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Simple Summary: Glioblastoma (GBM) is a highly aggressive brain tumor with limited treatment options and
a poor prognosis. Mitochondrial dysfunction and metabolic reprogramming, particularly the Warburg effect,
are increasingly recognized as key drivers of GBM progression. This study aims to explore the role of mitochon-
dria-associated genes in GBM prognosis and potential mechanisms by integrating single-cell and bulk RNA
sequencing data. We identified differentially expressed mitochondrial genes that are significantly linked to prog-
nosis and developed a 9-gene risk signature that stratifies patients into high- and low-risk groups. This signature
was validated across multiple cohorts and shown to be an independent prognostic factor. Furthermore, our
analysis highlighted the impact of metabolic reprogramming on immune modulation, particularly the shift from
oxidative phosphorylation to glycolysis in malignant cells. These findings reveal the prognostic value of mito-
chondrial genes and suggest new therapeutic targets for disrupting GBM metabolism and improving patient
outcomes.

Abstract: Background/Objectives Glioblastoma (GBM) is an aggressive brain tumor with poor prognosis and
limited treatment options. Metabolic reprogramming, particularly the Warburg effect, plays a significant role in
its progression. This study aims to explore the prognostic value and therapeutic potential of mitochondria-asso-
ciated genes in GBM by integrating single-cell and bulk RNA sequencing data. Methods We analyzed single-cell
RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) and bulk RNA sequencing (bulk
RNA-seq) data from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Differ-
entially expressed mitochondria-associated genes were identified, and a 9-gene risk signature was constructed
using LASSO and Cox regression models. Survival analysis and functional enrichment were conducted, and
single-cell pseudotime analysis was employed to investigate metabolic transitions. Results We identified 10 mi-
tochondria-associated genes significantly correlated with GBM prognosis. A 9-gene risk signature was devel-
oped and validated, stratifying patients into high- and low-risk groups in both the TCGA and CGGA cohorts.
This model was shown to be an independent prognostic factor. Functional enrichment revealed associations
with metabolic pathways, including the Warburg effect. Single-cell analysis highlighted a shift from oxidative
phosphorylation to glycolysis in malignant cells, further implicating metabolic reprogramming in GBM progres-
sion. Conclusions Our findings emphasize the prognostic value of mitochondria-associated genes in GBM and
their potential as therapeutic targets. The developed risk model can aid in prognostic evaluation and personal-
ized treatment strategies, particularly by targeting the metabolic reprogramming that drives tumor progression.
These results provide a new avenue for improving GBM management through metabolic interventions..
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1. Introduction

Glioblastoma (GBM) is the most prevalent and aggressive primary malignant brain tumor in
adults. It accounts for approximately 14-15% of all central nervous system tumors and nearly half
(approximately 48-50%) of malignant brain tumors.The prognosis of GBM remains dismal, with a
median survival of only about 15 months despite aggressive multimodal therapeutic interventions
[1]. Beyond its lethality, GBM imposes a substantial burden on patients' families and society. The
tumor itself, along with the current standard treatments —including surgical resection, radiotherapy,
and chemotherapy —inflicts severe damage to the brain, leading to cognitive, emotional, and behav-
ioral impairments. Many patients experience loss of independence, inability to work, and exorbitant
medical expenses.The current standard of care involves maximal safe surgical resection followed by
radiotherapy combined with temozolomide chemotherapy [2]. Despite emerging therapeutic strate-
gies such as Tumor Treating Fields and immunotherapy, these innovations have yet to significantly
improve the long-term prognosis of GBM. Over the past decades, the survival rate of GBM patients
has seen little improvement, underscoring the urgent need for novel research avenues to enhance
patient outcomes.

Metabolic reprogramming is a hallmark of malignant tumors, including GBM, and has been
closely linked to therapeutic resistance [3]. GBM cells predominantly rely on glycolysis for energy
production even in the presence of oxygen, a phenomenon known as the "Warburg effect." This met-
abolic adaptation supplies the energy and biosynthetic intermediates necessary for rapid tumor pro-
liferation. Mitochondria play a central role in regulating this metabolic shift. As the cellular "power-
house," mitochondria drive oxidative phosphorylation (OXPHOS) for ATP synthesis. More im-
portantly, alterations in mitochondrial structure and function influence critical biological processes,
including cell proliferation, apoptosis, and oxidative stress, thereby promoting the invasive growth
and therapeutic resistance of GBM cells [4]. Given the pivotal role of mitochondria in the metabolic
adaptation of GBM, recent research has increasingly focused on targeting mitochondrial function as
a therapeutic strategy [3]. These findings highlight the scientific and potential clinical significance of
investigating mitochondria-associated molecular mechanisms in GBM from a tumor metabolism per-
spective.

