant activity* were performed in triplicate.
595 The results are expressed as mean \pm SD. Statistical comparisons were made using Student's t-test or
596 one-way ANOVA, followed by Dunnett's *post-hoc* test for multiple comparison with the control.
597 Statistical analyses were performed using the JMP V6 from SAS software (SAS Institute, Cary, NC,
598 USA).

599

600 4.3.2. Cytotoxic activity

601

602 Cytotoxic effects were determined by MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra
603 sodium bromide)] assay *in vitro* [64]. MTT is a pale yellow substrate that cleaved by living cells to
604 yield a dark blue formazan product in a process that requires active mitochondria. Thus the amount
605 of cleaved MMT is directly proportional to the number of viable cells present, which is quantified
606 by colorimetric methods. The experiments were carried out on one normal human cell line (ATCC®
607 CRL-2522™) of foreskin fibroblast (BJ) between 28-29 passages and one epithelial tumour cell line
608 (cervix adenocarcinoma - HeLa, ATCC® CCL-2™HeLa). Cells were cultured in Dulbecco's modified
609 Eagle medium – DMEM (Gibco) supplemented with 10% heat-inactivated foetal bovine serum (FBS,
610 Gibco, EU), 2 mM glutamine, and 100 U/0.1mg penicillin/streptomycin. All cells were grown as

611 monolayer in tissue culture flasks (BD Falcon, Germany) in humidified atmosphere under the
612 conditions of 37 °C/5% of CO₂ gas in a CO₂ incubator (Shell Lab, Sheldon Manufacturing, USA). The
613 trypan blue dye exclusion method was used to assess the cell viability.

614 The FHA sample was prepared as a stock solution (5 mg/mL) in DMSO. Working solutions
615 (0.005 up to 5 mg/mL) were made in purified water prior to the experiment. Cells were seeded in 96
616 micro well flat bottom plates (Greiner, Frickenhausen, Austria) at concentration 2x10⁴ cells/mL and
617 left overnight in the CO₂ incubator allowing them to attach to the plate surface. After 72 h the
618 compound addition growth medium was discarded and 5 mg/mL of MTT was added. After 4 h
619 incubation at 37 °C the water insoluble MTT-formazan crystals were dissolved in DMSO.
620 Absorbance was measured at 595 nm on an Elisa microplate reader (iMark, BIO RAD, Hercules,
621 CA, USA). Controlled, the cells were grown under the same conditions and treated with
622 appropriate concentration of solvent used for the preparation of the tested compound. All
623 experiments were performed at least three times in triplicate. The percentage of cell growth (PG)
624 was calculated using the following equation

625
$$PG = \frac{A - A_{blank}}{A_{control} - A_{blank}} \cdot 100$$
 (Equation 2), where A means absorbance of FHAs solution, the blank
626 medium is medium without cells containing MTT and DMSO while control is cell containing
627 DMSO.

628 The GI₅₀ value, defined as compound concentration (mg/mL) leading to cellular viability reduction
629 by 50%, was calculated and used as a parameter to compare cytotoxicity among the tested
630 substances. STATISTICA 11 software and Kolmogorov-Smirnov two-sample tests were used to
631 statistically evaluate the data obtained from the MTT test.

632

633

634 4.3.3. In silico prediction of biological targets and ADMET properties

635

636 4.3.3.1. In silico prediction of biological targets

637

638 Biological on- and off-targets of OH, LHA, OA, LA and SAHA were predicted using
639 SwissTargetPrediction, a web server accessible free of charge and without login requirement at
640 <http://www.swisstargetprediction.ch/>.

641

642 4.3.3.1. In silico prediction of ADMET properties

643

644 ADMET properties of OHA, LHA, OA, LA and SAHA were evaluated using ADMET
645 Predictor™ Version 8.1 (Simulations Plus Inc., USA).

646

647

648

649

650

651

652

653

654 **5. Conclusions**

655 FHAs were synthesized by hydroxylaminolysis from olive oil triacylglycerides as starting
656 material. The obtained spectroscopic data revealed that the isolated product corresponds to the
657 FHAs mixture of OHA and LHA (ratio 4:1). The results of preliminary *in vitro* assays and antitumor
658 activity (HeLa cell line) revealed that the FHA mixture possessed moderate antioxidant and
659 antiradical properties, as well as antitumor activity. The results of biological activity testing and
660 computed data for FHAs highlighted OHA and LHA as promising lead-compounds for further
661 research.

