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Abstract: This paper discusses the application of artificial intelligence in imaging omics, especially in cancer 

research. Imaging omics enables detailed analysis of spatial and temporal heterogeneity of tumours through 

high-throughput extraction of quantitative features from medical images such as MRI, PET, and CT. This paper 

focuses on applying PARKS systems to automate the recognition, segmentation, and extraction of image 

features, significantly enhancing the capabilities of clinical decision support systems (CDSS). The future 

direction is to establish a robust network infrastructure for radiology Medication-led Health care (RLHC) to 

facilitate the development and application of personalised treatment protocols, and to improve diagnostic 

accuracy, prognosis assessment, and treatment recommendations by uploading quantitative image features to 

a shared database and comparing them with historical images. 
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1. Introduction 

In the progress of personalised medicine, artificial intelligence has achieved significant 

breakthroughs through advanced imaging technology. Radiomics, a high-throughput mining 

technique for extracting quantitative image features from standard medical imaging, has shown its 

increasing importance in cancer research. Imagomics provides a powerful tool for modern medicine 

by rapidly developing and validating image-based signatures from medical imaging data through 

complex image analysis tools and applying them to clinical decision support systems to improve the 

accuracy of diagnosis, prognosis and prediction. 

The imagomics process involves multiple steps, from image preprocessing and feature 

extraction to data analysis, each requiring precise and efficient processing. However, imaging omics 

also need help with some things, such as data standardisation problems, feature selection complexity, 

and clinical relevance validation. However, these challenges also present opportunities for further 

research, particularly in developing new analytical methods and validation techniques. 

Although imaging has demonstrated great potential to improve clinical decision-making, 

particularly in diagnosing and treating cancer patients, the field currently lacks standardised 

assessments of the scientific integrity and clinical relevance of rapidly evolving imaging research. For 

imaging omics to become a mature discipline, strict evaluation criteria and reporting guidelines must 

be established. This paper aims to guide imaging omics research to meet this urgent need and 

promote its application and development in personalised medicine. 

2. AI-Driven Data Visualization Technologies 

2.1. Definition of Medical Imaging 

Imaging omics originated in the field of oncology and was first formally proposed by Dutch 

scholar Lambin P et al. in 2012; which is the high-throughput extraction of many image features 
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describing tumour characteristics. In the same year, Kumar V et al. further improved the concept, 

that is, imaging omics is a high-throughput extraction of many high-dimensional quantitative image 

features from MRI, PET and CT images and analysis. Imaging omics transforms traditional medical 

images into minable high-throughput image features, which can be used to describe spatial and 

temporal heterogeneity in images quantitatively, reveal image features that the naked eye cannot 

recognise, effectively transform medical images into high-dimensional identifiable feature Spaces, 

and conduct statistical analysis on the generated feature Spaces, to establish models with diagnostic, 

prognostic or predictive value. Provide valuable information for personalised treatment. 

The emergence of imaging is derived from the development of radiology. With the rapid growth 

of precision and quantitative medical imaging technology and the continuous update of image 

recognition technology and data algorithms, the mining and analysis of medical image big data have 

been realised, greatly expanding the information volume of medical images. 

Based on the characteristics that high-throughput features can be obtained after texture analysis 

of image information and inspired by genomics and tumour heterogeneity, Dutch scholar Lambin 

proposed the concept of Radiomics in 2012 based on previous scholars’ work. Lambin believes that 

“high-throughput extraction of a large number of features from medical images, through automatic 

or semi-automatic analysis methods to transform imaging data into high-resolution mining data 

space” Medical images can be a comprehensive, non-invasive, quantitative observation of tumour 

spatial and temporal heterogeneity. Kumar et al. extended the definition of imaging omics, which 

refers to the high-throughput extraction and analysis of many advanced and quantitative imaging 

features from medical images such as CT, PET or MRI. In the following seven years, this idea was 

rapidly improved and perfected by more and more scholars. 

In essence, imagomics is an analytical approach that starts from the clinical problem and finally 

returns to the clinical problem being solved. 

 

Figure 1. Medical realisation idea of imaging omics. 

