
Article Not peer-reviewed version

Improving K-Means Clustering: A

Comparative Study of Parallelized

Version of Modified K-Means Algorithm

for Clustering of Satellite Images

Yuv Raj Pant , Larry Leigh * , Juliana Fajardo Rueda

Posted Date: 12 June 2025

doi: 10.20944/preprints202506.1082.v1

Keywords: parallelized K-Means; centroid initialization; clustering quality; computational efficiency;

hyperspectral images; multispectral images; iteration reduction; outlier detection; image clustering;

resource optimization

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4266474
https://sciprofiles.com/profile/88237
https://sciprofiles.com/profile/4248151

Article

Improving K-Means Clustering: A Comparative
Study of Parallelized Version of Modified K-Means
Algorithm for Clustering of Satellite Images
Yuv Raj Pant 1, Larry Leigh 2,* and Juliana Fajardo Rueda 2

1 Department of Electrical Engineering and Computer Science, South Dakota State University (SDSU),
Brooking, SD 57007, USA

2 Image Processing Lab, Engineering Office of Research, South Dakota State University (SDSU), Brooking,
SD 57007, USA

* Correspondence: larry.leigh@sdstate.edu; Tel.: (+1-605-688-4161)

Abstract: Efficient clustering of high-dimensional satellite image datasets remains a critical challenge,
particularly due to the computational demands of spectral distance calculations, random centroid
initialization, and sensitivity to outliers in conventional K-Means algorithms. This study presents a
comprehensive comparative analysis of eight parallelized variants of the K-Means algorithm,
designed to enhance clustering efficiency and reduce computational burden for large-scale satellite
image analysis. The proposed parallelized implementations incorporate optimized centroid
initialization for better starting point selection using a dynamic K-Means sharp method to detect the
outlier to improve cluster robustness, and a Nearest-Neighbor Iteration Calculation Reduction
method to minimize redundant computations. These enhancements were applied to a test set of 114
global land cover data cubes, each comprising high-dimensional satellite images of size 3712*3712*16,
and executed on multi-core CPU architecture to leverage extensive parallel processing capabilities.
Performance was evaluated across three criteria: convergence speed (iterations), computational
efficiency (execution time), and clustering accuracy (RMSE). The Parallelized Enhanced K-Means
(PEKM) method achieved the fastest convergence at 234 iterations and the lowest execution time of
4230 hours, while maintaining consistent RMSE values (0.0136) across all algorithm variants. These
results demonstrate that targeted algorithmic optimizations, combined with effective parallelization
strategies, can improve the practicality of K-Means clustering for high dimensional satellites image
analysis. This work underscores the potential of improving K-Means clustering frameworks beyond
hardware acceleration alone, offering scalable solutions good for large-scale unsupervised image
classification tasks.

Keywords parallelized K-Means; centroid initialization; clustering quality; computational efficiency;
hyperspectral images; multispectral images; iteration reduction; outlier detection; image clustering;
resource optimization

1. Introduction

1.1. Overview of Satellite Image

Satellite images are rich data sources crucial for providing geographical information[1]. For
instance, the Landsat program has consistently provided high-quality multispectral images to help
understand changes in land cover and the environment since 1972 [2]. Satellite remote sensing
technologies collect data/images at variable revisit times, at diverse spatial, spectral, temporal and
radiometric resolutions by sensors sensitive to specific spectral regions [3].

Satellite image clustering is a strong technique for deriving information and fulfills a crucial
function across diverse applications, from land cover mapping and urban planning to environmental
monitoring and disaster management [3]. The South Dakota State University (SDSU) Image

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 32

Processing Lab (IPLAB) uses global image clustering as Extended Pseudo Invariant Calibration Site
(EPICS) to calibrate satellites[4,5]. The purpose of image clustering is to group the pixels in the image
to identify spectrally similar, homogenous sites with known spectral, spatial and temporal
characteristics [6]. In contrast, information classes are categorical, such as crop type, forest type and
residential type [7]. The advancement of improved clustering algorithms has gathered considerable
attention. Previous implementations of the K-means clustering process within the IPLAB EPICS
satellite calibration workflow consistently failed to reach the convergence threshold, preventing the
algorithm from attaining a global minimum. Despite this, the resulting spectrally similar and
temporally stable pixels were utilized in various satellite calibration effort, such as global EPICS
classification for stability monitoring, validation of cross-calibration techniques, and inter-sensor
comparison during on-orbit initialization [5,8,9]. However, the absence of convergence limited the
robustness of site selection and contributed to increased uncertainty in radiometric calibration
outcomes. The enhanced convergence properties of the proposed algorithms established a more
stable foundation for future satellite calibration efforts, enabling reduced uncertainty and improved
reproducibility in global-scale clustering outputs.

1.2. Related Work

1.2.1. Overview of Clustering Algorithm

Clustering algorithms are fundamental to unsupervised learning, enabling the partitioning of
large datasets into meaningful groups without labeled training data [10,11]. In satellite image
analysis, clustering enables the classification of pixels into land cover types on spectral characteristics.
Common clustering algorithm includes hierarchical clustering [12], density-based method such as
DBSCAN [13],spectral clustering [14,15], and partitioning algorithms like K-Means[16–19] . Each of
these methods offers distinct advantages and trade-offs, particularly when applied to high-
dimensional satellite imagery.

Hierarchical clustering provides a nested clustering structure or tree structure that allows
flexible exploration of data groupings without predefining the number of cluster [20]. However, its
computational complexity, typically O(n2logn)[21], renders it impractical for very large datasets like
high-resolution satellite images exceeding millions of pixels per scene.

Density-based methods such as DBSCAN are effective in detecting clusters of arbitrary shapes
and naturally handle noise and outliers[22]. Despite its advantages, DBSCAN faces significant
challenges in high-dimensional data spaces, where the notion of density becomes less meaningful
due to the curse of dimensionality. Moreover, its performance is highly sensitive to the choice of
neighborhood radius (ε) and minimum points (MinPts), which complicates its application to large
and diverse satellite datasets[23].

Spectral clustering[24] transforms the data into a graph-based representation and solves for
eigenvectors of the Laplacian matrix to identify cluster. While powerful for handling non-convex
clusters, spectral clustering suffers from prohibitive computational costs (O(n3)) associated with eigen
decomposition, making it unsuitable for large-scale, high-dimensional image analysis.

In contrast, K-Means clustering [18,19,25,26] remains one of the most computationally efficient
methods for large datasets , with the time complexity of O(n*k*i*d), where n is the number of data
points, k is the number of clusters, i is the number of iterations, and d is the data dimensionality. K-
Means is particularly well-suited to hyperspectral and multispectral satellite images due to its:
• Linear scalability with data volume;
• Support asynchronous parallel execution across independent data slices, enabling non-blocking

processing of extremely large datasets (e.g. multiple 1 TB segments) by distributing
computational task concurrently across multi-core or distributed systems;

• Flexibility to integrate algorithmic improvements such as advanced centroid initialization,
iteration reduction, and outlier handling, as explored in this study.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 32

Furthermore, modified K-Means facilitates high-performance parallel implementations using
frameworks like MPI, OpenMP, and MapReduce, allowing effective distribution of computation
across large CPU cluster[27–29] . This characteristic aligns closely with the architectural resources of
our target HPC environment, which predominantly comprises CPU nodes, thus justifying the
selection of K-Means as a fundamental algorithm for our optimization efforts.

1.2.2. Advancement in K-Means Clustering

Since its introduction by MacQueen in 1967[30] , the K-Means algorithm has undergone
extensive refinement to address its inherent limitations, including sensitivity to initial centroid
selection, vulnerability to outliers, and high computational demand on distance calculations [19].

One of the well-recognized limitations of Standard K-Means algorithm is its reliance on random
selection for initial centroid positions, which can lead to poor convergence behavior and
susceptibility to local minima [31]. To overcome this, several studies have proposed strategies to
enhance centroid initialization. Khan et al. [32]proposed an improved initialization strategy that
differentiates between instance attributes using a novel weighting formula, coupled with a
specialized normalized process that avoids forcing values into restrictive range. However, the
evaluation of this methodology on large-scale datasets and real-world scenarios remains limited.
Chan et al. [33] introduced a hybrid method combining kernel K-Means ++ with random projection
to reduce dimensionality before centroid selection. This approach successfully reduced
computational complexity from O(n2D) to O(n2d), making it particularly suitable for high-
dimensional clustering scenarios while preserving clustering quality. Nevertheless, while the method
effectively reduces dimensionality, it does not address the issue of large sample size(n).

While these methods have demonstrated improvements over random selection aimed at
improving clustering outcomes for complex and large-scale datasets. However, many of these
techniques still encounter challenges related to computational load and scalability when applied to
extremely high-dimensional data such as multispectral satellite imagery. To address this, our study
proposes a uniform average pixel grouping strategy specifically designed for large-scale image
clustering, which is detailed in Section 3.2.2.

The susceptibility of K-Means clustering to outliers is a challenge, often leading to skewed
centroids and degraded clustering performance, especially in complex, high-dimensional
datasets[34]. To overcome this issue, Olukanmi et al.[35] introduced K-Means sharp, a modified
version of the classical K-Means algorithm that automatically detects outliers using global threshold
derived from the distribution of point-to-centroid distances. However, as the authors acknowledged,
the reliance on a single global threshold may not sufficiently capture local variations in outlier
distribution across clusters. Building upon this foundation, CSK-Means and NSK-Means algorithms
advanced the handling of outliers by incorporating density-based strategies and assigning separate
clusters to outliers. These algorithms enhance robustness by considering the density within clusters
and overlap spaces between them, making them capable of handling non-spherical cluster shapes
and datasets with varying densities[36]. Despite these improvements, the authors noted that the
algorithms require multiple iterative steps to determine the final cluster count in high-cluster
scenarios, which can lead to elevate computational costs, especially in large-scale datasets. Recent
advancements in anomaly detection have improved outlier detection in high-dimensional data, for
instance, the ResAD framework proposed by Zhang et al. [37] focuses on class-generalizable anomaly
detection by learning residual feature distributions, which can reduce feature variations and improve
detection across diverse classes. However, ResAD’s effectiveness in clustering context remains to be
thoroughly evaluated, and its integration into clustering frameworks like K-Means requires further
investigation.

This study extends previous advancements by introducing a dynamic, cluster-specific
thresholding approach within the K-Means Sharp framework. Thresholds are calculated individually
for each cluster and dynamically update at every iteration to enhance clustering robustness. A

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 32

detailed explanation of this refinement, including computational considerations and its application
to large-scale satellite image analysis, is provided in Section 3.2.4.

Standard K-Means algorithm suffers from high computational cost due to the need to repeatedly
calculate distances between every data point and all cluster centers at each iteration [38]. To address
this, various methods have emerged focusing on reducing the number of distance calculations while
maintaining clustering quality. Na et al.[39]proposed an improved K-Means algorithm that
introduces a simple data structure to retain essential information across iterations, thereby
eliminating redundant computations of distances to cluster centers. While this method effectively
accelerates clustering, it primarily benefits datasets of moderate size and may struggle to scale
efficiently for high-dimensional data or complex cluster boundaries. Wang et al. [40] further
advanced this direction by identifying active points near cluster boundaries, enabling selective
recalculation of cluster assignments. However, its effectiveness is heavily dependent on accurately
identifying boundary points, making it less reliable in scenarios involving overlapping or irregular
clusters. Moodi et al. [41] developed an improved K-Means variant for big data applications,
leveraging the distances to two nearest centroids while excluding points beyond an equidistance
threshold from further consideration. However, it faces challenges in handling large sample sizes, as
its computational performance when the number of objects, dimensions and cluster increases.