662 Although many hydroxamic acid-based HDAC inhibitors are currently in discovery and
663 preclinical phases, the number of HDACIs that have been approved for the market, still remains
664 low. Hence, there is permanent interest in the synthesis of new hydroxamic acid derivatives and
665 their biological evaluation, so any new chemical entity in this class can be considered for
666 investigation as a potentially new active drug.

667 **Supplementary Materials:** **Figure S1:** A parallel display of FTIR spectra of olive oil recorded as liquid
668 on potassium bromide (KBr) pellet (**A**) and fatty hydroxamic acids (FHAs) recorded in potassium
669 bromide (KBr) pellet (**B**), **Figure S2:** The ¹H-NMR spectrum of FHAs mixture recorded in CDCl₃ and
670 chemical structures of its main components, *i.e.*, OHA and LHA with indicated signals for each proton groups,
671 **Figure S3:** ¹³C-NMR spectrum of fatty hydroxamic acid (FHAs) mixture and chemical structures of
672 its main components, *i.e.*, oleoyl and linoleyl hydroxamic acid (OHA and LHA, respectively) with
673 labeled C-atoms, **Figure S4:** The 2D NMR HMQC (Heteronuclear Multiple Quantum Coherence)
674 spectrum of FHAs in the region of aliphatic and olefinic protons displaying correlations through
675 one bond. (The signal at 77.0 ppm (¹³C-NMR) and 7.24 ppm (¹H-NMR) belong to CDCl₃ solvent),
676 **Figure S5:** A part of 2D NMR HMBC (Heteronuclear Multiple Bond Coherence) spectrum of FHAs displaying
677 correlations through multiple bonds in the region of aliphatic and olefinic protons, **Figure S6:** A part of ¹H-¹H-
678 COSY spectrum of FHAs in the region of aliphatic and olefinic protons, **Figure S7:** A MALDI-TOF/TOF
679 tandem mass spectrum of FHAs mixture representing the region of unsaturated fatty hydroxamic
680 acids, *i.e.*, m/z 310 – 323 with molecular ions of OHA and LHA as their sodium alkali adducts [M +
681 Na]⁺, [M + Na + H]⁺ and [M + Na + 2H]⁺, **Table S1.** The list of vibrational frequencies and their
682 assignments in FTIR (KBr) and Raman spectra of recorded FHAs, **Table S2.** ¹³C- and ¹H-NMR
683 spectroscopic data (recorded at 175 and 700 MHz, respectively; CDCl₃) of fatty hydroxamic acids
684 mixture (FHAs) consisted of oleoyl (OHA) and linoleyl hydroxamic acid (LHA*) and theoretical^{2,3}
685 spectral data of OHA and LHA* and literature spectral data of LHA.

686 **Acknowledgments:** The authors thank Zdravko Pervan (Brela, Croatia) for the donation of olive oil and
687 Snežana Miljanić (University of Zagreb, Faculty of Science, Chemistry Division) for enabling us the use of the
688 Raman spectrometer. The authors also thank Professor Stanko Uršić for his support and valuable suggestions
689 during the work as well as all the members of the Department of Physical Chemistry, University of Zagreb,
690 Faculty of Pharmacy and Biochemistry. This study was supported by the Ministry of Science, Education and
691 Sports of the Republic Croatia (Grants: 006-0063082-0354, 006-0982929-2940, 098-0982929-2917 and
692 219-0982914-217).

693 **Author Contributions:** M.B. conceived, designed and performed the synthetic part of experiments, reviewed
694 the literature data and prepared the subfinal and helped in preparing manuscript for publication; D.V.T.
695 conceived and designed NMR experiments and analysed NMR and MS spectra and contributed to structure
696 elucidation; Ž.M. performed the NMR experiments and contributed reagents, materials and analysis tools;
697 M.Z.K. designed and performed antioxidative and chelating activity and wrote the corresponding part of the
698 manuscript; D.B. performed and analysed the FTIR and Raman spectra; K.M.Š. and M.B.L. performed and
699 wrote the cytotoxic activity segment; M.J.M.T. analysed the overall data and contributed to spectral structures
700 elucidation, designed and performed *in silico* studies, wrote the manuscript and prepare the paper for
701 publication; All of the authors read and approved the final manuscript.