However, the precise role of mitochondria-associated genes in GBM pathogenesis and progres-
sion remains inadequately understood. This study aims to conduct a comprehensive analysis of mi-
tochondria-associated genes in GBM by integrating single-cell RNA sequencing (scRNA-seq) and
bulk RNA sequencing (bulk RNA-seq) data, thereby elucidating their biological functions and clinical
relevance. Single-cell transcriptomic analysis enables the characterization of tumor heterogeneity at
a high resolution, revealing molecular features that may be masked in bulk analyses. By leveraging
this approach, we aim to elucidate the role of mitochondrial gene expression patterns in GBM molec-
ular subtyping and prognostic evaluation while identifying key mitochondrial-associated targets
with therapeutic potential. Recent studies have reclassified GBM based on metabolic pathways and
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identified a tumor subtype characterized by mitochondrial oxidative metabolism, which is associated
with a more favorable clinical prognosis and heightened sensitivity to OXPHOS inhibitors. Against
this backdrop, our study integrates single-cell and bulk transcriptomic data to systematically inves-
tigate the expression profiles and functional roles of mitochondria-associated genes in GBM. We em-
phasize their significance in tumor molecular classification and prognosis assessment while explor-
ing their potential as therapeutic targets. Through this research, we aspire to provide novel insights
and a scientific foundation for GBM molecular subtyping and personalized therapeutic strategies.

2. Materials and Methods
2.1. Data Sources and Processing

We obtained single-cell RNA sequencing (scRNA-seq) data (GSE139448) from the Gene Expres-
sion Omnibus (GEO) database, comprising three GBM samples with a total of 8,360 cells. GEO, main-
tained by the National Center for Biotechnology Information (NCBI), is a public repository hosting
extensive high-throughput gene expression datasets from around the world, encompassing RNA se-
quencing, microarray, DNA methylation, protein-DNA interactions, and more. Data in GEO are
structured by Platform, Sample, and Series, providing broad utility in biomedical research by ena-
bling replication and reanalysis.

Bulk RNA-seq data and clinical information for GBM were sourced from The Cancer Genome
Atlas (TCGA). TCGA, jointly established by the National Cancer Institute (NCI) and the National
Human Genome Research Institute (NHGRI), is a large-scale cancer genomics consortium that offers
free, publicly available multi-omics data across 33 cancer types. In this study, we specifically used
the TCGA-GBM data. Data were downloaded with the R package TCGAbiolinks: 1. GDCquery:
Specified data type “HTSeq-count.” 2. GDCdownload: Retrieved the queried data. 3.GDCprepare:
Processed and converted queried data into a SummarizedExperiment (SE) object for downstream R
analysis. Clinical information was also downloaded via GDCquery_clinic in TCGAbiolinks (re-
trieval date: November 19, 2024).

We additionally collected GBM expression and clinical data from the Chinese Glioma Genome
Atlas (CGGA), a specialized resource for GBM genomic data in Chinese patients, including expres-
sion profiles, genomic variations, and DNA methylation. Specifically, we used the dataset
CGGA.mRNAseq_325.RSEM-genes.20200506 to obtain expression profiles and clinical annotations.

2.2. Identification of Differentially Prognostic Mitochondrial Genes

We first downloaded 1,136 human mitochondria-associated genes from MitoCarta3.0
(https://www.broadinstitute.org/mitocarta) and identified 1,105 of these genes in the TCGA-GBM
dataset. Next, using the R package edgeR, we discovered 94 differentially expressed genes (DEGs)
(adj. p <0.01 and [1og2FC| > 1) between 94 GBM samples and normal control tissue, including 28
upregulated and 66 downregulated genes in GBM. Finally, by applying the survival R package, we
examined the association between overall survival (OS) and each of the 1,105 mitochondrial genes,
ultimately identifying 10 that were both differentially expressed and prognostically significant.