To address these limitations in the context of satellite image clustering, this study proposes a
Nearest-Neighbor Iteration Calculation Reduction Method that draws upon the strengths of prior
work while adapting to the complexities of high-dimensional satellite datasets. Rather than relying
solely on nearest-centroid tracking, the method incorporates a broader neighborhood context to
better capture the nuances of spatial data distributions. While the technical specifics of this approach
are detailed in section, it is well designed to balance computational efficiency with classification
accuracy, making it well suited for clustering tasks involving diverse and overlapping land-cover
types. The detail about this proposed method is explained in Section 3.2.3.

1.2.3. Parallelization Techniques in K-Means Cluster

To address the computational intensity of clustering high-dimensional data, parallelization
strategies have become essential [42]. Early parallel K-Means implementation leveraged shared-
memory architecture to distribute computations across multiple cores [43]. Subsequent development
introduced block-processing techniques, effectively partitioning datasets for concurrent processing
on multi-core CPUs[44]. Frameworks such as OpenMP and POSIX threads have demonstrated
significant improvements in clustering performance by harnessing the full potential of modern
processors[27].

GPU-accelerated implementation of K-Means have gained attention due to their massive parallel
processing capabilities [45,46], particularly for real-time and high-throughput applications. However,
in many high-performance computing (HPC) environments, including the one employed in this
study, CPU nodes constitute the majority of available resources. The HPC system employed in this
study comprises over 3000 CPU cores and only 14 GPU nodes. This resource distribution informed
the strategic decision to optimize CPU-based parallelization, enabling full utilization of available
computational capacity and achieving scalable performance for global land cover classification. This
architecture strategically prioritizes CPU parallelization to efficiently manage I/O-bound operations
by avoiding blocking calls. This asynchronous parallelization fully exploits available computational
resources, enabling scalable performance for the classification of global land cover datasets. The
implementation supports asynchronous parallel execution across independent data partitions,
enhancing throughput and computational efficiency in large-scale image clustering tasks. Due to the
high availability of CPU resources, the algorithm is optimized for CPU-based HPC environments;
however, the design remains fully compatible with GPU processing, making it adaptable to diverse
computing architectures.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 32

1.2.4. Motivation and Contribution of This Study

While prior research has explored individual improvements in K-Means clustering algorithms
and parallelization strategies, few studies have systematically evaluated multiple optimized variants
under a unified framework, particularly at the scale required for global satellite image analysis.
Existing methods have largely been tested on smaller or less complex datasets, leaving a gap in
understanding their scalability and robustness when applied to extensive hyperspectral or
multispectral image collections.

This study addresses this gap by conducting a comprehensive comparative analysis of eight
parallelized K-Means variants, including enhancements in centroid initialization, outlier handling,
and iteration reduction strategies. Performance evaluation was conducted using 114 high-
dimensional data cubes representing diverse land cover types worldwide, with each method is
assessed based on convergence speed, computational efficiency, and clustering quality. The insights
gained from this analysis guide the selection of the most effective algorithms for future deployment
across over the intended global data set of 9500 data cube in HPC environments. This work
contributes to the advancement of scalable and efficient clustering techniques for large-scale remote
sensing data classification purposes.

2. Materials

2.1. SDSU Dervied Data Product

Landsat 8 Operational Land Imager data were selected to generate the data cubes using Google
Earth Engine (GEE), a cloud-based platform with high computational capabilities for processing large
geospatial datasets[47]. The data filtering process addressed cloud cover and cloud shadows. For
additional information, refer to Shrestha et al. [4] and Fajardo et al. [5].

2.2. Hardware and Software Specifications

This section describes the software and tools used to test all algorithms on identical datasets.
The computational experiments were performed on a server equipped with an Intel Xeon Gold 6242R
CPU @ 3.10GHz, featuring 2 sockets with 20 cores each, totaling 40 cores and 80 logical CPUs (2
threads per core). The software environment included the Linux operating system and MATLAB
programming language.

Due to the large size of the test data, processing it in a single run was not feasible. Asynchronous
parallel implementation of the algorithm utilized the “parfor” construct, analogous to job scheduling
mechanisms, to process approximately 10 TB of data by calculating Euclidean distances and assigning
pixels to clusters based on the shortest spectral distance. This approach was effective because each
pixel value is independent of the others. Multicore, with 19 workers running concurrently, led to a
significant reduction in computational time.

3. Methodology

Figure 1 shows the flowchart of the overall proposed framework. In the following section, the
foundations of the approach are presented. For comparative analysis, the framework provides an
overview of each algorithm. Landsat 8 images are input into eight different algorithms, each
performing image segmentation through pixel classification. Clustering quality and computational
efficiency are then evaluated using various performance metrics. Additional details about each
method are provided in subsequent sections.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 32

Figure 1. Workflow of the study.

3.1. Satellite Imagery Dataset

To evaluate the performance of the parallelized versions of the modified K-Means algorithms,
testing on all 9,522 data cubes in our archive is impractical. Consequently, a strategy was devised to
select representative datasets based on different land cover types. Specifically, the Biosphere
Atmosphere Transfer Scheme (BATS) Classification [48], was employed, categorizing land cover into
20 distinct classes. From this classification, 114 data cubes were selected, each representing a
heterogeneous mixture of land cover types as seen in Figure 2. This approach ensures a
comprehensive and efficient assessment of the algorithms' performance across diverse land cover
scenarios. One data cube consists of a 1-8 temporal Mean and a 9-16 temporal standard deviation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 32

Figure 2. Selected Dataset Around the world.

Table 1. Parameters of Dataset and K-Means Clustering Algorithm.

Parameter Values
Data cube Number 114

Data cube Size 3712*3712*16 (~1 GB)
Cluster (k) 160

Convergent Criteria 0.0005

3.2. Algorithm Development

The study involves a selection of parallelized modified versions of K-Means clustering
algorithms using different variants of K-Means clustering processes. These modified versions mainly
include three variants:
• Centroid Initialization Method
• Nearest-Neighbor Iteration Calculation Reduction Method
• Dynamic K-Means Sharp Method

3.2.1. Parallelize Standard K-Means Algorithms

The K-Means clustering algorithm is an iterative clustering technique that partitions a dataset into a
predefined number of k distinct clusters, where each pixel is assigned to the cluster whose centroid
has the closest mean value [19]. The process begins by randomly selecting k initial cluster centers,
referred to as centroids, from each layer of the 114 data cubes, with each cube containing 3712*3712*16
pixels. These centroids serve as the initial reference points for the clusters.

𝜇𝜇𝑚𝑚𝑚𝑚 = �
𝜇𝜇(1,1) ⋯ 𝜇𝜇(1,16)
⋮ ⋱ ⋮

𝜇𝜇(160,1) ⋯ 𝜇𝜇(160,16)

� (1)

where ‘m’ represents the number of clusters and ‘n’ represents the number of features.
The algorithm iteratively refines the clusters through the following steps. First, each pixel Pxyn is

assigned to the nearest cluster based on the Euclidean distance. The Euclidean distance between a
pixel Pxyn=(Pxy1, Pxy2,…, Pxy16) from the data cube of size 3712*3712*16 and a centroid

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 32

μmn=([μ(1,1),μ(1,2),…,μ(1,16)],…,[μ(160,1),μ(160,2),…,μ(160,16)]), as seen in the Equation 2, where ‘m’ represents
the number of centroids and ‘n’ represents the number of feature.

� � 𝐷𝐷𝑥𝑥𝑥𝑥𝑥𝑥 = � � � � (𝑃𝑃𝑥𝑥𝑥𝑥𝑥𝑥 − μ𝑚𝑚𝑚𝑚)2

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑛𝑛=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑚𝑚=1

𝑅𝑅𝑅𝑅𝑅𝑅,
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑥𝑥=1,𝑦𝑦=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑚𝑚=1

𝑅𝑅𝑅𝑅𝑅𝑅,
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑥𝑥=1,𝑦𝑦=1

 (2)

After all pixels have been assigned to clusters, the centroid for each layer of a cluster is calculated
by using the following equation:

𝜇𝜇𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛 = � �
𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑛𝑛=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑚𝑚=1

 (3)

Equation 3 calculates the new mean, defined as the average of the pixel values assigned to the
cluster. After calculating the new mean value, convergence is checked by comparing the old and new
cluster mean. If the maximum difference between the old and new means exceeds a convergence
threshold of 0.0005 then update the cluster mean with the new values and repeat the iterative process.
This iterative approach gradually refines the clusters, making them more distinct and well-defined
with each iteration. If the difference is below the threshold, the algorithm converges.

Algorithm 1: Pseudocode for K-Means Algorithm

Input: 1, I2, I3,….,Id} // set of d data cube (114 data cube with size 3712*3712*16)
K // Number of desired clusters

Output: A set of K distinct clusters

1. Randomly select K initial cluster centers (centroids) from the 114 data cubes, where each

centroid is represented by the matrix μmn as shown in Equation (1).

2. While max(|μmn,old - μmn,new |)<0.0005 do:

3. For (I=1: number_of_images)//for all images

For (x=1: number_of_row)

For (y=1: number_of_column)// for all pixel

 lculate the Euclidean distance between Pxyn and each centroid μmn using equation (2)

5. Assign Pxyn to the cluster with the nearest centroid (min(D(x,y,m)))

6. Update each centroid μmn: For each cluster m:

7. Calculate the new centroid using equation (3).

8. Check for convergence:

9. Calculate the maximum change in centroids:

10. DiffMean = max(|μmn,old - μmn_new|)

11. If DiffMean < 0.0005, then:

Convergence achieved, exit loop

12. Else:

Update centroids: μmn = μmn_new

13. Continue iteration

End While

Step:

When applying the K-Means clustering algorithm to 114 data cubes, each with dimensions
3712*3712*16, significant challenges are encountered related to speed-up, throughput, and scalability,
particularly during the computation of the Euclidean distance between each pixel in the data cubes

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 32

and the k centroids. Since the distance calculation for each pixel in different data cubes is
independent, the process can be effectively parallelized asynchronously utilizing all resources
making it computationally efficient.

To achieve this parallelization in MATLAB, the ‘parfor’ loop is utilized which is analogous to
job scheduling mechanism in slurm, allowing asynchronous parallelization of task to run
concurrently on multiple worker sessions. The process begins by opening a MATLAB pool, which
allocates a set of MATLAB worker sessions. These workers are then assigned to handle clustering
tasks, where the worker processes a subset of the data cubes – specifically, N/n data cubes, where N
is the total number of data cubes and n is the number of workers.

Parallel execution allows for efficient distance computation by distributing workloads among
available compute node, as shown in Figure 3. Each node independently processes assigned data
chunks, gathers results, and updates centroids upon completion. This process continues until the
convergence criteria are met, ensuring iterative refinement of clusters. Figure 4 illustrates the
operation flowchart of this parallelization, showing how data chunks are distributed to workers and
how results are combined.

Figure 3. Job Submission and Execution Pipeline in an HPC Environment.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 32

Figure 4. Operational Flowchart of Parallelization.

