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Abstract: The rapid advancement in computing power, coupled with the ability to collect vast 
amounts of data, has created new opportunities for industrial applications. While time-domain 
industrial signals typically do not allow for direct stability assessment or the detection of abnormal 
situations, alternative representations can reveal hidden features. This paper introduces a simple 
algorithm that is not directly linked to contemporary machine learning methods, designed to analyze 
industrial data from a standard automation system. The algorithm generates clear graphical 
representations to aid in controlling the production process. Specifically, we propose using time-
shifted maps derived from data series collected by an acceleration sensor mounted on a robot base. 
Furthermore, we numerically simulated three distinct anomalous scenarios and presented their 
corresponding graphical representations. 

Keywords: industrial data analysis; monitoring of industrial processes; predictive maintenance; 
production in a robotic cell 
 

1. Introduction 

The rapid development of Big Data processing technologies has revolutionized various 
industries by enabling the collection, storage, and analysis of vast amounts of data. This 
transformation is particularly evident in industrial settings, where data-driven approaches are 
increasingly employed to optimize processes, enhance efficiency, and ensure product quality. The 
integration of Artificial Intelligence (AI) and machine learning (ML) with Big Data has opened new 
ways for predictive analytics, anomaly detection, and process optimization, marking a shift toward 
smarter and more adapt-able industrial systems [1–3]. However, leveraging Big Data in industrial 
contexts is not without challenges. The complexity arises from the dynamic nature of manufacturing 
systems, variability in operational conditions, and the need to balance efficiency, quality, and cost 
[4].  Moreover, industrial data often originate from heterogeneous sources, such as sensors, logs, and 
machine controllers, and are characterized by high dimensionality, noise, and variability [5,6]. An 
essential aspect of industrial data analysis is anomaly detection, which plays a critical role in 
maintaining system reliability and production continuity. Various methods, including supervised 
and unsupervised machine learning, have been applied to detect anomalies in complex systems [7–
11]. Despite their effectiveness, these methods often require significant computational re-sources, 
specialized expertise, and large labeled datasets, which can limit their accessibility for small and 
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medium-sized enterprises (SMEs) [12–14]. However, this remains a complex challenge, depending 
on data scalability, real-time data processing, predictive analytics, the industrial sector, and data 
visualization [15–29]. 

In this study, we propose an approach evaluated under realistic industrial conditions. 
Specifically, we analyze data from an acceleration sensor mounted on the mechanical base of a robot, 
using Time-Shifted Mapping (TSM). This technique, often applied in deterministic chaos studies 
[30,31], explores relationships between position and velocity or velocity and acceleration to identify 
periodicities or anomalies in nonlinear physical system dynamics. Here, the TSM approach is used 
to detect periodicity and repeatability in the robot's operation within its cell. Additionally, by 
superimposing artificial perturbations on the signals, we examined the following anomalies: 
increasing random fluctuations, linear decay, and a rapid, temporary decrease in amplitude (a "time 
well"). These anomalies mimic scenarios such as increased random vibration due to loosening or 
broken connections in the robot cell, gradual loss of actuator movement from a power supply drop, 
or abrupt movement interruptions caused by mechanical or power failures. The paper provides 
details on the data origin, introduces the TSM approach, analyzes the data, and presents final 
remarks. The goal is to propose a simple, user-friendly graphical method for industrial data analysis 
to enhance production quality. 

2. Theoretical Foundations 

2.1. Deterministic Chaos as Example of Complex Behavior of Mechanical Systems 

To understand more In many fields of science and technology, particularly in dynamic systems 
where operating parameters vary over time, it is possible to analyze a selected parameter using 
appropriate spectral analysis methods. Among the wide variety of signals, two extreme cases can be 
distinguished: signals with well-defined periodicity, for which classical Fourier analysis is highly 
effective, and completely aperiodic, random signals, for which wavelet analysis can be a suitable 
method.   

The periodicity of the signal 𝑥(𝑡) can be expressed as: 

𝑥(𝑡) = 𝑥(𝑡 + 𝑇) , (1)

where 𝑇 is the time period. For signals exhibiting multiple frequencies simultaneously, (𝑓ଵ, 𝑓ଶ, … , 𝑓௡), 
additional secondary frequencies appear, and also the resulting complex signal spectrum can depend 
on the amplitude of the individual components. For example, for signals with two primary 
frequencies, 𝑓ଵ and 𝑓ଶ, the resulting signal may include frequencies corresponding to their sum and 
difference, i.e., 𝑓ଵ − 𝑓ଶ and 𝑓ଵ + 𝑓ଶ, respectively. Additionally, higher-order frequency components 
such as 2𝑓ଵ − 𝑓ଶ, 2𝑓ଵ + 𝑓ଶ, 2𝑓ଵ − 2𝑓ଶ, 2𝑓ଵ + 2𝑓ଶ, and other multiples of sums and differences may also 
appear, though usually with vanishingly small amplitudes.   

