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Abstract

Long-term time series forecasting (LTSF) remains challenging, as models must capture long-range
dependencies and remain robust to noise accumulation. Traditional recurrent architectures, such
as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM), often suffer from
instability and information degradation over extended horizons. To address these issues, we propose
the Kalman-Optimal Selective Long-Term Memory (KOSLM) model, which embeds a Kalman-optimal
selective mechanism driven by the innovation signal within a structured state-space reformulation
of LSTM. KOSLM dynamically regulates information propagation and forgetting to minimize state
estimation uncertainty, providing both theoretical interpretability and practical efficiency. Extensive
experiments across energy, finance, traffic, healthcare, and meteorology datasets show that KOSLM
reduces mean squared error (MSE) by 10–30% compared with state-of-the-art methods, with larger
gains at longer horizons. The model is lightweight, scalable, and achieves up to 2.5× speedup over
Mamba-2. Beyond benchmarks, KOSLM is further validated on real-world Secondary Surveillance
Radar (SSR) tracking under noisy and irregular sampling, demonstrating robust and generalizable
long-term forecasting performance.

Keywords: long-term time series forecasting; LSTM; state-space model; Kalman Optimality; selective
memory; robust prediction; SSR tracking

1. Introduction
Long-term time series forecasting (LTSF) aims to predict future values over extended horizons

based on historical observations. Accurate long-range forecasts are critical for applications such as
energy scheduling, climate modeling, financial planning, traffic management, and healthcare resource
allocation. LTSF presents unique challenges: capturing long-range dependencies, mitigating error
accumulation, and adapting to non-stationary temporal dynamics [1].

Traditional recurrent architectures, including Recurrent Neural Networks (RNNs) [2] and Long
Short-Term Memory (LSTM) networks [3,4], often struggle with long sequences due to vanishing or
exploding gradients [5]. While LSTM gates alleviate some of these issues, their heuristic design lacks
explicit structural constraints derived from a principled optimality criterion, potentially leading to
suboptimal memory retention over extended horizons.

The Kalman filter (KF) [6] provides optimal state estimation under Gaussian noise [7]. Recent
studies have explored integrating KF with LSTM to improve the accuracy of time-series forecasting.
Representative approaches include: (i) Deep Kalman Filters [8], which parameterize the state-transition
and observation functions of KF using LSTM; (ii) KalmanNet [9], which employs an LSTM to learn
residual corrections to the Kalman gain under a known KF model; and (iii) uncertainty-aware LSTM–KF
hybrids [10], which estimate the covariance or uncertainty structures of KF through recurrent dynamics.
However, these approaches generally maintain a loose coupling between LSTM and KF — they do not
embed Kalman-inspired feedback directly into the internal gating dynamics of LSTM
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Recently, selective state space models (S6) [11,12] have demonstrated efficient sequence modeling
with linear-time complexity. By dynamically modulating SSM’s parameters based on the input,
they can filter task-irrelevant patterns while retaining critical long-term information. This selective
modulation property motivates revisiting LSTM gates from a state-space perspective, into which
Kalman-inspired feedback can be injected, thereby endowing the gating mechanism with Kalman-
optimal structural constraints.

In this work, we propose the Kalman-Optimal Selective Long-Term Memory (KOSLM) model,
which establishes a context-aware feedback pathway that optimally balances memory retention and
information updating, providing both theoretical interpretability and practical efficiency.

Our main contributions are as follows:

• State-space reformulation of LSTM: We formalize LSTM networks as input- and state-dependent
state space models (SSMs), where each gate dynamically parameterizes the state-transition
and input matrices. This framework provides a principled explanation of LSTM’s long-term
memory behavior.

• Kalman-optimal selective gating: Inspired by the Kalman filter and selective SSMs, we introduce
a Kalman-optimal selective mechanism in which the state-transition and input matrices are
linearly modulated by a Kalman gain learned from the innovation term, establishing a feedback
pathway that minimizes state estimation uncertainty.

• Applications to real-world forecasting: KOSLM consistently outperforms state-of-the-art base-
lines across long-term time series forecasting (LTSF) benchmarks in energy, finance, traffic,
healthcare, and meteorology, achieving 10–30% lower mean squared error (MSE) and up to
2.5× faster inference compared with Mamba-2. In real-world Secondary Surveillance Radar
(SSR) tracking under noisy and irregular sampling, KOSLM demonstrates strong robustness and
generalization ability.

By bridging heuristic LSTM gating with principled Kalman-optimal estimation, KOSLM provides
a robust, interpretable, and scalable framework for long-term sequence modeling, offering both
methodological novelty and practical forecasting utility.

2. Background and Theory
2.1. LSTM Networks

RNNs model sequential data through recursive temporal computation. However, traditional
RNNs often suffer from vanishing and exploding gradients when capturing long-term dependencies.
The LSTM network [3] addresses this issue by introducing gating mechanisms that regulate the flow
of information over time. The network structure of the LSTM neuron is shown in Figure 1.

Each LSTM unit maintains a cell state Ct that carries long-term information and a hidden state Ht

that provides short-term representations. The cell state is updated according to:

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t, (1)

where Ft, It, and Ot denote the forget, input, and output gates, respectively. These gates are nonlinear
functions of the current input xt and the previous hidden state Ht−1. The final output is obtained as:

Ht = Ot ⊙ tanh(Ct). (2)

This gating mechanism allows the model to selectively retain or discard information, mitigating
gradient degradation. However, the gates are learned heuristically through data-driven optimization
rather than derived from an explicit structural optimality constraint, making the LSTM sensitive to
noise and unstable for long-term dependencies.
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Figure 1. Structure of the LSTM network

2.2. State Space Models
2.2.1. Selective State Space Models

S6 are a recent class of sequence models for deep learning that are broadly related to RNNs and
classical SSMs. They are inspired by a particular system (Equation (3)) that maps a 1-dimensional
function or sequence x(t) ∈ R → y(t) ∈ R through an implicit latent state h(t) ∈ RN :

ht = Aht−1 + Bxt, (3a)

yt = Mht. (3b)

These models integrate the SSM described above into deep learning frameworks and intro-
duce input-dependent selective mechanisms (see Appendix A for a detailed discussion), achieving
Transformer-level modeling capability with linear computational complexity.

The theoretical connections among LSTM, KF, and SSM provide the foundation for constructing a
unified Kalman-optimal selective memory framework.

2.2.2. Kalman Filter

The KF [6] is a classical instance of the state-space model, providing the minimum mean-square-
error (MMSE) estimate of hidden system states under noisy observations. The system dynamics are
expressed as:

ht = Aht−1 + wt, wt ∼ N (0, Qt), (4a)

zt = Mht + vt, vt ∼ N (0, Rt), (4b)

where A and M are the state transition and observation matrices; wt and vt denote process and
observation noise with covariances Qt and Rt, respectively. Note that the observation zt can be
regarded as the input xt in the SSMs.

At each time step, the KF performs two operations: prediction and update. The prediction step
estimates the prior state:

ĥ−t = Aĥt−1, (5)
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while the update step refines this prediction using the observation zt:

Kt = P̂−
t MT(MP̂−

t MT + Rt)
−1 (6)

ĥt = ĥ−t + Kt(zt − Mĥ−t ) (7)

Here, Kt is the Kalman gain, which minimizes the posterior estimation error covariance. It de-
termines how much new information (the innovation term zt − Mĥ−t ) should be incorporated into the
updated state. This principle of optimal selective information integration forms the theoretical foun-
dation for the innovation-driven gating design proposed later. A detailed justification for interpreting
the Kalman gain as a prototype of dynamic selectivity is provided in Appendix B.1

3. Proposed Method
3.1. Reformulating LSTM as a State-Space Model

Following the LSTM formulation in Equation (1), the LSTM cell can be equivalently refor-
mulated as a time-varying SSM, where the cell state Ct evolves under nonlinear, input- and
state-dependent dynamics:

Ct = AtCt−1 + Btzt, (8)

Here, zt serves as the observation in the KF (corresponding to the input xt in the SSM and LSTM),
and the matrices At and Bt are determined by the forget gate Ft and input gate It, respectively. A
detailed derivation of this LSTM-to-SSM reconstruction, including the mapping of gating mechanisms
to state-space parameters, is provided in Appendix B.2.

