
Review Not peer-reviewed version

How to Improve Software Energy

Efficiency? A Systematic Literature

Review and the Current State of Applied

Methods in Practice

Włodzimierz Wysocki * and Ireneusz Miciuła *

Posted Date: 30 January 2025

doi: 10.20944/preprints202501.2232.v1

Keywords: software; knowledge management; reasoning; information extraction; rules mining; knowledge

acquisition and engineering

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4172629
https://sciprofiles.com/profile/468545

Article

How to Improve Software Energy Efficiency? A

Systematic Literature Review and the Current State of

Applied Methods in Practice

Włodzimierz Wysocki 1,* and Ireneusz Miciuła 2

1 Department of Software Engineering and Cybersecurity, Faculty of Computer Science, West Pomeranian

University of Technology

2 Department of Sustainable Finance and Capital Markets, Institute of Economics and Finance, University of

Szczecin, 70-453 Szczecin, Poland

* Correspondence: wwysocki@wi.zut.edu.pl

Abstract: Managing software development processes is still a serious challenge and offers the

possibility of introducing improvements that will reduce the resources needed to complete projects

successfully. The article presents the original concept of classification of types of project tasks, which

will allow for more beneficial use of the collected data in management support systems in the IT

industry. The currently used agile management methods, described in the article, and the fact that

changes in the course of projects are inevitable were the inspiration for creating sets of tasks that

occur in software development. Thanks to statistics for generating tasks and aggregating results in

an iterative and incremental way, the analysis is more accurate and allows you to plan the further

course of work in the project, select the optimal number of employees in task teams and identify

bottlenecks that may decide on a faster completion of the project with success. The use of data from

actual software projects in the IT industry made it possible to classify the types of tasks and the

necessary values for further work planning depending on the nature of the planned software

development project.

Keywords: software; knowledge management; reasoning; information extraction; rules mining;

knowledge acquisition and engineering

1. Introduction

In the modern era of information society, computers are a basic work tool. Tasks performed by

information technology can be simple for today, i.e. not requiring high computing power, e.g.

document processing, or they can be characterized by high computational complexity, e.g. services

provided by data centers. Such a variety of tasks means that many types of IT equipment and

computers dedicated to specific applications are available. For example, the market offers ultrabooks,

i.e. portable computers with low energy consumption, laptops (general purpose portable computers),

or typical stationary computers (desktops) to efficient workstations, both portable and stationary.

However, all IT devices have a common feature from an electrical point of view, namely they are

nonlinear receivers with a variable load value. This nonlinearity is related to the presence of rectifier

systems in power supplies. On the other hand, load variability is related to the way of work, where

it is characteristic that complex computational tasks require increased power consumption.

Therefore, the right selection of computer equipment, not only in terms of performance, but also

electricity consumption can contribute to reducing electricity consumption, which directly affects the

operating costs of the management organization. In addition, current computers are equipped with

advanced technical solutions that help optimize (minimize) energy consumption, which in the case

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202501.2232.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 23

of data centers and an increasing percentage of IT devices used is becoming extremely important not

only in financial terms, but also for the environment and sustainable development of the global

economy.

Software is an integral part of working life, and it is used in various industries and companies

to manage processes, communication, and data analysis. During our daily commute, we use

navigation apps to inform us of current traffic and optimise our route. Childcare providers use apps

to organise schedules, monitor safety of children and to communicate with their parents. In the

kitchen, software makes it easier to plan meals, access recipes, and control the cooking process with

special applications. In government offices, software enables electronic errands, reducing waiting

times and facilitating access to public services. In healthcare and medicine software supports

diagnosis, treatment, and patient data management, thus improving overall quality of healthcare.

Most of these applications require interaction with services and components on the global IT network.

Software is ubiquitous and has thus enabled a giant leap in civilisation. Reducing its use or

abandoning digital technologies would result in an inevitable regression. However, software requires

computers and communication links, which means even more hardware. That hardware, in turn,

consumes huge amounts of energy.

Already, a study conducted by the Boston Consulting Group has shown that the Internet is

responsible for 2.4% of total global greenhouse gas emissions, which is equivalent to the entire

aviation industry [1]. Undoubtedly, electricity is one of the most essential media for life. However,

three years ago, in 2020, many organizations and modern enterprises did not deal with the issue of

measuring energy consumption in as many aspects as they do now. Although, of course, this

parameter was in the consciousness, and its values have always been important. However, with the

passage of time, the power consumption factor has become much more important, including

primarily the price, but also the fundamental impact on the environment and the global economy has

been noticed. This has caused an unprecedented need to look for ways to save this resource and

reduce production costs. The information society, having measured energy consumption, allows its

use to be optimized in many ways. The use of a meter for specific devices is currently necessary due

to the possibility of using many methods of optimizing energy consumption. Of course, this also

allows for drawing more precise conclusions and applying appropriate methods for reducing or

including the costs incurred in the appropriate prices of products or services, as is the case with data

centers. The great interest in resources, consumption measurements and methods for optimizing the

use of electricity is undoubtedly influenced by the drastically rising prices and the difficult to predict

large fluctuations in their changes.

At the moment, there is no way to slow down technological development without a dramatic

drop in the quality of life. Therefore, we need to consider how to best use existing resources so that

future generations can live in a world no worse than the one we live in. The article is divided into

several chapters. The first chapter shows where the impulse to start work came from. The second

chapter presents the methodology of the conducted research, including the research questions. The

third chapter shows the results of a literature review oriented according to the order of decisions

made in the software development processes. Its aim is to support decision-makers in searching for

energy-efficient solutions. The fourth chapter presents the current state of application of good

practices and methods for reducing energy consumption by software. The fifth chapter summarizes

the research results, presents conclusions and shows directions for changing the current situation.

The aim of the article is to show the need to optimize the use of electricity by computer devices in

accordance with the concept of sustainable development and to analyze methods of reducing energy

consumption. The article discusses the most popular techniques for reducing energy consumption by

software, which is of fundamental importance for this type of organization and translates into the

costs of services provided, and indirectly affects the future of the global economy.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 3 of 23

2. Motivation

At the end of 2021, the English edition of Le Monde Diplomatique published an article by

Guilliam Pitron, "No Such Place as the Cloud" [2]. The article broadly discusses the impact of digital

technologies on the natural environment. The author, as a journalist who has been dealing with the

geopolitics of rare earth metal extraction for many years [3], presents this time not only the issues of

the direct impact of the increasing extraction of raw materials in order to construct the latest digital

equipment. He also discusses the negative consequences of software on the environment of our

planet.

Figure 1 shows a map of the problems described in the article. Thanks to the new method of

estimating environmental costs MIPS, it turned out that the more advanced the production

technology, the higher the environmental costs [4]. This applies to the most advanced technologies

of electronic equipment production. This equipment is used to build the largest infrastructure on our

planet. The article's author cited an estimate that in 2022 the data centers that comprise it will

consume about 10% of global energy production. All this growing infrastructure is used to store and

process data. Software is largely responsible for energy consumption. Reading the article was a

surprise for the authors of the article, people with extensive experience in the ICT industry

(programming, IT project management and education). The image seen from a great height looks

different than from the perspective of a person working in the industry. Many employees still live in

the myth that software is something abstract, intangible and software production is creating

something out of nothing. It is difficult to understand how these intangible entities can threaten the

natural environment or limit the ability of future generations to meet basic needs. However, pollution

generated by digital technology is a fact. After recognizing the importance of the problem, the authors

decided to look for solutions to improve the situation in their own areas of competence.

Figure 1. Map of problems caused by digital technology.

3. Research Method

In this article, we followed the guidelines for conducting a systematic literature review [5] with

the consideration of process changes for a small research team and guidelines for conducting a light

review. We performed the following steps of the procedure for systematically searching and selecting

relevant sources:

Step 1. Define the research objective and research questions.

The aim of the research is to answer the question of how software engineering can contribute to

the sustainable development of digital technologies. The literature review is to answer the following

research questions:

RQ1: What are the possibilities (methods, practices, patterns) for reducing the energy

consumption of software?

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 4 of 23

RQ2: What is the current state of application of existing methods and practices in the software

industry?

RQ3: How can existing solutions be initiated in the industry?

Step 2. Conduct a pilot search.

After defining the research objective and research questions, we conducted pilot searches using

the Google Scholar search engine and various queries. The results of the initial searches allowed us

to orient ourselves in the existing literature and appropriately select the words in the search string.

Step 3. Define the search string.

The query was intended to find articles on software energy consumption or software energy

efficiency. The phrase green software directly indicates the topic of interest. Hence, the query consists

of six elements connected by logical connectives. As a result, we constructed the following query:

"((((energy OR power) AND (efficiency OR consumption)) OR green) AND software)".

In addition to the results of the main query, we included words that specified the topic of the

searched studies, e.g. technique, practice, methodology, requirement, architecture, algorithm,

approximate, survey, etc.

Step 4. Specify the searched article databases.

First, we used the Google Scholar search engine because it is easy to use, provides a wide range

of materials in the search, and thus provides a broad perspective on the problem and its solutions.

