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Abstract: Wearable devices are increasingly used for health monitoring, yet the impact of consistent 

wear on physiological and behavioral outcomes  is unclear. Leveraging nearly a million days and 

nights of longitudinal data from 11,914 subscribers, we examined associations between the frequency 

of wearing  a wrist‐worn wearable  device  (WHOOP  Inc.,  Boston, MA)  and  12‐week  changes  in 

biometric,  sleep,  and  activity profiles, modeling both between  and within‐person  effects. Higher 

average wear  frequency, and week‐to‐week  increases  in wear, were associated with  lower resting 

heart rate (RHR), higher heart rate variability (HRV), longer and more consistent sleep, and greater 

weekly and daily physical activity duration (Ps<0.01). A within‐person multiple mediation analysis 

indicated that increased sleep duration partially mediated the association between wear frequency 

and  standardized  (z‐scored)  RHR  (indirect  effect  =  ‐0.0387  [95%  CI:  ‐0.0464,  ‐0.0326]), whereas 

physical activity minutes did not (indirect effect = 0.0003 [95% CI: ‐0.0036, 0.0040]). Granger causality 

analysis revealed a modest but notable association between prior wear frequency and future RHR in 

participants averaging ≤5 days of weekly wear (P<0.05 in 10.92% of tests). While further research is 

needed, our findings provide real‐world evidence that sustained wearable engagement may support 

healthier habits and improved physiological outcomes over time. 

Keywords: wearable  technology;  resting heart  rate; heart  rate variability;  smart phone; behavior 

change 

 

Introduction 

Wearable technology use has grown exponentially, with nearly one‐in‐three Americans using a 

wearable  device  [1],  such  as  the WHOOP  strap  (WHOOP  Inc.,  Boston, MA),  to  monitor  key 

physiological markers like resting heart rate (RHR) and heart rate variability (HRV), as well as health 

behaviors like sleep and physical activity [2]. While these devices are designed for continuous wear, 

adherence  varies widely  [1,3].  Despite  assumptions  that  greater wear  frequency  enhances  self‐

monitoring and  improves health outcomes, research on  the  impact of wear consistency over  time 

remains limited [4–6], with most studies focusing on individuals with underlying health conditions 

[7].   

Consistent engagement with wearable devices may reinforce positive health habits and improve 

physiological markers. Indeed, wearable monitoring has been linked to increased physical activity 

[6,8], reduced sedentary time [6], better sleep quality [9,10], and improved cardiovascular health [8]. 

More frequent wear may enhance data continuity, providing a more complete and timelier picture of 
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health  metrics,  which  in  turn  strengthens  the  feedback  loop  between  monitoring,  behavior 

adjustments,  and  health  improvements.  To  this  end,  WHOOP  uniquely  leverages  artificial 

intelligence to deliver personalized, actionable insights, helping users to optimize recovery, training, 

and sleep behaviors based on their individual physiological responses. However, the extent to which 

WHOOP wear frequency influences changes in biometric, sleep, and activity remains unclear. 

This real‐world evidence study evaluated associations between WHOOP wear frequency and 

12‐week  changes  in  biometric  and  behavioral  profiles  using  a  large  longitudinal  dataset 

encompassing nearly a million days and nights of data. We hypothesized that wearing WHOOP more 

consistently would associate with lower RHR and higher HRV, longer and more consistent sleep, and 

increased physical activity levels, thereby reinforcing the role of wear frequency in maximizing the 

benefits of wearable technology. 

Materials & Methods 

Participant Eligibility 

Participants consented to the use of their anonymized data for research purposes. We analyzed 

biometric, sleep, and physical activity data from 12,000 randomly selected individuals (6,000 males 

and 6,000 females) who purchased a WHOOP subscription (WHOOP Strap 4.0, WHOOP Inc., Boston, 

MA) between January 1, 2024 and November 15, 2024. Data were evaluated for 12 weeks (84 days) 

for  each member, with  eligibility  requiring  at  least  one  complete  cycle  day  (85%  of  data  from 
primary sleep episode) in both Week 1 and Week 12 post‐activation. To account for seasonal trends 

in biometric and behavioral characteristics  [11], members were evenly distributed  throughout  the 

year (~1,000 every two months per sex). 