2.3. Construction and Validation of the Mitochondria-Associated Gene Signature

From the TCGA-GBM dataset, we used the glmnet R package to perform regression and further
select genes for computing a mitochondrial risk score. Nine genes remained in the final model. After
constructing this risk model, samples from the TCGA cohort were split into high-risk and low-risk
groups. We used the survival and survminer R packages to compare survival between these two
groups and employed the timeROC R package to conduct time-dependent receiver operating char-
acteristic (ROC) curve analyses at 1, 2, and 3 years. We then validated the model in an external cohort
derived from the CGGA database by applying the same risk scoring, subgroup classification, survival
analyses, and ROC calculations.

2.4. Independent Prognostic Analysis and Nomogram Construction

To determine whether the mitochondrial gene signature could serve as an independent prog-
nostic factor for GBM, we conducted univariate and multivariate Cox regression analyses. A nomo-
gram was subsequently developed using the rms and regplot R packages to visualize the
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relationships between clinical variables and the prognostic model. We employed 1-, 2-, and 3-year
calibration curves to assess and predict the nomogram'’s performance.

2.5. Clustering Analysis

Using the ConsensusClusterPlus R package, we classified the TCGA-GBM cohort based on mi-
tochondria-associated gene expression to investigate whether these genes were associated with GBM.
When k=2, we observed strong intracluster correlations and moderate intercluster correlations. Fur-
ther survival-related analyses showed a significant difference in prognosis between the two clusters.
Lastly, we conducted GSEA and GSVA analyses to explore differences in metabolism-related path-
ways between the two subgroups.

2.6. Functional Enrichment Analysis

Using the ClusterProfiler R package, we performed Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analyses. We visualized the GO and KEGG results with
the circlize R package. We further examined three Warburg effect-related gene sets obtained from
MSigDB using the GSVA algorithm, identifying enrichment differences between the subgroups.

2.7. Single-Cell Data Processing

We employed the MAESTRO v1.5.1 [PMID: 32767996 ] standardized workflow to process all
collected datasets, including quality control, batch effect correction, cell clustering, differential ex-
pression analysis, and cell-type annotation. Two metrics were used to assess cell quality: the total
number of counts (UMIs) per cell (library size) and the number of detected genes per cell. Cells with
a library size <1,000 or fewer than 500 detected genes were discarded. We identified the top 2,000
variable features, performed PCA for dimensionality reduction, and applied KNN and Louvain al-
gorithms for clustering. To better capture cell differences and variability across datasets with differ-
ent cell numbers, we set the number of principal components to 30 and the graph-based clustering
resolution to 1, then used Uniform Manifold Approximation and Projection (UMAP) for further di-
mensionality reduction and cluster visualization. In total, 17 clusters were identified. We used the
Wilcoxon test, with log fold-change (llogFC| > 0.25) and false discovery rate (FDR < 1e-05), to detect
differentially expressed (DE) genes in each cluster compared with all other cells. For cluster annota-
tion, we applied a marker-based approach implemented in MAESTRO, which references DE genes
against published marker gene resources. Ultimately, four types of immune cells were identified. We
conducted pseudotime trajectory analysis with the default settings in, which infers cell differentiation
paths by placing single cells along a trajectory that corresponds to biological processes (e.g., cell dif-
ferentiation).

2.8. Statistical Analysis

We used the survivalROC R package to generate ROC curves for survival prediction and calcu-
late the area under the curve (AUC). The rms package was used to construct and evaluate nomograms
and calibration curves. GO and KEGG enrichment analyses were conducted with the clusterProfiler
R package. Continuous variables between two groups were compared using the Wilcoxon rank-sum
test, and continuous variables among three or more groups were compared via the Kruskal-Wallis
test. Categorical variables were compared using Fisher’s exact test or the chi-square test as appropri-
ate. Unless otherwise specified, p <0.05 was considered statistically significant. All statistical analyses
were performed in R version 4.2.3.

