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Abstract: In addition to their importance in statistical thermodynamics, probabilistic entropy
measurements are crucial for understanding and analyzing complex systems, with diverse
applications in time series and one-dimensional profiles. However, extending these methods to
two- and three-dimensional data still requires further development. In this study, we present a
new method to classify spatiotemporal processes based on entropy measurements. To test and
validate the method, we selected four classes of similar processes related to the evolution of random
patterns: dynamic colored noises ((i) white and (ii) red); (iii) weak turbulence from reaction-diffusion;
(iv) hydrodynamic fully developed turbulence, and (v) plasma turbulence from MHD. Considering
seven possible ways to measure entropy from a matrix, we present the method as a parameter space
composed of the two best separating measures of the five selected classes. The results highlight better
combined performance of Shannon Permutation Entropy (S};) and a new approach based on Tsallis
Spectral Permutation Entropy (S7). Notably, our observations reveal the segregation of reaction terms
in this SIZ x 53 space, a result that identifies specific sectors for each class of dynamic process, and
can be used to train machine learning models for automatic classification of complex spatiotemporal
patterns.

Keywords: nonlinear dynamics; spatiotemporal patterns; turbulence; shannon entropy; tsallis
entropy; gradient pattern analysis

1. Introduction

The intricate relationship between probability and entropy is a cornerstone in information theory
and statistical thermodynamics, providing a robust framework for analyzing a multitude of phenomena
ranging from data transmission processes to the behavior of many physical systems. Entropy, derived
from the probability distribution of the states of a process or system, can be interpreted as a quantitative
measure of randomness or disorder, offering deep insights into the underlying dynamics of several
complex systems (see, for instance, Refs. [2,7,12,23-25]).

From a thermodynamic perspective, the entropy concept is intimately tied to the statistical
mechanics of microstates. The entropy, S, is defined by Boltzmann’s entropy equation, S = kgIn (),
where kg is the Boltzmann constant and ) represents the number of microstates. This relationship
can be interpreted as the degree of disorder or randomness in a system’s microscopic configurations,
drawing a direct connection between the macroscopic observable properties and the statistical behavior
of microstates. Complementary, in the realm of information theory, entropy is fundamentally concerned
with quantifying the expected level of “information,” “surprise,” or “uncertainty” in the potential
outcomes of a system [3]. This quantification is intricately linked to the probability distribution
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of these outcomes. It essentially measures the average unpredictability or the requisite amount of
information needed to describe a random event, thereby providing a metric for the efficiency of data
transmission and encoding strategies. Therefore, the duality of the entropy interpretation works as a
bridge between the abstract realm of information and the tangible world of the statistics of physical
systems. It encapsulates the essence of entropy as a fundamental measure, providing a unifying lens
through which the behavior of complex systems, whether in the context of information processing or
thermodynamics, can be coherently understood and analyzed. This interdisciplinary approach not
only deepens our understanding of individual phenomena but also reveals the underlying universality
of the concepts of randomness and information across diverse scientific domains.

In the scenario described above, it is necessary to identify entropy measures that are effective
in characterizing spatiotemporal patterns of complex processes typically observed or simulated in
2D + 1 and 3D + 1: following the notation of the amplitude equation theory, where D corresponds to
the spatial dimension in which the amplitude of a variable fluctuates over time. This need is justified
by the great advances in the generation of Big Data in computational physics, with emphasis on Direct
Numerical Simulation (DNS) of turbulence [17,18], ionized fluids [19,21,22,26,27], reactive-diffusive
processes [14], to highlight a few.

Our main objective in this work is to present and evaluate the performance of a set of information
entropy measurements, conjugated two by two, to characterize different classes of 3D structural
patterns arising from nonlinear spatiotemporal processes. To this end, the article is organized as
follows: the analytical methodology is presented in Section 2, and the data in Section 3. The results,
in the context of a benchmark based on the generalization of the Silhouette Score, are presented and
interpreted in Section 4. Our concluding remarks, with emphasis on pointing out the usability of the
method in the context of data-driven science, are presented in the last section.

2. Methods

Various entropy metrics have been proposed in the literature, including spectral entropy,
permutation entropy, and statistical complexity.