3.2. Kalman-Optimal Selectivity via Innovation-Driven Gain

We introduce the innovation term from the KF:

Innovt = zt − Mt At−1Ct−1, (9)

which measures the discrepancy between the observation input zt and the predicted state based on
the previous cell state Ct−1, serving as a real-time correction signal between model prediction and
actual measurement.

In classical KF, this innovation drives the computation of the Kalman gain Kt (Equation (6)), which
regulates the incorporation of new information and the retention of prior state during the update step.
In KOSLM, rather than explicitly solving the Riccati recursion [13], we learn a functional mapping:

Kt = ϕ(Innovt; θϕ), (10)

where ϕ(·) is a lightweight neural module implemented as a two-layer MLP with sigmoid activation,
parameterized by θϕ. The use of the sigmoid ensures that the estimated gain Kt ∈ (0, 1), maintaining
physical interpretability as an adaptive weighting coefficient and preventing numerical instability.

The learned gain dynamically regulates the trade-off between prior memory and new information,
yielding a learnable yet principled mechanism for Kalman-optimal selectivity. The bounded output
range of Kt further stabilizes the state-space update and constrains divergence during long-horizon in-
ference. Appendix B.3 provides the theoretical derivation demonstrating that the innovation term serves
as a sufficient statistic for learning the Kalman gain. Appendix B.4 further presents controlled experi-
ments confirming that the learned gain accurately approximates the oracle Kalman gain across various
(Q, R) regimes (Table A1). These results jointly establish the theoretical and empirical foundation for
embedding Kalman-optimal selectivity into deep learning models.

We then define the state-space evolution as:

At = (I − Kt Mt)A, Bt = Kt, (11)
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where A is the base state transition matrix, serving as a learnable parameter of the model.
The KOSLM network architecture is illustrated in Figure 2, mirroring the classical Kalman update

while maintaining differentiability and learnability.

Element-wise Op Copy Concat

 

FC Layer with 
Activation

Figure 2. Unfolded KOSLM network layer. The D-dimensional input xt is dynamically coupled with the
N-dimensional hidden state Ht−1 and mapped to the output Ht through the higher-dimensional cell state Ct ∈ RT .
Compared to the heuristic forget and output gates of the classical LSTM, our mechanism introduces Kalman-
optimal constraints by parameterizing SSM parameters (At, Bt) based on the innovation term.

3.3. Structural Overview of KOSLM

The KOSLM cell preserves the computational efficiency of a standard LSTM while embedding a
Kalman-inspired feedback loop. At each timestep, the operations are:

1. Initialization: The matrix A is initialized following S4D-Lin and for the real case is S4D-Real [14],
which is based on the HIPPO theory [15]. These define the n-th element of A as − 1

2 + ni and
−(n + 1) respectively;

2. Compute the innovation: Innovt = zt − Mt At−1Ct−1;
3. Estimate the Kalman gain: Kt = ϕ(Innovt);
4. Update state transition matrices: At = (I − Kt Mt)A, Bt = Kt;
5. Propagate the hidden state: Ct = AtCt−1 + Btzt;
6. Compute the output hidden representation: Ht = MtCt.

To further clarify the conceptual and structural differences between KOSLM and existing Kalman-
based neural architectures, Table 1 summarizes a direct comparison with the KalmanNet [9].
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Table 1. Core Structural Comparison between KalmanNet and KOSLM.

Aspect KalmanNet KOSLM (Ours)

Core idea

Strictly follows the classical KF
architecture (§2.2.2); the neural
network learns to correct the

Kalman gain KKF
t under partially

known linear dynamics.

Reinterprets LSTM gating as a
Kalman-optimal state estimation
problem; state estimation does

not strictly adhere to the KF
equations, but directly learns Kt

from the innovation term.

System dynamics

Assumes fixed parameters
(A, M, Q, R); suitable for systems
with known or partially known

dynamics.

Learns (At, Bt, Mt) from data; A
is a learnable parameter matrix;
fully adaptive to nonlinear and
nonstationary environments.

Form of gain
Kt = KKF

t + f (st; θ f ) — learns a
residual correction to the

classical Kalman gain.

Kt = ϕ(Innovt; θϕ) — directly
learns the gain function from the

innovation.

Gain network input
st = [ĥt|t−1, zt − Mĥt|t−1] — uses

both predicted state and
innovation as inputs.

Innovt = zt − Mt At−1Ct−1 —
relies solely on the innovation

signal for gain computation (see
Appendices B.3 and B.4, which

prove its sufficiency).

Output role Outputs a residual correction
∆Kt added to KKF

t .

Outputs Kt and integrates gain
estimation into the state

transition: At = (I − Kt Mt)A,
Bt = Kt, forming a unified

recurrent–estimation pathway.

System dependency
Requires partial knowledge of

(A, H, Q, R) for baseline Kalman
computation.

Fully data-driven; no analytical
Kalman gain or explicit system

parameters required.

Theoretical interpretation Neural residual learning to
compensate model mismatch.

Innovation-driven dynamic
selectivity that enforces

Kalman-optimal information
update behavior.

3.4. Theoretical Interpretation

Under linear–Gaussian assumptions and with a sufficiently expressive mapping ϕ, the learned
gain Kt converges to the oracle Kalman solution. Consequently, KOSLM inherits the nonlinear
expressive power of LSTM while achieving the minimum-variance estimation property of the Kalman
filter in its linear regime. This leads to improved stability and robustness, particularly in long-horizon
or noisy sequence modeling.

3.5. Practical Advantages

KOSLM offers several practical benefits:

• Robustness: The feedback structure mitigates error accumulation and improves performance
under noise or distributional shifts.

• Efficiency: With only 0.24M parameters, KOSLM achieves up to 2.5× faster inference than
Mamba-2, while maintaining competitive accuracy.

• Versatility: The model generalizes across diverse domains, from energy demand forecasting to
radar-based trajectory tracking.

4. Results
This section provides a comprehensive evaluation of the proposed KOSLM model through

large-scale long-term forecasting benchmarks (§4.1), component ablation studies (§4.2), efficiency
assessments (§4.3), and a real-world radar trajectory tracking case study (§4.4). The experimental
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analyses collectively aim to validate both the predictive accuracy and robustness of KOSLM across diverse
and noisy temporal conditions.

4.1. Main Experiments on Benchmark Datasets

To examine the capability of KOSLM in modeling long-range dependencies and maintaining
stability over extended forecasting horizons, we conduct systematic experiments on nine widely used
real-world datasets covering domains such as traffic flow, electrical load, exchange rate, meteorology,
and epidemiology. The datasets vary in frequency, dimensionality, and temporal regularity, providing
a comprehensive benchmark for assessing model generalization.

Table 2. Details of benchmark datasets used in our experiments.

Dataset Frequency # Features Time Steps Time Span

ETTh1 1 hour 7 17,420 2016–2017
ETTh2 1 hour 7 17,420 2017–2018
ETTm1 15 minutes 7 69,680 2016–2017
ETTm2 15 minutes 7 69,680 2017–2018

Exchange 1 day 8 7,588 1990–2010
Weather 10 minutes 21 52,696 2020

Electricity 1 hour 321 26,304 2012–2014
ILI 7 days 7 966 2002–2020

Traffic 1 hour 862 17,544 2015–2016

4.1.1. Dataset Details

We summarize the datasets used in this study as follows. Weather [16] contains 21 meteorological
variables (e.g., temperature and humidity) recorded every 10 minutes throughout 2020. ETT (Electricity
Transformer Temperature) [17] includes four subsets: two hourly-level datasets (ETTh1, ETTh2) and
two 15-minute-level datasets (ETTm1, ETTm2). Electricity [18], derived from the UCI Machine
Learning Repository, records hourly power consumption (kWh) of 321 clients from 2012 to 2014.
Exchange [19] comprises daily exchange rates among eight countries. Traffic [20] consists of hourly
road occupancy rates measured by 862 sensors on San Francisco Bay Area freeways from January 2015
to December 2016. Illness (ILI) dataset [21] tracks the weekly number of influenza-like illness patients
in the United States. Table 2 summarizes the statistical properties of all nine benchmark datasets. All
datasets are divided into training, validation, and test subsets with a ratio of 7:1:2.

