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Abstract: Although the statistical methods of downscaling climate data have progressed 
significantly, the development of high-resolution precipitation products continues to be a challenge. 
This is especially true when interest centres on downscaling value over several study sites. In this 
paper, we report a new downscaling method termed the multi-site Climate Generative Adversarial 
Network (MSCliGAN), which can simulate annual maximum precipitation to the regional scale 
during the 1950-2010 period in different cities in Canada by using different AOGCM’s from the 
Coupled Model Inter-Comparison Project 6 (CMIP6) as input. Auxiliary information provided to 
the downscaling model included topography and land-cover. The downscaling framework uses a 
convolution encoder-decoder U-net network to create a generative network and a convolution 
encoder network to create a critic network. An adversarial training strategy is used to train the 
model. The critic/discriminator used Wasserstein distance as a loss measure and on the other hand 
the generator is optimized using a summation of content loss on Nash-Shutcliff Model Efficiency 
(NS), structural loss on structural similarity index (SSIM), and adversarial loss Wasserstein distance. 
Downscaling results show that downscaling AOGCMs by incorporating topography and land-
use/land-cover can produce spatially coherent fields close to observation over multiple-sites. We 
believe the model has sufficient downscaling potential in data sparse regions where climate change 
information is often urgently needed. 

Keywords: multi-site statistical downscaling; generative adversarial network; combination of 
errors; convolutional neural network; structural similarity index; Wasserstein GAN; extreme 
precipitation 
 

1. Introduction 

As communities adapt to changes in local weather extremes brought on by climate change, 
accessing the best and latest information available at locally relevant scales is essential. However, 
climate models typically operate at spatial scales out of step with hydrological, ecological, economic 
decision-making needs and must be downscaled to higher spatial resolutions. The use of statistical 
downscaling is widespread for climate model outputs, however there remains a shortage of methods 
that can downscale precipitation from Atmosphere-Ocean General Circulation Model (AOGCM) 
simulated precipitation to regional-scale gridded precipitation (Tryhorn et. al. 2011, Chaudhuri et. 
al., 2017). Precipitation information, especially extremes, is critical for flood modelling and mitigation 
(Hirabayashi et al. 2013). There is considerable intrinsic complexity in precipitation compared to 
other climate variables such as temperature or pressure. Precipitation is more dispersed in space and 
associations at various atmospheric scales (local, meso, synoptic) are more apparent in observed 
precipitation trends. It is extremely challenging to model such patterns using continuous functions 
used in conventional statistical downscaling methods, incorporating nonlinearities into downscaling 
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functions is seen as critically important if accurate representations are to be realized (Weichert and 
Burger 1998). The latest developments in machine learning (ML) approaches such as convolutional 
neural networks have started to tackle these long-standing problems (Shi et al. 2015). However, 
commonly used loss functions such as Mean Absolute Error (MAE) and Nash-Sutcliffe Loss (NS) 
optimize for overall simulation efficiency but neglect precipitation spatial structure; a crucial 
property if replicating observed local trends is a goal (Plouffe et al. 2015). Narrowly specified loss 
functions hinder the ability of machine learning models in downscaling, contributing to weak output 
of regional scale models (Zhang et al. 2006). 

In the context of climate change science, severe precipitation can lead to flooding, changes in 
hydrological morphology, and contribute to water pollution (Carpenter et al., 2018; Eekhout et al., 
2018; Raghavendra et al., 2010). In comparison to normal precipitation, extreme precipitation is 
unpredictable, ambiguously defined, and more fragmented in space, which is difficult to forecast 
with any certainty (Lee et al., 2017). Downscaling experiments have also found extreme precipitation 
to be challenging to reproduce at meaningful local scales (Castellano and DeGaetano, 2016). 
Anticipating changes in extreme precipitation remains an urgent climate information need in many 
regions of the world. 