702 **Conflicts of Interest:** The authors declare no conflict of interest.

703

704

References

705

706

1. McAllister, L.A.; Montgomery, J.I.; Abramite, J.A.; Reilly, U.; Brown, M.F.; Chen J.M.; Barham, R.A.; Che, Y.; Chung, S.W.; Menard, C.A.; Mitton-Fry, M.; Mullins, L.M.; Noe, M.C.; O'Donnell, J.P.; Oliver, III R.M.; Penzien, J.B.; Plummer, M.; Price, L.M.; Shanmugasundaram, V.; Tomaras, A.P.; Uccello, D.P. Heterocyclic methyl sulfone hydroxamic acid LpxC inhibitors as Gram-negative antibacterial agents. *Bioorg Med Chem Lett* **2012**, *22*, 6832-6838, DOI: 10.1016/j.bmcl.2012.09.058.
2. Guo, B.; Zhang, Y.; Li, S.; Lai, T.; Yang, L.; Chen, J.; Ding, W. Extract from Maize (*Zea mays* L.): Antibacterial activity of DIMBOA and its derivatives against *Ralstonia solanacearum*. *Molecules* **2016**, *21*, 1397-1409, DOI: 10.3390/molecules21101397.
3. Rao, M.J.; Sethuram, B.; Rao, T.N. Synthesis and spectroscopic and fungicidal characterization of hydroxamic acids and their metal chelates *J Inorg Biochem* **1985**, *24*, 155-160, DOI: 10.1016/0162-0134(85)80007-6.
4. Bravo, H.R.; Lazo, W. Antialgal and antifungal activity of natural hydroxamic acids and related compounds. *J Agric Food Chem* **1996**, *44*, 1569-1571. DOI: 10.1021/jf950345e.
5. Haron, M.J.; Jahangirian, H.; Ismail, M.H.S.; Rafiee-Moghaddam, R.; Rezay, M.; Shameli, K.; Gharayebi, Y.; Abdollahi, Y.; Peyda, M.; Mahdavi, B. Antifungal properties of phenyl fatty hydroxamic acids and their copper complexes synthesized based on canola and palm kernel oils. *Asian J Chem* **2013**, *25*, 4183-4188, DOI: 10.3390/ijms13022148.
6. Yoshida, M.; Furumai, R.; Nishiyama, M.; Komatsu, Y.; Nishino, N.; Horinouchi, S. Histone deacetylase as a new target for cancer chemotherapy. *Cancer Chemother Pharm* **2001**, *48*, 20-26, DOI: 10.1007/s002800100300.
7. Barbarić, M.; Uršić, S.; Pilepić, V.; Zorc, B.; Hergold-Brundić, A.; Nagl, A.; Grdiša, M.; Pavelić, K.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Mintas, M. Synthesis, X-ray crystal structure study, and cytostatic and antiviral evaluation of the novel cycloalkyl-N-aryl-hydroxamic acids. *J Med Chem* **2005**, *48*, 884-887, DOI: 10.3390/molecules16086232.
8. Guan, P.; Sun, F.; Hou, X.; Wanga, F.; Yi, F.; Xu, W.; Fang, H. Design, synthesis and preliminary bioactivity studies of 1,3,4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors. *Bioorg Medl Chem* **2012**, *20*, 3865-3872, DOI: 10.1016/j.bmcl.2012.04.032.
9. Zhu, Y.; Chen, X.; Wu, Z.; Zheng, Y.; Chen, Y.; Tang, W.; Lu, T. Synthesis ad atitumor activity of novel diaryl ether hydroxamic acid derivtives as potential HDAC inhibitors. *Arch Pharm Res* **2012**, *35*, 1723-1732, DOI: 10.1007/s12272-012-1003-0.
10. Pal, D.; Saha, S. Hydroxamic acid - A novel molecule for anticancer therapy, *J Adv PharmTechnol Res* **2012**, *3*, 92-99, DOI:10.4103/2231-4040.97281.
11. Yuan, Z.; Sun, Q.; Li, D.; Miao, S.; Chen, S.; Song, L.; Gao, C.; Chen, Y.; Tan, C.; Yang, Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. *Eur J Med Chem* **2017**, *134*, 281-292, DOI: 10.1016/j.ejmech.2017.04.017.
12. Muri, E.M.F.; Nieto, M.J.; Sindela, R.D.; Williamson, J.S. Hydroxamic acids as pharmacological agents. *Curr Med Chem* **2002**, *9*, 1631-1653, DOI: 10.2174/0929867023369402#sthash.AEQqE6Yu.dpuf.
13. Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances: Syntheses, Patents, Applications, 4th Ed. Georg Thieme Verlag, Stuttgart, **2001**, 2521, ISBN: 3-13-558404-6.
14. Ugwu, D.I.; Ezema, B.E.; Eze, F.U.; Ayogu; J.I.; Ezema, C.G.; Ugwu, D.I. Synthesis and biological applications of hydroxamates. *Am J Org Chem* **2014**, *4*, 26-61, DOI: 10.5923/j.ajoc.20140402.02.
15. Dokmanovic, M.; Clarke, C.; Marks, P.A. Histone deacetylase inhibitors: overview and perspectives, *Mol Cancer Res* **2007**, *5*, 981-989. DOI: 10.1158/1541-7786.MCR-07-0324.
16. Thurn, K.T.; Thomas, S.; Moore, A.; Munster, P.M. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. *Future Oncol* **2011**, *7*, 263-283, DOI: 0.2217/fon.11.2.
17. Manal, M.; Chandrasekar, M.J.; Gomathi, P.J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. *Bioorg Chem* **2016**, *67*, 18-42, DOI: http://dx.doi.org/10.1016/j.bioorg.2016.05.005.
18. Nebbioso, A.; Carafa, V.; Benedetti, R.; Altucci, L. Trials with 'epigenetic'drugs: an update. *Mol Oncol* **2012**; *6*, 657-682, DOI: 10.1016/j.molonc.2012.09.004.