Data Collection 

The WHOOP strap continuously records heart rate via photoplethysmography and movement 

via  three‐axis  accelerometer.  Key  cardiovascular  metrics,  RHR  and  HRV,  were  extracted  as  a 

weighted average  from  the primary sleep episode  [12]. HRV was calculated using  the  root mean 

squared of successive differences (RMSSD) [13]. Physical activity metrics included the amount of time 

spent in four physical activity zones, classified as a percentage of age‐predicted heart rate maximum 

[14]: zone 2 (60‐70%), zone 3 (70‐80%), zone 4 (80‐90%), and zone 5 (90‐100%). Daily physical activity 

was represented as the sum of total time spent in each activity zone, with higher intensity activities 

(zones  4 and  5) weighted by  a  factor of  two  [15]. Physical  activity variables of  interest  included 

cumulative total weekly physical activity duration, as well as average duration of physical activity 

per wear day to normalize for differences in adherence. Sleep metrics included total sleep duration 

and sleep consistency, characterized as regularity of sleep onset and offset times over a 4‐day window 

[16]. WHOOP’s  cardiovascular  and  sleep measures  have  been  validated  against  gold‐standard 

electrocardiogram and polysomnography, demonstrating a  low degree of bias and high accuracy 

[9,17]. Because data were anonymized and  securely  stored,  this  study was deemed exempt  from 

Institutional Review Board (IRB) oversight by Salus’s IRB (#6483).   

Categorizing Participants by Wear Frequency 

After data cleaning to remove incomplete or invalid entries, the final dataset comprised 907,249 

days/night of data from 11,914 individuals. Participants were categorized into four wear frequency 

groups based on their average weekly wear throughout the 12‐week study period (see Table 1). More 

frequent  wear  was  associated  with  lower  weekday  percentage,  a  higher  proportion  of  male 

participants, older age, and lower BMI (Ps<0.05). Additionally, participants who wore WHOOP more 

frequently had superior baseline (i.e., Week 1) biometric, sleep, and activity characteristics compared 

to those with less frequent wear. Participants who wore WHOOP daily had a 3.769 bpm lower RHR 

[95% CI: ‐3.997, ‐3.54], 0.615 hours longer [95% CI: 0.571, 0.658] and 11.416 percentage points more 
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consistent sleep [95% CI: 10.258 to 12.574], and accumulated more weekly (89.750 min [95% CI: 72.741, 

106.759]) and daily activity (10.149 min [95% CI: 8.989, 11.308]) compared to those wearing WHOOP 

< 5 days per week. 

Table 1. Participant characteristics grouped by average weekly wear time. 

  < 5 Days/Week  5 Days/Week  6 Days/Week  Worn Every Day 

Descriptives 

     Criteria (Days/week)  < 5  5.0‐5.99  6.0‐6.99  7.0 

     Weekday Percentage (%)    73.77 ± 22.84*  72.74 ± 14.58*  71.74 ± 6.56*  71.30 ± 1.71* 

     Number of members (n)  677  1316  5570  4351 

      Percent male (%)  45.9  47.4  50.9*  50.2* 

     Age  31.83 ± 11.02  31.59 ± 10.82  32.76 ± 10.97^  33.47 ± 11.06* 

      BMI (kg/m2)  25.62 ± 4.91  25.67 ± 5.10  25.49 ± 4.84  25.27 ± 4.59^ 

Baseline Biometrics 

     Resting heart rate (bpm)  64.09 ± 9.48  63.44 ± 9.19  61.80 ± 9.00*  60.47 ± 8.63* 

     Heart rate variability (ms)  56.52 ± 27.73  56.36 ± 28.44  57.02 ± 28.70  58.08 ± 29.58 

Baseline Sleep Characteristics 

      Sleep duration (hrs)  6.18 ± 1.38*  6.44 ± 1.26*  6.58 ± 1.13*  6.79 ± 1.04* 

      Sleep consistency (%)  57.74 ± 15.66*  60.69 ± 15.68*  64.34 ± 14.18*  69.10 ± 11.9* 

Baseline Physical Activity Variables 

      Total weekly activity (min)  151.1 ± 197.5*  175.3 ± 197.9*  207.4 ± 210.6*  237.5 ± 213.5* 

     Daily activity (min)  28.21 ± 36.00*  30.42 ± 34.25*  34.49 ± 34.95*  38.37 ± 34.55* 

*P<0.05 vs. ALL; ^P<0.05 vs. 5 Days/Week. In edge cases where members were missing their first day of data (an 

artifact of activation timing) they were still classified into the “Worn Every Day” category. Baseline biometric, 

sleep, and activity variables from the first week of the study period, with the exception of sleep consistency, 

which was characterized in the second week of use owing to an initial calibration period. 

