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Abstract: In this paper, we investigate the existence and uniqueness of solutions for the viscous
Burgers’ equation for the isothermal flow of Ellis fluids ∂tu + u∂xu = ν∂x

(
ϕ−1(∂xu)

)
with the initial

condition u(0, x) = u0, 0 < x < l, and the boundary condition u(t, 0) = u(t, l) = 0, 0 < t < T,
where ϕ(τ) =

[
1 + c|τ|α−1

]
τ, 0 < c < ∞, 0 < α < ∞, ν is the kinematic viscosity, τ is the shear

stress, u is the velocity of the fluid and l, T > 0. We proved the existence and uniqueness of solution
u ∈ L2

(
0, T; W0

1,p(0, l)
)

for u0 ∈ W1,p
0 (0, l), where p = 1 + 1

α . Moreover, numerical solutions to the
problem are constructed by applying the modeling and simulation package COMSOL® Multiphysics
6.0 to show the images of the solutions.

Keywords: Ellis law; existence and uniqueness; Burgers’ Equation; Non-Newtonian fluids; Sobolev
Space; COMSOL Multiphysics

1. Introduction
The classical Burgers’ equation ∂tu + u∂xu = ν∂2

xu is a fundamental model in Newtonian fluid
dynamics, often used to describe nonlinear wave propagation, turbulence and shock formation [1]. Its
extension to non-Newtonian fluids is particularly significant in polymer science as these fluids exhibit
complex viscosity behaviors that deviate from classical Newtonian assumptions. Non-Newtonian
fluids, such as polymer solutions, colloidal suspensions, and biological substances, have viscosity
that varies with the applied shear rate, requiring advanced models to accurately describe their flow
characteristics [2]. Incorporating non-Newtonian properties into Burgers’ equation enables a more
precise representation of fluid behavior, which is crucial for applications in industrial processes,
biomedical engineering, and materials science. Some famous fluid problems for Burgers equation
have been studied in [3–7]. Recent studies have explored some mathematical properties of Burgers’
equation with non-Newtonian viscosity, providing insight into the existence and stability of solutions
for such models [8]. The author have recently studied the well-posedness of the initial-boundary value
problem of the Burgers’ equation ∂tu + u∂xu = ν∂x

(
|∂xu|p−2∂xu

)
for power-law fluids in [9].

Ellis rheological model effectively captures shear-thinning effects, where viscosity decreases as
shear rate increases, a phenomenon commonly observed in polymeric and biological fluids. Ellis

law in rheology literature can be given by the equation γ̇ = 1
µ0

[
1 +

∣∣∣ τ
τ1/2

∣∣∣α−1
]

τ, in which γ̇ = ∂xu is

shear rate along x, and τ is the shear stress, typically measured in rotational rheometers, µ0 is the
zero-shear viscosity, α is the measure of shear-thinning behavior (α > 1 is shear-thinning), τ1/2 is the
shear stress at which the apparent viscosity has dropped to half its zero-shear viscosity value [10].It is a
widely used mathematical model by engineers, see, e.g., [11–13]. The Burgers’ equation can be derived
from the Navier-Stokes equation [14] for Ellis’ law by dropping the pressure gradient, gravitational,
external forces, and the incompressible condition, which takes the form ∂tu + u∂xu = ν∂x

(
ϕ−1(∂xu)

)
.
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This equation can be used to model stationary fluid between parallel plates subject to a sudden
move with an initiate velocity. Although it is a greatly simplified the Navier-Stokes equations, by
studying it mathematically allows for a deeper understanding of shear-thinning fluid dynamics. This
study aims to establish rigorous well-posedness for Burgers’ equation based on the Ellis rheology
model, contributing to a deeper understanding of non-Newtonian fluid mechanics and its engineering
and scientific applications. While previous research has explored the mathematical framework of
Burgers’ equation with non-Newtonian viscosity [7,15], open questions remain regarding the existence,
uniqueness and stability of solutions. For this purpose we study the well-posedness and numerical
solutions of the Burgers’ equation based on Ellis law with initial and boundary conditions:

∂tu + u∂xu = ν∂x
(
ϕ−1(∂xu)

)
, x ∈ [0, l], t ∈ [0, T],

u(0, x) = u0(x), x ∈ [0, l],
u(t, 0) = u(t, l) = 0, t ∈ [0, T].