Algorithm 2 provides the pseudocode for the parallel implementation of Standard K-Means
clustering algorithm, which is implemented using the ‘parfor’ function on the server. Details about
the hardware and software used for this implementation are described in Section 2.2.

Algorithm 2: Pseudocode for Parallelization Standard K-Means algorithm

Input: I={I1, I2, I3,….,In} // set of d data cube (114 data cube with size 3712*3712*16)
K // Number of desired clusters

Output: et of K distinct clusters

 Randomly select K initial cluster centers (centroids) from the 114 data cubes, where each
centroid is represented by the matrix μmn as shown in Equation (1).

 While max(|μmn,old - μmn,new |) < 0.0005 do:
 Parfor each Data chunk I={I1, I2,I3,..,Id}
 For (x=1: number_of_rows)
 For (y=1: number_of_columns)
 Calculate the Euclidean distance between Pxyn and each centroid μmn using Equation 2.
 Assign Pxyn to the cluster with the nearest centroid (min(D(x,y,m)))
 Calculate the partial sums for each cluster for updating centroids

 End Parfor
 Combine partial sums from all chunks to calculate the new mean (centroid) for each

cluster.
 Update each centroid μmn: For each cluster m:
 Calculate the new centroid using equation (3).
 Check for convergence:
 Calculate the maximum change in centroids: DiffMean = max(|μmn,old - μmn_new|)
 If DiffMean < 0.0005, then:
 Convergence achieved, exit while loop
 Else:
 Update centroids: μmn = μmn_new
 Continue iteration
 End While

Step:

In line 3 of Algorithm 2, the “parfor” function leverages the multicore capabilities of the CPU
to compute distances and assign pixels to the nearest cluster. This parallelization is consistently
applied across all modified versions of the K-Means algorithms.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 32

3.2.2. Parallelize Centroid Initialization Method

This improved algorithm introduces a new method to calculate a uniform average across the
dataset. Pixel values are extracted through a 100×100 grid to create a matrix. Afterward, the matrix
was subsequently sorted based on the fifth column, corresponding to the Near-Infrared (NIR) band,
due to its relative insensitivity to atmospheric effects and its capacity to distinguish surface
variability. Rows containing NaN values were removed to ensure data integrity prior to further
processing. Initial centroids are determined by dividing the matrix into 160 groups and calculating
the average for each group. Refer to Algorithm 3 for the pseudocode related to class initialization.

Algorithm 3: Pseudocode for class initialization of parallel centroid initialization method

Input:

I={I1, I2, I3,….,In} // set of n data cube (114 data cube with size 3712*3712*16)
K //Number of desired clusters

Output: A set of K distinct clusters.

mpledpixelvalues ← 10*10 matrix of zeros (size: 100 x 16)
 counter← 1
 For (i = 1 to 114):

 imagein ← read image from Imagefile
 Select only the first 16 layers of the image: imagein ← imagein(:,:,1:16)
 image ← imagein(:,:,5) // Select band 5 for operations
 Set grid size: gridsize ← 371
 Calculate number of grid points:

 numpointX ← floor(size of image in dimension 1 / gridsize)
 numpointY ← floor(size of image in dimension 2 / gridsize)

 For each grid point, extract pixel values:
 For j = 1 to numpointX:
 For z = 1 to numpointY:
 Calculate x and y based on grid index:
 x ← (j - 1) * gridsize + 1
 y ← (z - 1) * gridsize + 1

 Assign sampled pixel values to sampledpix- elvalues [counter,:] ← imagein(x, y, :)
 Counter Increment
 Save the sampled pixel values:
 Sort the sample pixel values by the 5Th Column:
 columntosortby ← sampledpixelvalues(:, 5)
 sortedvalues, sortedindices ← sort(columntosortby)
 sortedMatrix ← sampledpixelvalues(sorted by sortedindices)
 Remove rows containing NaN values:
 rowswithnans ← any(isnan(sortedMatrix))
 sortedMatrix ← sortedMatrix without rowswithnans
 Calculate the Initial centroid:
 row, column ← size(sortedMatrix)
 rows_per_group ← floor (row / 160)
 remainder ← mod (row, 160)
 InitialCluster ← 160 x column matrix of zeros
 Group rows and calculate mean for each group:
 start_index ← 1
 For (i = 1 to 160):
 If i ≤ remainder
 set end_index ← start_index + rows_per_group
 Else

 Set end_index ← start_index + rows_per_group - 1
 Currentgroup ← sortedMatrix[startindex:endindex, :]
 Calculate mean for the current group and store in InitialCluster[i, :] ← mean(currentgroup)

Step:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 32

 Update startindex ← endindex + 1
 Save the calculated initial centroids.

Algorithm 3 introduces a more effective method for determining the initial centroids of clusters,
unlike the Standard K-Means Algorithm, which chooses centroids randomly. This improvement
accelerates the convergence of the K-Means clustering algorithm.

Moreover, the revised K-Means algorithm incorporates data vectorization into a 2D matrix,
making Euclidean distance calculations as seen in Equation 4 more efficient. While Algorithm 2 relies
on two 'for' loops to extract pixels from the image, the optimized Algorithm 4 streamlines this task
using a single loop.

� � 𝐷𝐷𝑥𝑥𝑥𝑥𝑥𝑥 = �� � � (𝑃𝑃𝑥𝑥𝑥𝑥 − μ𝑚𝑚𝑚𝑚)2

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑛𝑛=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑚𝑚=1

𝑅𝑅𝑅𝑅𝑅𝑅

𝑥𝑥=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑚𝑚=1

𝑅𝑅𝑅𝑅𝑅𝑅

𝑥𝑥=1

 (4)

Algorithm 4: Pseudocode for main classification

 Parfor each Data chunk I={I1, I2,I3,..,Id}
 Reshape the image data into 2D array
 For (x=1:number_of_row)
 Calculate the Euclidean distance between Px,n and each centroid μmn using Equation 4
 Assign Px,n to the cluster with the nearest centroid (min(D(x,m)))
 Calculate the partial sums for each cluster for updating centroids
 End Parfor

As shown in Algorithm 4, the reshaping of a 16-dimensional tensor is vectorized into a 2-
dimensional tensor. This modification eliminates the need for a single 'for' loop in Euclidean distance
calculation as seen in Equation 4, while other steps remain similar to those in Algorithm 2.

3.2.3. Parallelized Nearest-Neighbor Iteration Calculation Reduction Method

To address the computational inefficiency in the Standard K-Means algorithm, this study
introduces a Nearest-Neighbor Iteration Reduction Method, enhancing the accuracy of classification
while minimizing redundant distance calculations. Unlike the Iteration Reduction Method proposed
by Na et al. [39], which stores only the closest cluster for each pixel and recalculates distances during
every iteration, the proposed method maintains the distances to the fifteen nearest cluster for each
pixel. Assigning cluster based only on the nearest centroid can result in misclassification, especially
near cluster boundaries or in data with irregular shapes and varying densities, while considering
multiple nearest centroids improves accuracy by better reflecting the data’s distribution.

As shown in Algorithm 2, the distance calculation from each pixel to all k cluster centers during
each iteration consumes a significant amount of execution time, particularly for large datasets like
multispectral images. The core concept of this approach involves utilizing two fundamental data
structures to store the closest cluster label and the corresponding distance of each pixel to its nearest
cluster at every iteration, allowing this information to be used in the subsequent iteration. For each
pixel, its distance to the nearest cluster is stored. In the subsequent iteration, the algorithm first
computes distances to the previous 15 nearest clusters. A condition states that if pixels are assigned
to a cluster beyond the 12 nearest or if the previous shortest distance exceeds the current shortest
distance among 15 neighbors, distance to all clusters are recalculated, and nearest clusters are
updated accordingly. The reason for selecting the 15-12 combination is based on computational
speed. An experiment with different combinations (10,5), (15,10), and (15,12)—was conducted using
a small dataset of 20 data cubes to determine which combination converges faster. Results show that
saving 15 neighbors and assigning pixels with 12 nearest neighbors helps achieve faster convergence.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 32

Algorithm 5: Pseudocode for Parallelize Nearest-Neighbor Iteration Calculation Reduction Method

Input: I={I1, I2, I3,….,Id} // set of d data cube (114 data cube with size 3712*3712*16)
K // Number of desired clusters

Output: A set of k clusters.
 Randomly select K initial cluster centers (centroids) from the 114 data cubes, where each

centroid is represented by the matrix μmn as shown in Equation (1).
 While max(|μmn,old - μmn,new |) < 0.0005 do:
 Parfor each Data chunk I={I1, I2,I3,..,Id}
 Reshape the image data into 2D array
 For (x=1 : number_of_row)

 Calculate the Euclidean distance between Pxn and each centroid μmn using Equation 2.
 Reshape back to original dimension
 Assign Pxyn to the cluster with the nearest centroid (min(D(x,y,m))).
 Store the labels of 15 nearest cluster centers for pixel Pxyn in the arrays Cluster_Label[].

Separately store the distance of Pxyn to the nearest cluster in Closest_Dist[].
 Set Cluster_Label[]=k(the indices of the 15 nearest clusters).
 Set Closest_Dist[x,y]=D(Pxyn, μmn); (the minimum distance to the closest cluster).
 Calculate the partial sums for each cluster for updating centroids
 End Parfor
 Update each centroid μmn: For each cluster m:
 Calculate the new centroid using equation (3).

 Update centroids: μmn = μmn_new

 Repeat
 Parfor each Data chunk I={I1, I2,I3,..,Id}
 Reshape the image data into 2D array
 Calculate the distance between the pixel and the centroids of the 15 nearest clusters

stored in Cluster_Label[].
 Identify the rank of the currently assigned cluster within the 15 nearest clusters:
 If the currently assigned cluster is within the top 12 nearest clusters, no recomputation

is required.
 If the currently assigned cluster is ranked between the 13th and 15th nearest clusters or

the pixel has not been assigned, then go for the recomputation of pixel between all the
cluster.

 End parfor;
 For each cluster m, (1<=m<=K), recalculate the centroid.
 Until the convergent criteria is met (previous centroid – new centroid) < 0.0005

Step:

The first step of the algorithm involves calculating the Euclidean distance from each pixel to
initial centroids of all clusters using Equation 4. Each Pixel is allocated to the nearest centroid,
forming an initial pixels group. For every pixel, the cluster assignment (Cluster_Label[]) and its
proximity to the nearest cluster centroid (Closest_Dist[]) are recorded. Additionally, the labels of the
15 nearest cluster centers are stored in the arrays Cluster_Label[], while the distance to the nearest
cluster is separately stored in Closest_Dist[]. As pixels are assigned to different clusters, the values of
the cluster centroids may change. Centroids are iteratively recomputed for each cluster by averaging
the pixel values within the respective cluster. Up to this point, the procedure is similar to Algorithm
2.

The next step is an iterative process that employs a heuristic method to improve efficiency.
During the subsequent iteration, the algorithm focuses on optimizing cluster assignments by
leveraging the distance between each pixel and the centroids of its fifteen nearest clusters. At the start
of each iteration, the distances to these fifteen nearest centroids, stored from the previous iteration,
are recalculated. If the pixel remains assigned to a cluster within its top twelve nearest clusters, no
further computation is required for that pixel. This approach reduces unnecessary distance
calculation to all the clusters, saving computation time.