754

755

- 756 19. Fournand, D.; Vaysse, L.; Dubreucq, E.; Arnaud, A.; Galzy, P. Monohydroxamic acid biosynthesis. *J Mol Catal B-Enzym* **1998**, *5*, 207–211, DOI: 10.1016/S1381-1177(98)00036-8.
- 757 20. Hoidy, W.H.; Ahmad, M.B.; Al-Mulla, E.A.J.; Yunus, W.M.Z.; Ibrahim, N.A. Synthesis and
759 characterization of fatty hydroxamic acids from triacylglycerides, *J Oleo Sci* **2010**, *59*, 15-19, DOI:
760 <http://doi.org/10.5650/jos.59.15.27>.
- 761 21. Porcheddu, A.; Giacomelli, G. Synthesis of oximes and hydroxamic acids. In The chemistry of
762 hydroxylamines, oximes and hydroxamic acids, Rapport, Z; Liebman, J. F. Eds., John Wiley and Sons,
763 **2009**, p.p. 163-231, ISBN 978-0-470-51261-6.
- 764 22. Brodowsky, I.D.; Hamberg, M.; Oliw, E.H. BW A4C and other hydroxamic acids are potent inhibitors
765 of linoleic acid 8R-dioxygenase of the fungus *Gaeumannomyces graminis*. *Eur J Pharmacol* **1994**, *254*,
766 43–47, DOI: 10.1016/0014-2999(94)90368-9.
- 767 23. Butovich, I.A.; Reddy, C.C. Inhibition of potato lipoxygenase by linoleyl hydroxamic acid: kinetic
768 and EPR spectral evidence for a two-step reaction. *Biochem J* **2002**, *365*, 865–871, DOI:
769 [10.1042/BJ20020495](https://doi.org/10.1042/BJ20020495).
- 770 24. Butovich, I.A.; Lukyanova, S.M. Inhibition of lipoxygenases and cyclooxygenases by linoleyl
771 hydroxamic acid: comparative in vitro studies, *J Lipid Res* **2008**, *49*, 1284–1294, DOI:
772 [10.1194/jlr.M700602-JLR200](https://doi.org/10.1194/jlr.M700602-JLR200).
- 773 25. Raffiee-Moghaddam, R.; Salimon, J.; Haron, M.D.J.; Jahangirian, H. Jatropha Curcas seed oil as a new
774 substrate for enzymatic methylhydroxylaminolysis. *Dig J Nanomater Bios* **2013**, *8*, 415-422.
- 775 26. Jahangirian, H.; Haron, M.J.; Silong, S.; Yusof, N.A. Enzymatic synthesis of phenyl fatty hydroxamic
776 acids from canola and palm oils. *J Oleo Sci* **2011**, *60*, 281–286, DOI: <http://doi.org/10.5650/jos.60.281>.
- 777 27. Jahangirian, H.; Haron, M.J.; Yusof, N.A.; Silong, S.; Kassim, A.; Rafiee-Moghaddam, R.; Peyda, M.;
778 Gharayebi, Y. Enzymatic synthesis of fatty hydroxamic acid derivatives based on palm kernel oil.
779 *Molecules* **2011**, *16*, 6634-6644, DOI: [10.3390/molecules16086634](https://doi.org/10.3390/molecules16086634).
- 780 28. Suhendra, D.; Wan Yunus, W.M.Z.; Haron, M.J.; Basri, M.; Silong, S. Enzymatic synthesis of fatty
781 hydroxamic acids from palm oil. *J Oleo Sci* **2005**, *54*, 33-38, DOI: <http://doi.org/10.5650/jos.54.33>.
