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Abstract: Experimental test facilities are generally characterised using linear transfer functions
to relate the wavemaker forcing amplitude to wave elevation at a probe located in the wavetank.
Second and third order correction methods are becoming available but are limited to certain
ranges of waves in their applicability. Artificial intelligence has been shown to be a suitable
tool to find even highly nonlinear functional relationships. This paper reports on a numerical
wavetank implemented using the OpenFOAM software package which is characterised using
artificial intelligence. The aim of the research is to train neural networks to represent non-linear
transfer functions mapping a desired surface-elevation time-trace at a probe to the wavemaker
input required to create it. These first results already demonstrate the viability of the approach
and the suitability of a single setup to find solutions over a wide range of sea states and wave
characteristics.

Keywords: tank transfer function; neural networks; machine learning; OpenFOAM; computa-
tional fluid dynamics;

1. INTRODUCTION

Waves are of particular interest in marine research as they play a key role in un-
derstanding fluid-structure interactions. Wave tank test facilities are used to generate
desired water waves in order to model certain sea-states in a controlled environment.
Both physical and simulated wavetanks exist, each with their own merits. However,
in all cases wavemakers are required and some method to control wavemaker action
to obtain a desired sea state or time trace of surface elevation in the tank. Early work
employed analytical solutions relating piston or paddle motion amplitude to surface
elevation [1]. Industry standard is now the characterisation of a wavetank using tank
transfer functions (TTF) [2], describing the ratio of surface elevation to wavemaker
amplitude and phase for each frequency component. Even for a flat bathymetry, non-
linear extensions are often required for anything beyond very small amplitude waves to
take into account bound waves and wave-wave interaction. Significant progress was
achieved by extension to second order [3], but despite further progress these analytical
solutions are still limited in their range of applicability and no single method encompass-
ing all features relevant in applied ocean and coastal research exists [4-6]. Recently, large
collaborative projects in offshore wind [7] and wave power [8] independently identified
a need for better accuracy in the reproduction of a given surface elevation time trace in
numerical simulations.

An artificial neural network (ANN) is a mathematical structure represented as a
set of interconnected nodes, with the connections called neurons. Different types of
neural network can be distinguished by the way in which the nodes are connected.
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These nodes are in fact numeric values and the connections are multiply-accumulate
operations (MAC) which are executed in sequence, corresponding to linking the neurons
together. The result of each operation is used as input to an activation function which
decides whether the result is fed forward to the next stage, or not, and different choices
exists for the activation function. In addition, each MAC operation has several weights
which are computed during the training phase.

Wavemaker Wave Probe
]

wez o’

10m

AA
\

Y

Figure 1. Geometric layout for the numerical wavetank.

Calibrating a wavemaker can be regarded as solving the wave propagation problem,
and thus the Navier-Stokes Equation, backwards in time. ANNs can function as uni-
versal function pproximators and have been shown to be capable of solving differential
equations. In our work we apply one type of ANN, the multi-layer perceptron to solve
the Navier Stokes equations in our numerical wavetank. We show that it is possible to
accurately map a desired wave-elevation time-series, at a measurement probe position,
to the wavemaker input required to generate this time series. In the literature there is
only one known application of Neural Networks to predict wavemaker inputs based
on specific wave traces for calibration. The work done by [9] experimented with the
first use of Non-Linear Auto-regressive Exogenous input (NARX) Neural Networks
for the calibration of waves close to the breaking limit of a numerical wavetank based
on a method later published in [10]. For model training, waves were first generated
with random wavemaker input. The time-trace of the surface elevation of the resultant
waves were then used as model input and the given random wavemaker input was
used as the desired model output. With each run more data became available and the
solution converged towards the desired result. These experiments indicate that NNs are
a valuable tool for wavemaker calibration and could yield better results with further
experimentation. One issue in the application of NN to wave calibration identified, was
the short “memory” or “vanishing gradient”, which has been investigated by [11]. The
influence of an item in sequence weakens as the sequences goes on. This is problematic
for learning long sequences, as long patterns and sparse temporal dependencies may
not be recognised.