A crucial issue in industrial signals, which has practical significance, is whether periodicity is 
synonymous with defect occurrence. This question is directly related to the concept of deterministic 
chaos, i.e., the possibility of a physical system predictably transitioning into aperiodic behavior.   

For dynamical systems governed by deterministic chaos, several well-established analytical 
methods are used, often with convenient graphical representations of system variability. These 
include phase diagrams, Poincaré sections, and bifurcation diagrams. In this work, we do not strictly 
apply deterministic chaos methods but instead focus on the analysis of two-dimensional phase 
diagrams applied to time-varying acceleration signals measured at selected points in a robotic cell, 
e.g., using a sensor attached to the base of a welding robot.   

A phase diagram, in its basic form, represents the relationship between the rate of change of a 
time-varying signal 𝑑𝑥/𝑑𝑡 and the signal itself, 𝑥(𝑡). For a perfect sinusoidal signal 𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡) 
its first time derivative is 𝑥ᇱ(𝑡) = 𝐴𝜔𝑐𝑜𝑠(𝜔𝑡) = 𝐵𝑐𝑜𝑠(𝜔𝑡). The phase diagram, i.e., the plot of 𝑥ᇱ(𝑡) 
as a function of 𝑥(𝑡), can form an elliptical shape (comp. Fig. 4c). In the following section, we will 
show that the phase diagram (𝑥ᇱ(𝑡) vs. 𝑥(𝑡)) is equivalent to the diagram (𝑥(𝑡 + 𝜏) vs. 𝑥(𝑡)), where 
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𝜏 is the time shift. This concept is named time-shifted mapping (TSM) of signals. By selecting an 
appropriate time shift, it is possible to distinguish between normal and abnormal conditions. In the 
actual paper, the analysis was performed using real process signals recorded from a working welding 
robot in a robotic cell. Failure scenarios were simulated to represent extreme conditions.   

From a practical perspective in an industrial setting, real signals are often perturbed and can be 
represented as:   

𝑥(𝑡) = 𝐴(𝑡)sin (𝜔𝑡 + 𝛿(𝑡)) , (2)

where, in general, the phase disturbance function 𝛿(𝑡) can be periodic, aperiodic, or even random. 
Similarly, the signal amplitude 𝐴(𝑡) may undergo random or, less frequently, periodic variations. 
For an idealized process, it can be assumed 𝛿(𝑡) = 0 and 𝐴(𝑡) = 𝑐𝑜𝑛𝑠𝑡.   

In a typical industrial process, such as cyclically repeated welding in serial production, periodic 
variations in technological parameters naturally occur. A potential monitoring parameter, treated as 
a time-varying signal following the production cycle, could be the acceleration measured at various 
locations in the robotic cell by a point sensor.   

Returning to the example of simple sinusoidal signals, 𝑥 = 𝐴sin(𝜔𝑡) and 𝑦 = 𝐵cos(𝜔𝑡), the 
problem of graphical representation of periodicity reduces to finding the relation 𝑦 = 𝑦(𝑥) . 
Eliminating the explicit time dependence leads to squaring the signals and using the trigonometric 
identity 𝑠𝑖𝑛ଶ(𝜔𝑡) + 𝑐𝑜𝑠ଶ(𝜔𝑡) = 1, yielding:   

ቀ
௫

஺
ቁ

ଶ

+ ቀ
௬

஻
ቁ

ଶ

= 1, (3)

Similarly, for a perturbed signal of the form 𝑥(𝑡) = 𝐴(𝑡)sin (𝜔𝑡 + 𝛿(𝑡)), we have:   

ቀ
௫

஺(௧)
ቁ

ଶ

+ ቀ
௬

஻(௧)
ቁ

ଶ

= 1, (4)

However, experimental results in the field of deterministic chaos show that the topology of 
phase diagrams can differ significantly from those generated by simple trigonometric functions. 
Analysis presented in the paper, partially overlaps with the studies of deterministic chaos, which can 
have practical applications in the analysis of real mechanical systems. As a concrete example of a 
system with more complex behavior than a simple harmonic oscillator (Eq. 3), we present phase 
diagrams for a driven, damped physical pendulum. This approach is discussed in detail in Baker and 
Golub's book [32], based on which we developed a simple numerical simulator to illustrate these 
results. The equation of motion for the pendulum is given by:   