4.1.2. Implementation Details

All models are trained using the Adam optimizer without weight decay. The learning rate is
selected from [1 × 10−3, 1 × 10−2] via grid search. Batch size is set to 32 by default, adjustable up to
256 depending on GPU memory. Training is performed for 15 epochs, and the checkpoint with the
lowest validation loss is used for testing. Experiments are repeated five times, and average results
are reported. All models adopt a 2-layer architecture with hidden dimension 64. We use PyTorch’s
default weight initialization, and no additional regularization (dropout or gradient clipping) is applied.
All experiments are implemented in PyTorch 2.1.0 with Python 3.11 on NVIDIA RTX 4090 GPUs.
Random seeds for Python, NumPy, and PyTorch are fixed to ensure reproducibility.

The gain function ϕ is implemented as a one-layer MLP with hidden dimension 64 and sigmoid
activation, followed by a linear projection to the gain matrix Kt. The same ϕ network is shared across
all timesteps to ensure parameter consistency.

4.1.3. Experimental Setup

All experiments follow the evaluation protocol established in xLSTMTime [22], adopting pre-
diction horizons of T ∈ {96, 192, 336, 720} for standard datasets and T ∈ {24, 36, 48, 60} for the
weekly-sampled ILI dataset. We compare the proposed KOSLM with nine recent state-of-the-art base-
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lines that represent diverse architectural paradigms, spanning state-space, recurrent, attention-based,
and linear modeling frameworks:

• SSM-based: FiLM [23], S-Mamba [24];
• LSTM-based: xLSTMTime [22];
• Transformer-based: FEDformer [25], iTransformer [26], Crossformer [27];
• MLP/TCN-based: DLinear [28], PatchTST [29], TimeMixer [30].

This comprehensive selection enables a fair and systematic comparison across diverse sequence
modeling paradigms.

4.1.4. Overall Performance

Tables 3 and 4 report the long-term multivariate forecasting results on nine real-world datasets,
evaluated by mean squared error (MSE) and mean absolute error (MAE). Across nearly all datasets and
prediction horizons, the proposed KOSLM achieves the best or near-best performance, highlighting
its superior generalization and robustness under diverse temporal dynamics.

• Consistent superiority across domains: KOSLM outperforms all competing baselines, particu-
larly under complex and noisy datasets such as Traffic, Electricity, and ILI. In terms of average
MSE reduction, KOSLM achieves relative improvements of +31.96% on Traffic, +13.37% on Elec-
tricity, +5.47% on Exchange, +11.26% on Weather, and +22.04% on ILI. Moreover, on the four ETT
benchmarks (ETTh1/2, ETTm1/2), KOSLM yields steady improvements ranging from 4.03%
to 27.46%, demonstrating strong adaptability to varying periodic and nonstationary patterns.
These consistent gains verify that the Kalman-inspired selective updating mechanism effectively
filters noise and dynamically adjusts to regime shifts, leading to stable forecasting accuracy over
long horizons.

• Stable error distribution and reduced variance: The MSE–MAE gap of KOSLM remains narrower
than that of other baselines, implying reduced large deviations and more concentrated prediction
errors. This indicates more stable error behavior, which is crucial for long-horizon forecasting
where cumulative drift often occurs. The innovation-driven Kalman gain estimation provides
adaptive correction at each timestep, ensuring smooth and consistent prediction trajectories under
uncertain dynamics.

• Strong scalability and generalization: KOSLM achieves leading performance not only on large-
scale datasets (Traffic, Electricity) but also on small, noisy datasets (ILI), confirming robust gen-
eralization across different temporal resolutions and noise levels. Its consistent advantage over
Transformer-based (e.g., iTransformer, FEDFormer, PatchTST), recurrent (e.g., xLSTMTime), and
state-space models (e.g., S-Mamba, FiLM) demonstrates that the proposed Kalman-optimal
selective mechanism provides an effective inductive bias for modeling long-term dependencies.

• Advantage over LSTM-based architectures: Compared with advanced LSTM-based models
such as xLSTMTime, KOSLM achieves consistently better results across nearly all datasets and
horizons. This verifies that replacing heuristic gates with Kalman-optimal selective gating
enhances memory retention and update stability. While xLSTMTime alleviates gradient decay
via hierarchical memory, KOSLM further refines state updates through innovation-driven gain
estimation, thereby achieving a more principled and stable information flow.
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Table 3. Long-Term Forecasting: Multivariate long-term forecasting results on the Traffic, Electricity, Exchange, Weather, and ILI datasets. The prediction length is set to T ∈ {96, 192, 336, 720} for all
datasets except ILI, which uses O ∈ {24, 36, 48, 60} due to its weekly resolution. The best results are shown in bold red, and the second-best are underlined purple. All results are averaged over
5 runs.

Models KOSLM xLSTMTime FiLM iTransformer FEDFormer S-Mamba Crossformer DLinear PatchTST TimeMixer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.290 0.230 0.358 0.242 0.416 0.294 0.395 0.268 0.587 0.366 0.382 0.261 0.522 0.290 0.650 0.396 0.462 0.295 0.462 0.285
192 0.260 0.210 0.378 0.253 0.408 0.288 0.417 0.276 0.604 0.373 0.396 0.267 0.530 0.293 0.598 0.370 0.466 0.296 0.473 0.296
336 0.227 0.179 0.392 0.261 0.425 0.298 0.433 0.283 0.621 0.383 0.417 0.276 0.558 0.305 0.605 0.373 0.482 0.304 0.498 0.297
720 0.290 0.232 0.434 0.287 0.520 0.353 0.467 0.302 0.626 0.382 0.460 0.300 0.589 0.328 0.645 0.394 0.514 0.322 0.506 0.313

+31.96% Avg 0.266 0.212 0.391 0.261 0.442 0.308 0.428 0.282 0.610 0.376 0.434 0.287 0.550 0.304 0.625 0.383 0.481 0.304 0.485 0.297

El
ec

tr
ic

it
y 96 0.136 0.184 0.128 0.221 0.154 0.267 0.148 0.240 0.193 0.308 0.139 0.235 0.219 0.314 0.197 0.282 0.181 0.270 0.153 0.247

192 0.131 0.184 0.150 0.243 0.164 0.258 0.162 0.253 0.201 0.315 0.159 0.255 0.231 0.322 0.196 0.285 0.188 0.274 0.166 0.256
336 0.120 0.177 0.166 0.259 0.188 0.283 0.178 0.269 0.214 0.329 0.176 0.272 0.246 0.337 0.209 0.301 0.204 0.293 0.185 0.277
720 0.158 0.205 0.185 0.276 0.236 0.332 0.225 0.317 0.246 0.355 0.204 0.298 0.280 0.363 0.245 0.333 0.246 0.324 0.225 0.310

+13.37% Avg 0.136 0.187 0.157 0.250 0.186 0.285 0.178 0.270 0.214 0.327 0.170 0.265 0.244 0.334 0.212 0.300 0.205 0.290 0.182 0.272

Ex
ch

an
ge 96 0.135 0.212 – – 0.086 0.204 0.086 0.206 0.148 0.278 0.086 0.207 0.256 0.367 0.088 0.218 0.088 0.205 0.095 0.207