Global Climate Models (GCMs) have been widely used to obtain climate change data under 
various scenarios to determine the potential impacts of climate change on hydrological processes in 
nature (Cho et al., 2016; Li et al., 2017). However, the native resolution of GCMs are too coarse which 
makes them not suitable for hydrological studies if used directly (Xu, 1999). To mitigate this problem 
downscaling techniques have evolved where large-scale atmospheric data given by AOGCMs are 
used along with regional scale observations to generate high-resolution realizations of the variable 
of interest at over a specified area (Chen et al., 2012). There are two primary types of downscaling 
methods, statistical and dynamical downscaling (Yhang et al., 2017). Statistical downscaling is more 
common in climate change impact studies due to its clear design methodology, computational ease 
and the ability to generate synthetic datasets of any desired length (Hidalgo et al., 2008; Maraun, D., 
et al. 2010; Trzaska, Sylwia & Schnarr, Emilie. 2014; Widmann et al., 2003). 

Popular statistical downscaling techniques include the transfer function method, weather 
pattern method, and stochastic weather generators (Kioutsioukis et al. 2008; Murphy et al. 2004; 
Wilby and Harris 2006). Linear regression was used frequently in the past to connect circulation 
factors with weather variables (Huth, 2002; Zorita and von Storch, 1999). However, these 
relationships are always complex and non-linear, making it hard to achieve acceptable downscaling 
results with linear relationships (Ghosh and Mujumdar, 2008). As a result, in recent years machine 
learning methods have been gaining popularity given their ability to model non-linear relationships 
between predictor and predictants (Chaudhary et al., 2019; Yi et al., 2018). 

Machine learning and data science methods have significantly expanded in various fields in 
recent years leading to application of tools in new areas and development of new domain-specific 
variants of existing computational methods. Convolutional neural network (CNN) modelling has 
become common due to lower computational requirements than the complex dense networks (LeCun 
et. al. 1998). There are a wide variety of CNN implementations including satellite image change 
detection (Wang et al. 2019), image segmentation (Ronneberger et. al. 2015), image recognition 
(Krizhevsky et. al. 2017). The approach used by CNNs for increasing image resolution (Dong et. al. 
2014) is an algorithm that is very close in some respects to downscaling of climate model outputs. 
The central question in these studies is simply, how do we detect and move representative information from 
one scale down to another scale? 

CNNs, which have seen widespread adoption for image processing applications in a variety of 
fields, cannot recognize the variability present in the results when trained through the general loss 
functions. This leads to the degradation in performance of CNNs when the training loss function 
cannot provide significant gradients to the parameters of the network. We believe that the 
development of appropriate loss functions is integral to application of CNNs (Zhao et al. 2016). 
Goodfellow et al. (2014) recommended the Generative Adversarial Training (GAN), in which a zero-
sum game is played between two networks and in recent years was commonly used in training deep 
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neural networks. This approach provides superior network training and can yield results that appear 
superficially like the truth and intuitively tackle the issue of gradients. 

In this paper we develop a new GAN downscaling approach which can downscale annual 
maximum rainfall from several AOGCMs to regional-scale gridded annual maximum rainfall at 
various sites. This has the potential therefore to develop regionally specific downscaling models 
incorporating local landcover and topography into the downscaling model. The following specific 
research objectives are tackled by this study; 
1. Develop a methodology to downscale large-scale precipitation, given by several AOGCMs, to 

regional-scale precipitation at multiple regions of interest by statistical downscaling using 
Convolution Neural Network and Generative Adversarial Training. 

2. Analyze the effect of input DEM and Land-use/ Land-cover on the simulation output. 
3. Evaluating the efficacy of the novel loss function that incorporates content loss, structural loss 

and adversarial loss that enhances the estimation of the downscaled precipitation’s global and 
regional quality. 

2. Methods 

2.1. Study Area and Datasets 

The model is developed for seven cities located in different regions of Canada. The locations of 
these cities are given in Figure 1. Individual location plots are shown in Figure S1. The salient features 
of these regions are summarized in Table 1. 

