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Abstract: In addition to their importance in statistical thermodynamics, probabilistic entropy

measurements are crucial for understanding and analyzing complex systems, with diverse

applications in time series and one-dimensional profiles. However, extending these methods to

two- and three-dimensional data still requires further development. In this study, we present a

new method to classify spatiotemporal processes based on entropy measurements. To test and

validate the method, we selected four classes of similar processes related to the evolution of random

patterns: dynamic colored noises ((i) white and (ii) red); (iii) weak turbulence from reaction-diffusion;

(iv) hydrodynamic fully developed turbulence, and (v) plasma turbulence from MHD. Considering

seven possible ways to measure entropy from a matrix, we present the method as a parameter space

composed of the two best separating measures of the five selected classes. The results highlight better

combined performance of Shannon Permutation Entropy (S
p
H) and a new approach based on Tsallis

Spectral Permutation Entropy (Ss
q). Notably, our observations reveal the segregation of reaction terms

in this S
p
H × Ss

q space, a result that identifies specific sectors for each class of dynamic process, and

can be used to train machine learning models for automatic classification of complex spatiotemporal

patterns.

Keywords: nonlinear dynamics; spatiotemporal patterns; turbulence; shannon entropy; tsallis

entropy; gradient pattern analysis

1. Introduction

The intricate relationship between probability and entropy is a cornerstone in information theory

and statistical thermodynamics, providing a robust framework for analyzing a multitude of phenomena

ranging from data transmission processes to the behavior of many physical systems. Entropy, derived

from the probability distribution of the states of a process or system, can be interpreted as a quantitative

measure of randomness or disorder, offering deep insights into the underlying dynamics of several

complex systems (see, for instance, Refs. [2,7,12,23–25]).

From a thermodynamic perspective, the entropy concept is intimately tied to the statistical

mechanics of microstates. The entropy, S, is defined by Boltzmann’s entropy equation, S = kB ln Ω,

where kB is the Boltzmann constant and Ω represents the number of microstates. This relationship

can be interpreted as the degree of disorder or randomness in a system’s microscopic configurations,

drawing a direct connection between the macroscopic observable properties and the statistical behavior

of microstates. Complementary, in the realm of information theory, entropy is fundamentally concerned

with quantifying the expected level of “information,” “surprise,” or “uncertainty” in the potential

outcomes of a system [3]. This quantification is intricately linked to the probability distribution
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of these outcomes. It essentially measures the average unpredictability or the requisite amount of

information needed to describe a random event, thereby providing a metric for the efficiency of data

transmission and encoding strategies. Therefore, the duality of the entropy interpretation works as a

bridge between the abstract realm of information and the tangible world of the statistics of physical

systems. It encapsulates the essence of entropy as a fundamental measure, providing a unifying lens

through which the behavior of complex systems, whether in the context of information processing or

thermodynamics, can be coherently understood and analyzed. This interdisciplinary approach not

only deepens our understanding of individual phenomena but also reveals the underlying universality

of the concepts of randomness and information across diverse scientific domains.

In the scenario described above, it is necessary to identify entropy measures that are effective

in characterizing spatiotemporal patterns of complex processes typically observed or simulated in

2D + 1 and 3D + 1: following the notation of the amplitude equation theory, where D corresponds to

the spatial dimension in which the amplitude of a variable fluctuates over time. This need is justified

by the great advances in the generation of Big Data in computational physics, with emphasis on Direct

Numerical Simulation (DNS) of turbulence [17,18], ionized fluids [19,21,22,26,27], reactive-diffusive

processes [14], to highlight a few.

Our main objective in this work is to present and evaluate the performance of a set of information

entropy measurements, conjugated two by two, to characterize different classes of 3D structural

patterns arising from nonlinear spatiotemporal processes. To this end, the article is organized as

follows: the analytical methodology is presented in Section 2, and the data in Section 3. The results,

in the context of a benchmark based on the generalization of the Silhouette Score, are presented and

interpreted in Section 4. Our concluding remarks, with emphasis on pointing out the usability of the

method in the context of data-driven science, are presented in the last section.

2. Methods

Various entropy metrics have been proposed in the literature, including spectral entropy,

permutation entropy, and statistical complexity.