To  complement  between‐person  groupings,  week‐to‐week  deviations  in  individual  wear 

frequency were captured using person‐mean centering and classified into five categories: i) “Much 

Less Than Usual”: wear frequency 2 days fewer than typical (≤‐2.0 days; n=5,268 weeks); ii) “Slightly 

Less Than Usual”: wear frequency between 2.0 and 0.1 days fewer than typical (‐2.0<deviation<‐0.1 

days; n=22,837 weeks);  iii)  “Typical”: wear  frequency within 0.1 of  typical  (‐0.1≤deviation≤0.1 
days; n=54,253 weeks); iv) “Slightly More Than Usual”: wear frequency between 0.101 and 1.0 days 

more than typical (0.101≤deviation≤1.0 days; n=49,290 weeks); v) “Much More Than Usual”: wear 

frequency 1.0 days more  than  typical  (>1.0 days; n=7,992 weeks). Thresholds were determined  to 

ensure that there were a sufficient proportion (~5%) of weeks in each category, with different cut‐

points used for “Much Less” (≤‐2.0 days) and “Much More” (>1.0 days) due to the limited number 

of weeks with 2 or more days greater than typical (n=1,154).   

Statistical Analysis 

All  statistical analyses were  conducted using Python  (version 3.11.9). Participant descriptive 

characteristics are presented as means  standard deviation (SD), and normality was assessed using 

the Shapiro‐Wilk test and visual inspection of quantile‐quantile plots.   

Descriptive characteristics, biometrics, sleep, and activity variables from the initial week of the 

study  (i.e.,  baseline) were  compared  among  groups  using  analysis  of  variance  (ANOVA) with 

Tukey’s post hoc test to explore specific group differences. 

To examine associations between WHOOP wear with biometric, sleep, and activity outcomes 

over the 12‐week study period we modeled both between‐person (each participant’s average weekly 

wear frequency) and within‐person effects (week‐to‐week deviations from their individual average, 

captured via person‐mean centering). Models were estimated using both continuous and categorical 

representations  (see Categorizing Participants  by Wear Frequency  in Methods) of  these  effects, with 

primary analyses focusing on continuous models and categorical models employed for visualization. 
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All models were adjusted for the baseline value of the outcome, as well as age, sex, BMI, season, and 

weekday percentage. Random  intercepts  accounted  for within‐person  correlations while  random 

slopes for time allowed for individual variability in outcome trajectories over the 12‐week period. 

To  investigate mechanisms  underlying  associations  between wear  frequency  and  RHR, we 

conducted  a within‐person multiple mediation  analysis  using  linear mixed‐effects models.  The 

analysis assessed whether week‐to‐week changes in total physical activity and average sleep duration 

contributed to this association. Bootstrapped confidence intervals were used to assess the statistical 

significance of indirect effects. 

To evaluate  temporal relations between WHOOP wear  frequency and biometric changes, we 

conducted a Granger causal analysis  to determine whether past wear  frequency predicted  future 

RHR. The analysis focused on participants who wore WHOOP five days per week or less to maximize 

variability  in  wear  frequency.  Since  recent  wear  (i.e.,  days  vs weeks)  was  hypothesized  to  be 

particularly relevant for predicting future RHR, wear time was computed as a 7‐day rolling average. 

We then applied Granger causality testing with a maximum lag of five days using the rolling average 

of daily wear to predict z‐scored RHR. Statistical significance was set at  ≤ 0.05 for all analyses. 

Results 

Higher Wear Frequency and Week‐to‐Week Increases in Wear Associate With Better Biometrics 

Results  for models estimating RHR and HRV using continuous between‐ and within‐person 

effects are provided  in Table 2. RHR  increased modestly over  time  (P<0.001), but more consistent 

WHOOP wear mitigated this effect (Ps≤0.013; Figure 1). Additionally, higher average wear frequency 

and week‐to‐week increases in wear were associated with lower RHR and higher HRV (Ps≤0.002).   

Table 2. Continuous model results for biometrics. 