192 0.279 0.292 – – 0.188 0.292 0.177 0.299 0.271 0.315 0.182 0.304 0.470 0.509 0.176 0.315 0.176 0.299 0.151 0.293
336 0.341 0.339 – – 0.356 0.433 0.331 0.417 0.460 0.427 0.332 0.418 1.268 0.883 0.313 0.427 0.301 0.397 0.264 0.361
720 0.282 0.322 – – 0.727 0.669 0.847 0.691 1.195 0.695 0.867 0.703 1.767 1.068 0.839 0.695 0.901 0.714 0.586 0.602

+5.47% Avg 0.259 0.291 – – 0.339 0.400 0.360 0.403 0.519 0.429 0.367 0.408 0.940 0.707 0.354 0.414 0.367 0.404 0.274 0.365

W
ea

th
er 96 0.144 0.171 0.144 0.187 0.199 0.262 0.174 0.214 0.217 0.296 0.165 0.210 0.158 0.230 0.196 0.255 0.177 0.218 0.163 0.209

192 0.224 0.236 0.192 0.236 0.228 0.288 0.221 0.254 0.276 0.336 0.214 0.252 0.206 0.277 0.237 0.296 0.225 0.259 0.208 0.250
336 0.249 0.248 0.237 0.272 0.267 0.323 0.278 0.296 0.339 0.380 0.274 0.297 0.272 0.335 0.283 0.335 0.278 0.297 0.251 0.287
720 0.169 0.175 0.313 0.326 0.319 0.361 0.358 0.347 0.403 0.428 0.350 0.345 0.398 0.418 0.345 0.381 0.354 0.348 0.339 0.341

+11.26% Avg 0.197 0.208 0.222 0.255 0.253 0.309 0.258 0.278 0.309 0.360 0.251 0.276 0.259 0.315 0.265 0.317 0.259 0.281 0.240 0.271

IL
I

24 1.160 0.507 1.514 0.694 1.970 0.875 3.154 1.235 3.228 1.260 – – 3.041 1.186 2.215 1.081 1.319 0.754 1.453 0.827
36 1.262 0.561 1.519 0.722 1.982 0.859 2.544 1.083 2.679 1.150 – – 3.406 1.232 1.963 0.963 1.579 0.870 1.627 0.903
48 1.098 0.545 1.500 0.725 1.868 0.896 2.489 1.112 2.622 1.080 – – 3.459 1.221 2.130 1.024 1.553 0.815 1.644 0.914
60 1.118 0.583 1.418 0.715 2.057 0.929 2.675 1.034 2.857 1.078 – – 3.640 1.305 2.368 1.096 1.470 0.788 1.633 0.908

+22.04% Avg 1.160 0.549 1.488 0.714 1.969 0.890 2.715 1.116 2.847 1.170 – – 3.387 1.236 2.169 1.041 1.480 0.807 1.589 0.888
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Table 4. Long-Term Forecasting: Forecasting results on the ETT datasets with prediction lengths T ∈ {96, 192, 336, 720}. The best results are shown in bold red, and the second-best are
underlined purple. All results are averaged over 5 runs.

Models KOSLM xLSTMTime FiLM iTransformer FEDFormer S-Mamba Crossformer DLinear PatchTST TimeMixer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

m
1 96 0.204 0.221 0.286 0.335 – – 0.334 0.368 0.379 0.419 0.333 0.368 0.404 0.426 0.345 0.372 0.329 0.367 0.320 0.357

192 0.233 0.237 0.329 0.361 – – 0.377 0.391 0.426 0.441 0.376 0.390 0.450 0.451 0.380 0.389 0.367 0.385 0.361 0.381
336 0.414 0.339 0.358 0.379 – – 0.426 0.420 0.445 0.459 0.408 0.413 0.532 0.515 0.413 0.413 0.399 0.410 0.390 0.404
720 0.481 0.368 0.416 0.411 – – 0.491 0.459 0.543 0.490 0.475 0.448 0.666 0.589 0.474 0.453 0.454 0.439 0.458 0.441

+4.03% Avg 0.333 0.291 0.347 0.372 – – 0.407 0.410 0.448 0.452 0.398 0.405 0.513 0.496 0.403 0.407 0.387 0.400 0.382 0.395

ET
Tm

2 96 0.100 0.232 0.164 0.250 0.165 0.256 0.180 0.264 0.203 0.287 0.179 0.263 0.287 0.366 0.193 0.292 0.175 0.259 0.175 0.258
192 0.132 0.274 0.218 0.288 0.222 0.296 0.250 0.309 0.269 0.328 0.250 0.309 0.414 0.492 0.284 0.362 0.241 0.302 0.237 0.299
336 0.244 0.382 0.271 0.322 0.277 0.333 0.311 0.348 0.325 0.366 0.312 0.349 0.597 0.542 0.369 0.427 0.305 0.343 0.298 0.340
720 0.268 0.408 0.361 0.380 0.371 0.389 0.412 0.407 0.421 0.415 0.411 0.406 1.730 1.042 0.554 0.522 0.402 0.400 0.275 0.323

+24.39% Avg 0.186 0.324 0.254 0.310 0.259 0.319 0.288 0.332 0.305 0.349 0.288 0.332 0.757 0.610 0.350 0.401 0.281 0.326 0.246 0.306

ET
Th

1 96 0.298 0.277 0.368 0.395 – – 0.386 0.405 0.376 0.419 0.386 0.405 0.423 0.448 0.386 0.400 0.414 0.419 0.375 0.400
192 0.337 0.306 0.401 0.416 – – 0.441 0.436 0.420 0.448 0.443 0.437 0.471 0.474 0.437 0.432 0.460 0.445 0.479 0.421
336 0.395 0.334 0.422 0.437 – – 0.487 0.458 0.459 0.465 0.489 0.468 0.570 0.546 0.481 0.459 0.501 0.466 0.484 0.458
720 0.471 0.364 0.441 0.465 – – 0.503 0.491 0.506 0.507 0.502 0.489 0.653 0.621 0.519 0.516 0.500 0.488 0.498 0.482

+8.09% Avg 0.375 0.320 0.408 0.428 – – 0.454 0.447 0.440 0.460 0.455 0.450 0.529 0.522 0.456 0.452 0.469 0.454 0.459 0.440

ET
Th

2 96 0.194 0.338 0.273 0.333 – – 0.297 0.349 0.358 0.397 0.296 0.348 0.745 0.584 0.333 0.387 0.302 0.348 0.289 0.341
192 0.238 0.384 0.340 0.378 – – 0.380 0.400 0.429 0.439 0.376 0.396 0.877 0.656 0.477 0.476 0.388 0.400 0.372 0.392
336 0.258 0.394 0.373 0.403 – – 0.428 0.432 0.496 0.487 0.424 0.431 1.043 0.731 0.594 0.541 0.426 0.433 0.386 0.414
720 0.314 0.432 0.398 0.430 – – 0.427 0.445 0.463 0.474 0.426 0.444 1.104 0.763 0.831 0.657 0.431 0.446 0.412 0.434

+27.46% Avg 0.251 0.387 0.346 0.386 – – 0.383 0.407 0.437 0.449 0.381 0.405 0.942 0.684 0.559 0.515 0.387 0.407 0.364 0.395
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To further demonstrate the long-horizon stability of the proposed model, we compare KOSLM
with the recent S-Mamba [24], a state-of-the-art state space model that represents the latest advance-
ment in efficient sequence modeling. Figure 3 presents the forecasting trajectories at the long horizon
(T = 720) across five representative datasets. KOSLM maintains accurate trend alignment and am-
plitude consistency with the ground truth, showing particularly superior convergence behavior on
smoother and more stationary datasets such as Weather and Exchange, where the Kalman gain adapta-
tion stabilizes long-term predictions. In contrast, S-Mamba exhibits slight temporal lag and amplitude
attenuation under extended forecasting conditions. These results visually confirm the advantage of
the proposed Kalman-based feedback selectivity in preserving long-term temporal fidelity.
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Figure 3. KOSLM vs. S-Mamba: Forecasting comparison on five representative datasets with both input and
prediction horizons set to 720. The blue line denotes the ground truth, and the red line indicates model predictions.
KOSLM demonstrates superior long-horizon stability and trend consistency compared to S-Mamba.