The process of defining a new metric typically involves two fundamental steps: (i) establishing

the probability definition, and (ii) determining the entropic form. This framework allows for the

generalization of any new metric by specifying these two steps1. In the following subsections 2.1

and 2.2, we present respectively the key techniques for defining probabilities and entropic forms.

Subsequently, in subsection 2.3, we introduce a methodology to assess these metrics using criteria

commonly applied to clustering techniques.

2.1. Probabilities

Probability is a concept that quantifies the likelihood of an event occurring. It is expressed as a

numerical value between 0 and 1. Here, 0 signifies the complete impossibility of an event, while 1

denotes absolute certainty. Mathematically, if we consider a process with a finite number of possible

outcomes, the probability Pr(E) of an event E is defined by the ratio:

Pr(E) =
Number of favorable outcomes

Total number of possible outcomes
. (1)

This definition is useful to gain insight of systems that produce discrete real-valued outcomes. In such

a case, the histogram of proportions of observed events is the usual tool to estimate the underlying

probability distribution of such outcomes.

1 Code publicly available at https://github.com/rsautter/Eta
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Many systems produce continue-valued multidimensional outcomes, and the observer needs to

define how to estimate a useful probability able to characterize their behavior. Approaches such as

permutation and spectral analysis incorporate spatial locality and scale considerations to elucidate the

occurrence of specific patterns.

In the permutation approach, local spatial differences (increase, decrease, or constancy) represent

the states. New states can be generated by permuting the array elements. Thus, the probabilities

account for the occurrences of those states. To extend this definition to multiple dimensions, a given

array is flattened. Further details of this technique have been explored by Pessa (2021).

Another methodology involves spectral analysis, wherein the probability is computed as the

Power Spectrum Density (PSD) of the signal P(ω), normalized accordingly. Since this approach

considers the probability associated with a given frequency ω, it explores the scaling relation of the

signal. For instance, white noise, characterized by equal power across all frequencies, represents a

type of signal exhibiting maximum entropy. Whereas the red noise presents a higher PSD for lower

frequencies, which represents a lower entropy value. This approach has been popularized in the

literature to study time series [7,8,33]. The probabilities presented in this section describe the possible

spatial states, while the subsequent subsection elaborates on the entropic characterization of this

system.

2.2. Entropic Forms

Several entropy equations and generalizations have been proposed, such as the Boltzmann-Gibbs

entropy (also known as Shannon entropy), Tsallis entropy, and Rényi entropy. The most general form

is the Shannon entropy, expressed as:

SH = −
W

∑
i=1

pi log pi. (2)

Here, pi is the probability of state i, which can also comprise complex numbers [10], and W is the size

of the set of possible events. The value of SH depends on the distribution. Notably, SH is maximum

when all the probabilities are equal, i.e., under the uniform distribution; in this case, SH = − log W,

and minimum when pi is Dirac’s delta. To account for this maximum value, the normalized Shannon

entropy is given by:

SH = −
∑

W
i=1 pi log pi

log W
. (3)

Another significant entropic form is the Tsallis entropy, proposed as a generalization of

Boltzmann-Gibbs entropy [1], with the equation:

Sq =
1 − ∑

W
i=1 p

q
i

q − 1
, (4)

where q is the entropic index or nonextensivity parameter, and plays a crucial role in determining the

degree of nonextensivity in the Tsallis entropy.

It is important to explore a range of values for the parameter q to derive a metric distinct from

Shannon entropy since limq→1 Sq = SH . Therefore, we suggest exploring values for q in the range

1 < q < 5 and seek a relationship denoted by α, where log Sq = α log q. This approach enables the

examination of this generalization of SH .

A unique strategy to characterize complex non-linear systems has been the Gradient Pattern

Analysis (GPA). This technique involves computing a set of metrics derived from the gradient lattice
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representation and the gradient moments, see Appendix A. Specifically, we highlight G4, which is

determined as the Shannon entropy from the complex representation of the gradient lattice:

G4 =

∣

∣

∣

∣

∣

VA

∑
j=0

zj

z
ln

zj

z

∣

∣

∣

∣

∣

. (5)

In the lattice context, the gradient signifies the local variation of amplitudes, computed as

the spatial derivative at every embedding dimension. From these spatial derivatives, the complex

representation:

zj = |vj|e
iθj , (6)

is formed, comprising both the modulus (|vj|) and phases (θj). To obtain a probability, the complex

notation is normalized by z = ∑ zj. For a in-depth review of this metric, please refer to [9,10]. Table 1

provides a summary of all combinations of entropic forms with associated probabilities, along with

the GPA metric, that were examined in this study.