We used annual maximum daily precipitation as our target variable to establish a downscaling 
methodology. Annual maximum daily precipitation data from the NRCANMET daily gridded 
precipitation dataset (Hutchinson et al. 2009) were extracted for the period 1950-2010. Although grid 
data derived from Canada’s complex observation network density is not ideal validation data, these 
are the best available data for these regions and should reasonably capture regional trends. Wilby et 
al. (1999) and Wetterhall et al. (2005) addressed the properties of any predictor in statistical 
downscaling, (1) it should be simulated by GCMs with high reliability, (2) it can be easily accessed 
from the archives of GCM outputs, and (3) it has a strong correlation with the surface variables of 
interest (rainfall in the present case). GCMs simulated rainfall includes atmospheric dynamic 
information as well as knowledge about the impact of climate change on rainfall through various 
physical parameterizations. It encouraged us to choose the precipitation simulated by AOGCM as a 
predictor of the observed (i.e., gridded) precipitation. 

Table 1. Salient geographical and climatic features of the regions of interest. 

Name of City Area (sq. Km) Elevation (m) Population Temperature Range (oC)  
Average Monthly 

Precipitation Range (mm) 
Schefferville 39 513 213 −24.5 to 12.2 29.7 to 114.6  
Goose Bay 305.69 12 8109 −17.6 to 15.5  56.8 to 121.3 

Yellowknife 136.22 206 19,569 −25.6 to 17.0 11.3 to 40.8 
Edmonton 767.85 645 932,546 −12.1 to 16.2 12.0 to 93.8 

Calgary 825.56 1045 1,239,220 −7.1 to 16.2  9.4 to 94.0 
Saskatoon 228.13 481.5 246,376 −15.5 to 18.5 8.8 to 65.8 

Regina 179.97 577 215,106 −14.7 to 18.9 9.4 to 70.9 
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Figure 1. The locations of the cities are shown against Canada in red circles. 

This research included nine AOGCMs of the CMIP6 database (Table 1). Different AOGCMs have 
different grids and many of them are in Gaussian grids, making it difficult to view them in a single 
mathematical framework. We have interpolated precipitation from different AOGCMs to 10 km 
resolution grids specified in output to address this obstacle. Further, we used GEBCO (GEBCO 
Compilation Group, 2019) land and ocean terrain model as topographic input and 2010 Canada Land 
cover (Canada Centre for Remote Sensing, 2019) as LULC input to our model. Topography was 
interpolated to the input grids using a bi-quadratic interpolation function. Figure 2 shows the 
topography over 7 regions of interest. The LULC was resampled using dominant categories over the 
input grid. Figure 3 shows the dominant LULC grid over the 7 cities where we are building the 
downscaling model. 

Table 2. Features of different input AOGCMs. 

AOGCM Institution Grid Type 
Horizontal Dimension 

(Lon × Lat) 
Vertical 
Levels 

BCC ESM Beijing Climate Center T42 128 × 64 26 

CAN ESM5 
Canadian Centre for Climate Modelling and Analysis, 

Environment and Climate Change Canada T63 128 × 64 49 

CESM2 National Center for Atmospheric Research 0.9 × 1.25 
finite volume grid 

288 × 192 70 

CNRM CM6.1 Centre National de Recherches Meteorologiques T127 256 × 128 91 
CNRM ESM2 Centre National de Recherches Meteorologiques T127 256 × 128 91 
GFDL CM4 Geophysical Fluid Dynamics Laboratory C96 360 × 180 33 
HAD GEM3 Met Office Hadley Centre N96 192 × 144 85 

MRI Meteorological Research Institute, Tsukuba, Ibaraki 
305-0052, Japan 

TL159 320 × 160 80 

UK ESM1 Met Office Hadley Centre N96 192 × 144 85 
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Figure 2. Topography for (a) Schefferville, (b) Goose Bay, (c) Yellowknife, (d) Edmonton, (e) Calgary, 
(f) Saskatoon, (g) Regina. 
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Figure 3. Land-Use/Land-Cover for (a) Schefferville, (b) Goose Bay, (c) Yellowknife, (d) Edmonton, 
(e) Calgary, (f) Saskatoon, (g) Regina. 