Neural networks methods have been used by other researchers in the field. [12]
uses Recurrent Neural Networks (RNNSs) to predict statistical properties of water wave
amplitude time traces as a function of the wavemaker parameters (blower RPM and
frequency). While they only predicted statistical properties of the wave produced and
not a specific time-series, this still shows the promise of RNNs in predicting water waves.
A novel neural network modelling approach has been proposed by [13]. This proposal
presents the idea of Physics Informed Neural Networks to solve differential equations,
giving an example of wave propagation. In this method, the laws of physics are invoked
to constrain calculated values to a suitable range. This method may be suitable for
application to the Navier-Stokes equations.

The layout of this paper is as follows. In the next section we explain the method-
ology that we have implemented to perform our numerical experiments. Section 3
presents the results of our experiments including application to a non-linear case. The
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paper concludes with section 4 where we summarise the findings of our work and look
towards future applications of it.

2. METHODOLOGY
2.1. Function approximation

Following Friedmann[14], we may state the problem of finding the inverse of the
non-linear transfer function in the following way. We have an output variable U;, the
required wavemaker function, defined as a function at a discrete set of n time points, ¢;.
This is dependent on the function, F(h;, t;), the form of which is unknown. The function
depends on the height of the probe amplitude, /; at time ¢; and represents the inverse of
the tank transfer function.

However, we have a vector v which is a set of n observations (h;,t;) i = 1,n at the
probe to which we can associate a vector U of n wavemaker inputs from a previous time
interval. We know that these inputs ad outputs are related by equation (1)

F(v) - u 1)

The universal approximation theorem for neural networks asserts that we can use
the input and output vectors u, v to find an approximation for the unknown function F
in equation (1) for a vector of observations, u, to a unique output vector, v, expressed in
equation 1.

2.2. Generating training data

The work reported in this paper uses the numerical wavetank (NWT) shown in
figure 1 for the preparation of suitable training data but the method should be applicable
to any numerical and physical wave maker. The numerical wavetank employed was
based on the OpenFOAM based methods described in detail in [10,15]. While a number
of free surface methods are available, we chose the interFoamsrc volume-of-fluid solver
for maximum flexibility. The wavemaker imposes vertical acceleration to the fluid, a
numerical wave probe records resulting surface elevation at a distance of 3m. Beaches of
1.5m length cancel reflections, the water depth is 0.25m. We need to prepare multiple
distinct instances of the input and output vectors u, v, defined in the previous section in
order to generate sufficient data with which to train the neural network models. Figure
2 presents the workflow for this step.

Calculatethe
wavemaker input

Computed using
OpenFOAM

Record the elevation
at the probe

Repeat multiple times for different
wavemaker inputs to generate a set
of training samples

Figure 2. Illustration of the work flow for generation of training data.
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Random wavemaker input traces were generated by summing up individual con-
tributions for each frequency f using the formula,

Ny
i) = 3 G sn( 5t~ 900 ®
A Tukey filter was applied to the resulting time trace to ensure wavemaker input began
with zero amplitude, avoiding shock-waves in the numerical wavetank.

This process was repeated multiple times to define a set of samples. Each sample,
u; was then used as input to the OpenFOAM program for the wavetank configuration
defined earlier in this paper. The computed surface elevation at the probe, for this input,
was recorded as the output from OpenFOAM producing an instance v;. The workflow
in figure 2 can be repeated to produce a training set of arbitrary size.

2.3. Training the neural network model

We have used the multi-layer perceptron (MLP) model of neural networks for the
results that we report in this paper. There are multiple variability points, known as
hyper-parameters, in an MLP model. These include the number of layers used, the
number of nodes per layer and the activation function used at each layer. Varying these
parameters changes the performance of the model. A standard technique is to search

Train the model with
U_i,v_isamples
from the trainingset

\ 4
OpenFOAM calculation for
the wavetank

Test model using remaining
samples U_i, v_i
i=M+1, .. N

Computed output is the
1 ' height at the probe

Select one instance, v_j, use model to
compute wavemaker input U_j
" —

Compare withv_j

Figure 3. Training and validating the neural network models.

over multiple values of the hyper parameters to find the model which best fits the data.
Model fitting for each set of hyper-parameters is independent of every other set, that is
embarrassingly parallel. This process generally requires large amounts of compute time,
however compared to typical fluid dynamics problems the overhead is small and can be
run on the same HPC architecture.