The process of defining a new metric typically involves two fundamental steps: (i) establishing
the probability definition, and (ii) determining the entropic form. This framework allows for the
generalization of any new metric by specifying these two steps!. In the following subsections 2.1
and 2.2, we present respectively the key techniques for defining probabilities and entropic forms.
Subsequently, in subsection 2.3, we introduce a methodology to assess these metrics using criteria
commonly applied to clustering techniques.

2.1. Probabilities

Probability is a concept that quantifies the likelihood of an event occurring. It is expressed as a
numerical value between 0 and 1. Here, 0 signifies the complete impossibility of an event, while 1
denotes absolute certainty. Mathematically, if we consider a process with a finite number of possible
outcomes, the probability Pr(E) of an event E is defined by the ratio:

Number of favorable outcomes

Pr(E) (1)

" Total number of possible outcomes’
This definition is useful to gain insight of systems that produce discrete real-valued outcomes. In such
a case, the histogram of proportions of observed events is the usual tool to estimate the underlying
probability distribution of such outcomes.

1 Code publicly available at https:/ /github.com/rsautter /Eta
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Many systems produce continue-valued multidimensional outcomes, and the observer needs to
define how to estimate a useful probability able to characterize their behavior. Approaches such as
permutation and spectral analysis incorporate spatial locality and scale considerations to elucidate the
occurrence of specific patterns.

In the permutation approach, local spatial differences (increase, decrease, or constancy) represent
the states. New states can be generated by permuting the array elements. Thus, the probabilities
account for the occurrences of those states. To extend this definition to multiple dimensions, a given
array is flattened. Further details of this technique have been explored by Pessa (2021).

Another methodology involves spectral analysis, wherein the probability is computed as the
Power Spectrum Density (PSD) of the signal P(w), normalized accordingly. Since this approach
considers the probability associated with a given frequency w, it explores the scaling relation of the
signal. For instance, white noise, characterized by equal power across all frequencies, represents a
type of signal exhibiting maximum entropy. Whereas the red noise presents a higher PSD for lower
frequencies, which represents a lower entropy value. This approach has been popularized in the
literature to study time series [7,8,33]. The probabilities presented in this section describe the possible
spatial states, while the subsequent subsection elaborates on the entropic characterization of this
system.

2.2. Entropic Forms

Several entropy equations and generalizations have been proposed, such as the Boltzmann-Gibbs
entropy (also known as Shannon entropy), Tsallis entropy, and Rényi entropy. The most general form
is the Shannon entropy, expressed as:

4%
Sy =—)_ pilogp:. )
i=1

Here, p; is the probability of state i, which can also comprise complex numbers [10], and W is the size
of the set of possible events. The value of Sy depends on the distribution. Notably, Sy is maximum
when all the probabilities are equal, i.e., under the uniform distribution; in this case, Sy = —log W,
and minimum when p; is Dirac’s delta. To account for this maximum value, the normalized Shannon
entropy is given by:

L, pilogpi

log W )

Sy =—

Another significant entropic form is the Tsallis entropy, proposed as a generalization of
Boltzmann-Gibbs entropy [1], with the equation:

_-nh

S, 5

, (4)
where g is the entropic index or nonextensivity parameter, and plays a crucial role in determining the
degree of nonextensivity in the Tsallis entropy.

It is important to explore a range of values for the parameter g to derive a metric distinct from
Shannon entropy since lim, ;1 S; = Sp. Therefore, we suggest exploring values for g in the range
1 < g < 5 and seek a relationship denoted by &, where log S; = aloggq. This approach enables the
examination of this generalization of Sp.

A unique strategy to characterize complex non-linear systems has been the Gradient Pattern
Analysis (GPA). This technique involves computing a set of metrics derived from the gradient lattice
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representation and the gradient moments, see Appendix A. Specifically, we highlight G4, which is
determined as the Shannon entropy from the complex representation of the gradient lattice:

(5)

In the lattice context, the gradient signifies the local variation of amplitudes, computed as
the spatial derivative at every embedding dimension. From these spatial derivatives, the complex
representation: ‘

zj = |oje", (6)
is formed, comprising both the modulus (|v]- |) and phases (6). To obtain a probability, the complex
notation is normalized by z = }_z;. For a in-depth review of this metric, please refer to [9,10]. Table 1
provides a summary of all combinations of entropic forms with associated probabilities, along with
the GPA metric, that were examined in this study.

Table 1. Entropy Measures.