2.2. Application of Artificial Intelligence (AI) Technology in Imaging Omics Research 

According to the National Institutes of Health (NIH), medical imaging technology plays an 

important role in the U.S. health care system. According to reports, in recent years, medical 

institutions at all levels in the United States have widely adopted advanced medical imaging 

technologies such as CT scanning, MRI, and X-ray to help doctors carry out accurate disease diagnosis 

and treatment planning. These technologies greatly improve the efficiency and quality of medical 

care and provide critical data support for personalized treatment and surgical planning. In addition, 

the United States is committed to promoting innovation in medical imaging technology through 

investment and research and development support to promote the integration of imaging and 

biomedical engineering to improve the scientific and technological level of research and clinical 

applications. 

1. Automatic image analysis and interpretation 

AI technology can automatically identify and label focal areas in medical images, reducing the 

burden on doctors and improving diagnostic efficiency. By training deep learning algorithms and 

neural networks, AI can achieve accurate image segmentation, classification, and feature extraction, 

helping doctors make accurate diagnoses quickly. 

2. Disease prediction and personalized treatment 
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With big medical data and AI technology, imaging omics research can uncover disease patterns 

and risk factors hidden in large-scale imaging data. Through the comprehensive analysis of patient 

images and relevant clinical data, AI can predict the progression and outcome of the disease and 

guide individualized treatment. 

3. Assist decision-making and surgical planning 

AI technology plays an essential role in surgical planning and assisting decision-making. 

Through three-dimensional reconstruction and simulation of patient images, combined with 

comparison and reference of big data, AI can help doctors develop the best surgical plan, reduce risks, 

and improve surgical results. In medical diagnosis, doctors usually need to combine clinical 

manifestations, medical images, and other aspects of information to identify and diagnose. Medical 

imaging AI technology can effectively help doctors diagnose diseases, and its application range is 

extensive. 

For example, AI technology can diagnose tumors, fractures, and lung diseases in radiology and 

medical imaging by analyzing data from X-rays, CT, and MRI images. In ultrasound imaging, 

medical imaging AI technology can distinguish between tumors and benign lesions by extracting the 

characteristics of normal and abnormal structures. 

3. Medical Imaging Group Personalized Medical Diagnosis 

3.1. Analyze the Specific Impact of AI-Driven Data Visualization on User Experience 

1. Standard medical image data acquisition and screening: 

Before data collection, data should be screened according to a clear research direction, such as 

differential diagnosis of a tumor or pneumonia classification and whether the selected image data 

has the gold standard of pathological or etiological detection for comparison. When evaluating the 

efficacy of imaging, whether or not there is a matching of image data corresponding to multi-stage 

treatment is also essential. 

Image data include CT, MRI, PET, ultrasonic images, etc. In an imaging omics study, the 

objective acquisition method of image data is preferably constant: the same equipment, the same 

sequence, the same parameters, and maintaining the same state during scanning, but this is almost 

impossible. Therefore, we must screen the data according to the research direction to perform 

corresponding differential diagnosis, laboratory control and image data matching. 

2. Image segmentation: 

The technique and process of dividing an image into specific areas with unique properties and 

extracting objects of interest. Depending on the purpose of the study, the target of image 

segmentation can be a lesion, normal reference tissue or tissue anatomical structure, and it can be a 

three-dimensional or two-dimensional region. The subsequent analysis and research of imagomics 

are carried out around these segmented regions from the image. 

3. Feature extraction: 

Traditional imaging doctors generally read images by the naked eye and rely on their own 

intuitive and long-term experience to diagnose diseases, so there will be different degrees of 

differentiation due to different experiences. However, these image data contain a lot of objective 

potential information; at this time, it is necessary to extract high-throughput features, the core step of 

imagomics, to analyse the substantial attribute of the region of interest so that the diagnosis based on 

this substantial attribute can achieve a high degree of identity. 

The core step of imaging omics is to extract high-throughput features to quantitatively analyse 

the fundamental properties of ROI. Based on the Image Biomarker Standardization Initiative (IBSI) 

[4], image omics features are usually divided into shape features, texture-based features, high-order 

features, and features based on model transformation. 

4. Feature selection: 

Through the above feature extraction, the number of features extracted may range from several 

hundred to tens of thousands, and only some features are associated with the clinical problem to be 

solved. On the other hand, in practice, due to the relatively large number of features and the small 
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number of samples, it is easy to cause the phenomenon of overfitting in the subsequent model, thus 

affecting the accuracy of the model. Feature selection directly selects appropriate subsets from feature 

sets according to some evaluation criteria or generates new feature sets through linear/nonlinear 

combinations of original features and selecting appropriate subsets from new feature sets. 