2.2. Downscaling Method 

We developed a generating network 𝐺ఏಸ that can turn extreme precipitation AOGCM coarse 
resolution (PGCM) into extreme precipitate (Pobs) fine resolution at the regional level. Increasing 
resolution, bias correction and regional precipitation feature corrections are the technical challenges 
of this problem. The number of years for training y=1, …, n then the θG is obtained by minimizing the 
downscaling total loss function 𝑙஽; 𝜃෢ீ = ௔௥௚௠௜௡ఏಸ  ଵ௡ ∑ 𝑙஽(𝐺ఏಸ(𝑃 ஼ெ௬ ), 𝑃௢௕௦௬ )௡௬ୀଵ   (1)

We developed a weighted combination of many components for downscaling total loss. These 
elements are discussed later in details. 
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2.2.1. Adversarial Training 

As a discriminatory network (Goodfellow et al. 2014), Wasserstein GAN (WGAN) (Arjovsky et. 
al. 2017) is used in our context. The Earth-Mover (also called Wasserstein-1) distance W(q, p), which 
is informally defined as a minimum cost to transport mass to convert the distribution q into p (where 
the cost is mass times transportation distance), was approximated. Formally, the game between the 
generator 𝐺ఏಸ and the discriminator 𝐷ఏವ  is a minimax objective. The WGAN loss function is 
developed using the Kantorovich-Rubinstein [Villani 2008] duality to obtain; 𝑚𝑖𝑛𝐺ఏீ 𝑚𝑎𝑥𝐷ఏವ ∈ 𝐷 𝐸 ൣ𝐷ఏವ(𝑃௢௕௦)൧ − 𝐸 ቂ𝐷ఏವ ቀ𝐺ఏಸ(𝑃 ஼ெ)ቁቃ (2)

where, D is the set of 1-Lipschitz functions. To satisfy the Lipschitz constraint on the WGAN, 
Arjovsky et. al. (2017) propose clipping of the weights of the WGAN to ensure that the function lies 
within a compact space [−c, c]. The set of functions (discriminator under training) satisfying this 
constraint are subsets of the k-Lipschitz functions for some k which depends on c and the WGAN 
architecture. 

2.2.3. Downscaling Total Loss 

In our framework the Total loss is designed as a linear combination of 3-loss components: 
content loss, structural loss, adversarial loss. 𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑙𝑜𝑠𝑠 + 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑠𝑠 + 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑙𝑜𝑠𝑠 

Content Loss 

The Nash–Sutcliffe model efficiency coefficient (NSE) is widely used loss estimate which 
assesses the predictive ability of any hydrology model. We have taken (1-NSE) as content loss. 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝐿𝑜𝑠𝑠 = ∑ ቀீഇಸ൫௉ಸ಴ಾ೤ ൯ି௉೚್ೞ೤ ቁమ೙೤సభ∑ ቀ௉೚್ೞ೤ ିభ೙ ∑ ௉೚್ೞ೤೙೤సభ ቁమ೙೤సభ   (3)

This loss can take range 0 to ∞. A value of 0 loss means perfect match with the observation. The 
loss value 1 means that the model is as accurate as the average of the observed values. The loss greater 
than 1 signifies that the observed mean is a better predictor than the model. 