Measure Probability Entropic Form Reference

S’;J histogram Shannon, Equation (3) Lesne [4]

SIZ permutation Shannon, Equation (3) Pessa [5]

S spectral Shannon, Equation (3) Abdelsamie [18], Abdullah [12]
st histogram  Tsallis g-law, Equation (4)) Li[6]

S% permutation  Tsallis g-law, Equation (4)) Li[6]

5,51 spectral Tsallis g-law, Equation (4) This paper

Gy gradient Shannon*, Equation (5) Ramos [10]

To assess the efficacy of each metric and explore the impact of various combinations of probability
definitions with entropic forms, we introduce a criterion outlined in the subsequent section. This
criterion is formulated with a focus on clustering the entropy measures of the dataset.

2.3. Silhouette Score and Generalized Silhouette Score

Non-supervised algorithms face unique challenges, a remarkable one is defining their efficiency.

The silhouette score is a criterion for defining if a set has been well-clusterized [34]. Given an element
x; in a cluster 7y, this metric is computed as follows [11,12]:
b(x;) —a(x;)

st) = o {b(x;),a(x)) @

where a(x;) is the average dissimilarity, that is the average distance of x; to all other elements in
the cluster 7y, and b(x;) is the average distance to elements of other clusters. The greater the s(x;)
value, the better performance of the clustering algorithm because it has produced groups with low
dissimilarity and large distances between clusters. This technique can be extended to feature extraction
if one considers the individual datasets as the clusters 77,. However, it is equally essential to account
for the potential correlation between metrics, as metrics may inadvertently capture the same data
aspects, which is undesirable. To mitigate this, we use the modulus of the Pearson correlation |r| to

form the penalty term 1 — || as follows:

b(xi) — a(xi)
max {b(x;),a(x;)}’

which we call the Generalized Silhouette Score (GSS).

s'(xi) = (1= 1Ir]) (®)
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After defining a group of entropy measurements and the tool (GSS), which allows determining
the best pair of measurements to compose a 2D parameter space, we selected the data set to test and
validate our methodological approach.

3. Data

Our main objective is to test the performance of a space composed of two entropy measures in
which it is possible to distinguish different classes of complex spatiotemporal processes. For this first
study, we chose turbulence-related processes and simulated dynamic colored noises.

We employ simulated data related to the following processes: (i) white noise; (ii) colored noise;
(iii) weak turbulence; (iv) hydrodynamic turbulence; and (v) magnetohydrodynamic turbulence
(MHD). The main reason for choosing these processes, except colored noise, is that they all present
random-type patterns with underlying dynamic characteristics based on physical processes described
by partial differential equations (diffusion, reaction and advection). Each was obtained from
simulations identified in Table 2.

Based on the power law scaling algorithm technique [13], we created our noise simulator [15].
The data representing weak turbulence (also called chemical or reactive-diffusive turbulence) were
obtained from the solution of the Ginzburg-Landau Complex Equation [14,16]. The hydrodynamic
turbulence patterns were selected from the John Hopkins database (JHTDB) [20], and the MHD
turbulence simulation was simulated using the PENCIL code [19]. Details regarding the simulations
are provided in the supplementary material.

To test the approach based on entropy measurements, we selected a total of 25 snapshots
representing the evolution of each chosen process. The snapshots were extracted from 3D simulations,
taking as a criterion the analysis of the central slice of each hypercube, as the measurement techniques
used to act on matrices within a two-dimensional approach.

Figure 1 shows representative snapshots of the respective spatiotemporal processes. These
visualizations provide a compelling narrative of the dynamic behavior of each system, highlighting
the wide variety of patterns that emerge through temporal dynamics in the phase space.
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Snapshots
s =15

Figure 1. Snapshots of the spatiotemporal evolution of each selected system class, listed in Table 2.
Each row shows one of the simulations, rendered at time-steps that show a representative pattern
dynamics: Dynamic White Noise (1st row), Random Red Noise (2nd row); Weak turbulence from the
Reaction-Diffusion Complex Ginzburg-Landau Dynamics; Fully Developed Turbulence from JHTDB
(4th row) and MHD turbulence from PENCIL.

Table 2. Datasets and references.

Simulation Process Reference
White Dynamic Noise ~ Spatiotemporal stochastic Timmer [13]
Red Dynamic Noise Spatiotemporal stochastic Timmer [13]
CGL2 Weak Turbulence Sautter [15,16]
JHTDB Fully Developed Turbulence  Brandenburg [19]
PENCIL MHD Turbulence Brandenburg [19]

The numerical procedures and/or technical acquisition details related to the data shown in Figure
1 are available as supplementary material in the repository?, in the section entitled Data Simulations.