However, if the pixel is assigned to a cluster ranked between the thirteenth and fifteenth nearest
or the new distance to its nearest cluster exceeds the previously stored distance, the algorithm
recalculates distances between the pixel and all cluster centroids. This ensures accurate reassignment
to the closest cluster. Additionally, pixels marked for recomputation undergo a similar process to

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 14 of 32

identify the new nearest cluster, and the Cluster_Label and Closest_Dist arrays are updated
accordingly. This iterative refinement continues until the movement between centroids stabilizes,
defined by a threshold of 0.0005, ensuring convergence.

3.2.4. Parallelize Dynamic K-Means Sharp Method

Olukanmi et al. [35]proposed the K-Means Sharp Method, which modifies the Standard K-
Means centroid update step to exclude outliers during centroid calculation. The adaptation
introduction global threshold values for all cluster. However, the method is extended to the Dynamic
K-Means Sharp Method by incorporating spatial standard-deviation measurements of cluster to
identify and manage both inlier and outlier pixels within individual clusters.

Outlier Detection

K-Means operates on the assumption that the data follows a Gaussian distribution, meaning that
most inliers will fall within ±3 standard deviations of the centroid. This range corresponds to the area
under the normal distribution curve within ±3σ of the mean, where most data points are expected to
be located. Any point outside this range is considered outlier.

For each band of a cluster, the spatial standard deviation was calculated. Consequently, the
pixel-to-centroid distance threshold, T , which differentiates inliers from outliers, is defined as:

T(m,n)= 3𝜎𝜎 (5)

where 𝜎𝜎 is the spatial standard deviation of cluster per feature, 1<=m<=K (centroid) and
1<=n<=feature.
Note that T is a cluster and band specific threshold value in contrast to single global value that applies
across all clusters which is proposed by Olukanmi et al. [35].
New Centroid update

With an appropriate value of T calculated as per Equation 5, this method identifies inlier and
outlier pixels for each spectral band based on their distance from the cluster mean (centroid) and the
cluster's standard deviation. Inliers are pixels that lie within 3 standard deviations of the mean for
each feature, while outliers are those outside this range. For each cluster feature, the new centroid is
recalculated by averaging only the inlier pixels, effectively minimizing the impact of outlier pixels on
the centroid’s position.

� � 𝜇𝜇

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑛𝑛=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑚𝑚=1 𝑚𝑚𝑚𝑚

= � �
1

|𝑠𝑠𝑚𝑚𝑚𝑚| − |𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚|

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑛𝑛=1

𝑃𝑃𝑚𝑚𝑚𝑚:𝑃𝑃𝑚𝑚𝑚𝑚 = 0 𝑖𝑖𝑖𝑖 ‖𝑃𝑃𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑚𝑚𝑚𝑚‖ > 𝑇𝑇

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑚𝑚=1

 (6)

where 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝜖𝜖𝑆𝑆𝑚𝑚𝑚𝑚 is the set of the pixels 𝑃𝑃𝑚𝑚𝑚𝑚 in 𝑆𝑆𝑚𝑚𝑚𝑚that have pixel-to-centroid

Distance ‖𝑃𝑃𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑚𝑚𝑚𝑚‖ > 𝑇𝑇 (7)

The mean for each cluster is calculated using two approaches outlined in Equations 2 and 6.
Both approaches define a new centroid as the mean of the pixels associated with each respective band
and cluster. However, Equation 6 differs by excluding pixels that lie beyond a distance T from the
cluster centroid. This exclusion refines the centroid calculation by reducing the impact of outlier
pixels.

Pixel classification follows the same method as in Algorithm 2. The primary change in this
approach is in the centroid update step. Instead of recalculating centroids by averaging all pixels
within each cluster, this modified algorithm identifies and excludes potential outliers from the
computation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 15 of 32

In the dynamic K-Means sharp algorithm, the process starts by randomly initializing the cluster
centroids from the data cubes. Each iteration assigns pixels from the data cubes to the nearest centroid
based on Euclidean distance, computed in parallel using a "parfor" loop to handle the large dataset.
Each pixel is assigned to the centroid with the minimum distance, and partial sums are calculated in
parallel to gather the data needed for updating the centroid. After the parallel step, the partial sums
from all data chunks are combined to compute new centroids for the clusters, and the algorithm
checks for convergence. If the maximum change in the centroids is smaller than a threshold (0.0005),
the algorithm converges. Otherwise, the centroids are updated, and the process repeats.

In later iterations, the algorithm incorporates spatial standard deviations for each cluster. After
parallel processing of pixel assignments, the spatial standard deviation is calculated based on the
squared difference between the current centroids and the pixel values for each band. Pixels within

Algorithm 6: Pseudocode for Parallelize Dynamic K-Means Sharp Method
Input: I={I1, I2, I3,….,Id} // set of d data cube (114 data cube with size 3712*3712*16)

K // Number of desired clusters
Output: A set of k clusters.

ndomly select K initial cluster centers (centroids) from the 114 data cubes, where each
centroid is represented by the matrix μmn as shown in Equation (1).

 Parfor each Data chunk I={I1, I2,I3,..,Id}
 Reshape the image data into 2D array
 For (x=1 : number_of_row)

 Calculate the Euclidean distance between Pxn and each centroid μmn using Equation
(3).

 Reshape back to original dimension
 Assign pixel Pxyn to the cluster with the nearest centroid (min(D(x,y,m))).
 Calculate the partial sums for each cluster for updating centroids

 END Parfor
 Update each centroid μmn: For each cluster m:
 Calculate the new centroid using equation (3).
 Update centroids: μmn = μmn_new
 Calculate Spatial Standard deviation
 For each data chunk, calculate the sum of squared difference for each band of clusters
 squared_diff=(Meantile-NewCluster)2
 Accumulate the sum across all data cubes.
 Compute the standard deviation for each cluster and band:
 std_values=sqrt(sum_squared_diff/count)
 Repeat
 Parfor loop to update pixel assignments:

 Compute inliers and outliers based on the spatial standard deviation:
 For each cluster and band: get pixels in the current cluster and compute the absolute

difference pixels and the cluster mean for each band.
 inliers are those within 3*std_value.

 inliers=abs(cluster_pixel(:,feature)- mean_value)<=3*std_value
 Update inlier count and calculate partial sums for the next centroid update:

 Inlier_count(cluster,band)+=sum(inliers)
 MeanCluster(cluster,band)+=sum(cluster_pixel(inliers,band))

 Outlier count:
 Outlier_count(cluster,band)=total_pixel_in_cluster-inlier_count(cluster,band)

 End Parfor
 Update the cluster centroids based on inliers using equation 5.
 Until the convergent criteria is met (previous centroid – new centroid) < 0.0005

Step:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 16 of 32

three standard deviations of the mean for each cluster and band are considered inliers, while those
outsides are considered outliers. The inliers are used to update the centroids using Equation (6). The
algorithm continues this iterative process, recalculating the centroids and spatial standard deviations
in each iteration until convergence.

3.2.5. Integrated Variant Comparisons

In this section, the performance of various K-Means clustering algorithm variants implemented
in a parallelized manner is examined. Specifically, the focus is on how each parallelized variant
performs when combined with other algorithm modifications. This implementation also divides the
dataset into chunks and distributes them to processing units, where clustering occurs in parallel.

Table 2. Specific Combinations of three Variants.

Combination Name Centroid
Initialization

Algorithm

Nearest-Neighbor
Iteration Calculation
Reduction Algorithm

Dynamic K-Means
Sharp Algorithm

Parallel
Combination 1

1 0 1

Parallel
Combination 2

0 1 1

Parallel
Combination 3

1 1 0

Parallel Enhanced K-
Means (PEKM)

1 1 1

Parallel combination 1 (Combination of Centroid Initialization and Dynamic K-Means Sharp Method)
This combination integrates the Centroid Initialization Algorithm with the Dynamic K-Means

Sharp algorithm to enhance accuracy. Detailed steps for this improved method are provided in
Algorithm 7.

Algorithm 7: Centroid Initialization and Dynamic K-Means Sharp Method
Input:

I= {I1, I2, I3,….,Id} // set of d data cube (114 data cube with size 3712*3712*16)
K // Number of desired clusters

Output: A set of k clusters

Phase 1: Identify the initial cluster centroids by using Algorithm 3
Phase 2: Update centroid by using Algorithm 6

Step:

In the first phase, the initial centroids are systematically set to form clusters with enhanced
accuracy, as outlined in Section 3.2.2. The second phase applies to a variant of the clustering method
from Section 3.2.4. This phase begins by creating initial clusters based on the uniform average of
grouped pixels, as explained in Algorithm 3. These clusters are then refined using the K-Means Sharp
method, which updates centroids by excluding outliers. Detailed steps for these two enhanced
methods are provided in Algorithms 3 and 6.

Parallel combination 2 (Combination of Nearest-Neighbor Iteration Calculation Reduction and
Dynamic K-Means Sharp Method)

This approach combines Iteration Calculation Reduction with the Dynamic K-Means Sharp
algorithm to enhance computational efficiency and accelerate convergence while maintaining
clustering accuracy. The detailed steps of this method are provided in Algorithm 8.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 17 of 32

Algorithm 8: Dynamic K-Means Sharp and Nearest-Neighbor Iteration Calculation Reduction
Method

Input:

I={I1, I2, I3,….,Id} // set of d data cube (114 data cube with size 3712*3712*16)
K // Number of desired clusters

Output: A set of k clusters
Phase 1: Assign each data point to the appropriate cluster by Algorithm 5.
Phase 2: Update centroid by using Algorithm 6

Step:

In the first phase, a variant of the clustering method discussed in Section 3.2.3. is employed to
improve efficiency. The second phase utilizes a variant of the clustering method outlined in Section
3.2.4. The two phases of this enhanced method are detailed in Algorithm 5 and Algorithm 6.
Parallel combination 3 (Combination of Centroid Initialization and Nearest-Neighbor Iteration
Calculation Reduction Method)

By merging the Centroid Initialization Algorithm and Iteration Calculation Reduction, this
combination is designed to improve convergence rates while maintaining accurate cluster
assignments.

Algorithm 9: Centroid Initialization and Nearest-Neighbor Iteration Calculation Reduction
Method

Input:

I={I1, I2, I3,….,Id} // set of d data cube (114 data cube with size 3712*3712*16)
K // Number of desired clusters

Output: A set of k clusters

Phase 1: Identify the initial cluster centroids by using Algorithm 3
Phase 2: Assign each data point to the appropriate cluster by Algorithm 5

Step:

The first phase employs a variant of the clustering method discussed in Section 3.2.2, aimed at
enhancing efficiency. In the second phase, another variant of the clustering method, outlined in
Section 3.2.3, is used. Detailed descriptions of both phases in this enhanced method appear in
Algorithms 3 and 5.

Parallel Enhanced K-Means Method (PEKM)

This comprehensive combination integrates all three variants: the Centroid Initialization
Method, Nearest-Neighbor Iteration Calculation Reduction Method, and Dynamic K-Means Sharp
Method. By leveraging the strengths of each approach, the method ensures efficient and improved
clustering quality, maximizing both performance and precision.