Structural Loss 

The overall low error cannot maintain the regional information common to precipitation at high 
resolution. We implemented a structural loss function to tackle this problem and preserve regional 
details. The luminance, contrast, and structure of two 2D fields are compared by the Structural 
Similarity Index (SSIM) (Wang et al. 2003). This matric was compared to preserve the regional 
precipitation structure on a fine scale. Our loss was described by (1-SSIM)/2 based on structural 
dissimilarity. 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝐿𝑜𝑠𝑠 = 12 (1 − 𝑆𝑆𝐼𝑀) = 12 ൫1 − 𝑙௜ఈ೔𝑐௜ఉ೔𝑠௜ఊ೔൯ (4)𝛼௜, 𝛽௜, and 𝛾௜ are weights of luminance, contrast, and structure components respectively at scale i. 
We used α=β=γ=1. For any given scale the luminance comparison is given by; 𝑙 = ଶఓ೚್ೞఓಸା௖భఓ೚್ೞమ ାఓಸమ ା௖భ  (5)

The contrast comparison is given by; 𝑐 = ଶఙ೚್ೞఙಸା௖మఙ೚್ೞమ ାఙಸమା௖మ  (6)

and the structure comparison is given by; 
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𝑠 = ఙ೚್ೞ,ಸା௖యఙ೚್ೞఙಸା௖య  (7)

where 𝜇௢௕௦ and 𝜇ீ are the mean of observation and generated values respectively, 𝜎௢௕௦ and 𝜎ீ are 
standard deviation of observation and generated values respectively, and 𝜎௢௕௦,ீ is the co-variance 
between observation and generated values. 𝑐ଵ , 𝑐ଶ , and 𝑐ଷ  are small constants to stabilize the 
divisions with weak denominator. We used 𝑐ଵ = (𝑘ଵ𝐿)ଶ, 𝑐ଶ = (𝑘ଶ𝐿)ଶ, 𝑐ଷ = ௖మଶ  where 𝑘ଵ = 0.01, 𝑘ଶ =0.03 and 𝐿 is the dynamic range of the input which we have taken as 100. We used a scale of 3x3 
windows to define SSIM. 

Adversarial Loss 

Adversarial loss is given by the approximate earth moving distance between the observation 
and generator output. It is given by; 

 𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐷ఏವ ቀ𝐺ఏಸ(𝑃 ஼ெ)ቁ (8)

2.2.4. Networks 

Generative network is developed into a U-net (Ronneberger et al. 2015) convolution-style 
encoder decoder with skipped link. LeakyReLu with momentum 0.2 was used for activating the 
hidden layers and for downsampling. In the last generator layer, ReLu has been used to provide 
positive output which is important for precipitation simulation. 

A convolution encoder with a strided convolution downsampler is used as the discriminative 
network. We used LeakyReLu with momentum 0.2 as the activation function in the hidden layers 
and output layer is activated by a linear function. The approximate earth moving distance 
(Wasserstein distance) between the observed and simulated precipitation is calculated by the 
discriminator. We have built a compact support for layer weights by cutting them between [-0.1, 0.1] 
following recommended parameterization for WGAN models. 

The schematic for the networks and training procedure are shown in Figure 4. The black arrows 
indicate the flow of data and red arrows indicate the feedback of objective functions to the models in 
terms of optimized parameters. 
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Figure 4. Schematic of the Generative Adversarial Network. 

2.2.5. Training Details 

The training was done on the 4000 GPU NVIDIA Quadro. Input / output data rescaling were 
avoided in any way and the model was able to learn and evolve the climate signal present in the 
various model datasets and observations. Optimization of the generator was done using the Linf norm 
(Adamax) (Ruder et. al. 2016) Adam gradient-base optimization, with initial learning rate 0.02 and 
decay 0.5. We wanted the discriminator to calculate the gradient in the current iteration based on an 
adaptive window and did not want to use the previous gradient data generator results. We used the 
Adam (Adadelta) moving window update (Zeiler et. al. 2012) to train the Wasserstein distance 
computer, discriminator. The model was trained for 15,000 iterations which are more than sufficient 
to simulate high-resolution realistic precipitation patterns. With just 10,000 iterations, even the error 
stabilized. 