−𝐴𝑠𝑖𝑛(𝛼) − 𝐵
ௗఈ

ௗ௧
+ 𝐶𝑐𝑜𝑠(𝜔𝑡) = 𝐷

ௗమఈ

ௗ௧మ , (5)

where 𝐴 is gravitation factor, 𝐵 is the damping factor, 𝐶 is the amplitude of the externally applied 
moment of force, which is applied periodically with the frequency 𝜔, and 𝐷 is the moment of inertia. 
The equation in its normalized form (𝐴/𝐷 = 1, 𝐵/𝐷 = 𝐵ᇱ, 𝐶/𝐷 = 𝐶′) can be written as follows:   

−𝑠𝑖𝑛(𝛼) − 𝐵′
ௗఈ

ௗ௧
+ 𝐶′𝑐𝑜𝑠(𝜔𝑡) =

ௗమఈ

ௗ௧మ  . (6)

In the following we will refer to different values of the 𝐶’ amplitude (1.0, 1.07, 1.35, 1.45, 1.47, 
1.50) to illustrate some results, assuming 𝜔 = 2/3 (𝑟𝑎𝑑/𝑠𝑒𝑐. ) and 𝐵ᇱ = 0.5. Thus, the behavior of the 
pendulum is governed by three key parameters (as a minimum of three parameters is required for 
chaotic behavior): the damping coefficient 𝐵ᇱ , the excitation frequency 𝜔 of the external driving 
force, and the amplitude of the external driving force 𝐶′. By selecting appropriate parameter values, 
different dynamic behaviors can be observed. These include cyclic motion with a single dominant 
frequency (Figure 1a,c)—visible in the phase diagram as a single oval, topologically similar to a 
perfect ellipse (Figure 1a) — as well as more complex cases, such as period-doubling bifurcations 
(two-cycle behavior) (Figure 1b,d), quasi-chaotic state (Figure 1e)  or fully chaotic case (Figure 1f). 
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a) 

 
b) 
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c) 

 
d) 
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e) 

 
f) 

 

Figure 1. Phase diagrams of damped driven physical pendulum for different driving moment of force amplitude 
𝐶′ (Eq. 6) : single frequency case, 𝐶ᇱ = 1.0 (a), doubled frequency case, 𝐶ᇱ = 1.07 (b), single frequency case, for 
larger amplitude 𝐶ᇱ = 1.35 (c), doubled frequency case, 𝐶ᇱ = 1.45 (d), quasi-chaotic state, 𝐶ᇱ = 1.47 (e), fully 
chaotic state, 𝐶ᇱ = 1.50 (f). 

The focus of this article is the presentation of such diagrams, derived from real industrial data. 
For visualization, we employ time-shifted diagrams, where a time-shifted signal is used to 
approximate the rate of change of the original signal. The key conclusion drawn from these findings 
is that in dynamic systems influenced by multiple factors (parameters), phase diagrams can exhibit 
highly complex topologies. 

2.2. The Concept of Time-Shifted Mapping (TSM) 

To understand more deeply the concept of time-shifted maps, let us consider two simple 
sinusoidal functions: single sin (𝛼) function (Figure 2a) with 2𝜋 period, and the sum of sin (𝛼) and 
two-times more frequent sin (2𝛼) function. In the next step, we can prepare the sin (𝛼 + 𝜙) vs. 
sin (𝛼) plot, where 𝜙 represents the phase shift. By comparing Figures 2c-2e, with phase shift of 
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𝜙 = 0.50𝜋, 𝜙 = 0.25𝜋, 𝜙 ≈ 2.0𝜋, respectively, we observe that for a phase shift equal to ¼ of the 
period, the graphical representation in the form of single oval indicates a single-period signal (Figure 
2c). Similarly, for the function with double the frequency, the 𝜙 = 0.25𝜋 shift clearly reveals a single-
period signal with twice the frequency (Figure 2f). Next, by applying the same approach with 𝜙 =

0.25𝜋 to the combination sin(𝛼) + sin (2𝛼), we obtain a map with two loops, indicating two types of 
periodicities (Figure 2g). Furthermore, by superimposing random values (noise) onto the two-cycled 
signal, the periodicities of the pure signals can still be recognized (Figure 2f). 

These simple examples provide, of course, only an approximation of industrial situations. 
Nevertheless, as will be shown below, analyzing time-collected acceleration data offers new insights 
into the nature of signals. Thus, it is easy to envision scenarios where the periodic nature of the data 
is either unknown or not immediately apparent, especially when the collected time series are not 
represented by simple trigonometric functions. As will be demonstrated below, time-shifted maps 
exhibit a significant resolution capability across various cases, including unpredictable and 
undesirable ones. 

