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Abstract: Experimental test facilities are generally characterised using linear transfer functions1

to relate the wavemaker forcing amplitude to wave elevation at a probe located in the wavetank.2

Second and third order correction methods are becoming available but are limited to certain3

ranges of waves in their applicability. Artificial intelligence has been shown to be a suitable4

tool to find even highly nonlinear functional relationships. This paper reports on a numerical5

wavetank implemented using the OpenFOAM software package which is characterised using6

artificial intelligence. The aim of the research is to train neural networks to represent non-linear7

transfer functions mapping a desired surface-elevation time-trace at a probe to the wavemaker8

input required to create it. These first results already demonstrate the viability of the approach9

and the suitability of a single setup to find solutions over a wide range of sea states and wave10

characteristics.11

Keywords: tank transfer function; neural networks; machine learning; OpenFOAM; computa-12

tional fluid dynamics;13

1. INTRODUCTION14

Waves are of particular interest in marine research as they play a key role in un-15

derstanding fluid-structure interactions. Wave tank test facilities are used to generate16

desired water waves in order to model certain sea-states in a controlled environment.17

Both physical and simulated wavetanks exist, each with their own merits. However,18

in all cases wavemakers are required and some method to control wavemaker action19

to obtain a desired sea state or time trace of surface elevation in the tank. Early work20

employed analytical solutions relating piston or paddle motion amplitude to surface21

elevation [1]. Industry standard is now the characterisation of a wavetank using tank22

transfer functions (TTF) [2], describing the ratio of surface elevation to wavemaker23

amplitude and phase for each frequency component. Even for a flat bathymetry, non-24

linear extensions are often required for anything beyond very small amplitude waves to25

take into account bound waves and wave-wave interaction. Significant progress was26

achieved by extension to second order [3], but despite further progress these analytical27

solutions are still limited in their range of applicability and no single method encompass-28

ing all features relevant in applied ocean and coastal research exists [4–6]. Recently, large29

collaborative projects in offshore wind [7] and wave power [8] independently identified30

a need for better accuracy in the reproduction of a given surface elevation time trace in31

numerical simulations.32

An artificial neural network (ANN) is a mathematical structure represented as a33

set of interconnected nodes, with the connections called neurons. Different types of34

neural network can be distinguished by the way in which the nodes are connected.35
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These nodes are in fact numeric values and the connections are multiply-accumulate36

operations (MAC) which are executed in sequence, corresponding to linking the neurons37

together. The result of each operation is used as input to an activation function which38

decides whether the result is fed forward to the next stage, or not, and different choices39

exists for the activation function. In addition, each MAC operation has several weights40

which are computed during the training phase.
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Figure 1. Geometric layout for the numerical wavetank.
41

Calibrating a wavemaker can be regarded as solving the wave propagation problem,42

and thus the Navier-Stokes Equation, backwards in time. ANNs can function as uni-43

versal function pproximators and have been shown to be capable of solving differential44

equations. In our work we apply one type of ANN, the multi-layer perceptron to solve45

the Navier Stokes equations in our numerical wavetank. We show that it is possible to46

accurately map a desired wave-elevation time-series, at a measurement probe position,47

to the wavemaker input required to generate this time series. In the literature there is48

only one known application of Neural Networks to predict wavemaker inputs based49

on specific wave traces for calibration. The work done by [9] experimented with the50

first use of Non-Linear Auto-regressive Exogenous input (NARX) Neural Networks51

for the calibration of waves close to the breaking limit of a numerical wavetank based52

on a method later published in [10]. For model training, waves were first generated53

with random wavemaker input. The time-trace of the surface elevation of the resultant54

waves were then used as model input and the given random wavemaker input was55

used as the desired model output. With each run more data became available and the56

solution converged towards the desired result. These experiments indicate that NNs are57

a valuable tool for wavemaker calibration and could yield better results with further58

experimentation. One issue in the application of NN to wave calibration identified, was59

the short ”memory” or ”vanishing gradient”, which has been investigated by [11]. The60

influence of an item in sequence weakens as the sequences goes on. This is problematic61

for learning long sequences, as long patterns and sparse temporal dependencies may62

not be recognised.63

Neural networks methods have been used by other researchers in the field. [12]64

uses Recurrent Neural Networks (RNNs) to predict statistical properties of water wave65

amplitude time traces as a function of the wavemaker parameters (blower RPM and66

frequency). While they only predicted statistical properties of the wave produced and67

not a specific time-series, this still shows the promise of RNNs in predicting water waves.68