3. Results 

The temporal median for different AOGCMs is shown in figures S2-S10. In these plots (inter-
model uncertainty) the diverse nature of spatial patterns and variabilities in their magnitudes is 
prominent (Chen et. al. 2014). The correction of these biases (or differences) with respect to the 
observed patterns is a prominent objective in downscaling these precipitations over any location 
(Manzanas et. al. 2018). An ideal downscaling method not only makes the realization of any climatic 
variable to higher resolution at regional level, but these patterns and magnitude should also be 
corrected to produce the spatial and temporally coherent observed climate distribution. 

Table 3 shows the sensitivities of different model input and loss functions. The model is run with 
different combinations and the minimum error statistics in last 50 iterations are shown in the table. 
The model with no LULC and DEM as input shows NS of 0.0020 and DSSIM of 0.0118, with only 
DEM input the NS is 0.0013 and DSSIM is 0.0098, with only LULC as input the NS is 0.0018 and 
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DSSIM is 0.0099, and with both DEM and LULC as input the NS is around 0.0012 and DSSIM is 
around 0.0098. This signifies that the DEM is a major driver for regional climate. The LULC may not 
be as significant as the DEM in altering the extreme rainfall. We speculate the non-time varying input 
LULC data can also attribute to its lower performance. However, due to unavailability of quality 
LULC data, we could not test that hypothesis. Furthermore, we ran the same model with both LULC 
and DEM as input but with MAE and NS as loss function. The resultant NSs are 0.0030 and 0.0021, 
respectively and DSSIMs are 0.0355 and 0.0517, respectively. This signifies the superiority of the total 
error formulation compared to the traditional point-based loss functions. 

To understand the effect of the site-specific DEM and LULC in details we analyzed the Mean 
Absolute Percentage Error (MAPE) for different input types at different sites in Table 4. The result 
shows the heterogeneous loss relative to the location-specific geographic attributes. The inclusion of 
the DEM as one of the inputs improved the loss estimate at all the sites. The average MAPE over all 
the sites decreased from 2.64% to 1.49%. However, even though the average MAPE decreased from 
2.64% to 1.78% which is consistent for all the sites except one, the response of the LULC input 
deteriorated over Yellowknife. At several sites, the inclusion of the LULC deteriorated the results 
compared to DEM only input (Table 4). It has improved the loss estimate where majority of the LULC 
are expected to the constant in time such as Goose Bay or Yellowknife which are located on water 
bodies and Calgary which is located in a transition zone between coniferous high mountain forest to 
the west and prairie plains to the east. However, at other sites removal of forest cover or expansion 
of urban land cover might create dynamic interactions between climate and landcover that conflicts 
with the assumption of static LULC as input used in the model impacting model performance The 
further verification of this hypothesis is out of scope of this paper and due to unavailability of the 
long-term LULC data for these regions, we could not verify this hypothesis. 

Table 3. Sensitivities of different model inputs and settings to the output of the model after 10,000 
iterations. We have taken the minimum statistics of the last 50 iterations. 

Model setting NS DSSIM 
No LULC and DEM input 0.0020 0.0118 

Only DEM input 0.0013 0.0098 
Only LULC input 0.0018 0.0099 

LULC and DEM inputs 0.0012 0.0098 
MAE loss function with LULC and DEM inputs 0.0030 0.0355 
NS loss function with LULC and DEM inputs 0.0021 0.0517 

Table 4. Effect of different types of inputs on the simulation performance. 