3. Results
3.1. Identification of Differentially Prognostic Mitochondria-Associated Genes

Differential expression analysis between TCGA-GBM samples and control tissues identified 94
mitochondria-associated genes exhibiting significant changes (FDR < 0.01, |1og,FCI| > 1), with 28
genes upregulated and 66 downregulated in GBM (Figure 1A, volcano plot). Subsequently, prognos-
tic analysis revealed 87 genes significantly associated with overall survival (OS) (Figure 1B). The in-
tersection of these 87 prognostic genes with the differentially expressed mitochondria-associated
genes yielded 10 genes, which were selected for further analysis (Figure 1C).

d0i:10.20944/preprints202504.1775.v1
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Figure 1. Identification of Differentially Prognostic Mitochondria-Associated Genes. (a) Volcano plot showing
the differential expression of mitochondria-associated genes between GBM and control samples; (b) Forest plot
of the top 20 prognostically significant mitochondria-associated genes; (c) Venn diagram illustrating the selec-
tion of 10 differentially prognostic genes.

3.2. Construction and Validation of the Mitochondria-Associated Risk Model

After excluding TCGA-GBM samples with missing survival time or status, 155 cases were re-
tained as the training set. Based on the 10 differentially prognostic mitochondria-associated genes,
we further refined the gene set and constructed a prognostic model. LASSO Cox regression analysis
was performed using the glmnet R package to streamline the model. Examination of the coefficient
trajectories indicated that as the lambda parameter increased, more coefficients converged to zero.
Ten-fold cross-validation was employed to determine the optimal lambda value (A = 0.0339602; see
Figure A 1A and A 1B), resulting in the following risk score formula:

mtRNAscores= 0.3093*expAcO17+ 0.00123*exp™EM5 - (.2569*expMTHFD2 -(0.7604*expABCE” +
0.2328*expPCK1 + (0.3265%expPPK3 - 0.1568*expARMX6 + (0.1609*expSTK! + (0.6045*expSstrt

Risk scores were calculated for each sample in both the training and external datasets, and the
distribution of mtRNAscores demonstrated that samples with higher risk scores had markedly
shorter OS compared to those with lower scores. Analysis of the nine signature genes revealed that
high expression of MTHFD2, ABCB7, and ARMCX6 was associated with lower risk (protective fac-
tors), whereas high expression of SSBP1, GSTK1, PDK3, PICK1, THEMS5, and ACOTY correlated with
higher risk (risk factors) (Figure 2A and 2B). By stratifying samples into high- and low-risk groups
using the median mtRNAscore, Kaplan—-Meier (KM) survival analysis showed a significant difference
in OS in the training cohort (log-rank p = 3.37e-07, HR = 2.781 [95% CI: 1.877-4.12]; 78 high-risk vs.
77 low-risk samples) with a 1-year AUC > 0.729. Validation in the external CGGA cohort confirmed
the model’s robustness (log-rank p = 0.0396, HR = 1.579 [95% CI: 1.022-2.439]; 107 high-risk vs. 30
low-risk samples; 2-year AUC = 0.65) (Figure 2 C-F).


https://doi.org/10.20944/preprints202504.1775.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025

RiskType .
® High_risk &
® Low risk /

¢ é
2
s
2
£,
Z 3
&

L 4

o &

L]

L]

Y Status
®  Alive
® Dead

6 "
L]
g 4 o © .
= .
2
0
SSBP1 I |
GSTKI1 " ||l |
ARMCX6 I | I
et M| I||II I II||| |
PICKI | I I
I Wl
MTHFD2 Il | |
ol | | | Il
ACOT7 | | |
2-score of expression - =]
C 2-10 12
1.00
== High_risk
== Low_risk
0.75 Log-rank P =3.37e-07
2z HR(High_risk)=2.781
'_g 95%CI(1.877, 4.12)
2
g
g
g os0{ -
Z
5
- ]
= 1
@ 1
2
=) 1
025 |
]
| 1
1 1
1 1
1 1
0.00 1 1
2901 Median time:0.9 and 1.4
High_risk { 78 4 0 0 0
Low_risk 77 19 3 1 0
0 2 4 6 3
E Time (years)
1.00
075
=
=
g
&
°
2
=050
Z
=3
o
g
=
025
= [~ Years, AUC=0.729,95%C1(0.658-0.8)
= 2-Years, AUC=0.813,95%CI(0.732-0.893)
0.00 == 3-Years, AUC=0.828,95%C1(0.737-0.918)