Predictor  β  95% CI  P‐value 

RHR 

        Intercept  9.467  [8.787, 10.147]  < 0.001 

       Gender[T.Male]  ‐0.620  [‐0.724, ‐0.515]  <0.001 

        Time (Weeks)  0.144  [0.071, 0.216]  <0.001 

       Average Days Worn (Between‐person)  ‐0.441  [‐0.515, ‐0.368]  <0.001 

        Time x Average Days Worn  ‐0.018  [‐0.029, ‐0.007]  0.001 

        Person‐Mean Days Worn (Within‐person)  ‐0.369  [‐0.391, ‐0.347]  <0.001 

        Baseline RHR  0.896  [0.890, 0.902]  <0.001 

       Age  0.006  [0.002, 0.011]  0.005 

        BMI  0.030  [0.019, 0.041]  <0.001 

        Season[T.Spring]  0.074  [‐0.013, 0.161]  0.094 

        Season[T.Summer]  ‐0.139  [‐0.218, ‐0.061]  <0.001 

      Season[T.Winter]  0.226  [0.149, 0.302]  <0.001 

       Weekday Percentage  ‐0.014  [‐0.016, ‐0.012]  <0.001 

HRV 

        Intercept  3.251  [1.737, 4.765]  <0.001 

       Gender[T.Male]  0.345  [0.089, 0.601]  0.008 

        Time (Weeks)  ‐0.032  [‐0.213, 0.148]  0.727 

       Average Days Worn (Between‐person)  0.289  [0.108, 0.471]  0.002 

        Time x Average Days Worn  0.002  [‐0.026, 0.029]  0.902 

        Person‐Mean Days Worn (Within‐person)  0.252  [0.201, 0.303]  <0.001 

        Baseline HRV  0.934  [0.929, 0.939]  <0.001 

       Age  ‐0.085  [‐0.097, ‐0.072]  <0.001 

        BMI  0.011  [‐0.016, 0.038]  0.409 

        Season[T.Spring]  ‐0.215  [‐0.425, ‐0.004]  0.046 
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        Season[T.Summer]  0.469  [0.278, 0.661]  <0.001 

      Season[T.Winter]  ‐0.436  [‐0.621, ‐0.251]  <0.001 

       Weekday Percentage  0.018  [0.012, 0.023]  <0.001 

 

Figure 1. Weekly change in resting heart rate (RHR) from categorical models across wear groups. “<5 days per 

week” was defined as weekly wear average of < 5 days across the 12‐week study period. “5 days per week” was 

defined as 5.0‐5.99, “6 days per week” as 6.0‐6.99, and “Worn Every Day” as 7 days of wear each week, with a 

one day exception the first week to account for activation technicalities. All groups were significantly lower than 

< 5 days per week (Ps≤ 0.013). 

Categorical models showed stepwise benefits of WHOOP wear on RHR (Figure 2A&B). RHR 

was estimated to be 0.933 bpm lower [95% CI: ‐1.191, ‐0.675] in those who wore WHOOP every day 

compared to those who wore it <5 days per week (Figure 2B). Similarly, weeks classified as “Much 

More Than Usual” were associated with an estimated ‐1.931 bpm reduction [95% CI: ‐2.064, ‐1.798] 

compared to “Much Less Than Usual” (Figure 2A).   

HRV was comparable across weekly wear categories (Ps0.119; Figure 2D). However, HRV was 

estimated to be 1.214 ms higher [95% CI: 0.904, 1.524] in weeks classified as “Much More Than Usual” 

compared to “Much Less Than Usual” (Figure 2C). 
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Figure 2. Between‐ (panels B & D) and within‐person (panels A & C) effect estimates from categorical models of 

wearing WHOOP on resting heart rate (RHR; panels A & B) and heart rate variability (HRV; panels C & D). 

Within‐person  reference  category  modeled  as  “Typical  Wear”:  wear  frequency  within  0.1  of  typical  (‐

0.1≤deviation≤0.1).  “Much Less Than Usual”: wear  frequency  2 days  fewer  than  typical  (≤‐2.0 days); 

“Slightly Less Than Usual”: wear frequency between 2.0 and 0.1 days fewer than typical (‐2.0<deviation<‐0.1 

days);  “Slightly  More  Than  Usual”:  wear  frequency  between  0.101  and  1.0  days  more  than  typical 

(0.101≤deviation≤1.0 days); “Much More Than Usual”: wear  frequency 1.0 days more  than  typical  (>1.0 

days). For between‐person models <5 days per week served as the reference. “5 days per week” was defined as 

5.0‐5.99, “6 days per week” as 6.0‐6.99, and “Worn Every Day” as 7 days of wear each week, with a one day 

exception the first week to account for activation technicalities. *P<0.05, **P<0.01, ***P<0.001. 

Sleep Consistency Improves Over Time, and Higher Wear Frequency and Week‐to‐Week Increases in Wear 

Associate with Longer and More Consistent Sleep 

Results for models of sleep duration and consistency are provided in Table 3. Sleep consistency 

improved over time (P=0.007) while duration remained stable (P=0.956). A higher average weekly 

wear frequency and week‐to‐week increases in wear were associated with longer and more consistent 

sleep (Ps<0.001).   
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Table 3. Continuous model results for sleep variables. 