5. Modeling and application: 

(1) For doctors’ specific clinical problems, establish a prediction model based on the critical 

features screened by the above features or further combine features other than imaging omics (such 

as clinical signs, pathology, and genetic test data). 

(2) Prediction model: For the analysis, screening, research and establishment of more than 

hundreds to 1,000 features extracted, the established model can predict data by comparing features. 

(3) most imaging omics are still in the research stage and have yet to be used in clinical practice. 

3.2. Imaging Omics Infrastructure 

Imaging omics is a discipline that uses high-throughput feature extraction technology to extract 

a large amount of quantitative data from medical images, which shows great potential in deepening 

medical knowledge and expanding the application of imaging technology. Through imaging omics, 

researchers and clinicians can extract more biological information from traditional images, which has 

important implications for achieving higher precision diagnosis and treatment. A shared vision of 

interdisciplinary precision medicine must be constructed to exploit the potential of imaging omics 

fully. 

In this shared vision, extracted imaging features must be stored in a searchable database. These 

databases will not only enable the unprecedented potential of radiological imaging data (RLHC), 

represented by routine standard treatment images, but also advance the entire field of medicine by 

dynamically capturing multimodal data and sharing knowledge across departmental and 

institutional boundaries. With such an RLHC network, researchers can accumulate enough data sets 

to provide a solid statistical foundation for developing and validating imaging models. 

3.3. Realization of Personalised Medicine 

The key to achieving personalized medicine is to utilize the characteristics of “big data” to 

optimize the application of imaging omics and RLHC (Radiology-Led Health Care). This includes the 

amount of data, the kind of data, the speed of data acquisition, and the accuracy of data. The 

following are the importance of these characteristics and their specific applications in the realization 

of personalized medicine: 

1. Data Volume 

Data volume is crucial in advancing personalized medicine through imaging omics and 

Radiology-Led Health Care (RLHC). The quality of knowledge derived from medical studies is 

directly proportional to the number of patients included in the dataset. Larger patient cohorts enable 

a more comprehensive exploration of medical phenomena and patterns, enhancing research accuracy 

and reliability. Moreover, increased data volume allows for acquiring a broader range of variables 

during model development. This richness of information not only facilitates robust model training 

and validation but improves the model’s ability to generalize findings across diverse patient 

populations. Additionally, large datasets are invaluable for studying rare disease variants, as they 

provide sufficient data points to understand and treat these conditions effectively. 

2. Variety of Data 

The diversity of data types is critical in tailoring treatment decisions in personalized medicine. 

By incorporating various treatment modalities and patient characteristics—such as genetics, lifestyle 

factors, and medical histories—into analyses, healthcare providers gain a comprehensive perspective 

for personalized treatment planning. Interdisciplinary collaboration is essential in managing diverse 

datasets, as it involves expertise from different fields to analyze and interpret multifaceted data 

effectively. This collaboration fosters a holistic approach to patient care, ensuring that treatments are 

tailored to individual needs based on a nuanced understanding of diverse data inputs. 

3. Velocity of Data Acquisition and Data Veracity 
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The velocity of data acquisition is vital for timely knowledge generation and real-time decision 

support in clinical settings. Rapid data acquisition enables healthcare professionals to collect and 

analyze information promptly, facilitating quick insights that can guide immediate clinical 

interventions. Real-time data processing capabilities enhance clinical efficiency by providing timely 

support for decision-making processes, thereby improving patient care outcomes. Furthermore, data 

veracity, or the accuracy and reliability of data, is crucial for developing precise treatment strategies. 

High-quality data ensures the validity of analytical results, reducing the likelihood of misdiagnoses 

or treatment errors. This precision is essential in personalized medicine, where accurate data-driven 

insights lead to tailored treatment plans that optimize patient outcomes. 

 

Figure 1. Architecture diagram of Velocity of data acquisition. 

3.4. Challenges and Solutions to Data Sharing 

1. Barriers to Data Sharing 

Data sharing in healthcare faces numerous challenges, including insufficient human resources 

dedicated to data management, cultural and linguistic differences affecting data interpretation and 

exchange, inconsistent methods for recording and storing data, and concerns over the political and 

academic value of data. Additionally, issues such as reputational risks associated with data breaches 

and legal complexities surrounding privacy regulations further complicate efforts to share healthcare 

data effectively. 