4.2. Ablation Study

To further analyze the effectiveness of each proposed component, we conduct ablation experi-
ments on four widely used long-term time-series forecasting datasets (ETTm1, ETTh1, Traffic, and
Exchange) with a prediction length of L = 720, following the data preprocessing described in Sec-
tion 4.1.1. All model variants are trained and tested following the default implementation settings
described in Section 4.1.2, and the results are averaged over five runs to ensure statistical reliability.

4.2.1. Structural Ablation.

We first evaluate the contribution of the Kalman-based structure by comparing three variants:
(i) Full (KOSLM): the complete model where Kt = ϕ(Innov) and At = (I − Kt Mt)A, Bt = Kt;
(ii) No-Gain: ϕ receives the innovation but directly outputs (At, Bt), removing the explicit Kalman
gain variable; (iii) No-Innov: ϕ receives the standard network input (e.g., [xt; Ht−1]) instead of the
innovation, while Kt is still mapped to (At, Bt) via the Kalman form.

As shown in Table 5, removing either the gain computation or the innovation input consistently
leads to higher errors across all datasets. For instance, on ETTm1, the MSE increases by 32.9% when
the gain path is removed, confirming that both the innovation statistic and Kalman gain are essential
for stable long-horizon prediction. This finding aligns with the Kalman filtering principle that the
innovation serves as a sufficient statistic for state correction.
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Table 5. Structural Ablation. Comparison of KOSLM and its structural variants on four long-term forecasting
datasets (L = 720). Removing either the Kalman gain path or the innovation input leads to consistent performance
degradation. All results are averaged over five runs with mean ± standard deviation. Lower is better.

Dataset Model MSE ↓ MAE ↓ ∆ MSE vs Full

ETTm1
Full 0.498 ± 0.011 0.416 ± 0.007 —

No-Gain 0.662 ± 0.017 0.553 ± 0.014 +32.9%
No-Innov 0.583 ± 0.012 0.487 ± 0.008 +17.1%

ETTh1
Full 0.510 ± 0.012 0.378 ± 0.010 —

No-Gain 0.605 ± 0.022 0.448 ± 0.015 +18.6%
No-Innov 0.554 ± 0.016 0.411 ± 0.010 +8.6%

Traffic
Full 0.321 ± 0.008 0.195 ± 0.016 —

No-Gain 0.428 ± 0.011 0.260 ± 0.008 +33.4%
No-Innov 0.375 ± 0.009 0.228 ± 0.007 +16.9%

Exchange
Full 0.266 ± 0.014 0.341 ± 0.023 —

No-Gain 0.299 ± 0.018 0.383 ± 0.023 +12.3%
No-Innov 0.294 ± 0.015 0.377 ± 0.019 +10.6%

Table 6. Capacity Ablation (Corrected). Performance of KOSLM with varying ϕ network capacities on
four long-term forecasting datasets (L = 720). Averaged over five runs with standard deviations. Bold font
highlights the variant under comparison.

Dataset Variant #Params MSE ↓ MAE ↓ ∆ MSE vs SmallMLP

ETTm1

Linear 0.183M 0.480 ± 0.012 0.355 ± 0.008 +46.3%
SmallMLP 0.255M 0.328 ± 0.010 0.282 ± 0.007 —

MediumMLP 0.389M 0.335 ± 0.011 0.284 ± 0.001 +2.13%
HighCap 0.898M 0.342 ± 0.015 0.288 ± 0.010 +4.27%

ETTh1

Linear 0.183M 0.440 ± 0.010 0.330 ± 0.004 +30.95%
SmallMLP 0.255M 0.336 ± 0.008 0.291 ± 0.006 —

MediumMLP 0.389M 0.341 ± 0.010 0.294 ± 0.002 +1.49%
HighCap 0.898M 0.355 ± 0.012 0.302 ± 0.008 +5.65%

Traffic

Linear 0.183M 0.290 ± 0.011 0.232 ± 0.006 +9.02%
SmallMLP 0.255M 0.266 ± 0.010 0.212 ± 0.007 —

MediumMLP 0.389M 0.270 ± 0.012 0.216 ± 0.002 +1.50%
HighCap 0.898M 0.279 ± 0.014 0.222 ± 0.005 +4.89%

Exchange

Linear 0.183M 0.272 ± 0.010 0.305 ± 0.005 +4.62%
SmallMLP 0.255M 0.260 ± 0.009 0.291 ± 0.009 —

MediumMLP 0.389M 0.264 ± 0.010 0.294 ± 0.007 +1.54%
HighCap 0.898M 0.285 ± 0.012 0.310 ± 0.009 +9.62%

4.2.2. Capacity Ablation

To verify that the performance gains of KOSLM mainly stem from the Kalman-optimal structural
design rather than the network capacity, we conduct a capacity ablation study. We evaluate the ϕ

network under four progressively larger configurations: (i) Linear: a single linear layer with input
dimension equal to the number of input features and output dimension 64, without any activation;
(ii) SmallMLP: a two-layer MLP with 128 hidden units and sigmoid activation; (iii) MediumMLP: a
three-layer MLP with 256 hidden units per layer and Rsigmoid activation; (iv) HighCap: a four-layer
MLP with 512 hidden units per layer and sigmoid activation.

All models are trained under identical settings with five independent random seeds, and the
results are reported as mean ± standard deviation. This allows us to evaluate both performance trends
and statistical reliability. From Table 6, it is evident that increasing the ϕ network capacity beyond
SmallMLP does not consistently improve MSE or MAE; in some cases, the error even increases slightly.
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The small MediumMLP improvements (ETTm1) or slight deterioration (ETTh1, Traffic, Exchange)
indicate that performance gains are dominated by the Kalman-optimal structural design rather than
network depth or over-parameterization. This confirms the effectiveness of the innovation-driven gain
estimation in KOSLM for stable long-horizon prediction.

4.3. Efficiency Benchmark

To evaluate the computational efficiency of KOSLM, we benchmark it against representative
sequence modeling baselines, including Transformer, Mamba-2, and LSTM, across four key metrics:
runtime scalability, end-to-end throughput, memory footprint, and parameter count. All experi-
ments are conducted using PyTorch 2.1.0 with torch.compile optimization on a single NVIDIA
RTX 4090 GPU.

4.3.1. Runtime Scalability

We assess runtime performance on both a controlled synthetic setup and the ETTm1 dataset.
As illustrated in Figure 4, KOSLM exhibits near-linear growth in inference time with increasing
sequence length L. For sequences longer than L = 2k, KOSLM surpasses optimized Transformer
implementations (FlashAttention [31]) and achieves up to 2.5× faster execution than the fused-kernel
version of Mamba-2 [24] at L > 4k. Compared with a standard PyTorch LSTM, KOSLM achieves
approximately 1.3–1.9× speedup across the tested sequence lengths, demonstrating robust scalability
for long sequences.
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Figure 4. Runtime Benchmarks. Inference time (ms) as a function of sequence length L. KOSLM demonstrates
near-linear scaling and maintains faster inference than Transformer and Mamba-2 for long sequences.

4.3.2. Throughput Analysis.

Figure 5 reports the end-to-end inference throughput measured in million tokens/s (M tokens/s).
KOSLM maintains consistently high throughput across all tested sequence lengths, achieving up
to 1.9× higher throughput than LSTM and 2.7× higher than Mamba-2 in the 4K–8K regime. The
performance remains stable for even longer sequences, highlighting the model’s suitability for extended
temporal dependencies.
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Figure 5. Throughput Benchmarks. End-to-end inference throughput on RTX 4090. KOSLM maintains stable
throughput as sequence length increases, outperforming LSTM and Mamba-2 for long sequences.