Predictor  β  95% CI  P‐value 

Sleep Duration 

        Intercept  2.425  [2.299, 2.551]  <0.0001 

       Gender[T.Male]  ‐0.134  [‐0.153, ‐0.116]  <0.001 

        Time (Weeks)  0.000  [‐0.013, 0.013]  0.956 

       Average Days Worn (Between‐person)  0.111  [0.097, 0.126]  <0.001 

        Time x Average Days Worn  ‐0.000  [‐0.002, 0.002]  0.920 

        Person‐Mean Days Worn (Within‐person)  0.050  [0.045, 0.055]  <0.001 

        Baseline RHR  0.590  [0.581, 0.598]  <0.001 

       Age  ‐0.004  [‐0.004, ‐0.003]  <0.001 

        BMI  ‐0.009  [‐0.011, ‐0.007]  <0.001 

        Season[T.Spring]  ‐0.005  [‐0.022, 0.012]  0.577 

        Season[T.Summer]  ‐0.010  [‐0.025, 0.006]  0.230 

      Season[T.Winter]  0.033  [0.017, 0.048]  <0.001 

       Weekday Percentage  ‐0.000  [‐0.001, 0.000]  0.759 

Sleep Consistency 

        Intercept  2.835  [1.168, 4.502]  0.001 

       Gender[T.Male]  ‐0.676  [‐0.902, ‐0.449]  <0.001 

        Time (Weeks)  0.288  [0.080, 0.497]  0.007 

       Average Days Worn (Between‐person)  2.036  [1.823, 2.250]  <0.001 

        Time x Average Days Worn  ‐0.051  [‐0.083, ‐0.019]  0.002 

        Person‐Mean Days Worn (Within‐person)  1.144  [1.074, 1.214]  <0.001 

        Baseline RHR  0.674  [0.665, 0.682]  <0.001 

       Age  0.074  [0.064, 0.084]  <0.001 

        BMI  ‐0.084  [‐0.108, ‐0.060]  <0.001 

        Season[T.Spring]  0.087  [‐0.137, 0.311]  0.446 

        Season[T.Summer]  0.007  [‐0.194, 0.207]  0.949 

      Season[T.Winter]  ‐0.006  [‐0.207, 0.195]  0.955 

       Weekday Percentage  0.066  [0.059, 0.074]  <0.001 

Categorical models showed stepwise benefits of WHOOP wear on sleep variables  (Figure 3). 

Compared to participants who wore WHOOP < 5 days per week, those who wore it every day had 

longer  sleep duration  (+0.334 hrs  [95% CI: 0.283, 0.385]; Figure 3B) and greater  sleep  consistency 

(+4.596 percentage points  [95% CI: 3.784, 5.408]; Figure 3D). Similarly, weeks classified as “Much 

More Than Usual” in WHOOP wear were associated with longer sleep duration (+0.253 hours [95% 

CI: 0.223, 0.282]; Figure 3A) and greater sleep consistency (+3.504 percentage points [95% CI: 3.089, 

3.918]; Figure 3C) relative to weeks classified as “Much Less Than Usual”. 
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Figure 3. Between‐ (panels B & D) and within‐person (panels A & C) effect estimates from categorical models of 

wearing WHOOP  on  sleep duration  (panels A &  B)  and  sleep  consistency  (panels C & D). Within‐person 

reference category modeled as “Typical Wear”: wear frequency within 0.1 of typical (‐0.1≤deviation≤0.1). 

“Much Less Than Usual”: wear frequency 2 days fewer than typical (≤‐2.0 days); “Slightly Less Than Usual”: 

wear frequency between 2.0 and 0.1 days fewer than typical (‐2.0<deviation<‐0.1 days); “Slightly More Than 

Usual”: wear frequency between 0.101 and 1.0 days more than typical (0.101≤deviation≤1.0 days); “Much 

More Than Usual”: wear frequency 1.0 days more than typical (>1.0 days). For between‐person models <5 days 

per week served as the reference. “5 days per week” was defined as 5.0‐5.99, “6 days per week” as 6.0‐6.99, and 

“Worn Every Day” as 7 days of wear each week, with a one day exception the first week to account for activation 

technicalities. *P<0.05, **P<0.01, ***P<0.001. 

Physical Activity Increases Over Time, and Higher Wear Frequency and Week‐to‐Week Increases in Wear 

Associate with More Activity 

Results  for models  of  total weekly  and daily  activity minutes  (i.e., weekly  activity minutes 

indexed to number of active days per week) are provided in Table 4. Weekly average physical activity 

and daily activity minutes both increased over time (Ps≤0.009). Higher average wear frequency and 

week‐to‐week  increases  in wear  time were both associated with  increased weekly  total and daily 

average physical activity minutes (Ps<0.001).   
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Table 4. Continuous model results for activity variables. 