(1)

In the following we will prove the result concerning the existence and uniqueness of a solution
to Problem (1) in the Bochner space L2

(
0, T; W0

1,p(0, l)
)

, where p = 1 + 1
α . For definitions and

descriptions of the Bochner spaces with application for parabolic and hyperbolic PDEs, see, e.g.,
[16]. In contrast to the Burgers’ problems for power law fluids studies in [9], the Burgers’ problem
(1) is technically more challenging, due to the fact that the function ϕ−1(τ) has no explicit algebraic
expression, and for this we derive lower and upper bounds for the inverse function (see Proposition 6
in Section 2) to allow analysis in proving the existence and uniqueness of solution to the problem.

Multiplying the equation of (1) by a test function w ∈ W1,p
0 (0, l) and integrating formally by parts

from 0 to l, we convert the initial-boundary value problem (1) to the following integral identity

∫ l

0
∂tuwdx +

∫ l

0
u∂xuwdx + ν

∫ l

0
ϕ−1(∂xu)∂xwdx = 0 (2)

for all w ∈ W1,p
0 (0, l) with p = 1 + 1

α , t ∈ (0, T).

Definition 1. A function u ∈ L2
(

0, T; W0
1,p(0, l)

)
for which ∂tu ∈ L2(0, T; L2(0, l)

)
is said to be a weak

solution of problem (1) if it satisfies (2) for each w ∈ W0
1,p(0, l) and a.e. t ∈ (0, T) and u(0, x) = u0 for all

x ∈ (0, l), p > 1 with p = 1 + 1
α .

The main result of this work is gathered in the following theorem on the existence and uniqueness
of the solution for initial-boundary value (1).

Theorem 1. Let u0 ∈ W1,p
0 (0, l) with p = 1 + 1

α . Then there exists a unique solution u ∈
L2
(

0, T; W0
1,p(0, l)

)
of (1) such that ∂tu ∈ L2(0, T; L2(0, l)

)
in the sense of Definition 1.

In Section 2, we state some preliminary information needed to study the well-posedness of the
problem (1), formulated in the weak form (2). Section 3 consists of two subsections 3.1 and 3.2. We
obtain the existence result in 3.1 and establish the uniqueness of the solution in 3.2. Moreover, in
Section 4, we construct the numerical solutions using the COMSOL PDE solver with some numerical
manipulations.

2. Preliminary
It is well known that Lp(0, l) and Wk,p(0, l) are the standard spaces of Lebesgue and Sobolev,

respectively, for 1 < p < ∞ and k ∈ Z. For any Banach space X, we define Lp(0, T; X) to be the space
of measurable functions u : (0, T) → X such that

∥u∥Lp(0,T;X) =

(∫ T

0
∥u∥p

X dt
)1/p

< ∞
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for 1 < p < ∞ and ∥u∥L∞(0,T;X) = ess sup0<t<T ∥u∥X < ∞ if p = ∞. Lp(0, T; X) is a Banach space [17].
The Sobolev space W1,p(0, 1) consists of functions whose weak derivatives are integrable in Lp(0, 1).

⟨·, ·⟩ denotes the inner product of two vectors in L2(0, 1); that is,

⟨ f , g⟩ =
∫ 1

0
f ḡdx.

In the following, we present several propositions that are well-established theorems in the
literature, which will be used in Section 3.

Proposition 1 (Jensen’s inequality [18]). Let (Ω, Λ, µ) be a measure space with 0 < µ(Ω) < ∞ and let φ :
I → R be a convex function defined on an open interval I in R if f : Ω → I is such that f , φ ◦ f ∈ L(Ω, Λ, µ),
then

φ

(
1

µ(Ω)

∫
Ω

f dµ

)
≤ 1

µ(Ω)

∫
Ω

φ( f )dµ.

Proposition 2 (Aubin–Lions lemma [19]). Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1.
Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For 1 ≤ p, q ≤ ∞, let

W = {u ∈ Lp([0, T]; X0) | u̇ ∈ Lq([0, T]; X1)}.

(i) If p < ∞, then the embedding of W into Lp([0, T]; X) is compact.