0.00

0.50 0.75
False positive fraction

1.00

6 of 19

RiskType F
5] @ High risk ]
® Low risk /
4
2
5
2
Z
g 3
-4
) e
L]
L]
1
125 Statug
®  Alive
o ® Dead
10.0
L]
73 L]
°
5 ° M
= .
5.0 L]
L]
2.5
L]
o
0.0
SSBP1 I
GSTK1
ARMCX6
|| ]
PICK1
ABCB7 ‘ | | II
MTHFD2 |
THEMS | | I |
corr{ I | DM T ||||
———
D 2-101 2
1.00
= High_risk
= Low_tisk
0.75
Z
= Log-rank P =0.0396
< HR(High_risk)=1.579
e 95%CI1(1.022, 2.439)
5
S o0s0{ -
g
5
e I
T‘E 1
o 1
g
o 1
0.25 1
|
1
1
1
1
1 ¥
0001 Median time:0.9 and 1.5
High_risk { 107 10 4 2 1
Low_risk { 30 7 2 0 0
0 3 6 9 12
F Time (years)
1.00
2 075
2
31
2
&
)
2
& 0.50
{=9
)
2
&
0.25
= 1-Years, AUC=0.597,95%CI(0.517-0.678)
— 2 Years, AUC=0.65,95%CI(0.541-0.759)
0.00 == 3-Years, AUC=0.546,95%C1(0.404-0.687)
0.00 0.2 1.00

050, 075
False positive fraction

d0i:10.20944/preprints202504.1775.v1


https://doi.org/10.20944/preprints202504.1775.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 d0i:10.20944/preprints202504.1775.v1

7 of 19

Figure 2. Construction and Validation of the Predictive Risk Model. (a,c,e) In the training cohort: distribution of
the risk model with corresponding survival status and expression patterns of the 9 genes, KM survival curves,
and ROC curves with AUG; (b,d,f) In the external validation cohort: similar analyses depicting survival status,
gene expression, KM survival curves, and ROC curves with AUC.

3.3. Development and Validation of a Nomogram Based on the 9-Gene Model

To translate the 9-gene model into clinical practice, we integrated the risk score with clinical
variables to develop a nomogram for predicting patient survival. Univariate and multivariate Cox
regression analyses were performed using the 9-gene risk score and clinical factors (age, sex, race,
and IDH mutation status). Univariate analysis showed that both IDH mutation status and the 9-gene
model were significantly associated with OS, while multivariate analysis confirmed that race, IDH
mutation status, and the 9-gene model are independent prognostic factors (Figure 3A and 3B). Con-
sequently, a nomogram was constructed to estimate GBM patients’ survival probabilities (Figure 3C).
Calibration curves, which compare predicted and actual survival probabilities at different time
points, demonstrated good concordance (Figure 3D). The 1-, 2-, and 3-year AUC values were 0.649,
0.82, and 0.854, respectively (Figure 3F), and KM analysis further validated the effective stratification
of patients into high- and low-risk groups.
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Figure 3. Nomogram Construction for GBM Survival Prediction. (a,b) Forest plots of univariate and multivariate
Cox regression analyses; (c) The nomogram based on the 9-gene risk score; (d) Calibration curves; () KM sur-
vival curves; (f) ROC curves for the nomogram.

3.4. Clustering Analysis

To explore the potential mechanisms by which mitochondria-associated genes influence GBM
prognosis, we performed consensus clustering based on their expression profiles. GBM samples were
divided into two clusters (Figure 4A-E). Kaplan—-Meier survival analysis demonstrated that patients
in Cluster 2 had significantly poorer survival compared to those in Cluster 1 (Figure 4F).
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Subsequently, using the limma package, we identified differentially expressed genes (DEGs) be-
tween the two clusters and conducted enrichment analysis. KEGG analysis revealed significant dif-
ferences in pathways including the p53 signaling, TNF signaling, and IL-17 signaling pathways (Fig-
ure 5B), while GO enrichment analysis is summarized in Figure 5A. Furthermore, GSVA analysis
showed that Cluster 1 was primarily enriched in metabolic pathways such as Terpenoid_back-
bone_biosynthesis and Glyoxylate_and_dicarboxylate_metabolism, whereas Cluster 2 was enriched
in Phenylalanine_metabolism and Starch_and_sucrose_metabolism (Figure 5C). GSEA of the DEGs
between clusters identified significant enrichment of the “GALLUZZI_PREVENT_MITOCHON-
DRIAL_PERMEABILIZATION” pathway in Cluster 2 (Figure 5D).
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analysis; (c) GSVA results; (d) GSEA enrichment of Warburg-related pathways.