Table 1. Entropy Measures.

Measure Probability Entropic Form Reference

Sh
H histogram Shannon, Equation (3) Lesne [4]

S
p
H permutation Shannon, Equation (3) Pessa [5]

Ss
H spectral Shannon, Equation (3) Abdelsamie [18], Abdullah [12]

Sh
q histogram Tsallis q-law, Equation (4)) Li [6]

S
p
q permutation Tsallis q-law, Equation (4)) Li [6]

Ss
q spectral Tsallis q-law, Equation (4) This paper

G4 gradient Shannon*, Equation (5) Ramos [10]

To assess the efficacy of each metric and explore the impact of various combinations of probability

definitions with entropic forms, we introduce a criterion outlined in the subsequent section. This

criterion is formulated with a focus on clustering the entropy measures of the dataset.

2.3. Silhouette Score and Generalized Silhouette Score

Non-supervised algorithms face unique challenges, a remarkable one is defining their efficiency.

The silhouette score is a criterion for defining if a set has been well-clusterized [34]. Given an element

xi in a cluster πk, this metric is computed as follows [11,12]:

s(xi) =
b(xi)− a(xi)

max
{

b(xi), a(xi)
} , (7)

where a(xi) is the average dissimilarity, that is the average distance of xi to all other elements in

the cluster πk, and b(xi) is the average distance to elements of other clusters. The greater the s(xi)

value, the better performance of the clustering algorithm because it has produced groups with low

dissimilarity and large distances between clusters. This technique can be extended to feature extraction

if one considers the individual datasets as the clusters πk. However, it is equally essential to account

for the potential correlation between metrics, as metrics may inadvertently capture the same data

aspects, which is undesirable. To mitigate this, we use the modulus of the Pearson correlation |r| to

form the penalty term 1 − |r| as follows:

s′(xi) =
(

1 − |r|
) b(xi)− a(xi)

max
{

b(xi), a(xi)
} , (8)

which we call the Generalized Silhouette Score (GSS).
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After defining a group of entropy measurements and the tool (GSS), which allows determining

the best pair of measurements to compose a 2D parameter space, we selected the data set to test and

validate our methodological approach.

3. Data

Our main objective is to test the performance of a space composed of two entropy measures in

which it is possible to distinguish different classes of complex spatiotemporal processes. For this first

study, we chose turbulence-related processes and simulated dynamic colored noises.

We employ simulated data related to the following processes: (i) white noise; (ii) colored noise;

(iii) weak turbulence; (iv) hydrodynamic turbulence; and (v) magnetohydrodynamic turbulence

(MHD). The main reason for choosing these processes, except colored noise, is that they all present

random-type patterns with underlying dynamic characteristics based on physical processes described

by partial differential equations (diffusion, reaction and advection). Each was obtained from

simulations identified in Table 2.

Based on the power law scaling algorithm technique [13], we created our noise simulator [15].

The data representing weak turbulence (also called chemical or reactive-diffusive turbulence) were

obtained from the solution of the Ginzburg-Landau Complex Equation [14,16]. The hydrodynamic

turbulence patterns were selected from the John Hopkins database (JHTDB) [20], and the MHD

turbulence simulation was simulated using the PENCIL code [19]. Details regarding the simulations

are provided in the supplementary material.

To test the approach based on entropy measurements, we selected a total of 25 snapshots

representing the evolution of each chosen process. The snapshots were extracted from 3D simulations,

taking as a criterion the analysis of the central slice of each hypercube, as the measurement techniques

used to act on matrices within a two-dimensional approach.

Figure 1 shows representative snapshots of the respective spatiotemporal processes. These

visualizations provide a compelling narrative of the dynamic behavior of each system, highlighting

the wide variety of patterns that emerge through temporal dynamics in the phase space.
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Figure 1. Snapshots of the spatiotemporal evolution of each selected system class, listed in Table 2.

Each row shows one of the simulations, rendered at time-steps that show a representative pattern

dynamics: Dynamic White Noise (1st row), Random Red Noise (2nd row); Weak turbulence from the

Reaction-Diffusion Complex Ginzburg-Landau Dynamics; Fully Developed Turbulence from JHTDB

(4th row) and MHD turbulence from PENCIL.