A novel neural network modelling approach has been proposed by [13]. This proposal69

presents the idea of Physics Informed Neural Networks to solve differential equations,70

giving an example of wave propagation. In this method, the laws of physics are invoked71

to constrain calculated values to a suitable range. This method may be suitable for72

application to the Navier-Stokes equations.73

The layout of this paper is as follows. In the next section we explain the method-74

ology that we have implemented to perform our numerical experiments. Section 375

presents the results of our experiments including application to a non-linear case. The76
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paper concludes with section 4 where we summarise the findings of our work and look77

towards future applications of it.78

2. METHODOLOGY79

2.1. Function approximation80

Following Friedmann[14], we may state the problem of finding the inverse of the81

non-linear transfer function in the following way. We have an output variable Ui, the82

required wavemaker function, defined as a function at a discrete set of n time points, ti.83

This is dependent on the function, F(hi, ti), the form of which is unknown. The function84

depends on the height of the probe amplitude, hi at time ti and represents the inverse of85

the tank transfer function.86

However, we have a vector v which is a set of n observations (hi, ti) i = 1, n at the
probe to which we can associate a vector U of n wavemaker inputs from a previous time
interval. We know that these inputs ad outputs are related by equation (1)

F(v)→ u (1)

The universal approximation theorem for neural networks asserts that we can use87

the input and output vectors u, v to find an approximation for the unknown function F88

in equation (1) for a vector of observations, u, to a unique output vector, v, expressed in89

equation 1.90

2.2. Generating training data91

The work reported in this paper uses the numerical wavetank (NWT) shown in92

figure 1 for the preparation of suitable training data but the method should be applicable93

to any numerical and physical wave maker. The numerical wavetank employed was94

based on the OpenFOAM based methods described in detail in [10,15]. While a number95

of free surface methods are available, we chose the interFoamsrc volume-of-fluid solver96

for maximum flexibility. The wavemaker imposes vertical acceleration to the fluid, a97

numerical wave probe records resulting surface elevation at a distance of 3m. Beaches of98

1.5m length cancel reflections, the water depth is 0.25m. We need to prepare multiple99

distinct instances of the input and output vectors u, v, defined in the previous section in100

order to generate sufficient data with which to train the neural network models. Figure101

2 presents the workflow for this step.

Figure 2. Illustration of the work flow for generation of training data.
102
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Random wavemaker input traces were generated by summing up individual con-
tributions for each frequency f using the formula,

Ui(t) =
Nr

∑
k=1

Um

Nr
sin

(
2π

T(k)
t − φ(k)

)
(2)

A Tukey filter was applied to the resulting time trace to ensure wavemaker input began103

with zero amplitude, avoiding shock-waves in the numerical wavetank.104

This process was repeated multiple times to define a set of samples. Each sample,105

ui was then used as input to the OpenFOAM program for the wavetank configuration106

defined earlier in this paper. The computed surface elevation at the probe, for this input,107

was recorded as the output from OpenFOAM producing an instance vi. The workflow108

in figure 2 can be repeated to produce a training set of arbitrary size.109

2.3. Training the neural network model110

We have used the multi-layer perceptron (MLP) model of neural networks for the111

results that we report in this paper. There are multiple variability points, known as112

hyper-parameters, in an MLP model. These include the number of layers used, the113

number of nodes per layer and the activation function used at each layer. Varying these114

parameters changes the performance of the model. A standard technique is to search

Figure 3. Training and validating the neural network models.
115

over multiple values of the hyper parameters to find the model which best fits the data.116

Model fitting for each set of hyper-parameters is independent of every other set, that is117

embarrassingly parallel. This process generally requires large amounts of compute time,118

however compared to typical fluid dynamics problems the overhead is small and can be119

run on the same HPC architecture.120

[16] showed that the multilayer feed-forward architecture gives neural networks121

the potential to be universal approximators. The author showed that as long as the122

activation function is continuous, bounded and non-constant, then continuous mappings123

can be learned uniformly over compact input sets. The classical form of the universal124

approximation theorem for arbitrary width and bounded depth shows that a feed125

forward neural network is capable of approximating any well-behaved function [17].126