  

  

  

  

Figure 2. The concept of time-shifted maps for examining periodicity in industrial signals. Numerical values 
were calculated with a resolution of 0.1 rad. (a) The basic sin(α) data series; (b) the two-times more frequent 
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signal sin(2α); (c) the sin(α+ф) vs. sin(α) dependence with ф=0.50π rad; (d) the sin(α+ф) vs. sin(α) dependence 
with ф=0.25π rad; (e) the sin(α+ф) vs. sin(α) dependence with ф=2.04π rad; (f) the sin[2(α+ф)] vs. sin(2α) 
dependence with ф=0.25π rad; (g) the sin(2α)+sin[2(α+ф)] vs. sin(α)+sin(2α) dependence with ф=0.25π rad; and 
(h) the sin(2α)+sin[2(α+ф)] vs. sin(α)+sin(2α) dependence, with ф=0.25π rad along the imposed random noise. 

As mentioned above, in chaotic deterministic systems, analyzing the relationships between 
dynamical variables (e.g., generalized positions) and their velocities is a common practice [23]. The 
relationships can be presented as two-dimensional figures. From a numerical perspective, in the 
simplest case, the relationship between position 𝑥௜ାଵ at a later time and the position at an earlier time 
𝑥௜ can be expressed as 

௫೔శభି௫೔

∆௧
= 𝐴𝑥௜ , (7)

where ∆𝑡 is the time-step value, and 𝐴 is the proportionality factor. After some straightforward 
derivations, it can be shown that 

𝑥௜ାଵ = (𝐴∆𝑡 + 1)𝑥௜ = 𝐶(𝑡)𝑥௜ , (8)

with a time-dependent proportionality factor 𝐶(𝑡), this means the velocity-position diagram (related 
to Eq. 7) can be used interchangeably with appropriately time-shifted position data (related Eq. 8) to 
obtain an adequate graphical representation of the dynamics of the system under analysis. It is worth 
noting that the maps can be created using different values of the time shift ∆𝑡. 

3. Experiment and Analysis of Data 

The automation system developed for the experiment was divided into three interconnected 
layers: control, visualization with HMI (Human-Machine Interface), and SCADA (Supervisory 
Control and Data Acquisition). The main component of the control layer was the PLC, which 
managed the operation of all actuators and measuring devices, enabling the process to run in 
automatic mode. The Siemens S7-1500 controller used in the experiment had been programmed in 
the TIA Portal environment. The visualization layer consisted of a screen and touch panel integrated 
with an industrial PC. Visualization and control of the system were implemented using Zenon 8.2 
software from COPA-DATA. This software employed a communication plug-in mechanism to 
connect with Siemens controllers in various ways, with a focus on the OPC-UA (Open Platform 
Communication - Unified Architecture) communication protocol, which was one of the most 
promising technologies within the Industry 4.0 framework. The SCADA system fulfilled several 
roles. Primarily, it acted as a central hub for data collected from the control layer. This data was 
analyzed for diagnostics, optimization, failure prediction, and production status reporting. The 
analysis results were displayed within the HMI layer. Given the cell's ability to function in both stand-
alone and collaborative modes, the SCADA system had been divided into two subsystems: a local 
subsystem tied to the PLC and a global subsystem supporting the operation of multiple robot cells. 
The current experiment utilized the local subsystem. 

The data were collected using an acceleration sensor (Baluff BCM0001) [33] mounted on the 
mechanical base of the robot (Figure 3). The Kuka KR 270 robot [34] was installed inside a fully 
enclosed robotic cell measuring approximately 3 m × 3 m × 3 m. The walls of the cell consisted of 
uniform, flat steel sheets mounted on a frame and connected to a ground frame made of T-bars, which 
also supported the robot base. All components of the cell enclosure were securely fastened with 
bolted or welded joints. This setup ensured that vibrations generated by the robot propagated 
throughout the structure, particularly to the robot’s base and walls of the robotic cell. 

The robot performed repetitive movements related to the welding process of small metallic parts 
secured to a rotary table. The entire experiment lasted 2,700 seconds, with acceleration and velocity 
measured at 0.25-second intervals. The stored values represented the root mean square (RMS) of the 
peak-to-peak acceleration amplitudes. Since acceleration is proportional to the rate of change of 
velocity and both quantities exhibited the same frequency characteristics, the peak-to-peak 
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acceleration amplitude was chosen for further analysis as a sufficiently representative signal. 
Throughout the article, acceleration values are expressed in g (Earth’s gravitational acceleration). 