4. Results and Interpretation

The analyses in this study were conducted within 2D metric spaces, encompassing all possible
entropy measure combinations. Based on the minimum information principle, this configuration
offers advantages in terms of interpretability, considering the minimum set of parameters that can
be addressed as labels in a possible machine learning interpretation. Our approach to measuring
entropies from the data follows the following steps:

¢ Input of a snapshot;
* Pre-processing whose output is a 64 x 64 matrix with amplitude ranging from 0 to 255;
* Generation of 3 matrix data outputs: 2D-histogram, 2D-Permutation and 2D-FFT Spectra

3 (https://github.com/rsautter/Eta/)
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* For each of the three domains, the entropy measures are calculated.

Given the definition of the three types of domains interpreted as probability (from histogram,
permutation and spectrum), we have six entropy variations, as detailed in Section 2. To distinguish
these metrics, we introduced superscripts denoted by # for histogram probability, p for permutation
probability, and s for spectral probability. The GPA analysis yields another metric, resulting in 21
scores, as illustrated in Figure 2.

0.7
- 0.6

- 0.5

0.4

0.3

0.2

0.1

0.0

Figure 2. Generalized Silhouette Score for all 2D metric combinations. Higher values on the heatmap
indicate superior metric performance. The optimal result is achieved with the pairing of Spectral Tsallis
Entropy and Permutation Shannon Entropy (S5 x SP).

As aresult, the most effective combination is the pair Spectral Tsallis Entropy (57) and Permutation
Shannon Entropy (S};). A visual representation of this space, accompanied by some snapshots, is
presented in Figure 3. In this space, the metrics reveal a constant Permutation Shannon Entropy
dynamical noise systems, that are solely distinguished by the Spectral Tsalllis Entropy, indicating
the differences of scaling effects in pattern formation. Conversely, the distinct complex nonlinear
characteristics and reaction terms observed in MHD simulations are more pronounced in Permutation
Shannon Entropy, accentuating the diversity of localized patterns alongside the larger-scale ones.
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Dynamic White Noise (DWN)
Dynamic Red Noise (DRN)

Weak Turbulence (WT)

Fully Developed Turbulence (FDT)
MHD Turbulence (MHDT)

1.05 4
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Spectral Tsallis Entropy (Sf,)

Figure 3. Optimal outcomes achieved assessed through the generalized silhouette score criterion. The
method achieves its best performance in the (S; X SIZ) parameter space.

The analysis of the entropy distribution is essential in a classification context, as it offers insights
into the similarity between a new dataset and various models. However, carefully analysing the
entropy metrics over time can highlight important aspects of the underlying physical processes. For
instance, the transition from initial conditions to an oscillatory relaxation state is evident in Figure 4.
This outcome aligns with expectations in the context of the CGL system, owing to the periodic nature
of the reaction term. However, it is essential to highlight that in this introductory study, we avoided
simulations with more complex regimes (such as relaxations) as the primary purpose here is to present
a new method, and the objective here is not to use it to deepen the physical interpretation of each
process.
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Figure 4. Best entropy set according to the generalized silhouette score (see Figure 2) for the 3D-CGL
solution over time, where the oscillatory dynamic of the system is highlighted. The color indicates the
snapshot, where 500 samples are presented.

5. Outlook

Based on the study and approach presented here, we defined a methodological pipeline for
spatiotemporal characterization of simulated and/or observed complex processes (Figure 5). The
method can be applied to identify and segregate different classes of processes, as well as to classify
isolated patterns when necessary. In a context where measured and simulated data may exist, it also
serves to validate models. Likewise, the pair of entropy measurements can also serve as a binomial
label for training deep learning architectures for automatic classification.
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2D+1 Perrgitgtion
Spatiotemporal > {Sf«j}N AT
Data Input Space:
(N Snapshots) Amplitiid
plitude 14 ]
> Matrices > } {SH X Sq }N
Sequence A 4§
{1, ..., N} I Spatiotemporal
> 2D-Spectra —> { S; }N Characterization
To classify

Figure 5. Pipeline of the method proposed in this study based on the best results we found: A
sequence of snapshots from the simulation of a given process (in the 2D + 1 or 3D + 1 domains) are
the input on which entropy measurements will be obtained. To calculate the respective permutation
Shannon entropy values SIZ, the permutation values are obtained (see Appendix 2). To calculate
the Spectral Tsallis Entropy S;, the respective spectra are obtained. From the calculated values, the
parameter space is constructed where it is proposed to characterize the underlying process. The space
also work for classifying isolated patterns, taking as reference distinct processes that have already been
characterized.