We thus aim to replace classical TTF with trained NN, which, once trained, should yield127

any required surface elevation trace without further iterative calibration steps.128
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2.4. Validation of the model129

. It is customary to use k-fold cross validation in order to remove bias in the training130

data. In our work we split the data samples on an 8 : 2 ratio of training to test samples.131

The members of each set are chosen randomly. This process is repeated multiple times132

and the model giving the best performance is chosen.133

A further check on the accuracy of our method is illustrated in figure 3. Once134

a neural network model has been chosen, we can take the wavemaker input that is135

predicted as required to generate a given time profile at the probe and feed this as input136

to the numerical wavemaker. The computed time profile at the probe can be compared137

to that which was fed to the neural network to produce the wavemaker input.138

3. RESULTS139

We prepared 1000 samples of wavemaker input, each of 30s duration, using equation140

2) with the parameters defined in table 1.Note that we used two different values for141

the maximum wavemaker height, Um. We first report on the case where Um = 1. This142

corresponds to the creation of waves with relatively small heights at the wavemaker as143

shown on the y-axis of figure 4. In the later part of this section we report on the case of144

generating much larger amplitude waves using Um = 50. Figure 4 presents an example

Table 1: Values used in equation (2 to produce the wavemaker time traces for the neural
network model.

Parameter Description Value
T Time in seconds [0.7 : (1.8s)]
Nr Number of realisations 1000
Um Constant 1 or 50
t Time in seconds [0, . . . , 30]s
φ(k) Random phase [0, 2π]

145

of the input to the wavemaker and subsequent computed surface elevation of the probe.146

The flat line to the left of the surface elevation plot represents the time delay between

Figure 4. The lower figure shows the wavemaker acceleration as a function of time feeding the
simulations using OpenFOAM. The upper figure shows computed surface elevation at the probe.
The values on the y-axes are in metres and the x-axes in seconds.

147

wave generation starting at the wavemaker and the arrival of the first wave at the probe.148

The most time intensive part of the computation is the search over the space of hyper149

parameters seeking to find a minimum in a chosen loss function. Fortunately the values150

taken by the hyper parameters are denumerable rather than continuous. In our work we151

have used the mean square error function, that is we compute the mean of squares of152

errors between the observations and the predictions during the training phase. It should153

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 October 2021                   doi:10.20944/preprints202110.0252.v1

https://doi.org/10.20944/preprints202110.0252.v1


Version October 15, 2021 submitted to J. Mar. Sci. Eng. 6 of 10

be noted though, that any other parameter or even combinations of interest could be154

used, like for example the height of the extremest waves or zero-crossing periods or155

phases of some selected components in casee where resonance is more important. By156

construction, this search can only find a local minimum for the ANN representation. It157

is this property which leads to the use of large amounts of CPU time, that is to search158

over as large a space of hyper parameters as reasonably possible.159

Table 2 shows the set of hyper parameters that we identified after an extensive160

search, using the mean squared error function. In the search, three activation functions161

were tested: Rectified Linear (ReLU), Hyperbolic Tangent (tanh) and Sigmoid. The162

results showed that all three activation functions reached a point of stagnation and163

convergence at around 350 epochs with a Mean-Squared Error of approximately 0.0033.

Table 2: Optimal values for the hyper-parameters of the neural network MLP model.
These were obtained by a grid search over multiple parameters.

Parameter Value
Training epochs 350
Learning rate 0.001
Hidden layer 1 nodes 310
Activation function tanh
Hidden layer 2 nodes 310
Activation function linear
Loss function MSE
Temporal resolution 0.1s

164

Following the validation process discussed in the previous section and presented in165

figure 3, the method reproduced the probe height accurately across the range of time166

points. The mean squared error over a typical time trace was 3.25 · 10−7. Figure 5 is an167

example comparing the two traces at the probe. After this initial demonstration of the

Figure 5. The black line is the probe elevation input to neural network model to infer the wave-
maker input used to create it. When this is input to OpenFOAM, the red line is the calculated
elevation of the probe.