Second, we used the IEEE Xplore [6], ScienceDirect [7], and Springer Link [8] search engines. In order

to expand the article database, we also used the snowballing method [9].

Step 5. Defining the inclusion and exclusion criteria

We were interested in articles from journals and conferences on software engineering in English.

We searched for texts that answered our research questions, i.e. contained descriptions of methods,

methods, techniques, practices, preferably verified in practice. We were also interested in articles,

surveys, reviews showing the state of application of these methods in practice and proposals for

improving the situation. The articles had to be publicly available. As a result, we received a set of

inclusion and exclusion criteria, which we present in Table 1.

Table 1. Inclusion and exclusion criteria.

Criteria Inclusion Exclusion

Type of

Publication

Journal, Conference Paper, Review,

Full Text Available Not Available

Language English Other languages

Topic Software Engineering practices,

methods, approaches and general

purpose algorithms

Out of Software Engineering,

Limited to Mobile, Networking and

Other Specific Applications

Models Software Energy Consumption

Estimation Models

Power consumption of ML and DL

models

Step 6. Conducting the main search

We conducted the main search in December 2022. As a result, Google Scholar returned about

1,870,000 results. The results were sorted in order of best matching.

Step 7. Selection of publications by title, keywords and abstract

Then, publications were reviewed based on title, abstract and keywords. At this stage,

publications on topics other than software engineering, or dealing with energy consumption by ML

and DL models, as well as publications without full text available, were eliminated. The results were

reviewed in pages containing 20 results. The number of matching articles decreased on subsequent

pages, so the search was stopped after page 8.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 5 of 23

Figure 2. Number of articles matching criteria in Google Scholar search results pages.

In this way, we reviewed 8 pages of results, or 160 articles, and found 33 publications of interest

to us.

 Step 8. Read the full text:

We read the remaining 33 in full. We received a list of seven articles suitable for inclusion in the

review. This is of course far too few to review software energy efficiency methods, examine the

situation in the industry, and draw conclusions on how to improve it. Therefore, we decided to use

an agile approach and dynamically changed the query.

Another argument for moving away from a rigid protocol is that systematic reviews were

created to collect medical research results and then build large data sets from them that would allow

for meta-studies. Our goal was different, so we used the IEEE Xplore [6], ScienceDirect [7], and

Springer Link [8] search engines to create a lightweight review. We attached words specifying the

topic of the searched studies to the single software engineering disciplines in the order shown in

Figure 3. For example, these were: technique, practice, methodology, requirement, architecture,

algorithm, approximate, survey, etc. To retrieve more articles, we used the snowballing method [10].

This resulted in 98 articles, 68 of which we used in the article.

4. Literature Review

A systematic review of articles in the field of software engineering on the energy consumption

of IT systems and applications revealed a wide range of methods, best practice techniques that

address the problem and have been validated by researchers and practitioners in the IT industry. This

provided an answer to the first research question

RQ1: What are the possibilities to reduce the energy consumption of software?

In this article, we provide an overview of research articles that consider different aspects of

software engineering and their impact on energy consumption. Figure 3 shows them in the order

discussed in the article.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f
se

le
ct

ed
 a

rt
ic

le
s

Result page number with page size 20

Number of selection results step 7

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 6 of 23

Figure 3. Software engineering aspects affecting energy consumption.

Software engineering is the application of a systematic, disciplined and quantifiable approach

to the development, testing, implementation, operation and maintenance of software systems [11].

There are various approaches to dividing the above disciplines into processes and sub-processes

performed sequentially or in parallel. These approaches are called software life cycle methodologies

or models. Each of the processes in these models is supported by recommended, proven practices

and techniques. Are there any software development methodologies that are more supportive of

energy-efficient software development? The known literature does not consider the answer at this

level of generality. Currently, the most commonly used approaches to software development are

agile approaches. As a result of their popularity, a greater number of projects end in success. Since

we care about the smallest possible burden on the environment by software, we can say that agile

methodologies are the most effective, because other approaches more often end in wasting time,

effort, energy and money. The question of which of the agile practices most often support the

development of efficient software is answered by the authors of a broad review of articles from 2005-

2017 [12]. The results of the literature review were verified by means of a survey conducted among

experts from the IT industry. The paper identifies 6 main success factors, which are supported by 36

identified practices. The results show that agile software development methods are emerging as the

best way to produce green and sustainable software. A similar opinion is expressed by Dick et al.,

who developed a model that integrates Green IT aspects with software engineering processes using

agile methods to create "greener" software from scratch [13]. Therefore, in this paper we consider

software engineering from the point of view of agile methodologies.

4.1. Software Architecture

Designing the architecture of an IT system is the most important stage of design in traditional

software development methodologies. Its purpose is to divide the system into components,

determine how they work together, and indicate the technology. As a result of working on the

architecture of the system being developed, we obtain greater coherence of components and less

coupling between them. The role of the architect does not exist in scrum teams, the entire team is

responsible for making such decisions. Decisions regarding architecture can be made at the very

beginning of the development process, but in agile methodologies, these decisions are made after the

software implementation begins. They make up the evolving architecture. This architecture consists

of emergent decisions, from which the target architecture emerges, and refactoring decisions that

change previous decisions. Regardless of when these decisions are made in the software development

process, they have a great impact on the energy consumption of the software being created. The

system architecture design process requires making a number of key decisions made on the basis of

compromise. Decisions concern how to meet non-functional requirements and key functional

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 7 of 23

requirements of the customer. In this way, it is strongly connected to the area of requirements

acquisition. In agile methodologies, we do not know all the requirements at the beginning; we learn

the details during the project work. For green IT systems, it is important to have clearly defined,

verifiable requirements for the energy efficiency of the software. Seyff et al. describe a Win-Win

model of requirements negotiation extended with sustainability [12]. On this basis, appropriate

decisions can be made and verified in practice. Solid support for architectural decisions based on a

model that allows forecasting energy consumption with an error below 6% is presented in the article

[14]. Architectural tactics, i.e. decisions based on quality measures, are proposed by the authors of

the article [15]. Thanks to the perspective of energy consumption by the software architecture, it was

possible to reduce energy consumption by 67% in the example application. Support for making

architectural decisions in the context of energy consumption is also provided by decision maps

presented in the article [16]. Maintainability is an important quality in making architectural decisions.

Its relationship with energy consumption by software is the subject of promising preliminary work

described in the publication [17]. Fontana de Nardin et al. developed the Elergy model, which uses

the advantages of the elasticity-driven approach of microservice architecture in cloud applications

[18]. It allows to predict the load change of individual microservices and make a decision about

scaling the service in advance. Its energy efficiency allows to save up to 27.92% of energy. The

methods supporting decision-making at the architectural level and their effectiveness in reducing

energy consumption are given in Table 1.

Table 1. Methods supporting the design of energy-efficient architecture.

Method Reducing energy consumption

Negotiating Win-Win Sustainability

Requirements [12]

-

Energy Consumption Model [14] -

Architectural Tactics [15] 67%

Decision Maps [16] -

Energy Model [18] 1.93% - 27.92%

At a similar level of generality are decisions about the choice of programming language and

software technology. Below we present an overview of the information on this topic.

4.2. Programming Languages

A programming language allows us to express the collected knowledge about the system being

built in the form of code. Decisions regarding the selection of the software language and related

technologies, libraries, and frameworks are made at the beginning of the agile development process.

They are related to the technological competences of the developers who make up the project teams.

If we are building a monolithic system, it will be difficult to change the decision once made. In the

case of choosing a microservice architecture, it is possible to delay decision-making until the

emergence of subsequent business areas. Such an architecture makes it easier to build a system from

components created in different technologies. Both the programming language and related

technologies have a strong relationship with the energy consumption of the built software. In an

organization producing green software, decisions regarding the selection of a programming

language and technology should be made based on their energy efficiency. The energy consumption

of different software languages has been the subject of many studies in recent years and is described

in the following articles. Georgoiu et al. conducted an experiment comparing the energy consumption

of nine basic tasks from the Rosetta Code collection [10] implemented in seven interpreted and

compiled programming languages [19]. For simple tasks, the lowest energy consumption was

measured for compiled languages with optimization enabled. For URL encoding and decoding, Java

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 8 of 23

achieved the highest energy efficiency. Among interpreted languages, Javascript achieved the highest

efficiency.

Pereira et al. compared the energy consumption, execution time, and memory usage of ten

programming problems from the Computer Language Benchmark Game (CLBG) collection [20].

Measuring the execution of programs in 27 tested programming languages on a desktop machine

with an Intel Core i5-4460 processor showed that compiled programming languages are usually the

fastest and most energy efficient (C is the best for almost all tested problems) [21]. In second place in

these respects are languages run in virtual machines (Java consumes twice as much energy as C).

Interpreted languages turned out to be the least energy efficient and slowest (Python consumes 76

times more energy than C). The results of the research were later validated by the authors using tasks

from the aforementioned Rosetta Code repository [22].

Oliveira et al. compared the energy consumption of a set of applications and benchmarks from

Rosetta Code, CLBG, and F-Droid [23] on the Android mobile platform [24]. Their results indicate

that for intensive computations, JavaSript is more energy efficient than Java. The authors suggest

using a hybrid approach, running Java applications with JavaScript scripts to save energy. The

summary of the energy consumption results of popular programming languages is given in Table 2.