Predictor  β  95% CI  P‐value 

Total Weekly Activity Minutes 

        Intercept  ‐80.035  [‐102.882, 57.188]  <0.001 

       Gender[T.Male]  6.938  [3.093, 10.784]  <0.001 

        Time (Weeks)  3.471  [0.852, 6.089]  0.009 

       Average Days Worn (Between‐person)  33.944  [31.009, 36.880]  <0.001 

        Time x Average Days Worn  ‐1.121  [‐1.522, ‐0.719]  <0.001 

        Person‐Mean Days Worn (Within‐person)  26.183  [25.386, 26.979]  <0.001 

        Baseline RHR  0.695  [0.685, 0.705]  <0.001 

       Age  ‐0.055  [‐0.228, 0.119]  0.539 

        BMI  ‐2.422  [‐2.829, ‐2.016]  <0.001 

        Season[T.Spring]  ‐3.832  [‐7.143, ‐0.520]  0.023 

        Season[T.Summer]  0.991  [‐2.022, 4.003]  0.519 

      Season[T.Winter]  ‐34.438  [‐37.341, ‐31.535]  <0.001 

       Weekday Percentage  ‐0.057  [‐0.141, 0.027]  0.185 

Daily Activity Minutes       

        Intercept  2.626  [‐1.944, 7.195]  0.260 

       Gender[Male]  1.310  [0.633, 1.986]  <0.001 

        Time (Weeks)  0.632  [0.186, 1.077]  0.005 

       Average Days Worn (Between‐person)  3.525  [2.909, 4.140]  <0.001 

        Time x Average Days Worn  ‐0.169  [‐0.238, ‐0.101]  <0.001 

        Person‐Mean Days Worn (Within‐person)  1.007  [0.876, 1.137]  <0.001 

        Baseline RHR  0.527  [0.517, 0.537]  <0.001 

       Age  0.000  [‐0.031, 0.031]  1.000 

        BMI  ‐0.467  [‐0.538, ‐0.396]  <0.001 

        Season[T.Spring]  0.183  [‐0.385, 0.750]  0.528 

        Season[T.Summer]  1.149  [0.638, 1.660]  <0.001 

      Season[T.Winter]  ‐5.088  [‐5.573, ‐4.602]  <0.001 

       Weekday Percentage  ‐0.006  [‐0.019, 0.008]  0.401 

Once again, categorical models showed stepwise benefits of WHOOP wear on weekly total and 

daily average physical activity minutes (Figure 4). Compared to those who wore WHOOP < 5 days a 

week, weekly  total physical activity was  estimated  to be 90.948 minutes greater  [95% CI: 80.653, 

101.244; Figure 4B] and daily activity minutes 9.995 more [95% CI: 7.750, 12.239; Figure 4D] in those 

who  wore WHOOP  every  day.  Likewise,  weeks  classified  as  “Much More  Than  Usual”  were 

associated with 124.099 minutes more of physical activity [95% CI: 119.240, 128.959; Figure 4A] and 

4.400 minutes more of activity per wear day [95% CI: 3.621, 5.180; Figure 4C] compared to weeks 

classified as “Much Less Than Usual”. 
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Figure 4. Between‐ (panels B & D) and within‐person (panels A & C) effect estimates from categorical models of 

wearing WHOOP on total weekly activity minutes (panels A & B) and daily activity minutes (panels C & D). 

Within‐person  reference  category  modeled  as  “Typical  Wear”:  wear  frequency  within  0.1  of  typical  (‐

0.1≤deviation≤0.1).  “Much Less Than Usual”: wear  frequency  2 days  fewer  than  typical  (≤‐2.0 days); 

“Slightly Less Than Usual”: wear frequency between 2.0 and 0.1 days fewer than typical (‐2.0<deviation<‐0.1 

days);  “Slightly  More  Than  Usual”:  wear  frequency  between  0.101  and  1.0  days  more  than  typical 

(0.101≤deviation≤1.0 days); “Much More Than Usual”: wear  frequency 1.0 days more  than  typical  (>1.0 

days). For between‐person models <5 days per week served as the reference. “5 days per week” was defined as 

5.0‐5.99, “6 days per week” as 6.0‐6.99, and “Worn Every Day” as 7 days of wear each week, with a one day 

exception the first week to account for activation technicalities. *P<0.05, **P<0.01, ***P<0.001. 

Sleep Duration Partially Mediates the Association Between Wear Frequency and RHR 

To further explore the association between wear frequency and RHR, we conducted a within‐

person multiple mediation analysis to assess whether week‐to‐week changes in wear frequency were 

linked to week‐to‐week changes in standardized (z‐scored) RHR through changes in sleep duration 

or total physical activity. Sleep duration partially mediated this association (indirect effect = ‐0.0387 

[95% CI: ‐0.0464, ‐0.0326]), whereas physical activity minutes did not (indirect effect = 0.0003 [95% CI: 

‐0.0036, 0.0040]). A significant direct effect of week‐to‐week wear time variation on standardized RHR 

remained (β = ‐0.3676, P<0.001). 
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Past Wear Frequency Predicts Future Resting Heart Rate 