Table 2. Datasets and references.

Simulation Process Reference

White Dynamic Noise Spatiotemporal stochastic Timmer [13]
Red Dynamic Noise Spatiotemporal stochastic Timmer [13]

CGL2 Weak Turbulence Sautter [15,16]
JHTDB Fully Developed Turbulence Brandenburg [19]
PENCIL MHD Turbulence Brandenburg [19]

The numerical procedures and/or technical acquisition details related to the data shown in Figure

1 are available as supplementary material in the repository3, in the section entitled Data Simulations.

4. Results and Interpretation

The analyses in this study were conducted within 2D metric spaces, encompassing all possible

entropy measure combinations. Based on the minimum information principle, this configuration

offers advantages in terms of interpretability, considering the minimum set of parameters that can

be addressed as labels in a possible machine learning interpretation. Our approach to measuring

entropies from the data follows the following steps:

• Input of a snapshot;
• Pre-processing whose output is a 64 × 64 matrix with amplitude ranging from 0 to 255;
• Generation of 3 matrix data outputs: 2D-histogram, 2D-Permutation and 2D-FFT Spectra

3 (https://github.com/rsautter/Eta/)
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• For each of the three domains, the entropy measures are calculated.

Given the definition of the three types of domains interpreted as probability (from histogram,

permutation and spectrum), we have six entropy variations, as detailed in Section 2. To distinguish

these metrics, we introduced superscripts denoted by h for histogram probability, p for permutation

probability, and s for spectral probability. The GPA analysis yields another metric, resulting in 21

scores, as illustrated in Figure 2.

ShH SpH SsH Shq Spq Ssq G4

ShH

SpH

SsH

Shq

Spq

Ssq

G4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2. Generalized Silhouette Score for all 2D metric combinations. Higher values on the heatmap

indicate superior metric performance. The optimal result is achieved with the pairing of Spectral Tsallis

Entropy and Permutation Shannon Entropy (Ss
q x S

p
H).

As a result, the most effective combination is the pair Spectral Tsallis Entropy (Ss
q) and Permutation

Shannon Entropy (S
p
H). A visual representation of this space, accompanied by some snapshots, is

presented in Figure 3. In this space, the metrics reveal a constant Permutation Shannon Entropy

dynamical noise systems, that are solely distinguished by the Spectral Tsalllis Entropy, indicating

the differences of scaling effects in pattern formation. Conversely, the distinct complex nonlinear

characteristics and reaction terms observed in MHD simulations are more pronounced in Permutation

Shannon Entropy, accentuating the diversity of localized patterns alongside the larger-scale ones.
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Figure 3. Optimal outcomes achieved assessed through the generalized silhouette score criterion. The

method achieves its best performance in the (Ss
q x S

p
H) parameter space.

The analysis of the entropy distribution is essential in a classification context, as it offers insights

into the similarity between a new dataset and various models. However, carefully analysing the

entropy metrics over time can highlight important aspects of the underlying physical processes. For

instance, the transition from initial conditions to an oscillatory relaxation state is evident in Figure 4.

This outcome aligns with expectations in the context of the CGL system, owing to the periodic nature

of the reaction term. However, it is essential to highlight that in this introductory study, we avoided

simulations with more complex regimes (such as relaxations) as the primary purpose here is to present

a new method, and the objective here is not to use it to deepen the physical interpretation of each

process.
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Figure 4. Best entropy set according to the generalized silhouette score (see Figure 2) for the 3D-CGL

solution over time, where the oscillatory dynamic of the system is highlighted. The color indicates the

snapshot, where 500 samples are presented.

5. Outlook

Based on the study and approach presented here, we defined a methodological pipeline for

spatiotemporal characterization of simulated and/or observed complex processes (Figure 5). The

method can be applied to identify and segregate different classes of processes, as well as to classify

isolated patterns when necessary. In a context where measured and simulated data may exist, it also

serves to validate models. Likewise, the pair of entropy measurements can also serve as a binomial

label for training deep learning architectures for automatic classification.
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Figure 5. Pipeline of the method proposed in this study based on the best results we found: A

sequence of snapshots from the simulation of a given process (in the 2D + 1 or 3D + 1 domains) are

the input on which entropy measurements will be obtained. To calculate the respective permutation

Shannon entropy values S
p
H , the permutation values are obtained (see Appendix 2). To calculate

the Spectral Tsallis Entropy Ss
q, the respective spectra are obtained. From the calculated values, the

parameter space is constructed where it is proposed to characterize the underlying process. The space

also work for classifying isolated patterns, taking as reference distinct processes that have already been

characterized.