4.3.3. Memory Footprint.

Table 7 reports GPU memory usage during training for varying batch sizes with input
length 2048 and models containing approximately 0.24M parameters. KOSLM demonstrates favorable
memory efficiency relative to similarly sized Mamba-2 implementations and remains comparable to
a standard LSTM with roughly ten times more parameters. This efficiency results from KOSLM’s
compact Kalman-optimal selective mechanism, which dynamically modulates state transitions with
minimal parameter overhead.

Table 7. Memory Footprint (GB) under Different Batch Sizes, Input Length = 2048. KOSLM exhibits lower
memory usage than Transformer and Mamba-2, while remaining comparable to LSTM despite its smaller size.

Batch Size Transformer Mamba-2 LSTM KOSLM

1 0.223 0.085 0.081 0.061
2 0.363 0.158 0.109 0.104
4 0.640 0.290 0.166 0.188
8 1.180 0.561 0.283 0.344
16 2.256 1.103 0.518 0.668
32 4.408 2.188 0.987 1.317
64 8.712 4.357 1.926 2.615

128 17.000 8.696 3.803 5.211

4.3.4. Model Size.

Table 8 summarizes the parameter counts. KOSLM contains only 0.24M parameters, roughly
4.5% of the Transformer and 11% of the LSTM baselines, while achieving comparable or superior
forecasting performance. The compact design emphasizes KOSLM’s suitability for deployment in
resource-constrained environments.

This efficiency stems directly from the Kalman-optimal selective mechanism, which adaptively
regulates the state update through innovation-driven gain modulation. Such a formulation not only
reduces redundant computation but also provides a principled pathway for scaling to long sequences.
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Table 8. Model Parameter Sizes. KOSLM remains lightweight while providing competitive long-horizon
forecasting performance.

Model Parameters (M)

LSTM 2.17
Transformer 5.33

Mamba-2 0.21
FiLM 1.50

KOSLM 0.24

4.4. Real-world Application: SSR Target Trajectory Tracking

To further evaluate the robustness and practical generalizability of KOSLM under real-world
noisy conditions, we conducted a real-world experiment on secondary surveillance radar (SSR) target
trajectory tracking. SSR is a ground-based air traffic surveillance system where aircraft respond to radar
interrogations with encoded transponder signals, generating sparse range–azimuth sequences known
as raw SSR plots. These observation sequences present three major challenges for sequential modeling:

• High stochastic noise: Measurement noise leads to random fluctuations in the estimated positions;
• Irregular sampling: Aircraft maneuvers and radar scan intervals result in uneven temporal spacing;
• Correlated anomalies: Spurious echoes or missing detections introduce discontinuities in

the trajectories.

These characteristics make SSR a natural yet challenging testbed for assessing model stability,
noise resilience, and temporal consistency. KOSLM addresses these challenges by integrating context-
aware selective state updates with learnable dynamics under the Kalman optimality principle, enabling
robust filtering, smoothing, and extrapolation in partially observed environments.

4.4.1. Experimental Setup

To achieve a balance between realism and experimental controllability, we adopted a semi-physical
simulation approach. Training data were derived from Automatic Dependent Surveillance–Broadcast
(ADS-B) flight tracks obtained from the OpenSky Network [32]. Controlled Gaussian noise with an
SNR of 33 dB was added to emulate SSR observation uncertainty. For evaluation, we deployed KOSLM
on real SSR radar data collected from an operational ground-based system (peak transmit power 6 kW),
capturing eight live air-traffic targets under operational conditions. Detailed data acquisition and
preprocessing procedures are provided in Appendix C.

Unlike the main benchmarking experiments on standardized long-term time series forecasting
(LTSF) datasets, this case study aims to demonstrate practical applicability and operational robustness.
Due to irregular sampling, sparse observations, and high stochastic noise, conventional quantitative
metrics such as MSE or MAE are not meaningful. Therefore, we focus on qualitative trajectory
visualizations to illustrate model performance in realistic conditions.

4.4.2. Results and Analysis

Figure 6 presents representative trajectories of eight air-traffic targets, comparing classical KF
algorithm, Transformer, Mamba, and KOSLM. The classical KF algorithm exhibits locally inaccurate
and jagged trajectories due to its fixed linear dynamics, which cannot adapt to irregular sampling or
abrupt maneuvers. The Transformer captures general trends but produces fragmented and temporally
inconsistent tracks under sparse and noisy observations. Mamba improves noise robustness but still
demonstrates local instability during complex maneuvers.

In contrast, KOSLM generates smooth, coherent, and temporally consistent trajectories that
closely follow the true flight paths, highlighting its ability to handle high stochastic noise, irregular
sampling, and correlated anomalies. This robustness stems from the innovation-driven Kalman gain
and context-aware selective state updates, which allow KOSLM to adapt dynamically to non-stationary
motion patterns.
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Figure 6. SSR Target Tracking under Real-world Operational Conditions. Trajectories of eight air-traffic targets
tracked from SSR measurements. Red curves denote raw SSR observations, Blue curves denote tracking by the
conventional KF algorithm (on-site SSR interrogator output), and Teal curves indicate deep model predictions
(Transformer, Mamba, or KOSLM), followed by KF smoothing. KOSLM achieves smoother, more accurate, and
stable tracking under strong noise and irregular sampling conditions.

5. Conclusions
This study addressed a fundamental limitation of recurrent architectures such as LSTM, whose

heuristically designed gates lack structural constraints for optimality, leading to instability and in-
formation decay over long sequences. To overcome this issue, we proposed the Kalman-Optimal
Selective Long-Term Memory Network (KOSLM), which reconstrues LSTM as a nonlinear, input- and
state-dependent state-space model, and integrates an innovation-driven Kalman-optimal gain path for
principled information selection. This formulation unifies LSTM gating, selective state-space modeling,
and Kalman filtering into a single theoretically grounded recurrent framework.

Extensive experiments demonstrate that KOSLM achieves state-of-the-art performance on long-
term forecasting benchmarks, while ablation studies confirm the essential role of the innovation
statistic and Kalman-form gain in stabilizing long-horizon modeling. Moreover, validation on real-
world SSR trajectory tracking highlights its robustness under noisy and non-stationary conditions.
In summary, embedding Kalman-optimal principles into deep recurrent networks provides both
theoretical insights and practical benefits for robust long-term sequence modeling. Future work
will focus on extending KOSLM beyond Gaussian assumptions and applying it to multimodal and
cross-domain time-series scenarios.
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Appendix A. Selective State Space Models
This section focuses on S6, which provide a unified framework connecting the gating with time-

varying state-space representations. Their associated selection mechanisms have become a central
design principle in modern SSMs, such as Mamba [11]. These mechanisms improve modeling efficiency
by dynamically identifying and retaining task-relevant information over long sequences, effectively
compressing the latent state without compromising representational capacity.

Relation to Existing Concepts

Selection mechanisms are conceptually related to several prior ideas, including gating, hypernet-
works, and data-dependent parameterization:

• Gating was originally introduced as a signal-control mechanism in recurrent neural networks
(RNNs) such as LSTM [3] and GRU [33], where multiplicative gates regulate information updates
across time steps. The concept has been generalized to other architectures, including gated
convolutions and transformers [34,35], though often without an explicit interpretation in terms of
temporal signal control.

• Hypernetworks [36] generate network parameters dynamically through auxiliary networks,
enabling the model’s internal dynamics to adapt based on input signals.

• Data-dependent parameterization [37] represents a broader paradigm in which model parameters
are directly conditioned on input data. Both gating and hypernetworks can be viewed as specific
instances within this larger class.