2. Strategies and Success Stories 

Despite these challenges, several successful initiatives demonstrate effective strategies for 

overcoming barriers to data sharing. For instance, CancerLinQ, initiated by the American Society of 

Clinical Oncology (ASCO), has streamlined data centralization efforts in oncology by facilitating the 

sharing of comprehensive cancer treatment data among healthcare providers and researchers. This 

centralized approach has significantly advanced both research and clinical practice in cancer 

treatment, enabling insights from large datasets to inform personalized patient care strategies. 

Another successful example is the WorldCat project, which has connected radiotherapy facilities 

across multiple countries through innovative data integration techniques. By harmonizing data from 

diverse sources, WorldCat promotes global collaboration and knowledge sharing in radiotherapy 

practices, demonstrating the potential of novel data combination approaches to overcome cultural 

and logistical barriers to data sharing. 

3. Technological Solutions and Collaborative Initiatives 

Advanced Information and Communication Technology (ICT) solutions offer standardized, 

simplified approaches to synchronizing Radiology-Led Health Care Systems (RLHCS) across 

different healthcare centers without compromising sensitive patient data. These ICT solutions 

facilitate secure and efficient data sharing practices, ensuring that healthcare providers can 

collaborate seamlessly while adhering to strict privacy and security standards. 

Moreover, collaborative projects such as the Cancer Imaging Archive (TCIA), the Quantitative 

Imaging Network (QIN), the Quantitative Imaging Biomarker Consortium (QIBA), and Quantitative 

Cancer Imaging (QuIC-ConCePT) exemplify global efforts to enhance data sharing in healthcare. 

These initiatives focus on developing standardized protocols for imaging data collection, analysis, 
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and sharing, fostering interdisciplinary collaboration, and accelerating advancements in diagnostic 

imaging and personalized medicine. 

In conclusion, while challenges persist, innovative strategies and technological advancements 

are paving the way for improved data-sharing practices in healthcare. By leveraging successful case 

studies and collaborative frameworks, healthcare systems can overcome barriers to data sharing, 

promote transparency, and harness the collective power of data to advance patient care and research 

outcomes globally. 

Principle of personalised medicine 

1. Data Integration and Sharing: Establish a global data-sharing network to integrate diverse 

medical data across institutional and national borders. 

2. Interdisciplinary cooperation: Multiple data types for comprehensive analysis are used to 

develop accurate diagnosis and treatment plans. 

3. Advanced Technical support: Use advanced information and communication technologies 

and data analysis tools to ensure efficient data acquisition, processing and application. 

4. Regulations and Privacy Protection: Develop and comply with strict regulations to ensure data 

privacy and security and build patient and institutional trust in data sharing. 

Through these measures, imaging and RLHC can better realise their potential in personalised 

medicine to provide patients with more accurate and efficient medical care. 

4. Conclusion 

The future Image Archiving and Imaging Omics Knowledge System (PARKS) demonstrates the 

great potential of imaging technologies for personalised and precision medicine. The PARKS system 

can automatically identify, segment, and extract features from areas of interest, especially when 

previous images related to the same patient are accessible. This automated process improves the 

efficiency of image analysis and significantly enhances the role of clinical decision support systems 

(CDSS) in diagnosis, prognosis, and treatment. By uploading quantitative image features to a shared 

database and comparing them with historical images, the PARKS system can automatically extract 

and analyse these features to provide more precise diagnosis and treatment recommendations. This 

capability has been proven at the technical, scientific and clinical levels, driving the development of 

personalised medicine. 

Today, most image archiving and communication systems can register current images with 

previous images and perform user interactive segmentation. On this basis, the PARKS system 

achieves higher automation and intelligence, improving data processing and analysis efficiency and 

accuracy. In the future, imaging omics will focus on creating the infrastructure for a robust radio-

image-guided health care (RLHC) network. This infrastructure will support the development and 

validation of models, ensuring that imaging omics technology plays a more significant role in clinical 

practice. Through advanced ICT and data analysis tools, the PARKS system will overcome traditional 

barriers to data sharing, enabling synchronisation and data sharing of RLHC across centres. 

In summary, the PARKS system provides powerful technical support for personalised and 

precision medicine by automating the identification and processing of historical patient image data. 

This improves the diagnostic accuracy and consistency of medical images and promotes the progress 

of personalised medicine. In the future, the profound combination of imaging omics and artificial 

intelligence will continue to promote the development of personalised medicine and provide patients 

with more accurate and efficient medical services. 
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