6. Concluding Remarks

This work undertook a comprehensive analysis of entropy metrics and their application to

complex extended non-linear systems. The study explored new approaches, including different

entropy measures and a new generalized silhouette score for measure evaluation.

Through meticulous consideration of canonical datasets, distinct patterns have been characterized

in terms of entropy metrics. The pivotal finding was the identification of the optimal pair: Spectral

Tsallis Entropy (Ss
q) and Permutation Shannon Entropy (S

p
H), yielding superior outcomes in the

generalized silhouette score. This combination showcased efficacy in distinguishing spatiotemporal

dynamics coming from different classes of turbulent-like processes, including pure stochastic 2D 1/ f−k

(colored) noise.

The new method contributes valuable insights into applying entropy probabilistic measures,

providing a foundation for future studies in terms of extended complex system pattern formation

characterization.

Initial work considering entropy measurements for training machine learning models is underway.

In this context, it also includes a study of the computational complexity of the method for a benchmark

with other measures and approaches that may emerge. This strategy is fundamental when we think

about the presented method being applied in a data science context.

Finally, we carefully organize all the mathematical content and data used in this work in a GitHub

repository4 to guarantee the reproducibility of this experiment.

Acknowledgments: R.R.R. thanks FAPESP under Grant No. 2021/15114-8 for partial financial support. L.O.
Barauna and R.A.S was supported by the Federal Brazilian Agency-CAPES.

Appendix A. Gradient Pattern Analysis

Gradient Pattern Analysis (GPA) represents a paradigm shift in data analysis, focusing on

the spatiotemporal dynamics of information rather than static values. This innovative approach

emphasizes the examination of gradients within datasets—dynamic vectors that encode the rate of

change—thereby revealing patterns and structures that are often obscured by traditional analytical

methods.

4 https://github.com/rsautter/Eta/
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From a mathematical perspective, GPA utilizes a series of gradient moments to quantify the

smoothness and alignment of these vectors within the data lattice:

G1 =
NC − NV

NV
, (A1)

G2 =
VA

V













1 −

∣

∣

∣

∣

∣

VA

∑
i=0

vi

∣

∣

∣

∣

∣

2
VA

∑
i=0

|vi|













, (A2)

G3 =
1

2

(

VA

V
+

1

2VA

i=VA

∑
i=0

ui.vi + 1

)

, (A3)

and

G4 = −
VA

∑
i=0

zi

z
ln

zi

z
, (A4)

were NC and NV are the connections in the Delaunay triangulation and the number of vertices; VA

is the number of asymmetrical vectors, V is the total number of vectors in the lattice, and vA
i is an

asymmetrical vector; ui = (cos(φi), sin(φi)) and zi = |vi| exp(iθi), where |vi| represents the modulus

and θi represents the phase and

z =
VA

∑
i

zi. (A5)

These moments provide a distinctive signature that characterizes the inherent patterns in the data,

applicable across various domains. This versatility enables GPA’s application in diverse fields, ranging

from time-series analysis in climatology to image recognition in computer vision.

One of the notable strengths of GPA is its capacity for efficient data compression. By discerning

and eliminating redundant information while retaining the essential gradient characteristics, GPA

achieves data compression without losing the dataset’s critical structural and dynamic properties. This

aspect of GPA is particularly advantageous for storing, transmitting, and analysing large-scale datasets

in numerous scientific and engineering disciplines. For a complete review see Refs. [9,10].

Appendix B. 2D-Permutation Entropy

Based on the concept of permutation entropy [29], two-dimensional multiscale sample entropy

has been proposed as a new texture algorithm [30,31] and has therefore been used to evaluate the

complexity of 2D patterns [32]. In a simplified way, the technique is based on the following steps:

• Step 1: Get the coarse-grained image as an N × N matrix;
• Step 2: Apply a window of size D × D to it;
• Step 3: Do D! reshape permutations to obtain the probabilities of each local pattern;
• Step 4: Repeat the last procedure, scanning the entire matrix
• Step 5: Apply as input the probability values to the chosen entropy formula.