Table 2. Comparison of energy consumption of different programming languages.

Comparison of Power Consumption by Programming

Languages

Hardware Platform

Comparison of 6 languages, Rosetta Code tasks [19] Laptop i Raspberry Pi

Comparison of 27 languages, CLBG tasks [20] Desktop

Comparison of 27 languages, CLBG tasks and Rosetta Code [21] Desktop

Comparison of Java and JavaScript [22] Android

The entire team is responsible for software design in agile methodologies. One of the main

decisions in the design of software components is the use of design patterns. Design patterns are

proven solutions to problems that often appear in a specific context. The use of patterns allows for

better understanding and modifying the code of the created component and increasing the flexibility

of the solution. Feitosa et al. [1] describe both modern patterns oriented towards increasing energy

efficiency and energy consequences of using standard design patterns.

Energy patterns understood as good practices reducing the energy consumption of mobile

applications were described by Cruz et al. in the article [25]. It contains a catalog of 22 practices

obtained as a result of searching in GitHub code repositories and then thematic analysis [26] and

classification.

Schaarschmidt et al. built a framework for describing design patterns for energy-efficient

embedded systems [27]. They proposed a numerical efficiency coefficient to calculate energy savings

due to the use of the pattern. The framework was used to describe new and well-known design

patterns.

Table 3 summarizes the research on the impact of design patterns on energy consumption. The

next subsection presents the results of the search for works in the field of software implementation.

Table 3. Design Patterns as Support for Energy-Efficient Software Design.

Design Patterns Hardware Platform

Modern and standard [1] -

Energy [25] Mobile

Framework for describing patterns [27] Embedded

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 9 of 23

4.3. Software Implementation

In agile methodologies, software development is done in iterations lasting several weeks. At the

beginning of each iteration, the team details the requirements and chooses which ones to implement.

Then, they design, code, and test the emerging software functions. As a result of the iteration, the

client receives another version of working software. Based on the feedback, the team adjusts the

software implementation to the client's needs. In the part describing the implementation, we present

research on reducing the energy consumption of lower-level elements, such as: selecting appropriate

algorithms, the impact of parallel programming, using approximate calculations, and using good

practices.

One way to increase the energy efficiency of software is to choose an appropriate algorithm that

consumes less energy. Energy consumption by depends on the execution time, which results from

the computational complexity of the algorithm. However, it does not exhaust all the causes. Among

other things, locality of calculations is important, which increases the use of cache memory,

performance, and energy efficiency.

There are comparisons of different versions of algorithms on different hardware platforms,

which allow to choose the optimal energy solution. Rashid, Ardito & Torchiano performed an

experiment, in which they measured the energy consumption of different sorting algorithms

implemented in different programming languages on the Raspberry Pi device [28]. The results show

which sorting algorithms implemented in which language consume the least energy. Schmitt et al.

performed similar experiments comparing the energy efficiency of sorting algorithms on desktop

computers [29].

Collections are abstract classes, which are used to store objects and allow to treat them as a single

set of data. They allow to perform operations on it, e.g. adding, removing and browsing elements of

the set. There are many types of collections, which differ in properties and implementation. The

proper selection of a specific collection for the problem and context has an impact on increasing the

performance and reducing the energy consumption of the application.

Pereira et al. measured the energy consumption of standard Java collections and used the

measurement results to optimize the energy consumption of a set of sample applications [30]. In

preliminary results, they achieved a 6.2% reduction in energy consumption. Hasan et al. created

detailed profiles of the energy consumed by standard operations performed on Java abstract

collections [31]. The results of the study show that using the wrong collection, according to the

profiles, can result in a 300% increase in energy consumption. Optimizing the sample application

using WALA analysis resulted in a 38% reduction in energy consumption and a speedup of about 1.6

times. Pinto et al. empirically studied 16 implementations of Java collections and conducted energy

consumption measurements [32]. They obtained significant results in comparisons of individual

implementations, where a 2.19 times reduction in energy consumption was achieved. For real Tomcat

and Xalan applications, an improvement of 17% was obtained.

As we can see, by using appropriate types and implementations of collections, a significant

reduction in energy consumption can be achieved. Another important group of algorithms are

cryptographic algorithms, because they require a lot of computational power and therefore consume

a significant amount of energy.

An important class of frequently used algorithms with high computational complexity are

cryptographic algorithms. Classical algorithms used until recently are threatened on the one hand by

the growing power of conventional computers and on the other hand by the ever closer perspective

of introducing quantum computers with enormous computational power. Therefore, we tend to

extend hashes and cryptographic keys and introduce new, more complex algorithms. In 2016, the

American National Institute of Standards and Technology (NIST) began the process of standardizing

post-quantum cryptography (PQC) algorithms [33]. The energy consumption of these algorithms is

particularly important for mobile devices or IoT. C. A. Roma et al. conducted research on the energy

efficiency of PQC algorithms [34] running on the Intel Core i7 processor. The obtained results for

different algorithms and security levels allow to select the appropriate algorithm for the context.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 10 of 23

Elsadeka et al. investigated the energy efficiency of lightweight cryptographic algorithms

standardized by NIST [35]. Thanks to parallel processing, up to 49% and 28% increase in energy

efficiency was achieved, and up to 96% and 45% for the Elephant and ISAP algorithms. Specialized

processors are developed for IoT applications to reduce energy consumption. An example of such a

solution is an energy-efficient cryptoprocessor supporting the post-quantum version of the TLS

protocol [36]. This is a hybrid solution containing a low-power RISC-V microprocessor core, on which

the software part is implemented, and hardware accelerators for AES, ECC and SHA2 encryption.

Thanks to the use of accelerators, the energy consumption spent on encryption was reduced by 2 to

8 times. Even better energy efficiency results were obtained thanks to the hardware implementation

of the lightweight cryptography algorithm PRESENT [37] for IoT devices. The authors report an

increase in energy efficiency by 63 times compared to the standard AES algorithm.

The most energy-efficient cryptographic algorithms were implemented in hardware for use in

IoT devices. Maybe it's time to consider hardware support for cryptography in desktop devices and

server solutions for data centers? Table 4 summarizes the results of work on energy-efficient

algorithms.

Table 4. Algorithms supporting energy-efficient software.

Algorithm Hardware Platform Reduction of energy

consumption

Sorting

Sorting algorithms, multiple languages

[28]

Raspberry Pi comparison

Sorting algorithms, multiple languages

[29]

Desktop comparison

Collections

Standard [30] Java 6%

WALA analysis [31]] Java 38%

Power consumption measurements Java 17%

and matching [32]

Cryptography

Energy efficiency of PQC algorithms [34]

Elephant [35]

ISAP [35]

TLS protocol [36]

PRESENT [37]

Desktop

IoT

IoT

IoT

IoT

comparison

49%

28%

50% - 87,5%

98,4%

4.4. Parallel Programming

Parallel programming is the process of dividing large problems into smaller ones and solving

them in parallel. The interest in parallel programming is largely due to the physical limitations of

increasing the frequency of processors. For this reason, modern processors consist of many cores

enabling parallel operation.

A comprehensive review of software methods for improving the energy efficiency of parallel

processing includes the most advanced methods for supercomputers intended for scientific

computing [38]. The 2017 article presents energy efficiency as a major problem in the design of

modern computing systems from supercomputers to laptops with multicore processors. The

theoretical models described in the article show that energy efficiency is dependent on both the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 11 of 23

application and the platform; energy consumption and performance are closely correlated, and the

choice of processor frequency has a smaller impact on efficiency than changing parallelism. The

article presents methods for improving energy efficiency in five groups: resource management,

parallelization optimization, communication, automatic energy tuning, and approximation.

Although advanced methods are mainly related to scientific computations performed on

supercomputers, they can be an inspiration for software solutions for data centers.

Kambadur and Kim worked on discovering configurations and parameters that will allow to

reduce the energy consumption of parallel applications [39]. The authors measured the energy

consumption and execution time of 41 test applications in 220 configurations. The results indicate

that the most important factors for low energy consumption are the efficiency of parallelization and

optimizations introduced by the compiler.

The literature review [40] also lists two general algorithms for minimizing energy consumption

in multithreaded processing. Both reduce energy consumption by effectively managing threads. In

the first one, DVFS (Dynamic Voltage Frequency Scaling) adjusts the supply voltage and changes the

processor clock frequency depending on the current load. However, this approach does not work

well when using multithreaded processors. To overcome this limitation, the authors use the thread

shuffling technique, which allowed to reduce energy consumption by 56% [41]. In the HERMES

solution, also based on DFVS, a strategy based on the thief-victim approach [42] is used. It consists of

two algorithms, workpath-sensitive and workload-sensitive, which adjust the clock frequency of the

processor core to its load. As a result of using the HERMES approach, the energy consumption can

be reduced by about 3-4%. Table 5 summarizes the research results on the impact of parallel

implementation on energy efficiency. The next subsection lists solutions based on adjusting the

accuracy of calculations.