(ii) If p = ∞ and q > 1, then the embedding of W into C([0, T]; X) is compact.

Proposition 3 (Rellich-Kondrachov Compactness Theorem [20]). Assume U is a bounded open subset of
Rn and ∂U is C1. Suppose 1 ≤ p < n. Then

W1,p(U) ⊂⊂ Lq(U)

for each 1 ≤ q < p∗.

Proposition 4 ([21]). If f is a Lebesgue measurable function defined on a closed, bounded interval [a,b], with
its Lp norm for 1 < p < ∞ defined by

∥ f ∥p =

(∫ b

a
| f (x)|pdx

)1/p

and L∞ norm
∥ f ∥∞ = ess. sup. {| f (x)| : a ≦ x ≦ b}.

If f1, f2, f3, · · · is a sequence of measurable functions and M is a positive constant such that

∥ fn∥∞ ≦ M n = 1, 2, · · ·

and limn→∞ fn(x) = f (x) a.e. x ∈ [a, b], then

lim
n→∞

∥ fn − f ∥p = 0

for any p satisfying 0 < p < ∞.

Proposition 5 (The differential form of Gronwall’s inequality [20]).

(i) Let η(·) be a nonnegative, absolutely continuous function on [0, T], which satisfies for a.e. t the differential
inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t),

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2025 doi:10.20944/preprints202505.1606.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1606.v1
http://creativecommons.org/licenses/by/4.0/


4 of 11

where ϕ(t) and ψ(t) are nonnegative summable functions on [0, T]. Then

η(t) ≤ e
∫ t

0 ϕ(s)ds
[

η(0) +
∫ t

0
ψ(s)ds

]
for all 0 ≤ t ≤ T.

(ii) In particular, if
η′ ≤ ϕ η on [0, T] and η(0) = 0,

then
η ≡ 0 on [0, T].

We first introduce the lower bound for the inverse function of ϕ in Ellis law.

Proposition 6. Let t = ϕ(τ) = τ(1 + c|τ|α), α > 0 and let τ = ϕ−1(t) be the inverse function. Then[
ϕ−1(t)

]′
= 1

1+(α+1)c|τ|α and

ϕ−1(t)t ⩾

c1t2 for 0 ⩽ t < 1,

c2|t|1+
1
α for t ⩾ 1,

(3)

where c1 = 1
1+c and c2 = 1

|1+c| 1
α

are constant numbers.

Proof. It is obvious that

ϕ ≤

(1 + c)τ for τ < 1,

(1 + c)|τ|ατ for τ ⩾ 1.

Therefore, for the inverse function the following inequality

ϕ−1(t) ⩾


1

1+c t for c ⩽ t < 1 + c,∣∣∣ 1
1+c t

∣∣∣ 1
α −1

t for 1 + c ⩽ t
(4)

holds.
The multiplication of both sides of the previous inequalities by t leads us to

ϕ−1(t)t ⩾


1

1+c t2 for c ⩽ t < 1 + c,∣∣∣ 1
1+c

∣∣∣ 1
α |t|1+ 1

α for 1 + c ⩽ t.

We split the domain of definition of function in the following way

ϕ−1(t)t ⩾


1

1+c t2 for c ⩽ t < 1,
1

1+c t2 for 1 ⩽ t < 1 + c,
1

|1+c| 1
α
|t|1+ 1

α for 1 + c ⩽ t < ∞.

Further, decreasing the lower bound of ϕ−1(t)t gives

ϕ−1(t)t ⩾


1

1+c t2 for 0 ⩽ t < 1,
1

1+c |t|
1+ 1

α for 1 ⩽ t < 1 + c,
1

|1+c| 1
α
|t|1+ 1

α for 1 + c ⩽ t < ∞.
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Finally, we get

ϕ−1(t)t ⩾

c1t2 for 0 ⩽ t < 1,

c2|t|1+
1
α for t ⩾ 1,

where c1 = 1
1+c and c2 = 1

|1+c| 1
α

.

So, the proof of this proposition is complete. We will prove the existence and uniqueness of the
solution in the next Section 3.

3. Existence and Uniqueness
In this section, we prove two theorems and some auxiliary lemmas, which we invoke to establish

the existence and uniqueness result for the viscous Burgers’ equation for the isothermal flow of Ellis
fluids with initial and boundary conditions.