In our application we use D = 9.

References

1. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1998, 52,479–487.

2. Tsallis, C. When may a system be referred to as complex? An entropic perspective. Frontiers in Complex

Systems 2023, 1, 1–11.

3. Brissaud, J. The meanings of entropy. Entropy. 7, 68-96 (2005), https://www.mdpi.com/1099-4300/7/1/68

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2024                   doi:10.20944/preprints202402.0359.v1

https://doi.org/10.20944/preprints202402.0359.v1


12 of 13

4. Lesne, A. Shannon entropy: a rigorous notion at the crossroads between probability, information theory,

dynamical systems and statistical physics.Mathematical Structures in Computer Science 2014, 24, e240311.

5. Pessa, A.A.B.; Ribeiro, H.V. ordpy: A Python package for data analysis with permutation entropy and

ordinal network methods. Chaos: An Interdisciplinary Journal of Nonlinear Science 2021, 31, 1–23.

6. Li, C.; Shang, P. Multiscale Tsallis permutation entropy analysis for complex physiological time series. Phys.

A 2019, 523, 10–20.

7. Zhang A.; Yang B.; Huang L. Feature Extraction of EEG Signals Using Power Spectral Entropy. In Proceedings

of the International Conference on BioMedical Engineering and Informatics, Sanya, China, 27-30 May 2008.

8. Xiong, P.Y.; Jahanshahi, H.; Alcarazc, R.; Chud, Y.M.; Gómez-Aguilar, J.F.; Alsaadi, F.E. Spectral Entropy

Analysis and Synchronization of a Multi-Stable Fractional-Order Chaotic System using a Novel Neural

Network-Based Chattering-Free Sliding Mode Technique. Chaos, Solitons & Fractals 2021, 144, 110576.

9. Rosa, R.R.; de Carvalho, R.R. and Sautter, R.A.; Barchi, P.H.; Stalder, D.H.; Moura, T.C.; Rembold, S.B.;

Morell, D.R.F.; Ferreira, N.C. Gradient pattern analysis applied to galaxy morphology. MNRAS 2018, 477,

L101–L105.

10. Ramos, F.M.; Rosa, R.R.;C. Rodrigues Neto; Zanandrea A. Generalized complex entropic form for gradient

pattern analysis of spatio-temporal dynamics. Phys. A 2000, 283, 171–174.

11. Shutaywi, M.; Kachouie, N.N. Silhouette analysis for performance evaluation in machine learning with

applications to clustering. Entropy 2021, 23, 759–776.

12. Abdullah R.S.A.R.; Saleh, N.L.; Rahman S.M.S.A; Zamri, N.S.; Rashid, N.E.A. Texture classification using

spectral entropy of acoustic signal generated by a human echolocator. Entropy 2019, 21, 963–983.

13. Timmer, J.; Koenig, M. On generating power law noise. Astronomy and Astrophysics 1995, 300,707.

14. Lu, H.; Lü, S.J.; Zhang, M.J. Fourier spectral approximations to the dynamics of 3D fractional complex

Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems 2017, 37, 2539–2564.

15. Sautter, R. A. Gradient pattern analysis: enhancements and applications including the influence of noise on

pattern formation. Doctoral Thesis, National Institute for Space Research, São José dos Campos, 2023.

16. Sautter, R.A.; Rosa, R.R.; Pontes, J. Incremental Gradient Pattern Analysis of Stochastic Complex

Ginzburg-Landau Dynamics. Phys. Rev. E 2023, ED12304.

17. Gotoh, T.; Kraichnan, R.H. Turbulence and Tsallis statistics. Physica D 2004, 193, 231–244.

18. Abdelsamie, A.; Janiga, G.; Thévenin, D. Spectral entropy as a flow state indicator. International Journal of

Heat and Fluid Flow 2017, 68, 102-113.

19. Brandenburg, A.; et al. The Pencil Code, a modular MPI code for partial differential equations and particles:

multipurpose and multiuser-maintained. J. Open Source Software 2021, 6, 2807.