3.5. Comparison of Warburg Effect Gene Expression Between Subtypes

To assess the influence of mitochondria-associated genes on the effectors of the Warburg effect,
we extracted 74 genes from three Warburg effect-related pathways. Analysis showed that 35 of these
genes were significantly differentially expressed between Cluster 1 and Cluster 2 (Figure 6A), while
the remaining 39 genes did not exhibit significant differences (Figure 6B). Kaplan—Meier analysis fur-
ther revealed that five genes were significantly associated with OS: low expression of BID and USP44
correlated with higher risk, whereas high expression of PMAIP1, VDAC1, and SLC25A4 was linked
to increased risk (Figure 6C).
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Figure 6. (a,b) Expression profiles of the 74 Warburg effect-related genes across different clusters; (c) KM survival

curves for these genes in relation to OS.

3.6. Single-Cell Data Analysis

Following quality control, 17,029 genes and 8,360 cells were retained (see Figure A 2for assess-
ments of gene and mitochondrial content). The MAESTRO pipeline was employed to identify the top
2,000 variable features, perform PCA for dimensionality reduction, and cluster cells using KNN and
the Louvain algorithm. To effectively capture cell-to-cell variability across datasets with differing cell
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counts, 30 principal components and a graph-based clustering resolution of 1 were used, followed by
UMAP for visualization. The distribution of cells across the three samples is shown in Figure 7A, and
UMAP visualization revealed 17 distinct clusters (Figure 7B). Subsequent cell-type annotation iden-
tified 461 immune cells, 87 stromal cells, and 7,812 malignant cells (Figure 7C). Annotation based on
known marker genes further refined the cluster identities (Figure 7D).
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Figure 7. Single-Cell Data Processing and Annotation. (a) Cell distribution across the three samples; (b) UMAP
plot of 17 clusters; (c) Cell type classification; (d) Annotated cell clusters.

Next, we examined the differential expression of mitochondria-associated genes and Warburg
effect-related genes across cell types. Mitochondria-associated genes exhibited distinct expression
patterns in malignant versus immune cells (Figure 8A), with further differences among immune cell
subtypes (Figure 8B). Similarly, the expression of Warburg effect-related genes in malignant com-
pared to immune cells is shown in Figure 8C, with additional details across immune cell subgroups
in Figure 8D. Notably, while PMAIP1 was expressed at relatively low levels across cell subgroups,
VDACI and SLC25A4 were markedly overexpressed in malignant cells compared to stromal, endo-
thelial, and monocyte populations. These findings corroborate earlier observations (Figure 5).
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Figure 8. Differential Expression of Mitochondria-Associated and Warburg Effect-Related Genes Across Cell
Types. (a,b) Expression patterns of mitochondria-associated genes; (c,d) Expression patterns of Warburg effect-
related genes.

3.7. Pseudotime Analysis

Pseudotime analysis was conducted using Monocle 3, which employs reverse graph embedding
to quantitatively estimate pseudotime and reconstruct trajectories of biological progression [PMID:
24658644, PMID: 28114287 , PMID: 28825705 ]. Initially, the function was used to identify cell trajec-
tories (Figure 9A). Subsequently, manually selected starting points allowed us to refine the trajectory
(Figure 9B). To explore metabolic changes along the trajectory, AUCell was used to calculate meta-
bolic enrichment scores based on a mitochondrial gene set (mtDNA-encoded genes) and a Warburg
effect-related gene set. In malignant cells, the mitochondrial gene (OXPHOS-related) score showed
an overall declining trend along the pseudotime trajectory, indicating high OXPHOS activity at the
trajectory’s origin that diminished over time. Conversely, the Warburg effect score increased in later
stages, suggesting a metabolic reprogramming from oxidative phosphorylation toward glycolysis

(Figure 9C and 9D).
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Figure 9. Single-Cell Trajectory Analysis. (a) Trajectory analysis of immune cells; (b) Refined pseudotime trajec-
tory; (c) Distribution of AUCell scores for the mitochondrial gene set; (d) Distribution of AUCell scores for the
Warburg effect gene set.