 No LULC and 
DEM inputs Only DEM input Only LULC input 

Both LULC and 
DEM inputs 

Schefferville 2.49 0.90 1.30 1.04 
Goose Bay 3.12 1.21 1.17 0.93 

Yellowknife 3.14 2.76 3.84 1.78 
Edmonton 2.45 1.10 1.30 1.31 

Calgary 2.39 1.89 1.86 1.75 
Saskatoon 2.37 1.18 1.58 1.23 

Regina 2.52 1.22 1.41 1.36 
Average 2.64 1.46 1.78 1.34 

In our finalized simulation we discarded the initial 1000 iteration recording as a spin up of the 
model and showed 1000 to 15,000 model diagnostics in Figure 5. Figure 5a shows the total loss of the 
downscaling. Notice, the error almost stabilizes after 10,000 iterations. We describe the minimum of 
last 50 iterations here. The total error after 15,000 iterations is around 0.013. Considering this is a 
combination of 3 types of errors, (i.e., adversarial error, content error, and structural error), it does 
not have any meaningful unit. Figure 5b shows the content loss almost stabilized around a value 
0.0012 after 15,000 iterations. Figure 5c shows the structural loss almost stabilized around a value of 
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0.007. However, the adversarial loss in Figure 5d keeps on increasing after 15,000 iterations has a 
value of 0.0054. This signifies the discriminator can still resolve the differences between the observed 
and predicted precipitation patterns. Figure 5e shows the discriminator error. It also keeps on 
increasing, signifying good performance of the generator. However, the loss of the discriminator 
0.0061 is higher than the adversarial error. As an extra diagnostic we also tracked widely used loss 
metric mean absolute error. Figure 5f shows the trace of mean absolute error which stabilized around 
a value of 0.29 mm/day after 15,000 iterations. 

 

Figure 5. (a) Total Loss of training, (b) Content Loss, (c) Structural Loss, (d) Adversarial Loss, (e) 
Discriminator Loss, (f) Mean Absolute Error of the training. 

Figure 6 and 7 show the temporal median of observed (Figure 6) and downscaled (Figure 7) 
annual maximum precipitation. The regional patterns are well captured by the model. Notice, the 
spread of high rainfall around the cities (middle point of the region of interest). We presume this is 
an artifact of the interpolation method used to create the gridded precipitation data. This effect is 
prominent for the regions where the station density is especially low, (e.g., Yellowknife) (Figure 6c). 
However, the simulated rainfall can pick up this artefact as well regardless of the somewhat 
questionable accuracy of the precipitation around these regions. 
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Figure 6. Median observed annual maximum daily precipitation for (a) Schefferville, (b) Goose Bay, 
(c) Yellowknife, (d) Edmonton, (e) Calgary, (f) Saskatoon, (g) Regina. 

We calculated several error diagnostics of the downscaling performance to help us in 
understanding the regional, topographic, LULC effects on downscaling. Figure 8 shows the temporal 
mean absolute percent error. The maximum error is around 6%, however this error is mostly confined 
to the north-eastern part of the Yellowknife which may be attributed to the uncertain land-cover and 
south-western part of Calgary where the region has more variable topography. We think this is due 
to the interaction of orographic or land cover features in this region attributed to this high percent 
error. Figure S11 shows the temporal correlation between the observed and downscaled 
precipitation. The minimum correlation is 0.95 which is well beyond the acceptable limit. However, 
like the error behavior this low correlation is concentrated over the north-eastern part of Yellowknife. 
For other regions, the minimum correlation is more than 0.99. Figure S12 shows the p-values of the 
Kolmogorov-Smirnov test for equivalency of temporal distribution of observed and downscaled 
annual maximum. The plots indicate that we cannot reject the equivalency of the distributions 
between the observed and downscaled (null hypothesis) at 90% confidence limit for most of the 
regions apart from a small region in the south-western Calgary attributed to its orographic features 
and few other disjointed small regions. However, we think the model should be able to overcome 
this problem as well with extended training periods. 
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Figure 7. Median downscaled annual maximum daily precipitation for (a) Schefferville, (b) Goose 
Bay, (c) Yellowknife, (d) Edmonton, (e) Calgary, (f) Saskatoon, (g) Regina. 
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Figure 8. Mean Absolute Percentage Error between downscaled and observed precipitation for (a) 
Schefferville, (b) Goose Bay, (c) Yellowknife, (d) Edmonton, (e) Calgary, (f) Saskatoon, (g) Regina. 