 

Figure 3. An acceleration sensor (highlighted by the red oval) is mounted on the base of the robot. 

Figure 4 shows an example of several robotic work steps recorded by the acceleration sensor, 
highlighting characteristic time periods relevant to the TSM methodology. Figure 5a presents the data 
collected over 2,700 seconds, while Figures 5b-d illustrate numerically introduced disturbances to the 
original signal. These cases are analyzed in detail below. Before proceeding, we introduce the TSM 
concept, which involves time-shifting a data series relative to the original to generate 2D 
representations. 

 

Figure 4. The registered acceleration RMS peak-to-peak magnitude values were recorded over time. The data 
revealed four distinct types of recognized time periodicities. 
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Figure 5. Time-dependent signals from the vibration sensor (averaged acceleration peak-to-peak values): (a) 
original signal, (b) signal with numerical modifications to mimic potential undesired disturbances, such as 
random instabilities, (c) signal with a linear decline, and (d) signal showing a sudden interruption (a "well") in 
the working system. 

3.1. Experimental Data Analysis 

Below, we present the TSM results for the originally registered data (Figure 6), data with 
artificially added noise (Figure 7), data with a linear signal drop lasting from the beginning to the 
end of the collection period (Figure 8), and data with a rapid drop (a "well") in the signal (Figure 9). 
The maps were generated using different time shifts, expressed in “points” (time steps), where a 
single step corresponds to 0.25 s, as mentioned above. Since the periods shown in Figure 4 are 3.25 s, 
6.25 s, 9.5 s, and 12.5 s, the corresponding values in “points” are 13, 25, 38, and 50, respectively. 
Similarly, considering the optimal choice of time shift (phase shift) as ¼ of the period, the respective 
values are 3, 6, 10, and 13 points. However, after evaluating various options, we present results below 
for time-shift values (in points) of 3, 6, 9, 12, 25, 38, and 50, as these are most useful for characterizing 
the data. 
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Figure 6. The TSM results for the originally collected acceleration signal. 
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Figure 7. The TSM results for the originally collected acceleration signal with added random values (10% of the 
original values multiplied by a random value taken from the [0;1] range) – cf. Figure 5b. 
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Figure 8. The TSM results for the originally collected acceleration signal with an imposed linear drop (cf. Figure 
5c). 
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Figure 9. The TSM results for the originally collected acceleration signal with a sudden signal break (comp. 
Figure 5d). 

As can be seen from the figures above, there is an unambiguous link between the existing 
production situation and the spatial distribution of measurement points. These distributions can be 
easily classified using appropriate image analysis methods, which is beyond the scope of the current 
article. 

4. Discussion and Conclusions 

A closer look at the obtained results reveals the following observations: 
 The original signal exhibits a single, approximately dominant type of periodicity (one loop), 

which is particularly evident in the maps with a time shift of T=3 points (Figures 6a, 7a, 9a) and 
less apparent in the linearly descending signal (Figure 8a). 

 In general, all charts, except those with a time shift of T=6 points, proved to be effective for 
analyzing the registered signals. 

 Adding a random factor to the signal disrupts its periodicity: on a map with a time shift of T=9 
points (cf. Figures 7a and 7c), the map completely changes its character. 

 The linear decay of the signal results in the appearance of new collinear sets of points on the chart 
(e.g., Figure 8c). 

 Rapid signal decay (a well) leads to the appearance of a signal (one loop) with a smaller 
amplitude (cf. Figures 6a and 9a) – indicating the two-frequencies case. In Figure 9a, there is a 
small quadratic quasi-loop approximately 2×2 in size. 

 Along with the observed periodicities, areas of high randomness are clearly visible—cf. maps for 
T=25 points, particularly for accelerations exceeding 5g (depending on the signal type). 
The graphical data presentation method proposed in this paper, the approach related to 

deterministic chaos methods, demonstrates sensitivity to the nature of the collected data, effectively 
distinguishing between two dominant components: periodic and stochastic. By applying various 
modifications to the original signals, the TSM method has proven to be both representative and 
selective for the cases presented in this analysis. 

A significant advantage of the two-dimensional TSM graph is its ability to allow production 
process supervisors to observe and draw preliminary conclusions. Furthermore, the resulting maps, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 March 2025 doi:10.20944/preprints202503.1496.v1

https://doi.org/10.20944/preprints202503.1496.v1


 15 of 17 

 

which reflect modifications caused by changes in technological parameters, are highly suitable for 
precise and unambiguous analysis, such as employing unsupervised machine learning clustering 
techniques. This area of application remains underexplored and will be the focus of future research 
on industrial data obtained from operational robotic systems. 
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