Algorithm 10: Centroid Initialization Method, Dynamic K-Means Sharp, and Nearest-Neighbor
Iteration Calculation Reduction Method

Input:

I={I1, I2, I3,….,Id} // set of d data cube (114 data cube with size 3712*3712*16)
K // Number of desired clusters

Output: A set of k clusters

Phase 1: Determine the initial centroids of the clusters by using Algorithm 3
Phase 2: Assign each data point to the appropriate cluster by Algorithm 5.
Phase 3: Update centroid by using Algorithm 6

Step:

In the first phase, the initial centroids are systematically determined, as described in Section
3.2.2. The second phase uses a variant of the clustering method discussed in Section 3.2.3, while the
third phase applies another variant outlined in Section 3.2.4. The three phases of this enhanced
method are detailed in Algorithms 3, 5, and 6.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 18 of 32

3.3. Convergent Criteria

In K-Means clustering, pixels get assigned to clusters, and centroid updates continue until
meeting specific stopping criteria. Possible criteria include:
• Reaching a predetermined maximum number of iterations.
• Having fewer pixel reassignments per iteration than a set threshold.
• Centroid shifts fall below a specified distance threshold during an update cycle.
For this project, convergence was determined using centroid migration threshold of 0.0005 (0.05
reflectance units), a value adopted from the work of Shrestha et al.[4] , where it was shown to
effectively optimize cluster compactness.

3.4. Performance Metrics

As datasets in remote sensing continue to grow, reducing computational costs has become
crucial due to the increasing demand for computational power. The methodology section outlines
the various methods implemented to address this challenge. The model's effectiveness was evaluated
using the following performance metrics.

3.4.1. Convergence Speed

The iteration count required for the algorithm to meet the threshold condition represents a
primary performance metric. Evaluating each parallel K-Means variant reveals which version
converges with the fewest iterations.

3.4.2. Clustering Quality

The quality of clustering in the K-Means algorithm can be evaluated using several methods,
including the Silhouette Coefficient[49], Calinski-Harabasz Index [50], and Mean Square Error
(MSE)[19]. However, due to the computational expense and infeasibility of these methods for high-
dimensional data, the Root Mean Square Error (RMSE)[51] was chosen for evaluation. The RMSE is
calculated through the following steps:
1. Squared Difference Calculation :

squared_diff = �𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖�
2

Update MSE for the Cluster :

MSE𝑖𝑖𝑖𝑖 = MSE𝑖𝑖𝑖𝑖 + � squared_diff𝑗𝑗

𝑁𝑁𝑖𝑖

𝑗𝑗=1

73. Update Pixel Count for the Cluster:

pixel_count𝑖𝑖 = pixel_count𝑖𝑖 + 𝑁𝑁𝑖𝑖

74. Compute the Average MSE for the Cluster and Band:

MSE𝑖𝑖𝑖𝑖 =
MSE𝑖𝑖𝑖𝑖

pixel_count𝑖𝑖

75. Compute the Root Mean Square Error:

RMSEik=(MSEik)1/2

76. Compute the Average Root Mean Square Error:

 Avg_RMSE = 𝑀𝑀𝑀𝑀𝑀𝑀������𝑖𝑖𝑖𝑖

where:
• Vij : The jth valid pixel in the ith cluster.
• Cik : The centroid value for the kth band of the ith cluster.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 19 of 32

• Ni : The number of valid pixels in the ith cluster.
• C : Total number of clusters.
• B : Total number of bands.

3.4.3. Computational Efficiency

Evaluating computational efficiency involves measuring the execution time required for each
parallelized K-Means algorithm variant to reach the specified convergence threshold. A comparison
of execution times highlights the most efficient algorithms.

3.5. Comparative Analysis

This study provides a comparison of parallelized, modified versions of K-Means clustering
algorithms based on selected performance metrics. Experiments were conducted on identical datasets
to ensure consistency and enable a direct comparison of algorithm performance.

4. Evaluation and Experimental Results

This study primarily aims to enhance the standard K-Means clustering algorithm by accelerating
its convergence, improving computational efficiency, and maintaining similar clustering
compactness. This section discusses the findings derived from optimized variants of the K-Means
clustering algorithm, as described in Section 3.2. The evaluation includes an analysis of convergence
speed, clustering quality, and computational efficiency for each optimization technique described in
Section 3.4, with a focus on their effectiveness in handling high-dimensional satellite imagery.

4.1. Convergent Speed Comparison

Convergence speed is a critical metric for assessing the efficiency of parallelized K-Means
algorithm, measured by the number of iterations needed to achieve convergence. The criterion for
cluster convergence is determined by the displacement of centroids between the previous and the
most recently computed centroid positions.

For clarity in figures and tables, abbreviated method names are used. The corresponding full
method descriptions are provided in Table 3.

Table 3. Method Abbreviation for Parallelized K-Means Algorithm.

Method Abbreviation Full Method Description
PSKM Parallelized Standard K-Means Algorithm

PSKM+CI Parallelized Centroid Initialization Method
PSKM+KS Parallelized Dynamic K-Means Sharp Method

PSKM + NN
Parallelized Nearest-Neighbor Iteration Calculation
Reduction Method

PSKM + CI + KS
Parallelized Centroid Initialization and Dynamic K-Means

Sharp Method

PSKM + CI +NN
Parallelized Centroid Initialization and Nearest-Neighbor

Iteration Calculation Reduction Method

PSKM + KS + NN
Parallelized Dynamic K-Means Sharp and Nearest-Neighbor

Iteration Calculation Reduction Method
PEKM Parallelized Enhance K-Means Method

Figure 5 illustrates the convergent speed of parallelized modified K-Means algorithms over
iterations. On the graph, the x-axis indicates the number of iterations, whereas the y-axis depicts the
displacement of centroids between consecutive iterations. Each line corresponds to a specific
parallelized modified K-Means algorithm. The results also demonstrate that centroids stabilize with
respect to iteration. Please refer to Table 3 for the description of Abbreviated method

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 20 of 32

Figure 1. Cost Variation per Iteration for different Parallelized K-Means Variants.

The Parallelized Standard K-Means algorithm (Blue color with diamond) failed to converge
within the tested iterations. However, incorporating improvements such as selecting initial centroid
deterministically, applying Dynamic K-Means Sharp for removing the outlier from getting into the
calculation of centroid, and using the previous information of assigned cluster to pixel and assigned
distance to reduce computational complexity arises because of classification of pixel, enabled
convergence for the Parallelized Standard K-Means algorithm under specific conditions. The
following observations were made regarding the convergence of the modified algorithms where the
convergence threshold is set to 0.0005.

Table 4. Number of iterations required for convergence across Parallelized K-Means methods.

Method Iterations till
convergence

PSKM+CI 348 iterations
PSKM+KS 282 iterations

PSKM + NN 326 iterations
PSKM + CI + KS 257 iterations
PSKM + CI +NN 292 iterations
PSKM + KS + NN 288 iterations

PEKM 234 iterations

Two things can be seen from these results, first the Parallelized Centroid Initialization method
had great impact in allowing the problem to converge, and second the parallelized Dynamic K-Means
Sharp had the largest impact in iteration reduction. These results highlight the efficacy of the
modifications in improving the convergence behavior of the Parallelize Standard K-Means algorithm,
however these methods also have various levels of improved efficiency as shown below.

4.2. Computation Efficiency Comparison

Efficiency is a key metric for assessing the practical applicability of the modified K-Means
clustering algorithms. The bar graph shown in Figure 6 compares the computational efficiency of
eight algorithms on the dataset described in Section 3. The y-axis indicates the total execution time
in hours, while the x-axis lists the algorithms under evaluation. Please refer to Table 3 for the
description of Abbreviations method.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 21 of 32

Figure 6. Bar Plot of Computational Efficiency Comparisons in terms of time.

Table 5. Computational time (in hours) required for convergence across various Parallelized K-Means
methods.

Method Hours till
convergence

PSKM+CI 9965.47 hours
PSKM+KS 6341.58 hours

PSKM + NN 5860.90 hours
PSKM + CI + KS 5237.19 hours
PSKM + CI +NN 5130.24 hours
PSKM + KS + NN 5243.95 hours

PEKM 4230.43 hours

The results reveal that the Parallelized Standard K-Means Method failed to converge, indicating

no measurable computational efficiency for this baseline approach. Among the improved algorithms,
the PEKM demonstrated superior computational efficiency, achieving the lowest execution time
required for convergence. This method outperformed other algorithms by reducing the
computational complexity, as reflected in its total execution time of approximately 4230 hours.

Although the Parallelized Centroid Initialization and Dynamic K-Means Sharp Method and
Parallelized Dynamic K-Means Sharp converged faster in terms of the number of iterations, their
execution times of 5237 hours and 6341 hours, respectively, were higher than the Parallelized
Centroid Initialization and Nearest-Neighbor Iteration Calculation method execution time is 5130.
These results highlight the critical role of the Nearest-Neighbor Iteration Calculation Reduction
Method in minimizing computational overhead for pixel classification tasks.

Overall, the results underscore the practical advantages of incorporating Nearest-Neighbor
Iteration Calculation Reduction, which not only accelerates convergence but also ensures the
computational feasibility of the clustering process for large datasets.

4.3. Clustering Quality Evaluation

The calculation of RMSE of cluster compactness serves as a critical metric for assessing the
quality clusters, as it reflects the effectiveness of cluster formation. Figure 7 illustrates the clustering
quality of each parallelized modified K-Means algorithm as outlined in Section 3.2, by evaluating the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 22 of 32

compactness of the generated clusters. Compactness is quantified through the Average Root Mean
Square Error, computed using the methodology detailed in Section 3.4.2. Please refer to Table 3 for
the description of Abbreviations method.

The results indicate that the compactness of all the modified algorithms is similar, with minimal
differences between them. As shown in the graph:

Figure 7. Bar Plot Cluster Quality Comparison in terms RMSE.

Table 6. Comparison of RMSE values for various Parallelized K-Means methods.

Method RMSE

PSKM+CI 0.01417

PSKM+KS 0.01332

PSKM + NN 0.01399

PSKM + CI + KS 0.01375

PSKM + CI +NN 0.01412

PSKM + KS + NN 0.01333

PEKM 0.01364

The minimal variation in RMSE across the algorithms demonstrates comparable clustering

quality. This suggests that while the methods vary in their computational efficiencies, their ability to
form compact and well-defined clusters remains consistent.

4.4. Image Cluster Output

To further assess the consistency of clustering results across all methods, a specific chip classified
as sand is displayed in Figure 8(a). Differences between each method’s clustering and the reference
classification shown in Figure 8(b), the output of the Centroid Initialization Method, which improves

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 23 of 32

centroid selection over Standard K-Means Clustering, are presented in subsequent subfigures. Each
subfigure in Figure 8 illustrates the deviation of different classification approach relative to the
reference. With the exception of minor random variations, the results demonstrate a high degree of
similarity across methods. A noticeable exception is observed in Figure 8(f), corresponding to the
Parallelized Centroid Initialization and Nearest-Neighbor Iteration Calculation Reduction Method,
where clustering pixel to the reference classification was not fully achieved. Despite this visually
detectable difference, all methods overall exhibit consistent classification outcomes. These results
support evaluating the methods primarily on performance metrics, such as convergence efficiency
and computational scalability, rather than difference in clustering compactness. Please refer to Table
3 for the description of Abbreviations method.