Table 5. Methods for Reducing Energy Consumption with Parallel Programming.

Method Hardware Platform Reduction of energy

consumption

Methods overview [38] Supercomputer different

Configurations and parameters

[39]

Desktop -

Thread shuffling [41] Supercomputer 56%

HERMES [42] Supercomputer 3% - 4%

Approximate computing is an approach to reducing the precision of computations in order to

save energy. In this approach, we can distinguish techniques based on approximate data types and

on approximate iterations and functions. When using approximate data types, the most important

problem is to separate data that should be calculated precisely from those that can be approximated.

Sampson et al. proposed the EnerJ language, which is an extension of the Java language

introducing approximate data types [43]. Using EnerJ annotations, one can mark approximate and

precise application data. Thanks to the annotations, the data is placed in approximate memory, and

the code processing it has reduced energy consumption with reduced accuracy. The authors'

experiments have shown that it is possible to reduce energy consumption by 10-50% with a small loss

of accuracy.

Programmers often use double-precision floating-point variables. In many applications, such

precision is not needed. Compared to single-precision variables, they occupy twice as much memory

and twice the bandwidth. Dongarra et al. have evaluated the performance and energy consumption

of PLASMA and FLAME numerical libraries using single precision variables and a hybrid approach

[44]. The time and energy consumption were reduced by 50% for single precision and 25-30% for

hybrid.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 12 of 23

Loop perforation is a computational technique that changes the number of loops so that only a

fraction of the iterations are executed, which reduces execution time and energy consumption.

Hoffmann et al. have described a technique called code perforation that automatically extends the

application to increase performance and energy efficiency at the expense of accuracy [45].

Applications of this technique include scientific computing, video and audio coding, Monte Carlo

simulations, and machine learning algorithms. It is based on the SpeedPress compiler, which uses

code perforation and the SpeedGuard module that continuously monitors the loss of precision and

controls the code perforation accordingly.

A very effective approach to saving energy by simplifying computations is memoization. It

consists of memorizing the results of a computationally intensive function for each parameter value.

Agosta et al. proposed an approach based on dynamic memoization, which consists in automatic

identification of functions to be memorized and automatic memorization of results for the most

frequently used parameters [46]. They performed the verification for a set of financial functions. In

practice, they achieved a reduction in energy consumption by 74% and an increase in efficiency by

79%. Approximate calculations enable a significant reduction in software energy consumption. Table

6 summarizes the mentioned studies on this topic.

Table 6. Methods for reducing energy consumption through approximation.

Method Platform Reduction of energy

consumption

EnerJ [43] Java 10% - 50%

Single precision, hybrid [44] Supercomputer 50%, 25% - 30%

Memoization [46] Java 74%

4.5. Good Practices

Best coding practices are sets of rules, formally or informally, established by different coding

communities that help software practitioners improve software quality. A literature search found one

reference on best coding practices for achieving energy-efficient programming. Pinto et al. searched

StackOverflow, a popular developer resource for questions and answers about software energy

efficiency [47]. The authors identified seven main causes of increased energy consumption cited by

developers. These include unnecessary resource consumption, background activities, and excessive

synchronization. They also identified eight solutions that were most frequently recommended on the

resource. They then compared the recommended solutions with the state of the art and found

numerous shortcomings. The solutions that are consistent with the state of the art are listed as best

practices. Table 7 lists these practices. For details on the application of the practices and the contexts

in which they are effective, we refer to the original article.

Table 7. Good practices for energy-efficient programming identified and described in [47].

Name of practice

Keep IO to a minimum

Bulk operations

Hardware Coordination

Concurrent programming

Race to Idle

Efficient Data structures

Loop transformations

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 13 of 23

Data compression

Offloading methods

Approximated programming

The remaining literature found refers to bad code smells, which are the result of not applying

good practices. Refactoring is the essence of Agile methodologies. It is the process of improving the

design of existing code without changing its behavior [48]. Thanks to refactoring, the source code

becomes more readable, duplicates are eliminated, errors are easier to find and the complexity of the

system is managed. Without refactoring, the software slowly degrades and it becomes increasingly

difficult to make changes to it. Bad code smells are symptoms of deeper structural problems that

should be recognized and refactored.

Cruz and Abreu described bad code smells associated with low energy efficiency of mobile

applications [49]. In the next paper, they proposed a tool for automatic refactoring of source code that

fixes five common problems in mobile applications [50].

Pinto et al. conducted an extensive review of the literature on energy refactorings published in

2015 [51]. The literature identifies 11 energy efficiency issues and presents the possibility of their

refactoring. The following refactoring areas were identified: User Interfaces, CPU Offloading, HTTP

Requests, I/O Operations, Continuously Running App, Excessive Copy Chains, Embrace Parallelism,

GPU Programming, Approximate programming, Energy Types, Stream Programming. A detailed

discussion of the areas can be found in the aforementioned publication.

Şanlıalp et al. conducted an energy efficiency analysis of five refactoring techniques and three

of their combinations for 2048 desktop and 2048 mobile applications [52]. The energy consumption

of applications written in C# and Java was measured using the Intel Power Gadget tool [53]. The

analysis found that all refactoring techniques reduced energy consumption, but using a combination

of incompatible techniques did not reduce energy consumption as much as expected. Table 8 presents

a summary of energy efficiency refactoring methods.

Table 8. Refactoring Methods to Reduce Energy Consumption.

Method Platform Reduction of energy

consumption

Automatic Refactoring [50] Mobile 5%

Review of Problems and

Refactoring [51]

Many -

Automatic Refactoring [52] Many -

Work on reducing software energy consumption requires measuring the actual energy

consumption. Thanks to feedback, we can assess the effectiveness of the solutions used and work on

changes in the right direction. Measurements sometimes require measuring the total energy

consumed by software and hardware, and sometimes measuring the energy consumption of a

specific hardware component and the software component cooperating with it. Hardware methods,

such as black-box methods, are best for measuring the total energy consumption. To optimize energy

efficiency, we most often need information about the impact of the software component on energy

consumption. In such cases, the best measurement methods are white-box methods, i.e. software

methods.

The simplest solution used in the articles is to use the electrical engineering method to measure

the total energy consumed by the device on which the software is running. Wattmeter - can be used

to determine the energy consumption of the software in both mobile and embedded devices, as well

as in computers and servers. Thanks to them, the standard electrical engineering method of power

measurement can be used.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 14 of 23

The studies described in the articles [28] and [29] use the NI USB-6210 [54] and Yokogawa WT210

power analyzer [55] devices. Another of these devices is Whatts Up? [56] - most often used to study

the energy consumption of mobile devices. This is a power meter that saves up to 2000 measurements

in the device's memory, which is read and presented in the application on a PC. The application

communicates with the device via a USB connection. GreenMiner [57] is a device dedicated to testing

the energy consumption of smartphones. It physically measures the energy consumption of mobile

devices (Android phones) and automates application testing and reporting measurements to

developers and researchers. There are also specialized devices, such as EET (Energy Efficiency Tester)

[58]. It is a hardware energy efficiency meter. It is used to measure power and store measurement

results for a PC running the analyzed software. It was designed as a component of the FEETINGS

framework (Framework for Energy Efficiency Testing to Improve eNviromental Goals of the

Software). The framework supports automatic collection of energy consumption data from the most

important components of the computer, along with processing and visualization of the collected data.

Seflab (Software Energy Footprint Lab) [59] is a laboratory consisting of a server and a measuring

computer. The server is equipped with component power sensors (processors, motherboard,

memory, hard drive, fans). The measuring computer uses transducers to read the power

consumption of the server components caused by the software running on it.

4.6. Software Tools

Software tools enable white-box measurements. This gives them a big advantage over hardware

tools, as they enable measurement of energy consumption by components of the measured system,

sometimes even with a resolution down to the methods or functions of the tested software. Measuring

energy consumption before and after changes to a component or function allows for making rational

decisions to increase the energy efficiency of the software being created. Profilers are specialized tools

that allow for dynamic analysis of a program in terms of energy consumption. Software methods are

mostly based on interfaces provided by modern processors. One of them is the Running Average

Power Limit (RAPL) developed by Intel [60,61]. It is used to report the cumulative energy

consumption of various domains: the CPU system, the attached DRAM memory, and the embedded

graphics processor. Below is a list of tools described in the review articles or used in the described

studies. These tools work on different hardware platforms and provide different measurement

resolutions. AEP (Android Energy Profiler) [62] provides detailed information about the performance

and energy consumption of any Android app in real time, without the need for source code or

external power meters. Android Runner (AR) [63] is a framework for automatically executing

measurement-based experiments in native and web applications. The main goal of AR is to streamline

the execution of measurement-based experiments on Android devices. BitWatts [64] relies on

distributed middleware to collect information about process utilization and infer detailed energy

consumption without the need to invest in hardware (e.g. power meters).

IgProf [65] is an application profiler developed at CERN for scientific computing workloads. The

energy profiler is based on sampling and obtains energy measurements from the Running Average

Power Limit (RAPL) interface present in the latest Intel processors.

Jalen [66] is a software-level profiler. It is responsible for profiling running applications and

estimating their energy consumption at a higher level, i.e. at the thread or method level.