3.1. Existence

In this subsection, we will prove the existence of solutions to the problem formulated in the
integral equation (2). Firstly, we choose the basis {ei}j∈N ∈ L2(0, l) defined as a subset of the
eigenfunction of the Laplacian for the Dirichlet problem{

−∂2
xej = λjej, j ∈ N,

ej = 0, x ∈ {0, l},
(5)

where
ej = sin

jπ
l

x, λj = (
jπ
l
)2 (6)

for j ∈ N. It’s known that
{

ej
}

j∈N is an orthonormal basis in L2(0, l). Then for f ∈ L2(0, l), we can
write

f =
∞

∑
j=1

cj(t)ej

with cj(t) =
(∫ l

0

∣∣ f ej
∣∣2dx

)1/2
< ∞, j = 1, 2, . . . and the sequence

{
cj
}∞

1 is converges uniformly in

L∞(0, T; l2).
Then, we introduce the approximate solution un(t, x) by

un(t, x) =
n

∑
j=1

cj(t)ej, (7)

un(0) = u0n =
n

∑
j=1

cj(0)ej (8)

which has to satisfy the approximate problem

∫ l

0
∂tunejdx +

∫ l

0
un∂xunejdx + ν

∫ l

0
ϕ−1(∂xun)∂xejdx = 0, (9)

un(0) = u0n

for all j = 1, . . . , n , t ∈ [0, T].

Remark 1. The coefficients cj(0) can be chosen such that limn→∞ u0n = u(0) in W1,1+ 1
α

0 (0, l).

Furthermore, we prove the lemma concerning the solution of approximate problem (9).
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Lemma 1. If ϕ is the function specified in Proposition 6. Then the inverse function ϕ−1 satisfies the following
inequality ∫ l

0
ϕ−1(unx)unxdx ⩾ c1∥unx∥2

L1+ 1
α (0,l)

+ c2∥unx∥
1+ 1

α

L1+ 1
α (0,l)

,

where c1, c2 and α > 0 are constants from Proposition 6.

Proof. Integration inequality (3) from 0 to 1 gives

∫ l

0
ϕ−1(unx)unxdx =

∫
A={x:|unx |⩾1}

ϕ−1(unx)unxdx +
∫

B={x:|unx |≤1}
ϕ−1(unx)unxdx

⩾ c2

∫
A
|unx|1+

1
α dx + c1

∫
B
|unx|2dx. (10)

Application the Jensen’s inequality (see Proposition 1) to the last term on the right-hand side of
inequality (10) leads us

[∫
B

c1|unx|2dx
] 1+ 1

α
2

⩾ c1

[∫
B
|unx|1+

1
α dx

]
= c1∥unx∥2

L1+ 1
α (0,l)

.

Consequently, using the last inequality to (10), we obtain the desirable estimate

∫ l

0
ϕ−1(unx)unxdx ⩾ c1∥unx∥2

L1+ 1
α (0,l)

+ c2∥unx∥
1+ 1

α

L1+ 1
α (0,l)

with c1 and c2 from Proposition 6. The proof of the lemma is complete.

Theorem 2. There exists a positive constant C0 > 0 independent on n, that satisfies the following inequality

∥un∥2
L2(0,l) +

∫ t

0

(
C1∥unx∥2

L1+ 1
α (0,l)

+ C2∥unx∥
1+ 1

α

L1+ 1
α (0,l)

)
dτ ⩽ C0

for all t ∈ [0, T].

Proof. Taking ej = un in (9), we obtain

∫ l

0
un∂tundx +

∫ l

0
u2

n∂xundx + ν
∫ l

0
ϕ−1(∂xun)∂xundx = 0. (11)

The first term of (11) can be written as follows

∫ l

0
un∂tundx =

1
2

d
dt

∫ l

0
u2

ndx =
1
2

d
dt
∥un∥2

L2(0,l). (12)

Computing the second integral of (11) by the initial condition in (9) leads us to

∫ l

0
u2

n∂xundx =
∫ l

0
∂x

(
u3

n

)
dx = u3

n

∣∣∣l
0
= 0. (13)

By substituting the integrals (12) and (13) into (11) and integrating the equation (11) from 0 to t
with respect to τ, we have

∥un∥2
L2(0,l) + ν

∫ t

0

∫ l

0
ϕ−1(∂xun(τ))∂xun(τ)dxdτ = ∥un0∥2

L2(0,l).
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Application of inequality in Proposition 6 to the second term on the left-hand side of the last equation
leads us

∥un∥2
L2(0,l) +

∫ t

0

(
C1∥unx∥2

L1+ 1
α (0,l)

+ C2∥unx∥
1+ 1

α

L1+ 1
α (0,l)

)
dτ ⩽ C0

with C0 = ∥un0∥2
L2(0,l).