20. Li, Yi; Perlman, E.; Wan, M.; Yang,Y.; Meneveau, C.; Burns,R.; Chen, S.; Szalay, A.; Eyink, E. A public

turbulence database cluster and applications to study Lagrangian evolution of velocity increments in

turbulence. Journal of Turbulence, 2008, 9:N31.

21. Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.; Tesileanu, O.; Zanni, C.; Ferrari, A. PLUTO: A numerical

code for computational astrophysics. ApJS 2007, 170, 228-242.

22. Franci, L.; Hellinger, P.; Guarrasi, M.; Chen, C. H. K.; Papini, E.; Verdini, A.; Matteini, L.; Landi, S.

Three-dimensional simulations of solar wind turbulence. In Proceedings of IOP Conf. Series: Journal

of Physics, Kuala Lumpur, Malaysia, 3-5 May 2017.

23. Mattedi, A. P.; Ramos, F. M.; Rosa, R. R.; Mantegna, R. N. Value-at-risk and Tsallis statistics: risk analysis of

the aerospace sector. Physica A: Statistical Mechanics and its Applications 2004, 344, 554-561.

24. Ramos, F. M.; Rosa, R. R.; Rodrigues Neto, C.; Bolzan, M. J. A.; Abren Sá, L. D. Nonextensive thermostatistics

description of intermittency in turbulence and financial markets. Nonlinear Analysis: Theory, Methods &

Applications 2001, 47, 3521-3530.

25. Ramos, F. M.; Bolzan, M. J. A.; Abreu Sá, L. D.;Rosa, R. R. Atmospheric turbulence within and above an

Amazon forest.Physica D: Nonlinear Phenomena 2004, 193, 278-291.

26. Bolzan, M. J. A.; Sahai, Y.; Fagundes, P. R.; Rosa, R. R.; Ramos, F. M. ; Abalde, J. R. Intermittency analysis of

geomagnetic storm time-series observed in Brazil.Journal of Atmospheric and Solar-Terrestrial Physics 2005,67,

1365-1372.

27. Veronese, T.B.; Rosa, R. R.; Bolzan, M. J. A.; Rocha Fernandes, F. C.; Sawant, H. S.; Karlicky, M.

Fluctuation analysis of solar radio bursts associated with geoeffective X-class flares.Journal of Atmospheric and

Solar-Terrestrial Physics 2011,73, 1311-1316.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2024                   doi:10.20944/preprints202402.0359.v1

https://doi.org/10.20944/preprints202402.0359.v1


13 of 13

28. Ferreira da Silva, A.; Rosa, R. R.; Roman, L. S.; Veje, E.; Pepe, I. Characterization of asymmetric fragmentation

patterns in SFM images of porous silicon. Solid State Communications 2000,113, 703-708.

29. Bandt, C., Pompe, B., 2002. Permutation entropy: a natural complexity measure for time series. Physical

Review Letters 2002, 88, 174102.

30. Silva, L., Duque, J., Felipe, J., Murta, L., Humeau-Heurtier, A., 2018. Twodimensional multiscale entropy

analysis: Applications to image texture evaluation. Signal Processing, 147, 224–232.

31. Humeau-Heurtier, A., Omoto, A.C.M., Silva, L.E., 2018. Bi-dimensional multiscale entropy: Relation with

discrete Fourier transform and biomedical application. 2018, Computers in Biology and Medicine 100, 36–40.

32. Morel, C.; HUmeau-Heurtier, A. Multiscale permutation entropy for two-dimensional patterns. Pattern Reg.

Letters, 2021, 150, 139-146.

33. Chagas, E., Queiroz-Oliveira, M., Rosso, O., Ramos, H., Freitas, C. & Frery, A. White Noise Test from Ordinal

Patterns in the Entropy-Complexity Plane. International Statistical Review, 90, 374-396 (2022)

34. Kaufman, L. & Rousseeuw, P. Finding Groups in Data: An Introduction to Cluster Analysis. (Wiley & Sons,

2005)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2024                   doi:10.20944/preprints202402.0359.v1

https://doi.org/10.20944/preprints202402.0359.v1

	Introduction
	Methods
	Probabilities
	Entropic Forms
	Silhouette Score and Generalized Silhouette Score

	Data
	Results and Interpretation
	Outlook
	Concluding Remarks
	Appendix A
	Appendix B
	References