Jolinar [67] is an open-source energy measurement tool that allows profiling a specific

application at a given time. Jolinar can profile the energy consumed by various resources, such as

CPU, RAM, and disk, except for the network card.

jRAPL [68] is an open source library that provides a set of APIs for profiling Java programs

running on processors with Running Average Power Limit (RAPL) support.

PETRA (Power Estimation Tool for Android) [69] is able to measure the power consumption of

Android applications based on the tools and APIs provided with the publicly available Project Volta

2. The tool provides an estimated measurement of power consumption at the method level.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 15 of 23

PowerAPI [70] is an operating system level system monitoring library. It estimates the power

consumption of running processes in real time, based on raw information collected from hardware

devices (e.g. CPU, network card) via the operating system.

Power Gadget [53] is a software-based tool for monitoring the power consumption of Intel Core

processors (2nd to 7th generation). It is supported on Windows and Mac OS X. It includes an

application, driver, and libraries for monitoring and estimating real-time CPU power information in

watts using in-processor energy meters. The product is no longer continued [71].

PowerJoular [72] enables monitoring of power consumption during operation of many

hardware components of different devices and architectures. The initial version monitors the power

consumption of CPUs and GPUs in computers and servers, and CPUs in Raspberry Pi devices.

Trepn Profiler [73] is a device power modeling and performance measurement tool to estimate

the energy of the device, components, and smartphone applications.

A review of articles on methods and practices for reducing software power consumption also

provides information on the measurement methods used. We have compiled a summary of the

methods used in the described studies. The most commonly used method in the studies is the use of

the RAPL interface [60,61]. The second most common is the use of various types of wattmeters. The

remaining methods occur in isolated cases. Some of the methods described by us were not used in

the studies. Table 9 shows the complete list of methods used in the studies described in the articles,

supplemented with the results of the literature review, sorted by most frequently used and then

alphabetically.

Table 9. A summary of the methods used in the research described in the articles, extended with the results of

the literature review.

Method Type Platform Research

RAPL [60] software windows, linux [21,22,34,39]

PowerGadget [53] software windows, mac [52,74]

Android Runner [63] software android [75]

IgProf [65] software linux [34]

jRAPL [68] software java [30]

Trepn [73] software android [76]

AEP [62] software android -

BitWatts [64] software vms -

GreenOracle [77] software android -

Jolinar [67] software linux -

PETRA [69] software android -

PowerAPI [70] software linux -

PowerJoular [72] software Linux, vms, gpu, raspberry PI -

Power Meter hardware all [46]

NI USB-6210 1 DAQ [54] hardware all [28]

Yokogawa WT210

power analyzer [55]

hardware all

[29]

Watts Up Pro [56] hardware all [19]

EET [58] hardware all [17]

GreenMiner [57] hardware all [31]

Seflab [59] hardware server -

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 16 of 23

4. Results

The problem of energy consumption in software has been noticed quite recently, both by the

research community and by practitioners working on software development in the industry. In this

article, we reviewed methods, techniques and practices that allow to reduce energy consumption in

software. This is part of the achievements of the last ten years of research. In order to use these results

in practice to create energy-efficient software, developers should be aware of both the existence of

the problem and ready-made effective solutions.

In recent years, many authors have investigated this issue using surveys. The surveys included

different groups of project team members. They concerned the awareness of the problem of energy

consumption in software, the existence of methods to reduce consumption and supporting tools. The

level of knowledge about methods of optimizing efficiency and measurement methods was also

checked. The respondents also determined whether they used these methods and tools in practice.

Additionally, one of the authors checked whether beliefs about climate change are correlated with

awareness. Figure 4 shows a map of the aspects examined using surveys.

Figure 4. Aspects illustrating the current state of energy efficiency in the software industry.

By reviewing these studies, we were able to answer the second research question:

RQ2: What is the current state of application of existing methods and practices in the software

industry?

Pang et al. conducted a survey among 122 software developers in 2013. The survey results, along

with an analysis of the results in relation to the literature, were published in 2016 [78]. The

anonymous online survey consisted of 13 questions, 10 of which concerned knowledge and

experience with software energy consumption. Only 18% responded that they consider energy

consumption when developing software. 14% considered reducing energy consumption as a non-

functional requirement. 21% modified software to reduce energy consumption. To reduce energy

consumption, one must first measure it. Only 10% of respondents responded that they did so. The

analysis shows that developers have limited knowledge about energy efficiency, are not familiar with

best practices to reduce software energy consumption, and are not sure how software consumes

energy. These results emphasize the need for energy efficiency training.

Bashroush et al. described the issue of increasing energy consumption in data centers from the

perspective of software architects [79]. They conducted a survey among 12 experienced software

architects from different types of ICT organizations. When asked about energy consumption

challenges in the past five years, only 17% of them answered positively that they had solved such

problems. When asked whether they believed that energy consumption would become a major

architectural problem in the next 5 years, 67% of them answered positively. When asked whether

they had the right tools to solve energy efficiency problems at the design stage, only 25% agreed. The

reasons for this state of affairs are the lack of knowledge about how design affects software energy

efficiency, the lack of cooperation and information flow between organizational structures, and the

lack of correlation between energy savings and the amount of payment for the service. The

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 17 of 23

conclusions emphasize the need to establish a measure of software energy efficiency so that energy-

efficient solutions can be compared and selected.

Pinto and Castor conducted a survey in 2017 among 62 developers who worked on applications

for mobile platforms [80]. Over 68% of respondents were experienced developers with 8 or more

years of experience. 60% of them experienced problems with energy consumption of the software

they created. When asked if they had found the main cause of the problem, 50% of them did not

answer. Among those who did answer, the recurring answers included background activities, GPS,

and unnecessary resource usage. On the other hand, 32% of respondents did not observe a significant

improvement in energy consumption after using their solutions. Of those who noticed an

improvement, only 5% used specialist tools. The rest relied on subjective feelings and indicated

websites as a source of information. Despite this, over 67% of them stated that the problem of energy

consumption is important or very important. This shows that there is awareness of the energy

consumption problem among developers of applications for mobile platforms. However, there is a

lack of awareness of the existence of measurement methods and techniques and practices that solve

the problems. There is also a lack of tools that would support energy measurement divided into

hardware and software components and tools supporting code refactoring.

One of the authors of this article, W. Wysocki, conducted a telephone survey among employees

of software development companies in early 2023 [81]. The main goal of the study was to explain

why, despite the existence of many techniques, methods, and practices aimed at reducing software

energy consumption, developers so rarely use them in the software industry. The results of the study

show that the state of awareness among developers and customers still needs to be improved. Most

things have remained unchanged since 2013, when Pang et al. [78] conducted their research.

Developers, even if they were not familiar with the problem of software energy efficiency, were able

to generate ideas for reducing and measuring energy consumption. The responses indicated

flexibility and a willingness to solve problems rather than specific knowledge. We saw that few

developers working in the software industry have experience in reducing software energy

consumption. It was interesting to find that developers' belief that humans are not responsible for

climate change correlates with their failure to consider the problem of software energy efficiency as

important. Developers’ open statements showed that some developers believe that their customers

should be the ones to demand reduced software energy consumption. Some developers believe that

using cloud computing ensures energy efficiency of the software. A conversation with a data center

employee revealed that economic factors (cost of data center services) do not force reduced software

energy consumption.

Proposals to change the situation in the software industry and consequently in the world result

from reflection on the current state. It is most often undertaken by authors conducting surveys. Figure

5 shows the main factors and their impact on improving the situation. The main problem emerging

from the research is the too low awareness of developers and customers. Both groups are not fully

aware of the existence of the problem and the possibilities of action. Developers do not know about

existing solutions and tools, and customers do not know that their decisions affect the situation. The

introduction of energy consumption standards for software may encourage institutional customers

to order energy-efficient software. This in turn may launch training for managers and developers of

the software industry, which will increase their knowledge and practical skills. The introduction of

standard software efficiency labeling will make it easier for individual customers to make a decision

to purchase an application. A separate path is to introduce the topic of ensuring software efficiency

to the curriculum of higher education. Theoretical and practical training will introduce prepared,

conscious staff for the industry to the market.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 18 of 23

Figure 5. Opportunities for improvement and their synergies.

The described proposals for changes constitute an answer to the third research question:

RQ3: How can existing solutions be initiated in the industry?

Pang et al., based on the survey results, state that only 3 percent of respondents received

complaints from users about excessive energy consumption [78]. According to them, this may

indicate that users are not aware of the problem. Therefore, Zhang et al. propose the introduction of

benchmarks, energy consumption standards and appropriate product labels [82]. Clearly defining

the energy consumption class of applications can help increase users' awareness and help them make

informed choices about the right product.

Pinto et al. [80] write that developers need to be more aware of the energy consumption problem.

Currently, they do not know how to develop and maintain energy-efficient software systems. They

also do not have sufficient support from tools.

Bashroush et al. remind that data centers are subject to standards such as the European Code of

Conduct for Data Centres [83] and the Green Grid Data Centre Maturity Model [84]. Therefore, a

similar software certification process seems inevitable.