- 782 29. Jahangirian H.; Haron, J.; Silong, S.; Yusof, N.A.; Shameli, K.; Eissazadeh, S.; Rafiee Moghaddam, R.
783 Mahdavi, B.; Jafarzade, M. Antibacterial effect of phenyl fatty hydroxamic acids synthesized from
784 canola oil, *J Med Chem Plants Res* **2011**, *5*, 4826-4831.
- 785 30. Jahangirian, H.; Haron, M.J.; Ismail, M.H.S; Raffiee-Moghaddam, R.; Afsah-Hejri, L.; Abdollahi, Y.;
786 Rezayi, M.; Vafaei, N. Well diffusion method for evaluation of antibacterial activity of cooper phenyl
787 fatty hydroxamate synthesized from canola and palm kernel oils. *Dig J Nanomater Bios* **2013**, *8*, 1263 –
788 1270.
- 789 31. Rafiee-Moghaddam, R.; Salimon, J.; Haron, M.J.; Jahangirian, H.; Ismail, M.H.S.; Afsah-Hejri, L.;
790 Vafaei, N.; Tayefehchamani, Y. Application of Methyl Fatty Hydroxamic Acids Based on Jatropha
791 Curcas Seeds oil and Their Metal Complexes as Antimicrobial Agents. *Dig J Nanomater Bios* **2014**, *9*,
792 261-271.
- 793 32. Adewuyi, A.; Otuechere, C.A.; Oteglolade, Z.O.; Bankole, O.; Unuabonah, E.I. Evaluation of the
794 safety profile and antioxidant activity of fatty hydroxamic acid from underutilized seed oil of
795 *Cyperus esculentus*. *J Acute Dis* **2015**, *4*, 230-235, DOI: [http://dx.doi.org/10.1016/j.joad.2015.04.010](https://doi.org/10.1016/j.joad.2015.04.010).
- 796 33. Kovacic, P.; Edwards, C.L. Hydroxamic acids (therapeutics and mechanism): chemistry, acyl nitroso,
797 nitroxyl, reactive oxygen species, and cell signaling, *J Recept Sig Transd* **2011**, *31*, 10-19, DOI:
798 [10.3109/10799893.2010.497152](https://doi.org/10.3109/10799893.2010.497152).
- 799 34. Koymans, L; Donne-Op den Kelder, G. M.; te Koppele, J. M.; Vermeulen, N P. E. Generalized
800 cytochrome P-450-mediated oxidation and oxygenation reactions in aromatic substrates with
801 activated N-H, O-H, C-H or S-H substituents, *Xenobiotics* **1993**, *23*, 633-648.
- 802 35. Dipple, A.; Micheyda, C. J.; Weisburger, E. K. Metabolism of chemical carcinogens *Pharmacol Ther*
803 **1985**, *27*, 265-296.
- 804 36. Jadrijević-Mladar Takač, M.; Kos, I.; Biruš, M.; Butula, I.; Gabričević, M. A study of the
805 physico-chemical properties of 1,3,5-trihydroxy-1,3,5-triazin-2,4,6[1H,3H,5H]-trione. *J Mol Struct*
806 **2006**, *782*, 24-31, DOI: 10.1016/j.molstruc.2004.09.018.
- 807 37. Kos, I.; Jadrijević-Mladar Takač, M.; Butula, I.; Biruš, M.; Maravić-Vlahoviček, G.; Dabelić, S.
808 Synthesis, antibacterial and cytotoxic activity evaluation of hydroxyurea derivatives. *Acta Pharm*
809 **2013**, *63*, 175-191, DOI: [10.2478/acph-2013-0014](https://doi.org/10.2478/acph-2013-0014).