(a)
{Input Image (sand target)}

(b)
{Reference (PSKM + CI) }

(c)
{Reference – (PSKM + KS)}

(d)
{Reference – (PSKM + NN)}

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 24 of 32

(e)
{Reference – (PSKM+CI+KS)}

(f)
{Reference – (PSKM+CI+NN)}

(g)
{Reference – (PSKM+KS+NN)}

(h)
{Reference – PEKM}

Figure 8. Cluster-based Masked Image of "Sand" Generated from Parallelized modified K-Means Cluster: (a)
Input Image (b) from Parallelized Centroid Initialization method (Reference) (c) Pixel difference between
Reference and Parallelized Dynamic K-Means Sharp Method (d) Pixel difference between Reference and
Parallelized Nearest-Neighbor Iteration Calculation Reduction Method (e) Pixel difference between Reference
and Parallelized Centroid Initialization and Dynamic K-Means Sharp Method (f) Pixel difference between
Reference and Parallelized Centroid Initialization and Nearest-Neighbor Iteration Calculation Reduction
Method (g) Pixel difference between Reference and Parallelized Dynamic K-Means Sharp and Nearest-Neighbor
Iteration Calculation Reduction Method (h) Pixel difference between Reference and PEKM.

Finally, this study verified that clustering results generated by each parallelized modified K-
Means algorithm were indistinguishable. As illustrated in Figure 8, the seg-mentation masks for the
sand exhibit similar pixel distributions across all methods, indicating minimal variation in cluster
assignment due to the different initial centroid value which was chosen randomly. This variation in

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 25 of 32

cluster assignment was seen in methods such as Dynamic K-Means Sharp, Nearest Neighbor Iteration
Calculation Reduction Method, and their combined variants, which begin with randomly selected
centroids. Additionally, the RMSE values, as presented in Error! Reference source not found., further
support this observation. The Parallelized Centroid Initialization Method achieved an RMSE of
0.01417 and the Parallelized Nearest-Neighbor Iteration Calculation Reduction Method reported
0.01399, while the Parallelized Dynamic K-Means Sharp Method recorded 0.01332. The Parallelized
Centroid Initialization and Dynamic K-Means Sharp Method yielded an RMSE of 0.01375, the
Parallelized Centroid Initialization and Nearest Neighbor Iteration Calculation Reduction Method
reported 0.01412, the Parallelized Dynamic K-Means Sharp and Nearest-Neighbor Iteration
Calculation Re-duction yielded as 0.01333, and the PEKM recorded 0.01364. The small difference in
RMSE values across methods indicate that the final clustering results remain consistent. Building on
these findings, a new optimized approach, termed PEKM, was developed. The PEKM method
introduces three key improvements: (1) the use of deterministic techniques for centroid initialization,
replacing reliance on random selection; (2) the exclusion of outliers during the computation of new
centroids; and (3) enhanced computational efficiency through the implementation of a simple data
structure to retain information from each iteration for subsequent processing. The proposed PEKM
method is particularly suited for application in remote sensing, including the unsupervised
clustering of global high-dimensional satellite imagery and the generation of training data for
supervised or deep learning-based classification tasks.

5. Discussion

This study presented the Parallelized Enhanced K-Means (PEKM) algorithm, developed to
address the scalability challenges of standard K-Means clustering when applied to high-dimensional
satellite image datasets. By integrating three algorithms improvements, Centroid Initialization,
Dynamic K-Means sharp, and Nearest-Neighbor Iteration Calculation Reduction, alongside parallel
computing on CPU nodes, PEKM effectively reduced computational cost while maintaining
clustering quality. The combined approach demonstrated stable performance across diverse land
cover types and provided a scalable solution suitable for remote sensing applications where large
unlabeled datasets are common.

One of the limitations of the Standard K-Means algorithm is its reliance on random centroid
initialization, which can lead to poor convergence and converge to local minima. Prior studies have
sought to address this by proposing more systematic initialization strategies. Khan et al. [32]
introduced a weighting-based approach coupled with normalization to improve centroid selection,
yet their evaluation on large-scale, high-dimensional datasets such as satellite imagery remain
limited. Chan et al. [33] further refined initialization for high-dimensional scenarios by combining
kernel K-Means++ with random projections, successfully reducing computational complexity from
O(n2D) to O(n2d). However, while this reduced dimensionality, it did not address the scalability
challenges related to large samples sizes (n). Building upon these efforts, our approach proposes a
uniform average pixel grouping strategy, specifically designed to improve initialization robustness
for large-scale satellite imagery. Centroid Initialization method is a one-time process performed prior
to iterative clustering. It involves grid-based sampling and aggregation of pixel values, followed by
sorting and mean calculation. Since the number of sampled points is substantially smaller than the
total dataset size, this causes time complexity of O(gd + g log g), where g is the number of sampled
grid points and d is the number of spectral bands, thereby keeping the initialization computational
overhead minimal relative to the overall clustering process.

Outlier sensitivity, another critical challenge in K-Means clustering, has been the focus of several
enhancements. Olukanmi et al. [35] developed K-Means sharp, employing a global threshold to
detect outliers based on point to centroid distances. Although effective for small datasets, this global
threshold approach may overlook cluster-specific variation, especially in heterogeneous land cover
dataset. CSK-Means and NSK-Means algorithms further refined this by incorporating density-based
outlier detection and assigning separate cluster to outliers, improving performance in non-spherical

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 26 of 32

and overlapping cluster scenarios[36] . However, their reliance on iterative steps for final cluster
determination results in increased computational cost for large-scale datasets. Recent anomaly
detection framework like ResAD [37] offer potential for addressing high-dimensional outlier
challenges through residual features learning, but their integration with clustering algorithms like K-
Means remains to be fully explored. In this study, Dynamic K-Means sharp is introduced as a
dynamic, cluster-specific thresholding mechanism as described in Section 3.2.4, which is an
advancement of K-Means sharp. The Dynamic K-Means sharp method introduces additional
computations of spatial standard deviations, maintaining an overall complexity of O(nd) per iteration
but improving centroid stability, thus lowering the total number of iterations required for
convergence as seen in the Section 4.1. This advancement is particularly advantageous for complex
satellite imagery, where outlier distributions vary across land-cover types.

Furthermore, the high computational cost of K-Means, due to exhaustive distance calculations
at every iteration, has driven the development of methods aimed at reducing redundant
computations. Shi et al. [39] introduced a data structure to retain essential cluster assignment
information between iterations, while Wang et al. [40] identified active boundary points to optimize
reassignment steps. Moodi et al. [41] extended this direction by using equidistance thresholds to
eliminate certain distance checks. Nonetheless, these methods face challenges in accurately handling
overlapping clusters or extremely large datasets. To overcome these limitations, our proposed
Nearest-Neighbor Iteration Calculation Reduction method maintains a set of the 15 nearest clusters
for each pixel, balancing computational efficiency with classification accuracy. This design mitigates
the risks of misclassification near cluster boundaries and support scalability for high-dimensional
satellite data. This method offers the most significant improvement in reducing redundant distance
calculations. By maintaining distances to the 15 nearest clusters for each point, the method reduces
the need for exhaustive O(nkd) distance computation to O(nd) per iteration for the majority of points,
where n denotes the number of data points (pixels), k is the number of clusters, and d represents the
number of spectral dimensions. Only a small subset, denoted by a fraction ε, requiring full
recomputation with complexity of O(εnkd). This selective updating mechanism substantially
decreases overall execution time, as reflected in Section 4.2.

By aggregating these algorithmic enhancements, the overall time complexity of the PEKM
algorithm is significantly improved compared to the Parallelized Standard K-Means algorithm.
While standard K-Means requires O(inkd) operations, where i is the number of iteration to converge,
n is the number of pixel, d is the number of spectral features, k is number of class, PEKM achieves a
cumulative complexity of O(nKd+i(nd+ ε n K d)), where ε represents the proportion of pixel requiring
full recomputation during iterations. The space complexity remains at O(nd), comparable to Standard
K-Means, with the additional storage for maintaining nearest-neighbor distances, which scales
linearly with the dataset size. These improvements are particularly valuable for large-scale satellite
image clustering, where minimizing per-iteration computation and total iteration count directly
translates to substantial reductions in overall processing time.

Results reinforce the theoretical complexity analysis. PEKM achieve the fastest convergence,
completing in 234 iterations and approximately 4230 processing hours, outperforming other
methods: Parallelized Centroid Initialization (348 iterations, 9965 hours), Parallelized K-Means Sharp
(282 iterations, 6341 hours), Parallelized Nearest-Neighbor Iteration Calculation Reduction (326
iterations, 5860 hours), Parallelized Centroid Initialization and K-Means Sharp (257 iterations and
5237 hours), Parallelized K-Means Sharp and Nearest-Neighbor Iteration Calculation Reduction (288
iterations and 5243 hours) and Parallelized Centroid Initialization and Nearest-Neighbor Iteration
Calculation Reduction Method (292 iterations and 5130 hours). Besides the computational efficiency,
cluster compactness was measured via RMSE. Cluster compactness serves as a measure of clustering
consistency, indicating the extent to which different methods identify similar pixel grouping. Cluster
compactness showed negligible differences across all algorithms: Parallelized Centroid Initialization
(0.0141), K-Means Sharp (0.0133), Parallelized Centroid Initialization and K-Means Sharp (0.0137),
Parallelized Centroid Initialization and Nearest-Neighbor Iteration Calculation Reduction (0.0141),

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 27 of 32

and PKEM (0.0136). Because cluster compactness was similar among different versions of K-Means
algorithm, many practitioners may base their choice of algorithm on the iteration count and execution
time. Users Prioritizing minimal iterations (234) and lower execution time (4230 hours) could adopt
the full combination PEKM, whereas those focusing strictly on achieving the smallest RMSE might
select Parallelized K-Means sharp alone (0.0133) despite higher computational costs. These results
highlight that computational efficiency and convergence speed—not cluster quality—differentiated
the algorithms.

Further analysis of parameter influence highlights critical considerations for PEKM scalability.
As expected, increasing the number of cluster K proportionally increases the initial computation load
due to spectral distance between each pixel and centroid. However, the nearest-neighbor reduction
strategy mitigates this impact during subsequent iterations by focusing computations on a limited
candidate set. Additionally, maintain the number of nearest neighbors at 15 proved to be an effective
balance between computational cost and clustering compactness. Nearest Neighbors number need to
fine-tuned as explain in the Section 3.2.3. The convergence threshold, fixed at 0.05 reflectance units
in this study, provides a pragmatic balance between processing time and classification stability,
though future studies could explore adaptive thresholding strategies for future optimization.

In terms of operational application, the PEKM algorithm addresses long-standing challenges in
clustering reliability and scalability for satellite sensor calibration workflows. Previous studies have
leveraged K-means clustering to identify globally distributed Extended Pseudo Invariant Calibration
Sites (EPICS), which are essential for radiometric calibration across multiple satellites missions
[4,5,9,52]. Fajardo et. al. [5] applied K-Means clustering exclusively on temporally stable pixels to
generate globally distributed EPICS clusters for radiometric calibration effort. Also, Fajardo et al. [53]
applied K-Means clustering to temporally stable pixels to define clusters such as Cluster 13 Global
Temporally Stable, which improve temporal consistency and expanded calibration opportunities. In
a related study, Shah et al. [9]utilized K-Means-derived EPICS clusters over North Africa to support
an expanded Trend-to-Trend cross-calibration technique. Despite the operational use of K-Means in
these works, convergence was not consistently achieved, an issue acknowledged implicitly through
reliance on prefiltered or heuristically selected cluster outputs. This lack of convergence introduces
potential uncertainty in cluster reproducibility, which is critical for calibration accuracy and long-
term sensor monitoring.