Results  from  the Granger causality  tests  indicated a modest but notable association between 

prior wear frequency and future RHR. On average, 10.92% of tests yielded statistically significant 

results (Figure 5), suggesting that variability in wear frequency has a non‐random association with 

subsequent fluctuations in RHR. The proportion of significant p‐values over the five‐day lag ranged 

from  10.525%  (Day  5)  to  11.446%  on  Day  3.  Importantly,  higher  7‐day  rolling  averages  were 

associated with lower next day z‐scored RHR values ( = ‐0.008 [95% CI: ‐0.010, ‐0.006]). When the 

analysis was  reversed  to  test whether  past  RHR  predicted  future wear  time,  the  proportion  of 

significant tests was notably lower, ranging from 7.4 to 9.7%. 

 

Figure 5. Frequency histogram showing the distribution of P‐values from Granger causality analysis examining 

whether 7‐day rolling average of WHOOP wear time predicts next‐day resting heart rate in participants who 

wore WHOOP an average of 5 days per week or less (n=1993). The analysis was conducted with a maximum lag 

of five days, with all lag periods included in the visualization. 

Discussion 

Leveraging  nearly  a million  days  and  nights  of  longitudinal  data, we  ran  between‐person 

comparisons  and  within‐person  longitudinal  models  to  comprehensively  understand  how  the 

frequency of wearing WHOOP relates to members’ health metrics, sleep, and activity patterns during 

the first 12 weeks of device use. We found that wearing WHOOP more frequently was associated 

with  lower RHR, higher HRV,  and healthier  sleep  and  activity patterns. These  findings provide 

compelling initial evidence that consistent engagement with WHOOP is linked to physiological and 

behavioral benefits. 

Individuals who wore WHOOP more consistently tended to have markedly healthier biometric 

and behavioral profiles than those with lower wear time. This is particularly noteworthy given that 

even individuals in the lowest wear group exhibited impressively low RHR profiles, and, on average, 

met the 150‐min weekly physical activity guideline [18]. Nonetheless, baseline RHR in the every day 

wear group was nearly 4 bpm  lower, a difference of potential clinical significance given evidence 

linking a 1bpm increase to a 3% higher risk for all‐cause mortality and a 2% higher risk for coronary 

heart disease [19]. Importantly, even after adjusting for baseline values and other key covariates such 

as age, sex, and BMI, wear group RHR differences persisted, providing increased confidence in the 

association between wear frequency and cardiovascular health. One possible explanation for these 

differences  is  that  individuals  inclined  to wear a health monitor may be  inherently more health‐
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conscious  or physically  active,  leading  to  superior  biometric  profiles.  Indeed,  individuals  in  the 

highest wear group were at the upper end of the activity spectrum and had longer sleep durations 

that approached the optimal range for longevity [20]. However, findings from our Granger causal 

analysis  showing  that  greater  past wear  time  predicts  lower  future  RHR  suggest  that  frequent 

wearable use may itself reinforce engagement in health‐promoting behaviors. In sum, these findings 

suggest that sustained wearable engagement is linked not only to baseline health differences but also 

to positive behavioral reinforcement, highlighting the potential benefits of consistent WHOOP use 

for cardiovascular and overall health.   

Beyond  cross‐sectional  differences  between wear  groups,  our  analyses  revealed  significant 

within‐person benefits of wearing WHOOP, as indicated by superior biometric, sleep, and activity 

profiles in weeks where WHOOP was worn more frequently. These analyses strengthen the evidence 

for  a genuine benefit of wearing WHOOP  since  they  account  for  inter‐individual  characteristics, 

essentially  using  each  person  as  their  own  control. Most  comparably,  a  previous  randomized 

controlled trial showed improvements in self‐reported sleep quality after just one week of wearing 

WHOOP [9]. Although self‐reported sleep characteristics were unavailable in the present study, an 

improvement in sleep consistency was observed. While sleep duration is widely recognized as a key 

health behavior, sleep consistency is emerging as an equally, if not more salient predictor of health 

and well‐being  than  sleep  duration  [21], with  relevance  even  in  young  and  apparently  healthy 

individuals  [22]. Our  findings,  in  concert with previous  research  [9], demonstrate  the  efficacy of 

WHOOP in improving both subjective and objective sleep outcomes. Similarly, a recent clinical study 

demonstrated that participants fell to sleep faster and perceived sleep quality improvements with a 

noise‐masking digital wearable device [10], further reinforcing the role of wearable technology as a 

tool for optimizing sleep quality. Notably, sleep was recently recognized as an essential component 

of cardiovascular health with its inclusion in the American Heart Associations “Life’s Essential 8”, 

underscoring the value of optimizing sleep as a key determinant of healthspan [23].   