While selection mechanisms share certain similarities with these paradigms, they form a distinct
modeling category. Unlike classical gating or hypernetwork mechanisms that often operate locally
or step-wise, selection mechanisms are explicitly designed to route, filter, or suppress sequence-
level information in an input- or state-dependent manner, enabling stable long-horizon modeling.
In selective SSMs, this is typically realized by parameterizing system matrices (e.g., ∆, A, B, C) as
functions of the input at each time step.

From Implicit to Explicit Selection

Early structured SSMs (S4) [38] encoded fixed inductive biases through learned structured dy-
namics, providing an implicit, input-independent form of selection via controlled signal propagation.
Later models, including Mamba [11], introduced explicit selection, where the parameters of the
state-space system (e.g., ∆, A, B, C) are conditioned directly on the current input, allowing the model
to dynamically emphasize or suppress features at each step.

Semantic Clarification

As discussed in S6 [11], while selection mechanisms can be loosely related to gating, hypernet-
works, or general data dependence, these broader descriptions do not capture the defining charac-
teristic of selection. The term selection is reserved for mechanisms that explicitly operate along the
sequence dimension, enabling adaptive memory compression and long-range information control.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2025 doi:10.20944/preprints202510.1873.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/wl822513/KOSLM
https://github.com/wl822513/KOSLM
https://doi.org/10.20944/preprints202510.1873.v1
http://creativecommons.org/licenses/by/4.0/


18 of 24

From a dynamical systems perspective, such mechanisms can be interpreted through state-space
discretization and signal propagation theory [39,40]. Importantly, classical RNN gating can be viewed
as a local, step-wise precursor to these more general selection mechanisms.

Scope and Relevance

The principle of selection underlies recent progress in linear-time sequence modeling. Building
upon this paradigm, our proposed KOSLM extends selective SSMs by introducing an innovation-
driven Kalman-optimal feedback pathway, transforming heuristic selection into a principled,
uncertainty-aware mechanism for long-term sequence modeling.

Appendix B. Detailed Derivation
Appendix B.1. Kalman Gain as a Prototype for Dynamic Selectivity

In classical filtering theory, the Kalman gain K(t) acts as a dynamic weighting factor that de-
termines how prior state estimates and new observations are combined to produce a new state [6].
It is formally derived as the solution to the Riccati differential equation, and its value depends on
the evolving uncertainty in the internal system state (captured by the prior covariance P(t)) and the
noise characteristics of the observation process (captured by the measurement covariance R) [41]. This
time-varying gain governs the extent to which incoming measurements correct the state estimate,
ensuring minimum mean-squared error under Gaussian noise assumptions.

This correction process is essentially a trade-off between the historical state information of
the system and the incoming input information. In the context of deep learning, we interpret the
observation as the current input sequence, and the prior state estimate as the latent representation
of the system’s history. From this perspective, the Kalman gain plays a role analogous to a dynamic
selection factor that balances the contribution of contextual knowledge (from the model state) and
content information (from the input) in generating the updated representation. Therefore, the Kalman
gain can be viewed as a principled prototype for content-aware and context-sensitive information
selection. This perspective justifies the broader use of dynamic selection strategies in sequence models,
especially when aiming to balance stability and adaptability in long-range modeling.

Appendix B.2. LSTM-to-SSM Reconstruction

To endow LSTM networks with structured modeling semantics, in this section we reconstruct
them as a form of nonlinear time-varying state-space model ((see Equation (3a)). Specifically, we identify
that the interactions among the forget gate, input gate, output gate, input signal, and cell state in
LSTMs essentially constitute an input-dependent and state-aware state transition–observation process.

As illustrated in Figure 1, the gating mechanisms and the cell state Ct in LSTM establish a
pathway for memory propagation across time. The cell state Ct is the core component that preserves
long-term memory across the temporal dimension and models long-range dependencies. In terms of
representational role, it is both semantically and structurally equivalent to the latent state ht in SSMs
(see Equation (3a)). Therefore, we take Ct as the central axis and analyze its information propagation
process.

The forget gate Ft regulates the degree to which short-term memory from cell state Ct−1 is
discarded. It is determined jointly by the current input xt and the previous hidden state Ht−1, thereby
embodying an input- and state-dependent transition process:

At ≜ Ft = σ(W f Xt + b f ), (A1)

where Xt = [xt; Ht−1] denotes the concatenated input. The corresponding retained term is AtCt−1.
The pathway for new information input in LSTM consists of two steps:
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1. The candidate cell state C̃t can be interpreted as a differentiable nonlinear mapping from the joint
input Xt:

zt ≜ C̃t = tanh(WcXt + bc), (A2)

where the linear transformation WcXt + bc fuses the external input xt and the hidden state Ht−1

into the observation space, with tanh(·) introducing nonlinearity to produce an intermediate
representation zt. We treat this representation as the observation input at time t under the SSM.1

2. The interaction between the input gate It and the candidate state C̃t establishes a structured
pathway for injecting new information into the state dynamics, analogous to the excitation of
state evolution by external inputs in SSMs.

Btzt ≜ It ⊙ C̃t = σ(WiXt + bi)⊙ tanh(WcXt + bc), (A3)

where Bt serves as the input matrix, structurally equivalent to the input gate It.

Consequently, the update process of the LSTM cell state Ct at time t (Eq.1) can be rewritten in the
form of a state-space transition:

Ct = AtCt−1 + Btzt, (A4)

where At and Bt are realized through the forget and input gates driven by the joint input Xt, thereby
endowing the model with the ability to selectively forget or memorize long-term information in an
input-dependent and context-aware manner.

Finally, the output pathway of LSTM is given by

Ht = Ot ⊙ tanh(Ct), (A5)

which is formally equivalent to the observation equation of a classical SSM:

yt = MtCt, (A6)

where Mt is formed by the output gate Ot together with the nonlinear transformation tanh(·).
The above reconstruction shows that the gating mechanism in LSTM can be interpreted as a class

of nonlinear, input- and state-dependent SSMs. This perspective establishes a valid unification of LSTM
gating mechanisms and state-space models, and reveals that LSTM’s long-term memory capability
originates from the structured realization of both state-space modeling and efficient information
selection. Building on this understanding, we further introduce the Kalman gain into this state-space
structure, imposing a structural constraint that minimizes the uncertainty of state estimation errors.

Appendix B.3. Kalman-Optimal Selective Mechanism

Recent studies on time series modeling have proposed a class of selective mechanisms based on
SSMs, among which the most representative work is S6 [11]. Its core idea points out:

“One method of incorporating a selection mechanism into models is by letting their parame-
ters that affect interactions along the sequence (e.g., the recurrent dynamics of an RNN or
the convolution kernel of a CNN) be input-dependent.”

Inspired by this, we design a selective mechanism based on Kalman-optimal state estimation
within the SSM (Equation (3)). Unlike the input-dependent selection mechanism represented by S6,
we make the key parameters (At, Bt), which control how the model selectively propagates or forgets
information along the sequence dimension, depend on the innovation term: the deviation between the
observation input and the prior state prediction in the observation space, denoted as Innov in this

1 Here, the observation input denotes the externally observable signal that directly drives the state update process. It is written
as zt in KF and as xt in SSMs, which are semantically equivalent.
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paper. This method constructs a learnable selection path that integrates observational inputs and latent
state feedback, with the optimization objective of minimizing the uncertainty in state estimation errors.