The PEKM algorithm introduced in this study offers a foundation improvement in this context.
By integrating enhanced centroid initialization, dynamic outlier handling, and iteration calculations
reduction, along with asynchronous parallel execution on CPU-based HPC systems, PEKM ensures
convergence even when applied to high-dimensional, global-scale datasets. The algorithm was
validated using 114 datacubes (each measuring 3712*3712*16), with successful convergence and
consistent cluster compactness. In contrast to earlier K-Means implementations, PEKM provides a
repeatable and scalable framework suitable for annual image clustering needs of calibration-focused
laboratories. With deployments planned across over 9512 datacubes, the algorithm leverage more
than 3000 CPU cores asynchronously within a high-performance computing cluster, enabling robust
classification outputs for global radiometric calibration. This advancement not only reduces
algorithmic uncertainty but also enhances the reliability of EPICS generation for current and future
satellite missions.

The current configuration of 16-layer input data, encompassing temporal mean bands and
temporal standard deviations, was maintained to ensure methodological continuity with prior
datasets and to preserve model robustness for complex data distributions. These 16 layers are derived
from the eight optical bands of the Landsat 8 OLI sensor, with each band processed to generate both
a temporal mean and standard deviation, as outlined in the methodology by Shrestha et al.[4] and
Fajardo et al. [5] This approach captures long-term reflectance behavior across diverse global land
cover types, providing an input structure for unsupervised clustering. However, the inclusion of all
bands may introduce inter-band redundancy, potentially impacting clustering stability and
increasing computational load. Prior studies in land use and land cover classification has shown that

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 28 of 32

not all spectral bands contribute equally to classification performance. For instance, Zhiqi Yu et al.
[54] identified optimal three and four band combinations (Bands 4,5,6 and Bands 1,2,5,7 respectively)
that achieved comparable accuracy to full-band inputs, suggesting the potential for dimensionality
reduction without performance loss. Future research could incorporate correlation analysis and
feature selection to reduce the number of input layers, thereby mitigating curse of dimensionality
while preserving the spectral and spatial characteristics of global land cover for robust unsupervised
clustering.

Looking forward, several enhancements could extend the scalability and applicability of the
PEKM algorithm. Integration of GPU acceleration[38,45,46,55,56], approximate nearest neighbor
(ANN) search method [57–59], and mini-batch K-Means algorithm [60–62]mechanism may offer
further computational gain. In case of GPU availability, Han et al. [56]demonstrated that GPU-based
parallelization of K-Means clustering significantly accelerated processing, achieving a 25.53 speedup
over sequential processing and reducing runtime to 39 times faster with advanced GPU
optimizations. Their findings underscore the potential of GPU-enabled clustering for handling
extensive satellite imagery datasets. However, as outlined in Section 1.2.3, the current HPC
environment comprises limited GPU resources, only 14 nodes, while offering over 3000 CPU cores.
This constraint has guided the strategic focus on CPU-based parallel optimization, ensuring full
utilization of available computational resources for large-scale clustering. Approximate nearest
neighbor techniques, as surveyed by Andoni et al. [57], have been shown to significantly reduce
computational cost in high-dimensional space by avoiding exhaustive distance calculations.
Incorporating ANN within the PEKM framework could further improve clustering speed doing a
trade-off with little accuracy, particularly during the distance assignment phase. Additionally, the
mini-batch K-Means explored by peng et al. [60]offers an efficient alternative for large datasets;
however, its speed advantages may come at the cost of reduced global clustering accuracy, a trade-
off that must be evaluated in the context of PEKM. While this study achieved promising results, some
limitations should be noted. Even though ANN and Mini-Batch K-Means improves computational
efficiency, it comes at the cost of potentially reduced clustering quality and future research needs to
be conducted the evaluation of accuracy in compared to PEKM. Furthermore, the choice of 160
clusters was based on experimental analysis and results of the initial work done by Shrestha et al. [4]
showing clusters had a compactness value of ~0.01 to 0.015 units of reflectance, which was the target
for this experiment, but further analysis and updates of this may have influenced the outcomes.
Future work should explore more systematic methods for determining the optimal number of
clusters. Additionally, instead of using the Euclidean distance metric employed in this project,
Aggarwal et. al.[63] suggests that fractional distance metrics can significantly improve clustering
effectiveness in high-dimensional spaces.

Beyond algorithmic developments, the output of PEKM offer potential utility beyond
unsupervised classification. Clustered outputs representing global land cover types could serve as
valuable inputs for fine-tuning pre-trained Vision Transformer (ViT) models, enriching feature
representation for downstream tasks. While this remains a prospective research direction, the
integration of clustering results with deep learning frameworks presents an opportunity to enhance
model performance in remote sensing applications.

The PEKM algorithm presents a balanced solution for large-scale satellite image clustering,
optimizing computational efficiency while maintaining clustering accuracy. Its design is particularly
suited for resource-constrained environments emphasizing CPU parallelization and for application
applications requiring high clustering precision, such as global land cover mapping and satellite
sensor calibration. Through continued refinement and integration with emerging technologies,
PEKM holds promise for advancing large-scale remote sensing data analysis.

6. Conclusions

This study aimed to address the scalability limitation and convergence challenges of traditional
K-Means clustering when applied to high-dimensional, large-scale satellite imagery datasets. By

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 29 of 32

implementing and evaluating eight parallelized and optimized K-Means algorithms Section 0, the
most efficient and accurate solution for unsupervised classification tasks was identified. Key findings
from the evaluation of optimized K-Means algorithms indicate that the PEKM algorithm
demonstrated the best overall performance in terms of computational efficiency and convergence
speed. PEKM achieved the fastest convergence, completing in 234 iterations with a total execution
time of 4230 hours, while maintaining cluster quality comparable to other optimized variants.
However, if cluster quality is the primary consideration, users may prefer the Dynamic K-Means
Sharp algorithm, despite its higher computational cost.

The proposed enhancements, centroid initialization, dynamic outlier mitigation, and reduced
iteration calculations, were integrated within a CPU-parallel framework, making PEKM well-suited
for environments with limited GPU resources. This advancement enables more efficient classification
of multispectral and hyperspectral satellites data, supporting applications such as global land cover
mapping, sensor calibration site detection, and spatiotemporal pattern analysis.

Furthermore, the scalable design of PEKM facilitates its deployment in high-performance
computing environments, enabling large-scale unsupervised classification of more than 9000
datacubes. These results provide a foundation for further integration of clustering techniques into
operational remote sensing workflows and future adaptation with GPU acceleration, approximate
nearest neighbor search, and hybrid clustering frameworks.

The computational advancements presented here enable efficient analysis of multispectral and
hyperspectral data, supporting applications such as global land cover classification. Beyond
classification tasks, the optimized algorithm can facilitate calibration processes to identify stable
environmental targets and differentiate land cover types at a global scale. By improving the
computational efficiency of K-Means, this work empowers researchers to conduct large-scale
exploratory analyses with preliminary datasets. These contributions establish a foundation for
advancing clustering algorithm optimization in distributed computing environments and high-
dimensional data research.

Author Contributions: Conceptualization, Yuv Raj Pant and Larry Leigh; Data curation, Yuv Raj Pant, Larry
Leigh and Juliana Fajardo Rueda; Formal analysis, Yuv Raj Pant, Larry Leigh and Juliana Fajardo Rueda;
Methodology, Yuv Raj Pant, Larry Leigh and Juliana Fajardo Rueda; Resources, Larry Leigh; Software, Yuv Raj
Pant and Larry Leigh; Visualization, Yuv Raj Pant; Writing – original draft, Yuv Raj Pant; Writing – review &
editing, Larry Leigh and Juliana Fajardo Rueda.

Funding: This research was funded by USGS EROS (grant number SA2500150).

Data Availability Statement: Landsat-8 image courtesy of the U.S. Geological Survey, Google Earth Engine.

Acknowledgments: The authors would like to thank the reviewers for their valuable input, and the Image
Processing Laboratory for their support.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ao, S.I.. World Congress on Engineering : WCE 2012 : 4-6 July, 2012, Imperial College London, London, U.K.;
Newswood Ltd. : International Association of Engineers, 2012; ISBN 9789881925138.

2. Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu,
Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty Years of Landsat Science and Impacts. Remote Sens Environ 2022,
280, 113195, doi:10.1016/J.RSE.2022.113195.

3. Dutta, S.; Das, M. Remote Sensing Scene Classification under Scarcity of Labelled Samples—A Survey of
the State-of-the-Arts. Comput Geosci 2023, 171.

4. Shrestha, M.; Leigh, L.; Helder, D. Classification of North Africa for Use as an Extended Pseudo Invariant
Calibration Sites (EPICS) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors.
Remote Sens (Basel) 2019, 11, doi:10.3390/RS11070875.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 30 of 32

5. Fajardo Rueda, J.; Leigh, L.; Teixeira Pinto, C.; Kaewmanee, M.; Helder, D. Classification and Evaluation of
Extended Pics (Epics) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors.
Remote Sens (Basel) 2021, 13, doi:10.3390/rs13173350.

6. Babawuro Usman (Satellite Imagery Land Cover Classification Using K-Means Clustering Algorithm: Computer
Vision for Environmental Information Extraction); 2013;

7. H.E. Yasin, E.; Kornel, C. Evaluating Satellite Image Classification: Exploring Methods and Techniques. In
Geographic Information Systems - Data Science Approach; IntechOpen, 2024.

8. Kaewmanee, M.; Leigh, L.; Shah, R.; Gross, G. Inter-Comparison of Landsat-8 and Landsat-9 during On-
Orbit Initialization and Verification (OIV) Using Extended Pseudo Invariant Calibration Sites (EPICS):
Advanced Methods. Remote Sens (Basel) 2023, 15, doi:10.3390/rs15092330.

9. Shah, R.; Leigh, L.; Kaewmanee, M.; Pinto, C.T. Validation of Expanded Trend-to-Trend Cross-Calibration
Technique and Its Application to Global Scale. Remote Sens (Basel) 2022, 14, doi:10.3390/rs14246216.

10. Yin, L.; Lv, L.; Wang, D.; Qu, Y.; Chen, H.; Deng, W. Spectral Clustering Approach with K-Nearest
Neighbor and Weighted Mahalanobis Distance for Data Mining. Electronics (Switzerland) 2023, 12,
doi:10.3390/electronics12153284.

11. Ni, L.; Manman, P.; Qiang, W. A Spectral Clustering Algorithm for Non-Linear Graph Embedding in
Information Networks. Applied Sciences (Switzerland) 2024, 14, doi:10.3390/app14114946.

12. Ran, X.; Xi, Y.; Lu, Y.; Wang, X.; Lu, Z. Comprehensive Survey on Hierarchical Clustering Algorithms and the
Recent Developments; Springer Netherlands, 2023; Vol. 56; ISBN 0123456789.

13. Zhang, X.; Shen, X.; Ouyang, T. Extension of DBSCAN in Online Clustering: An Approach Based on Three-
Layer Granular Models. Applied Sciences (Switzerland) 2022, 12, doi:10.3390/app12199402.