[16] showed that the multilayer feed-forward architecture gives neural networks
the potential to be universal approximators. The author showed that as long as the
activation function is continuous, bounded and non-constant, then continuous mappings
can be learned uniformly over compact input sets. The classical form of the universal
approximation theorem for arbitrary width and bounded depth shows that a feed
forward neural network is capable of approximating any well-behaved function [17].
We thus aim to replace classical TTF with trained NN, which, once trained, should yield
any required surface elevation trace without further iterative calibration steps.
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2.4. Validation of the model

. It is customary to use k-fold cross validation in order to remove bias in the training
data. In our work we split the data samples on an 8 : 2 ratio of training to test samples.
The members of each set are chosen randomly. This process is repeated multiple times
and the model giving the best performance is chosen.

A further check on the accuracy of our method is illustrated in figure 3. Once
a neural network model has been chosen, we can take the wavemaker input that is
predicted as required to generate a given time profile at the probe and feed this as input
to the numerical wavemaker. The computed time profile at the probe can be compared
to that which was fed to the neural network to produce the wavemaker input.

3. RESULTS

We prepared 1000 samples of wavemaker input, each of 30s duration, using equation
2) with the parameters defined in table 1.Note that we used two different values for
the maximum wavemaker height, U,,. We first report on the case where U, = 1. This
corresponds to the creation of waves with relatively small heights at the wavemaker as
shown on the y-axis of figure 4. In the later part of this section we report on the case of
generating much larger amplitude waves using U, = 50. Figure 4 presents an example

Table 1: Values used in equation (2 to produce the wavemaker time traces for the neural
network model.

Parameter Description Value
T Time in seconds [0.7 : (1.8s)]
N, Number of realisations 1000
Uy, Constant 1 or 50
t Time in seconds [0,...,30]s
¢(k) Random phase [0,27]

of the input to the wavemaker and subsequent computed surface elevation of the probe.
The flat line to the left of the surface elevation plot represents the time delay between

Elevation

15
Wavemaker

0 5 10 15 20 25 30

Figure 4. The lower figure shows the wavemaker acceleration as a function of time feeding the
simulations using OpenFOAM. The upper figure shows computed surface elevation at the probe.
The values on the y-axes are in metres and the x-axes in seconds.

wave generation starting at the wavemaker and the arrival of the first wave at the probe.

The most time intensive part of the computation is the search over the space of hyper
parameters seeking to find a minimum in a chosen loss function. Fortunately the values
taken by the hyper parameters are denumerable rather than continuous. In our work we
have used the mean square error function, that is we compute the mean of squares of
errors between the observations and the predictions during the training phase. It should
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be noted though, that any other parameter or even combinations of interest could be
used, like for example the height of the extremest waves or zero-crossing periods or
phases of some selected components in casee where resonance is more important. By
construction, this search can only find a local minimum for the ANN representation. It
is this property which leads to the use of large amounts of CPU time, that is to search
over as large a space of hyper parameters as reasonably possible.

Table 2 shows the set of hyper parameters that we identified after an extensive
search, using the mean squared error function. In the search, three activation functions
were tested: Rectified Linear (ReLU), Hyperbolic Tangent (tanh) and Sigmoid. The
results showed that all three activation functions reached a point of stagnation and
convergence at around 350 epochs with a Mean-Squared Error of approximately 0.0033.

Table 2: Optimal values for the hyper-parameters of the neural network MLP model.
These were obtained by a grid search over multiple parameters.

Parameter Value
Training epochs 350
Learning rate 0.001
Hidden layer 1 nodes 310
Activation function tanh
Hidden layer 2 nodes 310
Activation function linear
Loss function MSE
Temporal resolution 0.1s

Following the validation process discussed in the previous section and presented in
figure 3, the method reproduced the probe height accurately across the range of time
points. The mean squared error over a typical time trace was 3.25 - 10~7. Figure 5 is an
example comparing the two traces at the probe. After this initial demonstration of the
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Figure 5. The black line is the probe elevation input to neural network model to infer the wave-
maker input used to create it. When this is input to OpenFOAM, the red line is the calculated
elevation of the probe.