The proof of the theorem is complete.

Theorem 3. For each n ∈ N+ problem (9) has at least one solution un, ∂un
∂t ∈ L2(0, T; W1,1+ 1

α
0 (0, l)).

Proof. Now we represent the approximate equation (9) in the following form

∫ l

0

∂un

∂t
ejdx = −

∫ l

0
un∂xunejdx − ν

∫ l

0
ϕ−1(∂xun)∂xejdx (14)

for j = 1, . . . , n. The integral on the left-hand side of (14) can be written as below

∫ l

0

∂un

∂t
ejdx =

∫ l

0

n

∑
i=1

ċi(t)eiejdx = ċj(t), j = 1, . . . , n. (15)

First integral on the right-hand side of (14) is equal to zero

∫ l

0
un∂xunejdx =

∫ l

0

(
n

∑
i=1

ci(t)ei

)(
n

∑
k=1

ck(t)e′k

)
ejdx

=
n

∑
i=1

n

∑
k=1

ci(t)ck(t)
∫ l

0
ei(x)ej(x)e′k(x)dx = 0 (16)

for j = 1, . . . , n, since ∫ l

0
ei(x)ej(x)e′k(x)dx = 0, i, j, k = 1, . . . , n. (17)

We show (17). By (6), we note that

ei(x)ej(x)e′k(x) =
kπ

l
sin

iπ
l

x sin
jπ
l

x cos
kπ

l
x i, j, k = 1, . . . , n.

Then, by well-known formula 402.05 [Dwight]

4 sin A sin B cos C = − cos(A + B − C) + cos(B + C − A) + cos(A + C − B)− cos(A + B + C), (18)

we obtain (17).
Thus, substitutions of (15) and (16) into (14) lead us to the following linear ordinary system of n

equations with respect to t

ċj(t) = −ν
∫ l

0
ϕ−1(

n

∑
i=1

ci(t)e′i)e
′
jdx (19)

for j = 1, . . . , n.
Now we introduce the following notations:

b⃗ := ν
∫ l

0
ϕ−1 (⃗c · e⃗′ )⃗edx,
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where

c⃗(t) =


c1(t)
c2(t)

...
cn(t)

, b⃗ =


ν
∫ l

0 ϕ−1(∑n
i=1 ci(t)e′i)e

′
1dx

ν
∫ l

0 ϕ−1(∑n
i=1 ci(t)e′i)e

′
2dx

...
ν
∫ l

0 ϕ−1(∑n
i=1 ci(t)e′i)e

′
ndx

.

Hence, we rewrite system (19) as follows

˙⃗c = −⃗b(⃗c). (20)

So, ϕ−1 in the term b⃗(⃗c) satisfies the Lipschitz condition by Proposition 6. Therefore, the system (20)
has a solution c⃗(t) = (c1(t), c2(t), · · · , cn(t)) by the Existence Theorem for the ODE system.

We are now ready to prove the following theorem.

Theorem 4. There exists a weak solution of the problem (2) such that u, ut ∈ L2(0, T; W1,1+ 1
α

0 (0, l)).

Proof. By Theorem 3 there exists a weak solution un of the approximating problem (9) in L2(0, T; W1,1+ 1
α

0 (0, l)).

We take W = {{un}∞
n=1 ∈ L2(0, T; W1,1+ 1

α
0 (0, l))

∣∣{∂tun}∞
n=1 ∈ L2(0, T; W1,1+ 1

α
0 (0, l))}. We note that

{un}∞
n=1 ∈ L2(0, T; W1,1+ 1

α
0 (0, l)) by our construction in subsection 3.1. By Theorem 2, the sequence

{un}∞
n=1 is bounded in L2(0, T; W1,1+ 1

α
0 (0, l)).