168

fundamental suitability of the method, a second set of data was generated following the169

method described above, but with the parameter Um set to 50. A time domain analysis of170

the resulting surface elevation traces was performed using custom written GNUoctave171

[18] code as follows:172

• depth h is the mean value of the surface elevation trace173

• Find zero-crossing times of surface elevation minus depth174

• Iterate over every second zero-crossing time and find max and min values for given175

interval176

• Period τ is then the overall intervall length177

• wave height H is the sum of the magnitudes of maximum and minima values in178

each interval179
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The values for each wave are non-dimensionalised with gravitational acceleration g180

and wave period τ as pairs of H
gτ2 and h

gτ2 and plotted as a point cloud over the well181

known plot highlighting the validity of different wave theories [19], Fig 6. The majority182

of waves is highly non-linear and can best be described with 5th order stream function183

theory, reaching into 2nd and 3rd order stokes theory. Some few waves seem to exceed184

the breaking limit which requires further investigation but might well be due to the185

highly irregular nature of the timetrace.186

The key feature to note here is, that the waves are highly nonlinear and, while187

direct comaprison is still outstanding, could be expected to pose a formidable challenge188

to conventional wave calibration techniques. Figure 7 presents two example results189

for surface elevation using the predicted wavemaker input besides their target data.190

These results were achieved using the same settings found to be optimal for the small191

amplitude waves. Even without further optimisation agreement is good. In the first192

example (top) the highest peak at 10s and the lowest trough at 20s match almost perfectly193

in time and amplitude. In the second example (bottom), deviations for the largest waves194

can be observed at the end of the trace, but overall the agreement is still remarkable.

Figure 6. Wave parameters encountered in the larger wave cases represented as dots over the
validity ranges of several theories for periodic water waves, according to [19]. Original figure
adapted from Wikimedia Commons, the free media repository

195
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Figure 7. Comparison between recalculated surface elevation and original data for two sets of
results for the large wave setup.

3.1. Computational environment used196

Initial investigations of suitable neural network architectures were performed using197

version 3.8.5 of the Python language and using the GPU enabled version of Tensorflow.198

This software was excuted on a system which has an AMD Ryzen 7 3700x CPU and a199

NVIDIA GeForce RTX 2070 GPU. This system has 8GB RAM and the operating system200

Ubuntu 20.04.1 LTS. Production runs were performed at the EPSRC funded Tier 2201

Northern Ireland HPC centre.202

4. CONCLUSIONS203

In this paper we present a method which uses neural networks to infer the wave-204

maker input time-series required to produce a desired wave-elevation time-series at205

a probe in a fixed location. We present results using a Multi-Layer Perceptron neural206

network which has been tuned and trained over 800 samples of random input and207

output data. The neural network consistently produced outputs that, when used on the208

wavemaker, yielded accurate replications of the desired waves. Producing an inference209

from the model for a single input wave was fast and efficient, showing great promise as210

an alternative calibration method to the iterative tuning methods based on linear tank211

transfer functions.212

Although not demonstrated here explicitly, it should also be noted that short time213

traces can be used effectively. Short time traces of data can cause issues in conventional214

methods based on Fast Fourier Transforms, but are often the only feasible option in215

computationally intensive simulations which might only be used to investigate two or216

three wave cycles of interest.217

While the results from this model are promising, this work is just a first proof of218

concept and foundation for further investigations.219

The current model required input sequences with a strict number of time-steps, 301220

steps in the case of the final trained model, and only returned output sequences with the221

same number of steps. Attempting a model inference/prediction for an input wave-form222

that has a time span longer than that of the training data will be an interesting future223

challenge.224

Furthermore, while inferencing with the neural network method is very fast the225

process of generating training data and training the model can be time consuming.226
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However, since the required simulations can be run in parallel and often in 2 dimensional227

cases on HPC facilities the overall run time doesn’t need to be long. In experimental228

facilities, where each dataset must be generated in real time and in sequence this might229

be more of an issue. But even then, the data generation can be run once in a highly230

automated way with minimal manual interaction and subsequently instantly provide231

virtually any surface elevation trace required by the user. The effect of fewer training232

samples on the model accuracy certainly warrants further investigation.233

This research demonstrates the potential for the use of machine learning technol-234

ogy in the calibration of wavemakers, and highlights how further investigation and235

development could result in improvements in the utilisation of the technology.236
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