Further, the graph_test function was applied to identify genes that significantly varied along the
pseudotime trajectory. Among the nine model genes, six were identified as differentially expressed
(g-value < 0.0001) along the trajectory. Their dynamic expression patterns across different cell types
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are shown in Figure 10A, with corresponding UMAP visualizations in Figure 10B. These results
indicate that these genes may play crucial roles in cell state transitions and metabolic reprogramming,
reinforcing the concept of dynamic transcriptional changes at the single-cell level.
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Figure 10. Expression Dynamics of the Six Model Genes. (a) Expression trends along the trajectory; (b) Feature

plots of the six genes.

Finally, using the find_gene_modules function, co-expression module analysis was performed
on pseudotime DEGs, generating a file (Genes_Module.csv) detailing the composition of each mod-
ule. As shown in Figure 11 A, Modules 13, 7, and 14 exhibited the lowest expression in malignant
cells (dark blue), suggesting potential suppression—possibly involving tumor suppressor genes, cell
differentiation, or immune-related pathways—while these modules were most highly expressed in
mono/macro cells, implying roles in monocyte/macrophage functional regulation (e.g., inflammatory
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signaling). Modules 7 and 14 were most highly expressed in endothelial cells (dark red), suggesting
involvement in endothelial function, angiogenesis, or tumor microenvironment regulation. In con-
trast, Modules 9 and 16 were suppressed in endothelial cells (dark blue). In mast cells, Modules 14,
9, and 16 were highly activated, indicating possible roles in allergic responses, inflammatory modu-
lation, or angiogenesis.

Subsequently, average expression values for each cell type were calculated to construct a matrix,
and GSVA was employed to assess the distribution of metabolic pathway scores across cell types
(Figure 11 B). The results revealed that both Oxidative phosphorylation (OXPHOS) and Glycoly-
sis/Gluconeogenesis were significantly elevated in malignant cells, underscoring the critical role of
the Warburg effect in glioblastoma and suggesting the therapeutic potential of targeting metabolic
reprogramming.
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Figure 11. (a) Distribution of co-expression gene modules across different cell types; (b) Distribution of metabolic
pathway scores across cell types.

4. Discussion

Glioblastoma (GBM) is one of the most common and aggressive malignant gliomas in the central
nervous system, accounting for approximately 50% of all malignant brain tumors [5]. Despite recent
advances in treatment modalities —including surgical resection, radiotherapy, and combination ther-
apies such as temozolomide (TMZ)—overall survival (OS) remains dismal, with a 5-year survival rate
below 5% [5,6]. The high costs associated with treatment and care, frequent recurrences, and signifi-
cant neurological impairments not only impose a tremendous economic and psychological burden
on patients and their families but also strain healthcare systems [7,8]. Thus, identifying novel prog-
nostic markers and potential therapeutic targets is critical for the precision management of GBM. In
this context, extensive research has been conducted to elucidate the molecular mechanisms underly-
ing GBM, with tumor metabolic reprogramming emerging as a key factor in its development and
progression.

Recent studies have underscored the pivotal role of metabolic reprogramming in GBM, drawing
particular attention to mitochondrial function and its associated genes. Given their central roles in
cellular energy production, metabolic regulation, and signal transduction, aberrations in mitochon-
drial function and the dysregulation of related proteins have been linked to tumor proliferation, in-
vasion, and patient survival [9,10]. Therefore, further investigation into how mitochondrial proteins
affect clinical outcomes and tumor biology in GBM is of paramount importance for improving prog-
nostic assessments and identifying novel therapeutic targets.

In the present study, we analyzed GBM transcriptome data from public databases (TCGA and
CGGA) to perform differential expression and survival analyses, ultimately identifying 10 mitochon-
dria-associated genes significantly correlated with patient prognosis. Building on these findings, we
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employed LASSO and Cox regression analyses to construct a risk score model comprising 9 genes.
This model was rigorously validated in both internal and external cohorts. In all cohorts, patients
classified as high-risk exhibited significantly shorter overall survival compared to those in the low-
risk group, suggesting that the expression profile of mitochondria/metabolism-related genes can ef-
fectively stratify GBM prognosis. Moreover, multivariate Cox analyses that integrated clinical varia-
bles further demonstrated that both the 9-gene model and IDH mutation status serve as independent
prognostic factors, thereby enhancing the molecular-based framework for GBM prognostication.
Based on these results, we developed and validated a nomogram for survival prediction, which holds
promise as a decision-making tool for personalized treatment strategies in GBM.