- 810 38. Jakobušić-Brala, C.; Benčić, Đ.; Šindrak, Z.; Barbarić, M.; Uršić, S. Labeled extra virgin olive oil as food
811 supplement, phenolic compound in oils from some autochthonic Croatian olives, *Grasas Aceites* **2015**,
812 66, e099, DOI: <http://dx.doi.org/10.3989/gya.0228151>.
- 813 39. Antonis, A. The colorimetric determination of ester groups in lipid extracts. *J Lipid Res* **1960**, 1,
814 485-486.
- 815 40. Boskou, D.; Blekas, G.; Tsimidou, M. Olive oil composition. In. *Olive Oil: Chemistry and Technology*,
816 2nd ed., Boskou, D., Ed., AOCS Press, Champaign, Illinois, 2006; pp. 41 – 72; ISBN: 978-1-893997-88-2.
- 817 41. Arudi, R.L.; Sutherland, M.W.; Bielski, B.H.J. Purification of oleic acid and linoleic acid. *J Lipid Res*
818 **1983**, 24, 485-488.
- 819 42. Vaysse, L.; Dubreucq, E.; Pirat, J.L.; Galzy, P. Fatty hydroxamic acid biosynthesis in aqueous medium
820 in the presence of the lipase-acyltransferase from *Candida parapsilosis*. *J Biotech* **1997**, 53, 41-46, DOI:
821 10.1016/S0168-1656(96)01660-4.
- 822 43. Shiao, T.Y.; Shiao, M.S. Determination of fatty acid composition of triacylglycerides by high
823 resolution NMR spectroscopy. *Bot Bull Academia Sinica* **1989**, 30, 191-199.
- 824 44. Salinero, C.; Feás, X.J.; Mansilla, P.; Seijas, J.A.; Vázquez-Tato, M.P.; Vela, P.; Sainz, M.J. ¹H-Nuclear
825 magnetic resonance analysis of the triacylglyceride composition of cold-pressed oil from *Camellia*
826 *japonica*. *Molecules* **2012**, 17, 6716-6727, DOI: 10.3390/molecules17066716.
- 827 45. Reische, D.W.; Lillard, D.A.; Eitenmiller, R.R. Antioxidants. In *Food Lipids Chemistry Nutrition, and*
828 *Biotechnology*, 3rd ed; Akoh, C.C., Min, D.B., Eds.; CRC Press: New York, NY, USA, 2008, pp.
829 409–433, ISBN-13: 978-1-4200-4663-2.
- 830 46. Galey, J.B. Recent advances in the design of iron chelators against oxidative damage. *Mini-Rev Med*
831 *Chem* **2001**, 1, 233-242, DOI: 10.2174/1389557013406846.
- 832 47. Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging
833 capacity and antioxidant activity of selected plant species from the Canadian prairies. *Food Chem*
834 **2004**, 84, 551–562; DOI: 10.1016/S0308-8146(03)00278-4.
- 835 48. Tyug, T.S.; Prasad, N.; Ismail, A. Antioxidant capacity, phenolics and isoflavones in soybean
836 by-products. *Food Chem* **2010**, 123, 583–589, DOI: 10.1016/j.foodchem.2010.04.074.
- 837 49. Sarikurkcu, C.; Arisoy, K.; Tepe, B.; Cakir, A.; Abali, G.; Mete, E. Studies on the antioxidant activity
838 of essential oil and different solvent extracts of *Vitex agnus castus* L. fruits from Turkey. *Food Chem*
839 **Tox** **2009**, 47, 2479–2483, DOI: 10.1016/j.fct.2009.07.005.
- 840 50. Singh, N.; Rajini, P.S. Free radical scavenging activity of an aqueous extract of potato peel. *Food*
841 *Chemistry* **2004**, 85, 611–616, DOI: 10.1016/j.foodchem.2003.07.003
- 842 51. Gfeller, D.; Michelin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules,
843 *Bioinformatics* **2013**, 29, 3073-3079, DOI: 10.1093/bioinformatics/btt540.
- 844 52. Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michelin, O.; Zoete, V. SwissTargetPrediction: a web
845 server for target prediction of bioactive small molecules. *Nucl Acids Res* **2014**, 42, W32–W38, DOI:
846 10.1093/nar/gku293.
- 847 53. De Petrocellis, L.; Cascio, M.G.; Di Marzo, V. The endocannabinoid system: a general view and latest
848 additions. *B J Pharmacol* **2004**, 141, 765–774, DOI: 10.1038/sj.bjp.0705666.
- 849 54. McKinney, M.K.; Cravatt, B.F. Structure and Function of Fatty Acid Amide Hydrolase. *Annu Rev*
850 *Biochem* **2005**, 74, 411–432, DOI:10.1146/annurev.biochem.74.082803.133450.
- 851 55. Leggett, J.D.; Aspley, S.; Beckett, S.R.G.; D'Antona, A.M.; Kendall, D.A.; Kendall, D.A. Oleamide is a
852 selective endogenous agonist of rat and human CB₁ cannabinoid receptors. *Br J Pharmacol* **2004**; 141,
853 253–262, DOI: 10.1038/sj.bjp.0705607.
- 854 56. Thabuis, C.; Tissot-Favre, D.; Bezelgues, J. B.; Martin, J.C.; Cruz-Hernandez, C.; Dionisi, F.;
855 Destaillats, F. Biological functions and metabolism of oleoylethanolamide. *Lipids* **2008**, 43, 887-894,
856 DOI: 10.1007/s11745-008-3217-y.
- 857 57. Otrubova, K.; Ezzili, C.; Boger, D.L. The Discovery and Development of Inhibitors of Fatty Acid
858 Amide Hydrolase (FAAH). *Bioorg Med Chem Lett*. 2011, 21, 4674–4685, DOI:
859 10.1016/j.bmcl.2011.06.096.
- 860 58. Bertin, J.M.; Zimba, P.V.; Beauchesne, R.K.; Huncik, M.K.; Moeller, D.R.P. Identification of toxic fatty
861 acid amides isolated from the harmful alga *Prymnesium parvum* Carter. *Harmful algae* **2012**, 20,
862 111-116, DOI: <https://doi.org/10.1016/j.hal.2012.08.005>.