Authors, based on the survey results [81], formulates the thesis that the most important thing is

the awareness of the problem and existing ready-made solutions. Therefore, we should focus on the

appropriate education of students who, when entering the job market, will change the software

industry by becoming conscious developers, architects, managers and customers. The introduction

of appropriate standards and certificates for software will launch professional training in the field of

adapting products to standards, which will increase the awareness of both producers and

institutional users.

5. Conclusions

Currently, the main problem emerging from the research is the low awareness of developers and

customers. Both groups are not fully aware of the existence of the problem and the possibilities of

action. Developers are not aware of existing methods and tools, while customers are not aware of the

impact of their decisions. The introduction of energy consumption standards for software may

encourage customers to order energy-efficient software. However, this situation will undoubtedly

change due to the fact of rising prices and, at the same time, growing demand for electricity [85].

Because the desire to remain competitive on the market, which is a key issue for companies, will force

intelligent energy management. Due to rising energy prices, there will undoubtedly be a huge interest

in this topic. In fact, it has already happened, as proven by the systematic review of literature

conducted in this article. Additionally, this trend will be strengthened by the active promotion of

sustainable economic development and high quality of life. However, to achieve these goals, it will

be necessary to effectively manage natural resources, and thus also optimize energy consumption,

which is the foundation of a knowledge-based economy. At the same time, the development of the

global economy is currently taking place particularly quickly in the areas of intelligent technologies,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 19 of 23

which forces an increasing demand for energy. And undoubtedly, interest in solutions of this type is

growing dynamically due to the ongoing urbanization and digitization of more and more aspects of

residents' lives. However, this also creates many new challenges, hence the need for intelligent

solutions, including in the areas of public safety, urban mobility, or environmental monitoring,

including, among others, the optimization of energy used to power all computer devices and new

technologies.

Climate change is one of the most important challenges facing today's national economies.

Extreme weather phenomena, rapidly rising river levels, and shrinking resources have an

unprecedented impact on the functioning of entire economies. However, the existing mechanisms of

functioning are unsustainable in the long term. Therefore, economies are focusing on more ecological

goals, wanting to reduce the impact on the environment, and are implementing technologies for

monitoring threats and the impact of extreme weather factors. In order to cope with the burden of

climate change, it is necessary to optimize energy consumption. Additionally, with problems related

to ensuring the security of energy supplies, it is necessary to take care of the optimization of energy

use, which will give a fundamental advantage to such a modern economy.

More and more applications are making energy consumption critical. This is especially true for

battery-powered devices and all mobile equipment. More and more suppliers of electronic

components are paying great attention to these issues. This is of great importance for knowledge-

and technology-based world economies. Because it has a direct impact on the operating costs of

economic entities and thus on economic profitability. In addition, the use of energy optimization

methods has a beneficial effect on the environment through the concept of sustainable development.

Currently, there are many hardware and software methods for optimizing energy consumption, and

we are only at the beginning of their search and wide-scale application. In many segments and from

different sides, techniques for reducing the consumption of electricity, which is the foundation of

every economy, should be analyzed and sought for the good of the environment and the possibility

of sustainable development of the world. Modern developed countries are looking for solutions to

this problem to enable the further development of world economies, which may be threatened by the

insufficient amount of energy supplied to modern economies.

Author Contributions: Conceptualization, W.W. and I.M.; methodology, W.W.; software, W.W. and I.M.;

validation, W.W. and I.M.; formal analysis, W.W. and I.M.; investigation W.W. and I.M.; resources, W.W. and

I.M.; data curation, W.W. and I.M.; writing—original draft preparation, W.W. and I.M.; writing—review and

editing, W.W. and I.M.; visualization, W.W. and I.M. ; supervision, W.W. and I.M.; project administration, W.W.

and I.M.; funding acquisition, W.W. and I.M. All authors have read and agreed to the published version of the

manuscript.

Funding: The project was financed within the framework of the program of the Minister of Science and Higher

Education in Poland under the name “Regional Excellence Initiative” in the years 2024–2028.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feitosa, D.; Cruz, L.; Abreu, R.; Fernandes, J.P.; Couto, M.; Saraiva, J.; Patterns and Energy Consumption:

Design, Implementation, Studies, and Stories, in: C. Calero, M.Á. Moraga, M. Piattini (Eds.), Software

Sustainability, Springer International Publishing, Cham, 2021: pp. 89–121. https://doi.org/10.1007/978-3-

030-69970-3_5.

2. No such place as the cloud, by Guillaume Pitron (Le Monde diplomatique - English edition, November

2021), (n.d.). https://mondediplo.com/2021/11/09digital-waste (accessed October 31, 2022).

3. Pitron, G. The war for rare earth metals - The hidden face of the energy and digital transition, Editions Les

Liens qui liberent, France, 2018.

4. Saurat, M.; Ritthoff, M. Calculating MIPS 2.0, Resources 2, 2013, 581–607.

https://doi.org/10.3390/resources2040581.

5. Kitchenham, B. Procedures for Performing Systematic Reviews, Keele, UK, Keele Univ. 33, 2004.

6. IEEE Xplore, (n.d.). https://ieeexplore.ieee.org/Xplore/home.jsp (accessed October 17, 2024).

7. ScienceDirect.com | Science, health and medical journals, full text articles and books., (n.d.).

https://www.sciencedirect.com/ (accessed October 17, 2024).

8. Home | SpringerLink, (n.d.). https://link.springer.com/ (accessed October 17, 2024).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 20 of 23

9. Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software

engineering, in: Proceedings of the 18th International Conference on Evaluation and Assessment in

Software Engineering, Association for Computing Machinery, New York, NY, USA, 2014: pp. 1–10.

https://doi.org/10.1145/2601248.2601268.

10. Rosetta Code, Rosetta Code (2022). https://rosettacode.org/wiki/Rosetta_Code (accessed December 16,

2022).

11. Jacobson, I.; Lawson, H.B.; Ng, P.-W. The Essentials of Modern Software Engineering: Free the Practices

from the Method Prisons!, ACM Books, New York, NY, 2019.

12. Seyff, N.; Betz, S.; Duboc, L.; Venters, C.; Becker, C.; Chitchyan, R.; Penzenstadler, B.; Nöbauer, M. Tailoring

Requirements Negotiation to Sustainability, in: 2018 IEEE 26th International Requirements Engineering

Conference (RE), 2018: pp. 304–314. https://doi.org/10.1109/RE.2018.00038.

13. Dick, M.; Drangmeister, J.; Kern, E.; Naumann, S. Green software engineering with agile methods, in: 2013

2nd International Workshop on Green and Sustainable Software (GREENS), 2013: pp. 78–85.

https://doi.org/10.1109/GREENS.2013.6606425.

14. Stier, C.; Koziolek, A.; Groenda, H.; Reussner, R. Model-Based Energy Efficiency Analysis of Software

Architectures, in: D. Weyns, R. Mirandola, I. Crnkovic (Eds.), Software Architecture, Springer International

Publishing, Cham, 2015: pp. 221–238. https://doi.org/10.1007/978-3-319-23727-5_18.

15. Jagroep, E.A.;. van der Werf, J.M.E.M.; Spauwen, R.; Blom, L.; van Vliet, R.; Brinkkemper, S. An Energy

Consumption Perspective on Software Architecture, in: D. Weyns, R. Mirandola, I. Crnkovic (Eds.),

Software Architecture, Springer International Publishing, Cham, 2015: pp. 239–247.

https://doi.org/10.1007/978-3-319-23727-5_19.

16. Lago, P. Architecture Design Decision Maps for Software Sustainability, in: 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), 2019: pp.

61–64. https://doi.org/10.1109/ICSE-SEIS.2019.00015.

17. Mancebo, J.; Calero, C.; García, F. Does maintainability relate to the energy consumption of software? A

case study, Software Qual J 29 (2021) 101–127. https://doi.org/10.1007/s11219-020-09536-9.

18. Fontana de Nardin, I.; da Rosa Righi, R.; Lima Lopes, T.R.; André da Costa, C.; Yeom, H.Y.; Köstler, H. On

revisiting energy and performance in microservices applications: A cloud elasticity-driven approach,

Parallel Computing 108 (2021) 102858. https://doi.org/10.1016/j.parco.2021.102858.

19. Georgiou, S.; Kechagia, M.; Spinellis, D. Analyzing Programming Languages’ Energy Consumption: An

Empirical Study, in: Proceedings of the 21st Pan-Hellenic Conference on Informatics, Association for

Computing Machinery, New York, NY, USA, 2017: pp. 1–6. https://doi.org/10.1145/3139367.3139418.

20. Zhang, Y.; Zhang, Y.; Portokalidis, G.; Xu, J. Towards Understanding the Runtime Performance of Rust, in:

Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, ACM,

Rochester MI USA, 2022: pp. 1–6. https://doi.org/10.1145/3551349.3559494.

21. Pereira, R.; Couto, M.; Ribeiro, F.; Rua, R.; Cunha, J.; Fernandes, J.P.; Saraiva, J. Energy efficiency across

programming languages: how do energy, time, and memory relate?, in: Proceedings of the 10th ACM

SIGPLAN International Conference on Software Language Engineering, Association for Computing

Machinery, New York, NY, USA, 2017: pp. 256–267. https://doi.org/10.1145/3136014.3136031.