Now we show that {∂tun}∞
n=1 ∈ L2(0, T; W1,1+ 1

α
0 (0, l)). Equation (7) implies that

∂tun(t, x) =
n

∑
j=1

ċj(t)ej.

Therefore,

∥∂tun∥2
L2(0,l) = ⟨∂tun, ∂tun⟩ =

n

∑
j=1

ċ2
j = ∥ ˙⃗c∥2

Rn ⩽ C,

since the sequence
{

cj
}∞

1 is converges uniformly in L∞(0, T; l2). The last inequality implies that

{∂tun}∞
n=1 is also bounded in L2(0, T; W1,1+ 1

α
0 (0, l)). Hence, invoking the Aubin-Lions lemma 2, we

conclude that the embedding of W into L2(0, T; W1,1+ 1
α

0 (0, l)) is compact. Consequently, every sequence
in such a bounded set W has convergent subsequence, we denote them still by {un}∞

n=1 and {∂tun}∞
n=1.

Therefore, by Proposition 3 the subsequences {un}∞
n=1 and {∂tun}∞

n=1 converge to some limit functions

u, ut ∈ L2(0, T; W1,1+ 1
α

0 (0, l)). This limit satisfies (1) in the sense of Definition 1.

3.2. Uniqueness

In this section, we determine the uniqueness of Theorem 1. Now we prove the uniqueness result.

Theorem 5. Problem (2) has a unique weak solution.

Proof. The uniqueness follows from the following argument. Let u1 and u2 be two solutions of (2).
Let û = u1 − u2. Hence,

∫ l

0
û∂tûdx +

∫ l

0
(u1∂xu1 − u2∂xu2)ûdx + ν

∫ l

0

(
ϕ−1(∂xu1)− ϕ−1(∂xu2)

)
∂xûdx = 0.

We rewrite the last equation as follows

∫ l

0
û∂tûdx + ν

∫ l

0

(
ϕ−1(∂xu1)− ϕ−1(∂xu2)

)
∂xûdx =

∫ l

0
(u2∂xu2 − u1∂xu1)ûdx. (21)
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We invoke the estimate from Lemma 2.7 in [17] for the term on the rigt-hand side of the last equation.
So, the Cauchy inequality with ε = 2ν and the Jensen inequality in Proposition 1 imply that

∫ l

0
(u2∂xu2 − u1∂xu1)ûdx =

∫ l

0
(2u2 − u1)û∂xûdx

⩽
1

4ν

∫ l

0
|(2u2 − u1)û|2dx + ν

∫ l

0
|∂xû|2dx

⩽
1

4ν

[∫ l

0
|2u2 − u1| |û|dx

]2

+ ν∥∂xû∥2
L2(0,l)

⩽
1

4ν

(
2∥u2∥L∞(0,T;L2(0,l)) + ∥u1∥L∞(0,T;L2(0,l))

)2
∥û∥2

L2(0,l)

+ ν∥∂xû∥2
L2(0,l). (22)

Now we show that

ν
∫ l

0

(
ϕ−1(∂xu1)− ϕ−1(∂xu2)

)
∂xûdx ⩾ ν∥∂xû∥2

L2(0,l). (23)

We introduce the notation τ := ϕ−1(∂xu), then ∂xu = ϕ(τ). Recall that ϕ(τ) = τ(1 + c|τ|α). Hence,
the left-hand side of (23) becomes the following

ν
∫ l

0
(τ1 − τ2)(ϕ(τ1)− ϕ(τ2))dx = ν

∫ l

0
(τ1 − τ2)(τ1(1 + |τ1|α)− τ2(1 + |τ2|α))dx

= ν
∫ l

0
[(τ1 − τ2)

2 + c(|τ1|ατ1 − |τ2|ατ2)(τ1 − τ2)]dx.