- 863 59. Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; Zheng, M.;
864 Jiang, H. In silico ADME/T modelling for rational drug design. *Q Rev Biophys* **2015**, *48*, 488-515.
865 DOI: 10.1017/S0033583515000190.
- 866 60. Lowless, M.S.; Waldman, M.; Franczkiewicz, R.; Clark, R.D. Using chemoinformatics in drug
867 discovery. In *New approaches to drug discovery, Handbook of experimental pharmacology*, Nielsch, U.,
868 Fuhrmann, U., Jaroch, S., Eds.; Springer International Publishing AG: Switzerland **2016**; 232; 139-170,
869 IS-13: 978-3319289120.
- 870 61. Yen, G.C.; Chen, H.Y. Antioxydant activity of various tea extracts in relation to their
871 antimutagenicity. *J Agric Food Chem* **1995**, *43*, 27-37. DOI: 10.1021/jf00049a007.
- 872 62. Rajić, Z.; Zovko Končić, M.; Miloloža, K.; Perković, I.; Butula, I.; Bucar, F.; Zorc, B.
873 Primaquine-NSAID twin drugs: Synthesis, radical scavenging, antioxidant and Fe²⁺ chelating
874 activity. *Acta Pharmaceut* **2010**, *60*, 325–337, DOI: 10.2478/v10007-010-0024-9.
- 875 63. Yen, G.C.; Chuang, D.Y. Antioxidant properties of water extracts from *Cassia tora* L. in relation to the
876 degree of roasting. *J Agric Food Chem* **2000**, *48*, 2760-276, DOI: 10.1021/jf991010q.
- 877 64. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation
878 and cytotoxicity assays. *J Immunol Methods* **1983**, *65*, 55–63, DOI: 10.1016/0022-1759(83)90303-4.