6. Concluding Remarks

This work undertook a comprehensive analysis of entropy metrics and their application to
complex extended non-linear systems. The study explored new approaches, including different
entropy measures and a new generalized silhouette score for measure evaluation.

Through meticulous consideration of canonical datasets, distinct patterns have been characterized
in terms of entropy metrics. The pivotal finding was the identification of the optimal pair: Spectral
Tsallis Entropy (S53) and Permutation Shannon Entropy (S%)), yielding superior outcomes in the
generalized silhouette score. This combination showcased efficacy in distinguishing spatiotemporal
dynamics coming from different classes of turbulent-like processes, including pure stochastic 2D 1/ f ¥
(colored) noise.

The new method contributes valuable insights into applying entropy probabilistic measures,
providing a foundation for future studies in terms of extended complex system pattern formation
characterization.

Initial work considering entropy measurements for training machine learning models is underway.
In this context, it also includes a study of the computational complexity of the method for a benchmark
with other measures and approaches that may emerge. This strategy is fundamental when we think
about the presented method being applied in a data science context.

Finally, we carefully organize all the mathematical content and data used in this work in a GitHub
repository? to guarantee the reproducibility of this experiment.

Acknowledgments: R.R.R. thanks FAPESP under Grant No. 2021/15114-8 for partial financial support. L.O.
Barauna and R.A.S was supported by the Federal Brazilian Agency-CAPES.

Appendix A. Gradient Pattern Analysis

Gradient Pattern Analysis (GPA) represents a paradigm shift in data analysis, focusing on
the spatiotemporal dynamics of information rather than static values. This innovative approach
emphasizes the examination of gradients within datasets—dynamic vectors that encode the rate of
change—thereby revealing patterns and structures that are often obscured by traditional analytical
methods.

4 https:/ /github.com/rsautter/Eta/
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From a mathematical perspective, GPA utilizes a series of gradient moments to quantify the
smoothness and alignment of these vectors within the data lattice:

Nc — Ny
Gl =——, Al
1= = (A1)
Va
\% ‘Zovi
G =-4[1-15 , (A2)
Va
2 |vj
i=0
vy 1 R
G3 = E (V + m = U;.0; +1> , (AB)
and
Va 7.z
— Ty 2
Gy = i;OZan, (A4)

were N¢ and Ny are the connections in the Delaunay triangulation and the number of vertices; V4
is the number of asymmetrical vectors, V is the total number of vectors in the lattice, and UIA is an
asymmetrical vector; u; = (cos(¢;),sin(¢;)) and z; = |vi| exp(if;), where |vi| represents the modulus
and 6; represents the phase and

Va
z= Zzi. (A5)

These moments provide a distinctive signature that characterizes the inherent patterns in the data,
applicable across various domains. This versatility enables GPA’s application in diverse fields, ranging
from time-series analysis in climatology to image recognition in computer vision.

One of the notable strengths of GPA is its capacity for efficient data compression. By discerning
and eliminating redundant information while retaining the essential gradient characteristics, GPA
achieves data compression without losing the dataset’s critical structural and dynamic properties. This
aspect of GPA is particularly advantageous for storing, transmitting, and analysing large-scale datasets
in numerous scientific and engineering disciplines. For a complete review see Refs. [9,10].

Appendix B. 2D-Permutation Entropy

Based on the concept of permutation entropy [29], two-dimensional multiscale sample entropy
has been proposed as a new texture algorithm [30,31] and has therefore been used to evaluate the
complexity of 2D patterns [32]. In a simplified way, the technique is based on the following steps:

* Step 1: Get the coarse-grained image as an N X N matrix;

Step 2: Apply a window of size D x D to it;

Step 3: Do D! reshape permutations to obtain the probabilities of each local pattern;
Step 4: Repeat the last procedure, scanning the entire matrix

Step 5: Apply as input the probability values to the chosen entropy formula.

In our application we use D = 9.
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