fundamental suitability of the method, a second set of data was generated following the
method described above, but with the parameter U, set to 50. A time domain analysis of
the resulting surface elevation traces was performed using custom written GNUoctave
[18] code as follows:

*  depth & is the mean value of the surface elevation trace

e  Find zero-crossing times of surface elevation minus depth

* lterate over every second zero-crossing time and find max and min values for given
interval

¢ Period 7 is then the overall intervall length

e wave height H is the sum of the magnitudes of maximum and minima values in
each interval
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The values for each wave are non-dimensionalised with gravitational acceleration g
and wave period T as pairs of % and % and plotted as a point cloud over the well

known plot highlighting the validity of different wave theories [19], Fig 6. The majority
of waves is highly non-linear and can best be described with 5 order stream function
theory, reaching into 2" and 3" order stokes theory. Some few waves seem to exceed
the breaking limit which requires further investigation but might well be due to the
highly irregular nature of the timetrace.

The key feature to note here is, that the waves are highly nonlinear and, while
direct comaprison is still outstanding, could be expected to pose a formidable challenge
to conventional wave calibration techniques. Figure 7 presents two example results
for surface elevation using the predicted wavemaker input besides their target data.
These results were achieved using the same settings found to be optimal for the small
amplitude waves. Even without further optimisation agreement is good. In the first
example (top) the highest peak at 10s and the lowest trough at 20s match almost perfectly
in time and amplitude. In the second example (bottom), deviations for the largest waves
can be observed at the end of the trace, but overall the agreement is still remarkable.
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Figure 6. Wave parameters encountered in the larger wave cases represented as dots over the

validity ranges of several theories for periodic water waves, according to [19]. Original figure
adapted from Wikimedia Commons, the free media repository
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Figure 7. Comparison between recalculated surface elevation and original data for two sets of
results for the large wave setup.

3.1. Computational environment used

Initial investigations of suitable neural network architectures were performed using
version 3.8.5 of the Python language and using the GPU enabled version of Tensorflow.
This software was excuted on a system which has an AMD Ryzen 7 3700x CPU and a
NVIDIA GeForce RTX 2070 GPU. This system has 8GB RAM and the operating system
Ubuntu 20.04.1 LTS. Production runs were performed at the EPSRC funded Tier 2
Northern Ireland HPC centre.

4. CONCLUSIONS

In this paper we present a method which uses neural networks to infer the wave-
maker input time-series required to produce a desired wave-elevation time-series at
a probe in a fixed location. We present results using a Multi-Layer Perceptron neural
network which has been tuned and trained over 800 samples of random input and
output data. The neural network consistently produced outputs that, when used on the
wavemaker, yielded accurate replications of the desired waves. Producing an inference
from the model for a single input wave was fast and efficient, showing great promise as
an alternative calibration method to the iterative tuning methods based on linear tank
transfer functions.

Although not demonstrated here explicitly, it should also be noted that short time
traces can be used effectively. Short time traces of data can cause issues in conventional
methods based on Fast Fourier Transforms, but are often the only feasible option in
computationally intensive simulations which might only be used to investigate two or
three wave cycles of interest.

While the results from this model are promising, this work is just a first proof of
concept and foundation for further investigations.

The current model required input sequences with a strict number of time-steps, 301
steps in the case of the final trained model, and only returned output sequences with the
same number of steps. Attempting a model inference/prediction for an input wave-form
that has a time span longer than that of the training data will be an interesting future
challenge.

Furthermore, while inferencing with the neural network method is very fast the
process of generating training data and training the model can be time consuming.
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However, since the required simulations can be run in parallel and often in 2 dimensional
cases on HPC facilities the overall run time doesn’t need to be long. In experimental
facilities, where each dataset must be generated in real time and in sequence this might
be more of an issue. But even then, the data generation can be run once in a highly
automated way with minimal manual interaction and subsequently instantly provide
virtually any surface elevation trace required by the user. The effect of fewer training
samples on the model accuracy certainly warrants further investigation.

This research demonstrates the potential for the use of machine learning technol-
ogy in the calibration of wavemakers, and highlights how further investigation and
development could result in improvements in the utilisation of the technology.
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