It follows that

ν
∫ l

0
(τ1 − τ2)(ϕ(τ1)− ϕ(τ2))dx ⩾ ν

∫ l

0
|τ1 − τ2|2dx,

since
c(|τ1|ατ1 − |τ2|ατ2)(τ1 − τ2) > 0,

where we used the fact from [23, page 99] for all α. So, we proved (23).
Further, exploiting the fact (23), computation in (12) and estimate (22) to (21), we obtain

d
dt
∥û∥2

L2(0,l) ⩽ C3∥û∥2
L2(0,l) (24)

with C3 = 1
4ν

(
2∥u2∥L∞(0,T;L2(0,l)) + ∥u1∥L∞(0,T;L2(0,l))

)2
.

Invoking the differential form of Gronwall’s inequality (see Proposition 5) to (24), we obtain
that û = 0 on [0, T] if û(0) = 0. Then û ≡ 0 on [0, T]. Therefore, u1 = u2, and this establishes the
uniqueness of the solution of (2). The proof of the theorem is complete.

4. Numerical part
In this section, Problem (1) is solved using the finite element software COMSOL® Multiphysics

6.0. Since the right-hand side of Problem (1) contains the inverse function ϕ−1, which does not have
an explicit algebraic expression, a direct numerical implementation presents challenges in using the
Equation-Based Modeling in COMSOL. To overcome this obstacle, MATLAB was used to construct
a polynomial approximation of τ = ϕ−1(t), allowing for a more convenient numerical formulation.
Specifically, for the given data l = 10, [τmin, τmax] = [0.01, 2], a second-order polynomial approximation
ϕ−1(t) = −0.0264t2 + 0.5251t, t > 0, was obtained, which was then extended as an odd function
ϕ−1(t) = (−0.0264|t|+ 0.5251)t, t ∈ R to fit the Ellis rheology model and incorporated into the PDE
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for numerical computation. To apply the software COMSOL®’s mathematical module, the equation in
(1) has been written in a standard form for the solver

ea
∂2u
∂t2 + da

∂u
∂t

+∇ · (−c∇u − αu + γ) + β · ∇u + au = f ,

where ∇ = ∂x and u = u(t, x). We construct the numerical solutions of problem (1) taking coefficients
ea = 0, da = 1, a = 0, f = 0, α = 0, γ = 0, β = u and c = ν ∗ (−0.0264 ∗ abs(d(u, x)) + 0.5251) in the
last equation. The Dirichlet boundary condition is applied on both ends of the computational domain.

Figure 1 shows the simulated solutions that were obtained for Burgers’ equation based on an Ellis
law model with a small ν = 1. The velocity profile was shown for several instances of time. Since there
is no stability and convergence analysis for the initial-boundary value problem, it was also challenging
to experimentally find good combinations of the discrete time step size δt and the spatial mesh size δx.
For the particular set of data, convergence was obtained and a solution of the problem is obtained for
δt = 0.01 and δx = 0.01.

It can be observed that within a finite time T, the solution u and its derivative ∂xu are bounded in
[0, 10], as predicted by our theoretical results Theorem 1.

Figure 1. The solution u(x, t) for 0 ≤ x ≤ 10 and a sequence of discrete times t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
plotted in different colors, as the velocity of the flow of the Ellis law fluid between two parallel plates at x = 0 and
x = 10.

5. Conclusions
In this work, we first established the existence and uniqueness of weak solutions for the viscous

Burgers’ equation based on the Ellis model, given by γ̇ =
[
1 + c|τ|α−1

]
τ, for the isothermal flow of non-

Newtonian fluids. Using the compact embedding theorem in Bochner spaces and key mathematical
properties of the Ellis model, we proved the well-posedness of the initial boundary value problem

in L2
(

0, T; W1,1+ 1
α

0 (0, l)
)

. Second, we developed a constructive algorithm to approximate solutions

of the problem. A numerical experiment was conducted in COMSOL® Multiphysics to validate
our theoretical findings, providing a computational illustration of the solution’s behavior. We note
that there is no explicit expression for the inverse function on the right-hand side of (1); therefore,
direct numerical implementation poses challenges when using Equation-Based Modeling in COMSOL.
This difficulty was addressed by employing MATLAB to construct a polynomial approximation of
τ = ϕ−1(t), which allowed for a more convenient numerical formulation. These numerical results
contribute to a deeper understanding of the mathematical framework for modeling shear-thinning
and shear-thickening non-Newtonian fluids, demonstrating the applicability of mathematical analysis
for the Ellis model in non-Newtonian fluid dynamics.
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