A notable feature of tumor metabolic reprogramming is the preferential reliance on glycolysis
for energy production under aerobic conditions, a phenomenon known as the Warburg effect. GBM
cells typically exhibit the Warburg effect, relying on rapid aerobic glycolysis to generate ATP and
biosynthetic intermediates to support their high proliferation and invasive capacity [11]. Our enrich-
ment analysis of differentially expressed mitochondria-associated genes revealed a strong association
with the Warburg effect in GBM —a finding that was corroborated by subsequent single-cell analyses
[12]. Notably, pseudotime analysis of single-cell data from GBM showed that mitochondrial gene
scores (indicative of oxidative phosphorylation, or OXPHOS, activity) decline along the cellular tra-
jectory, suggesting that cells at the beginning of the trajectory exhibit high OXPHOS activity that
diminishes over time. In contrast, the Warburg effect score increased in later stages, indicating that
malignant cells may undergo metabolic reprogramming from a state primarily dependent on mito-
chondrial oxidative metabolism to one dominated by glycolysis. This metabolic shift likely promotes
tumor cell survival by reducing oxidative stress, evading apoptosis, and facilitating immune escape
and invasiveness, ultimately leading to poorer outcomes. We speculate that mutations in mitochon-
dria-associated genes may drive the Warburg effect by altering the metabolic landscape of GBM,
thereby promoting tumorigenesis and progression. Inhibiting this metabolic reprogramming may
reverse GBM cell dedifferentiation and serve as a potential therapeutic target. Indeed, prior studies
have provided evidence supporting this notion: for example, inhibiting pyruvate dehydrogenase ki-
nase (PDK) with dichloroacetate (DCA) forces pyruvate into the mitochondrial oxidative pathway,
partially reversing the Warburg metabolism, reducing the growth advantage of tumor cells, and en-
hancing their sensitivity to radiotherapy [13]. Moreover, DCA treatment has been shown to promote
the differentiation of glioma stem cells, thereby diminishing their stem-like properties [14].

Furthermore, the Warburg effect is closely intertwined with immune responses through its im-
pact on metabolic byproducts and the tumor microenvironment. High lactate levels and low pH can
suppress the function of antitumor immune cells such as T cells and dendritic cells while promoting
the polarization of macrophages (including microglia) toward an immunosuppressive M2 pheno-
type, further dampening the antitumor immune response [13]. Our single-cell data revealed pro-
nounced metabolic heterogeneity among various cell subpopulations. In particular, within the mon-
ocyte/macrophage population, oxidative phosphorylation-related gene expression was relatively up-
regulated, whereas the Warburg effect score was comparatively lower —possibly reflecting an adap-
tive compensatory mechanism in response to the glycolytic tumor microenvironment. Notably, the
gradual upregulation of genes such as MTHFD2, SSBP1, GSTK1, and ARMCX6 along the pseudotime
trajectory in monocyte/macrophage populations suggests that these genes may play roles in the dif-
ferentiation or functional transition of these cells, thereby shaping the local immune microenviron-
ment in GBM. Consequently, targeting these key genes might not only inhibit tumor metabolic re-
programming but also remodel the immune landscape, thereby improving therapeutic outcomes.

5. Conclusions

In summary, by integrating large-scale bulk transcriptome analyses (TCGA/CGGA) with single-
cell sequencing data, our study elucidates the critical role of mitochondria-associated genes in GBM
and highlights the profound impact of the Warburg effect on tumor biology and the immune micro-
environment. The mitochondria metabolism gene risk model developed herein offers novel insights
into GBM molecular subtyping and prognostic evaluation, and it holds promise for guiding person-
alized therapeutic decisions. The observed metabolic pathway differences among GBM subtypes sug-
gest that reclassifying patients based on tumor metabolic characteristics could enable more targeted
metabolic interventions. Moreover, our in-depth analysis of the interplay between the Warburg ef-
fect, tumor stemness, and immune responses provides fresh perspectives for immunotherapy,
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suggesting that targeting key metabolic genes may concurrently reverse tumor stem-like properties
and mitigate immune suppression, ultimately leading to improved treatment efficacy. Overall, our
findings offer important insights and a new framework for GBM molecular subtyping, prognostic
assessment, and the development of innovative combined metabolic and immune-targeted therapeu-
tic strategies.
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