4. Discussion 

The modeling results presented here demonstrate that our downscaling methodology can 
effectively downscale AOGCM precipitation extremes to a regional scale product. This methodology 
is a novel extension of a recently developed downscaling computational framework based on GAN. 
In this paper we extend this new framework by incorporating site-specific covariates that describe 
localized information about the downscaling relationship. Further, the use of multiple loss functions 
was found to have a significant impact on downscaling results across the domains investigated here. 

The key conclusions from our study are summarized as follows. Firstly, the MSCliGAN 
framework can utilize diverse information present in different AOGCM simulations, topography, 
and land-use/land-cover to create a spatially coherent field close to observation data. The approach 
is similar in concept to Reliability Ensemble Averaging (REA) conceptualized by Girogi et. al., 2001 
using a CNN and adversarial training context for multiple sites. Our model demonstrates good 
performance for downscaling extreme precipitation which is generally considered less predictable 
than mean climate/precipitation (Haylock et. al. 2006; Frei et al. 2006; Hundecha et. al. 2008). 
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The use of topography and LULC ensure the embedded regional characteristics of the 
precipitation and can demonstrate the struggles of the models over the regions of diverse 
topography. Apparent interactions of LULC are also prominent in the model output. Topography 
was found to be the most important driver for regulating regional extreme precipitation patterns. The 
importance of LULC is somewhat inconclusive due to unavailability of good quality time varying 
LULC data. The SSIM index enabled us to get the probing ability into the model regional 
characteristics and proves that the only point-based error functions which are popular in traditional 
statistical downscaling, are not sufficient to reliably reproduce the regional characteristics. The use 
of total loss function which is a summation of content, structural, and adversarial losses can lead to 
higher quality downscaled products. The adversarial loss can provide a justifiable gradient to the 
weight optimization in cases where traditional loss functions fail and oscillates in near convergence 
variabilities. 

In order to further investigate this approach, we should use time-varying LULC as input and 
estimate its sensitivity with respect to simulation performance. The current generator architecture is 
not efficient in a sense that it requires the input AOGCM precipitation to be interpolated to the output 
grid. It is possible develop a more efficient architecture where the input will start at its native 
resolution and subsequently get finer to reach the target resolution. We think by incorporating static 
inputs such as topography and LULC at different resolution, this will result in more structurally 
realistic simulation. More research is needed to understand the structural error. Understanding and 
devising more indices such as snow water equivalent obtained from passive microwave sensing 
would enable us to understand the regional structures of the climatic variables, how the static 
topography and LULC interact with them and thus would improve the subsequent simulation. 
Another, research direction would be improving the ML-techniques to incorporate the time 
dimension. In the current approach the annual maximum daily rainfall is treated as temporally 
independent samples. Incorporation of the temporal dimension in the simulation would thus 
produce more realistic results. 

These results offer significant potential for fields investigating the impacts of climate change and 
climate processes. The mismatch between the scales of AOGCMs and spatial scales at the level of 
impacts (e.g., hydrological, ecological, economic), makes it difficult to assess direct relationships and 
outcomes. Downscaling methods help bridge this breach by making climate model information more 
meaningful and useful to scientists working on a more localized geographical scale across disciplines. 
Incorporating topographic, land use-land cover information, and local structure of the variable of 
interest in the training of CNN-based downscaling models, this study reveals that observational 
gridded data for maximum yearly rainfall are replicated in several region of interest in Canada, with 
various level of collected station data and where climate change information is very important. To 
benefit the scientific community more widely, further work is needed to develop and evaluate the 
MSCliGAN modelling framework in different geographical and thematic contexts. 
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