22. Pereira, R.; Couto, M.; Ribeiro, F.; Rua, R.; Cunha, J.; Fernandes, J.P.; Saraiva, J. Ranking programming

languages by energy efficiency, Science of Computer Programming 205 (2021) 102609.

https://doi.org/10.1016/j.scico.2021.102609.

23. F-Droid - Free and Open Source Android App Repository, (n.d.). https://f-droid.org/ (accessed December

27, 2022).

24. Oliveira, W.; Torres, W.; Castor, F.; Ximenes, B.H. Native or Web? A Preliminary Study on the Energy

Consumption of Android Development Models, in: 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), IEEE, Suita, 2016: pp. 589–593.

https://doi.org/10.1109/SANER.2016.93.

25. Cruz, L.; Abreu, R. Catalog of energy patterns for mobile applications, Empir Software Eng 24 (2019) 2209–

2235. https://doi.org/10.1007/s10664-019-09682-0.

26. Fereday, J.; Muir-Cochrane, E. Demonstrating Rigor Using Thematic Analysis: A Hybrid Approach of

Inductive and Deductive Coding and Theme Development, International Journal of Qualitative Methods 5

(2006) 80–92. https://doi.org/10.1177/160940690600500107.

27. Schaarschmidt, M.; Uelschen, M.; Pulvermüller, E.; Westerkamp, C.; Framework of Software Design

Patterns for Energy-Aware Embedded Systems:, in: Proceedings of the 15th International Conference on

Evaluation of Novel Approaches to Software Engineering, SCITEPRESS - Science and Technology

Publications, Prague, Czech Republic, 2020: pp. 62–73. https://doi.org/10.5220/0009351000620073.

28. Rashid, M.; Ardito, L.; Torchiano, M. Energy Consumption Analysis of Algorithms Implementations, in:

2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM),

IEEE, Beijing, China, 2015: pp. 1–4. https://doi.org/10.1109/ESEM.2015.7321198.

29. Schmitt, N.; Kamthania, S.; Rawtani, N.; Mendoza, L.; Lange, K.-D.; Kounev, S. Energy-Efficiency

Comparison of Common Sorting Algorithms, in: 2021 29th International Symposium on Modeling,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 21 of 23

Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2021: pp. 1–8.

https://doi.org/10.1109/MASCOTS53633.2021.9614299.

30. Pereira, R.; Couto, M.; Saraiva, J.; Cunha, J.; Fernandes, J.P. The influence of the Java collection framework

on overall energy consumption, in: Proceedings of the 5th International Workshop on Green and

Sustainable Software, Association for Computing Machinery, New York, NY, USA, 2016: pp. 15–21.

https://doi.org/10.1145/2896967.2896968.

31. Hasan, S.; King, Z.; Hafiz, M.; Sayagh, M.; Adams, B.; Hindle, A. Energy profiles of Java collections classes,

in: Proceedings of the 38th International Conference on Software Engineering, Association for Computing

Machinery, New York, NY, USA, 2016: pp. 225–236. https://doi.org/10.1145/2884781.2884869.

32. Pinto, G.; Liu, K.; Castor, F.; Liu, Y.D. A Comprehensive Study on the Energy Efficiency of Java’s Thread-

Safe Collections, in: 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME),

2016: pp. 20–31. https://doi.org/10.1109/ICSME.2016.34.

33. Moody, D.; Chen, L.; Jordan, S.; Liu, Y.-K.; Smith, D.; Perlner, R.; Peralta, R. NIST Report on Post-Quantum

Cryptography, 2016. https://doi.org/10.6028/NIST.IR.8105.

34. Roma, C.A.; Tai, C.-E.A.; Hasan, M.A. Energy Efficiency Analysis of Post-Quantum Cryptographic

Algorithms, IEEE Access 9 (2021) 71295–71317. https://doi.org/10.1109/ACCESS.2021.3077843.

35. Elsadek, I.; Aftabjahani, S.; Gardner, D.; MacLean, E.; Wallrabenstein, J.R.; Tawfik, E.Y. Energy Efficiency

Enhancement Of Parallelized Implementation of NIST Lightweight Cryptography Standardization

Finalists, in: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, Austin, TX, USA,

2022: pp. 138–141. https://doi.org/10.1109/ISCAS48785.2022.9937755.

36. Banerjee, U.; Das, S.; Chandrakasan, A.P. Accelerating Post-Quantum Cryptography using an Energy-

Efficient TLS Crypto-Processor, in: 2020 IEEE International Symposium on Circuits and Systems (ISCAS),

IEEE, Seville, Spain, 2020: pp. 1–5. https://doi.org/10.1109/ISCAS45731.2020.9180550.

37. Goyal, T.K.; Sahula, V.; Kumawat, D. Energy Efficient Lightweight Cryptography Algorithms for IoT

Devices, IETE Journal of Research 68 (2022) 1722–1735. https://doi.org/10.1080/03772063.2019.1670103.

38. Jin, C.; De Supinski, B.R.; Abramson, D.; Poxon, H.; DeRose, L.; Dinh, M.N.; Endrei, M.; Jessup, E.R. A

survey on software methods to improve the energy efficiency of parallel computing, The International

Journal of High Performance Computing Applications 31 (2017) 517–549.

https://doi.org/10.1177/1094342016665471.

39. Kambadur, M.; Kim, M.A. An experimental survey of energy management across the stack, in: Proceedings

of the 2014 ACM International Conference on Object Oriented Programming Systems Languages &

Applications, Association for Computing Machinery, New York, NY, USA, 2014: pp. 329–344.

https://doi.org/10.1145/2660193.2660196.

40. Georgiou, S.; Rizou, S.; Spinellis, D.; Software Development Lifecycle for Energy Efficiency: Techniques

and Tools, ACM Comput. Surv. 52 (2020) 1–33. https://doi.org/10.1145/3337773.

41. Cai, Q.; Gonzalez, J.; Magklis, G.; Chaparro, P.; Gonzalez, A. Thread shuffling: Combining DVFS and thread

migration to reduce energy consumptions for multi-core systems, in: IEEE/ACM International Symposium

on Low Power Electronics and Design, IEEE, Fukuoka, Japan, 2011: pp. 379–384.

https://doi.org/10.1109/ISLPED.2011.5993670.

42. Ribic, H.; Liu, Y.D. Energy-efficient work-stealing language runtimes, in: Proceedings of the 19th

International Conference on Architectural Support for Programming Languages and Operating Systems,

Association for Computing Machinery, New York, NY, USA, 2014: pp. 513–528.

https://doi.org/10.1145/2541940.2541971.

43. Sampson, A.; Dietl, W.; Fortuna, E.; Gnanapragasam, D.; Ceze, L.; Grossman, D. EnerJ: approximate data

types for safe and general low-power computation, in: Proceedings of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, Association for Computing Machinery, New

York, NY, USA, 2011: pp. 164–174. https://doi.org/10.1145/1993498.1993518.

44. Dongarra, J.; Ltaief, H.; Luszczek, P.; Weaver, V.M. Energy Footprint of Advanced Dense Numerical Linear

Algebra Using Tile Algorithms on Multicore Architectures, in: 2012 Second International Conference on

Cloud and Green Computing, 2012: pp. 274–281. https://doi.org/10.1109/CGC.2012.113.

45. Agarwal, A.; Rinard, M.; Sidiroglou, S.; Misailovic, S.; Hoffmann, H. Using Code Perforation to Improve

Performance, Reduce Energy Consumption, and Respond to Failures, (2009).

46. Agosta, G.; Bessi, M.; Capra, E.; Francalanci, C. Dynamic memoization for energy efficiency in financial

applications, in: 2011 International Green Computing Conference and Workshops, 2011: pp. 1–8.

https://doi.org/10.1109/IGCC.2011.6008559.

47. Pinto, G.; Castor, F.; Liu, Y.D. Mining questions about software energy consumption, in: Proceedings of the

11th Working Conference on Mining Software Repositories, Association for Computing Machinery, New

York, NY, USA, 2014: pp. 22–31. https://doi.org/10.1145/2597073.2597110.

48. Fowler, M. Refactoring: improving the design of existing code, Second edition, Addison-Wesley, Boston,

2019.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 22 of 23

49. Cruz, L.; Abreu, R. Performance-Based Guidelines for Energy Efficient Mobile Applications, in: 2017

IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft),

IEEE, Buenos Aires, Argentina, 2017: pp. 46–57. https://doi.org/10.1109/MOBILESoft.2017.19.

50. Cruz, L.; Abreu, R. Improving Energy Efficiency Through Automatic Refactoring, JSERD 7 (2019) 2.

https://doi.org/10.5753/jserd.2019.17.

51. Pinto, G.; Soares-Neto, F.; Castor, F. Refactoring for Energy Efficiency: A Reflection on the State of the Art,

in: 2015 IEEE/ACM 4th International Workshop on Green and Sustainable Software, IEEE, Florence, 2015:

pp. 29–35. https://doi.org/10.1109/GREENS.2015.12.