14. Dinh, T.; Hauchi, W.; Lisik, D.; Koren, M.; Tran, D.; Yu, P.S.; Torres-Sospedra, J. Data Clustering: An
Essential Technique in Data Science. 2024.

15. Chaudhry, M.; Shafi, I.; Mahnoor, M.; Vargas, D.L.R.; Thompson, E.B.; Ashraf, I. A Systematic Literature
Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective.
Symmetry (Basel) 2023, 15, 1–44, doi:10.3390/sym15091679.

16. Miao, S.; Zheng, L.; Liu, J.; Jin, H. K-Means Clustering Based Feature Consistency Alignment for Label-Free
Model Evaluation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
2023, 2023-June, 3299–3307, doi:10.1109/CVPRW59228.2023.00332.

17. Al-Sabbagh, A.; Hamze, K.; Khan, S.; Elkhodr, M. An Enhanced K-Means Clustering Algorithm for
Phishing Attack Detections. Electronics (Switzerland) 2024, 13, 1–18, doi:10.3390/electronics13183677.

18. Ahmed, M.; Seraj, R.; Islam, S.M.S. The K-Means Algorithm: A Comprehensive Survey and Performance
Evaluation. Electronics (Switzerland) 2020, 9, 1–12, doi:10.3390/electronics9081295.

19. Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A
Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Inf Sci (N Y) 2023, 622,
178–210, doi:10.1016/j.ins.2022.11.139.

20. Rana, M.; Rahman, A.; Smith, D. Hierarchical Semi-Supervised Approach for Classifying Activities of
Workers Utilising Indoor Trajectory Data. Internet of Things (The Netherlands) 2024, 28, 101386,
doi:10.1016/j.iot.2024.101386.

21. Dash, M.; Liu, H.; Scheuermann, P.; Tan, K.L. Fast Hierarchical Clustering and Its Validation. Data Knowl
Eng 2003, 44, 109–138, doi:10.1016/S0169-023X(02)00138-6.

22. Shi, K.; Yan, J.; Yang, J. A Semantic Partition Algorithm Based on Improved K-Means Clustering for Large-
Scale Indoor Areas. ISPRS Int J Geoinf 2024, 13, doi:10.3390/ijgi13020041.

23. Degirmenci, A.; Karal, O. Efficient Density and Cluster Based Incremental Outlier Detection in Data
Streams. Inf Sci (N Y) 2022, 607, 901–920, doi:10.1016/j.ins.2022.06.013.

24. Spectral Clustering for Large Scale Datasets (Part 1) | by Guava | Medium Available online:
https://medium.com/%40guava1427/spectral-clustering-for-large-scale-datasets-part-1-874571887610
(accessed on 15 April 2025).

25. Sreedhar, C.; Kasiviswanath, N.; Chenna Reddy, P. Clustering Large Datasets Using K-Means Modified
Inter and Intra Clustering (KM-I2C) in Hadoop. J Big Data 2017, 4, doi:10.1186/s40537-017-0087-2.

26. Capó, M.; Pérez, A.; Lozano, J.A. An Efficient K -Means Clustering Algorithm for Massive Data. 2018.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 31 of 32

27. Jin, S.; Cui, Y.; Yu, C. A New Parallelization Method for K-Means;
28. Honggang, W.; Jide, Z.; Hongguang, L.; Jianguo, W. Parallel Clustering Algorithms for Image Processing

on Multi-Core CPUs. In Proceedings of the Proceedings - International Conference on Computer Science
and Software Engineering, CSSE 2008; 2008; Vol. 3, pp. 450–453.

29. Zhang, Y.; Xiong, Z.; Mao, J.; Ou, L. The Study of Parallel K-Means Algorithm;
30. Macqueen, J. SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE

OBSERVATIONS;
31. Parveen, S.; Yang, M. Lasso-Based k-Means ++ Clustering. 2025.
32. Khan, A.A.; Bashir, M.S.; Batool, A.; Raza, M.S.; Bashir, M.A. K-Means Centroids Initialization Based on

Differentiation Between Instances Attributes. 2024, 2024, doi:10.1155/2024/7086878.
33. Chan, J.Y.K.; Leung, A.P.; Xie, Y. Efficient High-Dimensional Kernel k-Means++ with Random Projection.

Applied Sciences (Switzerland) 2021, 11, doi:10.3390/app11156963.
34. Li, H.; Sugasawa, S.; Katayama, S. Adaptively Robust and Sparse K-Means Clustering. Transactions on

Machine Learning Research 2024, 2024, 1–29.
35. Olukanmi, P.O.; Twala, B. K-Means-Sharp: Modified Centroid Update for Outlier-Robust k-Means

Clustering. In Proceedings of the 2017 Pattern Recognition Association of South Africa and Robotics and
Mechatronics International Conference, PRASA-RobMech 2017; Institute of Electrical and Electronics
Engineers Inc., July 1 2017; Vol. 2018-January, pp. 14–19.

36. Zhao, J.; Bao, Y.; Li, D.; Guan, X. An Improved K-Means Algorithm Based on Contour Similarity.
Mathematics 2024, 12, doi:10.3390/math12142211.

37. Yao, X.; Chen, Z.; Gao, C.; Zhai, G.; Zhang, C. ResAD: A Simple Framework for Class Generalizable
Anomaly Detection. 2024, 1–25.

38. Wu, S.; Zhai, Y.; Liu, J.; Huang, J.; Jian, Z.; Dai, H.; Di, S.; Chen, Z.; Cappello, F. TurboFFT: A High-
Performance Fast Fourier Transform with Fault Tolerance on GPU. 2024, 1–13.

39. Shi, N.; Liu, X.; Guan, Y. Research on K-Means Clustering Algorithm: An Improved k-Means Clustering
Algorithm. In Proceedings of the 3rd International Symposium on Intelligent Information Technology and
Security Informatics, IITSI 2010; 2010; pp. 63–67.

40. Wang, J.; Wang, J.; Ke, Q.; Zeng, G.; Li, S.; Valley, S. 人脸识别方面很好的国际会议 Fast Approximate k -
Means via Cluster. 2012, 3037–3044.

41. Moodi, F.; Saadatfar, H. An Improved K-Means Algorithm for Big Data. IET Software 2022, 16, 48–59,
doi:10.1049/sfw2.12032.

42. Mussabayev, R.; Mussabayev, R. Superior Parallel Big Data Clustering Through Competitive Stochastic
Sample Size Optimization in Big-Means. 2024, 224–236, doi:10.1007/978-981-97-4985-0_18.

43. Rashmi, C.; Chaluvaiah, S.; Kumar, G.H. An Efficient Parallel Block Processing Approach for K -Means
Algorithm for High Resolution Orthoimagery Satellite Images. In Proceedings of the Procedia Computer
Science; Elsevier B.V., 2016; Vol. 89, pp. 623–631.

44. Jin, R.; Yang, G.; Agrawal, G. Shared Memory Parallelization of Data Mining Algorithms: Techniques,
Programming Interface, and Performance;

45. Cuomo, S.; De Angelis, V.; Farina, G.; Marcellino, L.; Toraldo, G. A GPU-Accelerated Parallel K-Means
Algorithm. Computers and Electrical Engineering 2019, 75, 262–274, doi:10.1016/j.compeleceng.2017.12.002.

46. Bellavita, J.; Pasquali, T.; Del Rio Martin, L.; Vella, F.; Guidi, G. Popcorn: Accelerating Kernel K-Means on
GPUs through Sparse Linear Algebra; Association for Computing Machinery, 2025; Vol. 1; ISBN
9798400714436.

47. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-
Scale Geospatial Analysis for Everyone. Remote Sens Environ 2017, 202, 18–27, doi:10.1016/j.rse.2017.06.031.

48. Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.; Wilson, M.F. NCAR/TN-257+STR Biosphere-
Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model.; 1986;

49. Shahapure, K.R.; Nicholas, C. Cluster Quality Analysis Using Silhouette Score. Proceedings - 2020 IEEE 7th
International Conference on Data Science and Advanced Analytics, DSAA 2020 2020, 747–748,
doi:10.1109/DSAA49011.2020.00096.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

 32 of 32

50. Syahputri, Z.; Sutarman, S.; Siregar, M.A.P. Determining The Optimal Number of K-Means Clusters Using
The Calinski Harabasz Index and Krzanowski and Lai Index Methods for Groupsing Flood Prone Areas In
North Sumatra. Sinkron 2024, 9, 571–580, doi:10.33395/sinkron.v9i1.13246.

51. K C, M.; Leigh, L.; Pinto, C.T.; Kaewmanee, M. Method of Validating Satellite Surface Reflectance Product
Using Empirical Line Method. Remote Sens (Basel) 2023, 15, doi:10.3390/rs15092240.

52. Fajardo Rueda, J.; Leigh, L.; Kaewmanee, M.; Byregowda, H.; Teixeira Pinto, C. Derivation of Hyperspectral
Profiles for Global Extended Pseudo Invariant Calibration Sites (EPICS) and Their Application in Satellite
Sensor Cross-Calibration. US Geological Survey Open-File Report 2025, 17, 1–34, doi:10.3390/rs17020216.

53. Fajardo Rueda, J.; Leigh, L.; Teixeira Pinto, C. Identification of Global Extended Pseudo Invariant
Calibration Sites (EPICS) and Their Validation Using Radiometric Calibration Network (RadCalNet).
Remote Sens (Basel) 2024, 16, doi:10.3390/rs16224129.

54. Alshari, E.A.; Gawali, B.W. Development of Classification System for LULC Using Remote Sensing and
GIS. Global Transitions Proceedings 2021, 2, 8–17, doi:10.1016/j.gltp.2021.01.002.

55. Yang, C.; Li, Y.; Cheng, F. Accelerating K-Means on GPU with CUDA Programming. IOP Conf Ser Mater
Sci Eng 2020, 790, doi:10.1088/1757-899X/790/1/012036.

56. Han, S.; Lee, J. Parallelized Inter-Image k-Means Clustering Algorithm for Unsupervised Classification of
Series of Satellite Images. Remote Sens (Basel) 2024, 16, doi:10.3390/rs16010102.

57. Andoni, A.; Indyk, P.; Razenshteyn, I. Approximate Nearest Neighbor Search in High Dimensions.
Proceedings of the International Congress of Mathematicians, ICM 2018 2018, 4, 3305–3336,
doi:10.1142/9789813272880_0182.

58. Shindler, M.; Wong, A.; Meyerson, A. Fast and Accurate κ-Means for Large Datasets. Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS
2011 2011.

59. Spalding-Jamieson, J.; Robson, E.W.; Zheng, D.W. Scalable K-Means Clustering for Large k via Seeded
Approximate Nearest-Neighbor Search. 2025.

60. Peng, K.; Leung, V.C.M.; Huang, Q. Clustering Approach Based on Mini Batch Kmeans for Intrusion
Detection System over Big Data. IEEE Access 2018, 6, 11897–11906, doi:10.1109/ACCESS.2018.2810267.

61. Jourdan, B.; Schwartzman, G. Mini-Batch Kernel k-Means. 2024, 1–20.
62. Newling, J. Nested Mini-Batch K-Means. 2015, 1–9.
63. Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the Surprising Behavior of Distance Metrics in High

Dimensional Space. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 2001, 1973, 420–434, doi:10.1007/3-540-44503-x_27.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 doi:10.20944/preprints202506.1082.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1082.v1
http://creativecommons.org/licenses/by/4.0/