Consistent with prior research showing that activity trackers appear to be effective at increasing 

physical activity [24], we observed increases in both weekly and daily activity durations over the 12‐

week study period. Moreover, weeks of higher WHOOP wear were characterized by increased daily 

and weekly physical activity. Interestingly however, week‐to‐week variations in sleep duration, but 

not activity duration, mediated the association between increased wear frequency and lower RHR. 

While regular exercise is well‐documented to lower RHR over time [25], acute increases in exercise 

can temporarily elevate RHR [26], which may explain the lack of a significant mediation effect for 

activity duration in our study. Nonetheless, improvements in sleep consistency and activity duration, 

combined with evidence linking higher weekly wear to increased sleep duration and reduced RHR, 

provide compelling evidence for the efficacy of WHOOP to reinforce health‐promoting behaviors.   

A  key  but  unavoidable  limitation  of  this  study  is  the  lack  of  true  pre‐WHOOP  values  for 

biometrics, sleep, and activity. Individuals likely modified their habitual lifestyle and activity habits 

immediately upon starting WHOOP, meaning that Week 1 biometrics may not fully represent pre‐

WHOOP values. This phenomenon, often seen in self‐monitoring interventions [27], highlights the 

need  for  future  research  to better understand  initial behavioral changes upon adopting wearable 

technology, and strategies to sustain early improvements over time in diverse populations of varying 

age, sex, and health status. Despite this limitation, our findings still demonstrate clear biometric and 

behavioral benefits of WHOOP use, which perhaps are all the more impressive in this context. 

Our study should be interpreted in the context of both its strengths and limitations. First, as an 

observational study, we cannot entirely eliminate confounding or establish causation, despite our use 

of within‐person models  and  temporal  analysis.  Individuals who  chose  to wear WHOOP more 

frequently may differ in other important ways, such as baseline fitness level (e.g., maximal oxygen 

consumptions, VO2max) or underlying motivation  to  improve health and  fitness, which we were 

unable  to  quantify  in  this  study. Additionally, while within‐person  analyses  helped  to mitigate 

between‐person  confounding,  time‐varying  factors  such  as  an  individual wearing  their WHOOP 

more while  training  for a marathon and  related activity and biometric changes not explained by 
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WHOOP itself are possible. Second, because our study relied on wearable‐collected data, measures 

were contingent on device wear. Although unlikely, it is possible that participants with lower wear 

frequency missed recording “healthier” days, potentially biasing associations between wear time and 

biometric and behavioral characteristics. Additionally, we were unable to account for the possibility 

that some individuals removed their WHOOP during the day, leading to unrecorded activities. Third, 

our sample consisted solely of WHOOP subscribers, meaning participants had the motivation and 

resources  to  invest  in  a  wearable  technology  subscription.  This  selection  bias  might  limit  the 

generalizability  of  our  findings  to  broader  populations,  such  as  those with  lower  technological 

literacy. Finally, our study was limited to 12 weeks, and engagement with the device may decline 

over  time  as  the  novelty  wears  off.  Future  research  should  examine  longer‐term  adherence 

trajectories,  segmenting users  by  characteristics  such  as  age  and  sex,  and  identifying  behavioral 

changes  underlying  biometric  health  improvements  to  inform more  targeted  and  personalized 

recommendations. Despite these limitations, our study had many notable strengths. We leveraged a 

large, real‐world dataset with continuous physiological monitoring, enhancing ecological validity. 

The combination of between and within‐person effects, within‐person multiple mediation models, 

and  bi‐directional  Granger  causality  analysis  testing  facilitated  a  comprehensive  evaluation  of 

relations between wear frequency, behavior, and biometric outcomes. Last, we are among the first to 

systematically  demonstrate  a  dose‐response  relation  between  wearable  engagement  and 

improvements  in user behavior and health metrics, contributing valuable  insights  to  the growing 

field of digital health monitoring.   

In  conclusion, we  demonstrate  that wearing WHOOP more  often  is  associated with  better 

biometric  indices and healthier  sleep and  activity patterns, both across different  individuals  and 

within the same individual over time. These findings suggest that wearable technology, and WHOOP 

in particular, functions not just as a passive tracking tool, but as an active facilitator of meaningful 

behavior  change.  Future  randomized  controlled  trials  should  explore  strategies  that  increase 

wearable exposure over time, and assess how personalized insights from these devices can be used 

for preventive and/or therapeutic strategies. Meanwhile, our study provides real‐world evidence that 

sustained use of a wearable  like WHOOP may be a simple yet effective component of a healthier 

lifestyle, contributing to improved sleep, more activity, and better physiological health profiles. 
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