Learnable Gain from Innovation

In the KF algorithm, the closed-form solution of the Kalman gain Kt (Equation (6)) is obtained by
minimizing the covariance of the state estimation error [6]. Here, the observation matrix Mt and the
observation noise covariance Rt are considered known system priors, usually derived from physical
modeling or domain knowledge. Therefore, the dynamics of Kt entirely stem from the statistical
properties of the prior estimation error e−t = ht − ĥ−t . Under the linear observation model (4b), e−t is
mapped into the observation space, yielding the following representation of the innovation term:

Innov = zt − Mt ĥ−t = Mt
(
ht − ĥ−t

)
+ vt, (A7)

This equation shows that Innov is a linear mapping of e−t , which, although perturbed by additive
observation noise vt, still retains the full uncertainty information of e−t . Thus, Innov can serve as a
sufficient statistic for estimating Kt, providing a theoretical basis for directly estimating Kt from the
innovation term. The estimation process is defined as:

Kt = ϕ(Innovt; θϕ), (A8)

where ϕ(·) is a differentiable nonlinear function, parameterized by a neural network and trained via
gradient descent. Theoretical soundness of this formulation is confirmed by a controlled experiment
(Appendix B.4), which demonstrates that ϕ(·) can reliably recover the oracle Kalman gain from the
innovation statistics with negligible estimation error.

Optimal Selectivity via Gain

By substituting the KF prediction process (Equation (5)) into the state update equation (Equa-
tion (7)), the two processes can be expressed as a nonlinear time-varying SSM form (Equation (3a)):

ĥt = At ĥt−1 + Btzt, At = (I − Kt Mt)A, Bt = Kt, (A9)

Within this framework, parameters At and Bt are linearly modulated by Kt driven by the innovation term,
yielding a context-aware Kalman-optimal selective path that minimizes state estimation uncertainty
and imposes structural optimality constraints on LSTM.

Appendix B.4. Empirical Validation of Innovation-Driven Kalman Gain Learning

To empirically validate the theoretical claim that the Kalman gain can be dynamically inferred
from the innovation term, we design a controlled linear–Gaussian synthetic experiment where the
optimal gain has a closed-form solution. This allows us to directly compare the learned gain against
the ground-truth Kalman gain and quantify their alignment over time.

Experimental Design

We consider a one-dimensional linear dynamical system as in Equation (4). The analytical Kalman
gain Kt is computed from the standard Riccati recursion and serves as the oracle reference. We design
three model variants for comparison:

(i) Oracle-KF: Standard Kalman filter using the known (A, Q, R, M) parameters to compute Kt.
(ii) Supervised-ϕ: A small MLP ϕ(·) takes the innovation innovt = zt − Mĥ−t as input and predicts

K̂t = ϕ(innovt), trained by minimizing L = |K̂t − Kt|2 over all timesteps. During training, the
predicted prior state ĥ−t is provided by the Oracle-KF to isolate the learning of the innovation-
to-gain mapping. This tests whether the innovation term contains sufficient information to
recover the oracle gain.
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(iii) End-to-End: The same MLP is trained to directly map from (zt, ĥ−t ) to Kt without explicitly
constructing the innovation term, serving as an ablation to assess the importance of innovation-
driven modeling.

Setup and Metrics

We simulate 10,000 trajectories of length T = 100 with fixed system parameters (A = 0.9, M = 1).
To test robustness under different noise regimes, we consider four parameter settings by varying
process noise Q and observation noise R: (i) Q = 5, R = 0.1; (ii) Q = 5, R = 0.5; (iii) Q = 10, R = 0.1;
(iv) Q = 100, R = 0.5. The supervised models are trained for 200 epochs using Adam optimizer with a
learning rate 10−3. Performance is evaluated by:

• MSE of Gain: MSE = 1
T ∑t |Kt − K̂t|2, measuring how well the learned gain matches the

oracle trajectory.
• State Estimation RMSE: Root-mean-square error between estimated and true state trajectories,

where the state estimates are produced by running a Kalman update step with the learned K̂t,
verifying that accurate gain learning improves filtering quality.

Table A1. Quantitative Results of Kalman Gain Learning. Supervised-ϕ achieves orders-of-magnitude lower
gain MSE and consistently better state estimation RMSE across all noise regimes compared to End-to-End
learning, highlighting the critical role of explicitly modeling the innovation term in recovering accurate Kalman
gain dynamics.

(Q, R) Supervised-ϕ End-to-End

MSE RMSE MSE RMSE

(5, 0.1) 1.3×10−6 0.317 3.5×10−3 0.368
(5, 0.5) 2.9×10−5 0.684 1.8×10−3 0.694
(10, 0.1) 1.2×10−6 0.216 1.3×10−3 0.341

(100, 0.5) 2.2×10−7 0.310 6.8×10−4 0.747

Results and Analysis

Figure A1 presents the learned Kalman gain trajectories across all considered noise regimes.
Across every (Q, R) configuration, the Supervised-ϕ model closely matches the oracle Kalman gain Kt,
producing stable and accurate trajectories throughout both transient and steady phases. In contrast,
the End-to-End model produces a noisier and slightly biased gain curve, indicating that omitting the
explicit innovation term fails to accurately capture the gain dynamics. This qualitative observation is
quantitatively confirmed in Table A1: Supervised-ϕ achieves up to four orders-of-magnitude lower
gain MSE and reduces state-estimation RMSE by 4.5% − 32.8% under all (Q, R) noise settings. These
results demonstrate that the innovation term is indeed sufficient for inferring the optimal Kalman
gain and that explicitly modeling innovation-driven selectivity yields more stable and accurate state
estimation. Together, the figure and table provide strong empirical support for our theoretical claim
that innovation-guided gain learning constitutes a principled and robust mechanism for selective
state updates.
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Figure A1. Cont.
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Figure A1. Kalman gain learning across different noise regimes. Top-left: (Q = 100, R = 0.5); top-right:
(Q = 5, R = 0.1); bottom-left: (Q = 5, R = 0.5); bottom-right: (Q = 10, R = 0.1). Supervised-ϕ closely matches
the oracle Kt in all cases, while End-to-End trajectories remain noisy and biased. These results confirm that
innovation-driven modeling provides stable and accurate gain learning across both low- and high-noise conditions.

Appendix C. SSR Case Study: Data and Preprocessing Details
Appendix C.1. Data Acquisition

The semi-physical training dataset is constructed using ADS-B logs from the OpenSky Network,
recorded on June 15, 2025, between 10:00 and 10:15 AM. The data cover a 300 km region surround-
ing Tokyo Haneda, Narita, and Incheon Airports. Each log provides updates every 5 seconds for
503 aircraft, including longitude, latitude, altitude, and timestamp information. A detailed statistical
summary of the dataset is provided in Table A2.

To emulate realistic Secondary Surveillance Radar (SSR) observation noise, zero-mean Gaus-
sian perturbations are applied to each measurement with a signal-to-noise ratio (SNR) of 33 dB,
formulated as

Xi = Xi +N
(

0,
σ2

i

10
33
10

)
,

where σ2
i represents the empirical variance of the i-th feature. This noise configuration reflects typical

radar tracking uncertainty under moderate atmospheric interference.

Table A2. Summary of the Semi-physical ADS-B Dataset Used for Training. The dataset consists of 5-second
updates for 503 aircraft collected within a 15-minute window around major East Asian airports. Each sample
includes four state variables: longitude, latitude, altitude, and timestamp.

Targets Update Frequency # Features Total Samples Time Span

503 5 seconds 4 166,110 2025–06–15,
10:00–10:15

Appendix C.2. Normalization and Reverse Transformation

All input data are standardized to zero mean and unit variance:

y =
x − x̄

σ
, x̂ = σŷ + x̄.

Appendix C.3. Field Data Collection

For real-world evaluation, we use raw SSR plots collected by a field-deployed radar with a peak
transmit power of 6 kW. These sequences contain irregular sampling, strong noise, and missing returns,
providing a rigorous test of model robustness.
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Figure A2. SSR Trajectory Modeling Pipeline. The upper branch shows training using ADS-B data with noise
simulation and normalization; the lower branch shows testing on real raw SSR plots using trained models,
followed by trajectory prediction and comparison.

Appendix C.4. Processing Workflow

The overall pipeline—from semi-physical data generation to field testing—is summarized in
Figure A2, where the upper branch denotes the training stage on noisy ADS-B data, and the lower
branch represents inference on real SSR plots. This workflow ensures consistency between semi-
physical training data and real-world SSR testing scenarios.
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