52. Şanlıalp, I.; Öztürk, M.M.; Yiğit, T. Energy Efficiency Analysis of Code Refactoring Techniques for Green

and Sustainable Software in Portable Devices, Electronics 11 (2022) 442.

https://doi.org/10.3390/electronics11030442.

53. Intel® Power Gadget, Intel (n.d.).

https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html (accessed

December 23, 2022).

54. USB-6210 - NI, (n.d.). https://www.ni.com/pl-pl/shop/model/usb-6210.html (accessed October 22, 2024).

55. WT210/WT230 Digital Power Meters | Yokogawa Test&Measurement Corporation, (n.d.).

https://tmi.yokogawa.com/eu/solutions/discontinued/wt210wt230-digital-power-meters/ (accessed

October 22, 2024).

56. Watts Up Pro Portable Power Meter, (n.d.). https://www.powermeterstore.com/p1206/watts_up_pro.php

(accessed October 21, 2024).

57. Hindle, A.; Wilson, A.; Rasmussen, K.; Barlow, E.J.; Campbell, J.C.; Romansky, S. GreenMiner: a hardware

based mining software repositories software energy consumption framework, in: Proceedings of the 11th

Working Conference on Mining Software Repositories, Association for Computing Machinery, New York,

NY, USA, 2014: pp. 12–21. https://doi.org/10.1145/2597073.2597097.

58. Mancebo, J.; Garcia, F.; Arriaga, H.; Moraga, M.; Guzmán, I.; Calero, C. EET: a device to support the

measurement of software consumption, 2018. https://doi.org/10.1145/3194078.3194081.

59. Ferreira, M.A.; Hoekstra, E.; Merkus, B.; Visser, B.; Visser, J. Seflab: A lab for measuring software energy

footprints, in: 2013 2nd International Workshop on Green and Sustainable Software (GREENS), 2013: pp.

30–37. https://doi.org/10.1109/GREENS.2013.6606419.

60. Hähnel, M.; Döbel, B.; Völp, M.; Härtig, H. Measuring energy consumption for short code paths using

RAPL, SIGMETRICS Perform. Eval. Rev. 40 (2012) 13–17. https://doi.org/10.1145/2425248.2425252.

61. RAPL in Action, (n.d.). https://dl.acm.org/doi/epdf/10.1145/3177754 (accessed October 22, 2024).

62. X. Chen, Z. Zong, Android App Energy Efficiency: The Impact of Language, Runtime, Compiler, and

Implementation, in: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud),

Social Computing and Networking (SocialCom), Sustainable Computing and Communications

(SustainCom) (BDCloud-SocialCom-SustainCom), 2016: pp. 485–492. https://doi.org/10.1109/BDCloud-

SocialCom-SustainCom.2016.77.

63. Malavolta, I.; Grua, E.M.; Lam, C.Y.; de Vries, R.; Tan, F.; Zielinski, E.; Peters, M.; Kaandorp, L. A

Framework for the Automatic Execution of Measurement-based Experiments on Android Devices, in: 2020

35th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW), 2020:

pp. 61–66. https://doi.org/10.1145/3417113.3422184.

64. Colmant, M.; Kurpicz, M.; Felber, P.; Huertas, L.; Rouvoy, R.; Sobe, A. BitWatts: a process-level power

monitoring middleware, in: Proceedings of the Posters and Demos Session of the 15th International

Middleware Conference, Association for Computing Machinery, New York, NY, USA, 2014: pp. 41–42.

https://doi.org/10.1145/2678508.2678529.

65. Khan, K.; Nybäck, F.; Ou, Z.; Nurminen, J.; Niemi, T.; Eulisse, G.; Elmer, P.; Abdurachmanov, D. Energy

Profiling Using IgProf, 2015. https://doi.org/10.1109/CCGrid.2015.118.

66. Noureddine, A.; Rouvoy, R.; Seinturier, L. Monitoring energy hotspots in software, Automated Software

Engg. 22 (2015) 291–332. https://doi.org/10.1007/s10515-014-0171-1.

67. Noureddine, A.; Islam, S.; Bashroush, R. Jolinar: analysing the energy footprint of software applications

(demo), in: Proceedings of the 25th International Symposium on Software Testing and Analysis,

Association for Computing Machinery, New York, NY, USA, 2016: pp. 445–448.

https://doi.org/10.1145/2931037.2948706.

68. Liu, K.; Pinto, G.; Liu, Y.D. Data-Oriented Characterization of Application-Level Energy Optimization, in:

A. Egyed, I. Schaefer (Eds.), Fundamental Approaches to Software Engineering, Springer, Berlin,

Heidelberg, 2015: pp. 316–331. https://doi.org/10.1007/978-3-662-46675-9_21.

69. Di Nucci, D.; Palomba, F.; Prota, A.; Panichella, A.; Zaidman, A.; De Lucia, A. PETrA: A Software-Based

Tool for Estimating the Energy Profile of Android Applications, in: 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C), 2017: pp. 3–6. https://doi.org/10.1109/ICSE-

C.2017.18.

70. Bourdon, A.; Noureddine, A.; Rouvoy, R.; Seinturier, L. PowerAPI: A Software Library to Monitor the

Energy Consumed at the Process-Level, ERCIM News (2013).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

 23 of 23

https://www.semanticscholar.org/paper/PowerAPI%3A-A-Software-Library-to-Monitor-the-Energy-

Bourdon-Noureddine/d57705a1bb4f4396f39d56ba0a5c2ab98b153c53 (accessed October 27, 2024).

71. Discontinued: Intel® Power Gadget, Intel (n.d.).

https://www.intel.com/content/www/us/en/developer/archive/tools/power-gadget.html (accessed

November 1, 2024).

72. Noureddine, A. PowerJoular and JoularJX: Multi-Platform Software Power Monitoring Tools, in: 2022 18th

International Conference on Intelligent Environments (IE), 2022: pp. 1–4.

https://doi.org/10.1109/IE54923.2022.9826760.

73. Ahmad, R.W. ; Hamid, S.H.A.; Gani, A.; Obaidat, M.S.; Shuja, J.; Rehman, F.; Khan, A.U.R. Performance

Assessment of Dynamic Analysis Based Energy Estimation Tools, in: 2018 International Symposium on

Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 2018: pp. 1–12.

https://doi.org/10.1109/SPECTS.2018.8574182.

74. Acar, H.; Alptekin, G.I.; Gelas, J.-P.; Ghodous, P. The Impact of Source Code in Software on Power

Consumption, Lyon, 2016.

75. Oliveira, W.; Torres, W.; Castor, F.; Ximenes, B.H. Native or Web? A Preliminary Study on the Energy

Consumption of Android Development Models, in: 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), 2016: pp. 589–593.

https://doi.org/10.1109/SANER.2016.93.

76. Şanlıalp, I.; Ozturk, M.; Yiğit, T. Energy Efficiency Analysis of Code Refactoring Techniques for Green and

Sustainable Software in Portable Devices, Electronics 11 (2022) 442.

https://doi.org/10.3390/electronics11030442.

77. Chowdhury, S.A.; Hindle, A. GreenOracle: estimating software energy consumption with energy

measurement corpora, in: Proceedings of the 13th International Conference on Mining Software

Repositories, ACM, Austin Texas, 2016: pp. 49–60. https://doi.org/10.1145/2901739.2901763.

78. Pang, C.; Hindle, A.; Adams, B.; Hassan, A.E. What Do Programmers Know about Software Energy

Consumption?, IEEE Software 33 (2016) 83–89. https://doi.org/10.1109/MS.2015.83.

79. Bashroush, R.; Woods, E.; Noureddine, A. Data Center Energy Demand: What Got Us Here Won’t Get Us

There, IEEE Software 33 (2016) 18–21. https://doi.org/10.1109/MS.2016.53.

80. Pinto, G.; Castor, F. Energy efficiency: a new concern for application software developers, Commun. ACM

60 (2017) 68–75. https://doi.org/10.1145/3154384.

81. Wysocki, W. Why Don’t Software Companies Care About Software Energy Efficiency? A Survey of

Software Industry Developers., Procedia Computer Science 226 (2024).

82. Zhang, C.; Hindle, A.; German, D.M. The Impact of User Choice on Energy Consumption, IEEE Software

31 (2014) 69–75. https://doi.org/10.1109/MS.2014.27.

83. The EU Code of Conduct for Data Centres – towards more innovative, sustainable and secure data centre

facilities - European Commission, (2024). https://joint-research-centre.ec.europa.eu/jrc-news-and-

updates/eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-

facilities-2023-09-05_en (accessed October 31, 2024).

84. Data Center Maturity Model | The Green Grid, (n.d.). https://www.thegreengrid.org/en/resources/library-

and-tools/438-Data-Center-Maturity-Model (accessed October 31, 2024).

85. Marat, A. Energy storage – intelligent energy management on the example of Automatic System

Engineering., Er (2022) 69–74. https://doi.org/10.7494/er.2022.8.69.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 doi:10.20944/preprints202501.2232.v1

https://doi.org/10.20944/preprints202501.2232.v1

