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Abstract: This study presents a method for detecting and removing duplicate job postings in large
datasets with emphasis on key attributes such as job title, location, company name, and job description.
The approach begins with a preprocessing phase that standardizes text data—normalizing formats,
removing special characters, and resolving lexical variations—to ensure consistency and compatibility.
For deduplication, we utilize WordLlama, a fast and lightweight NLP toolkit optimized for fuzzy
deduplication and similarity detection. Furthermore, we evaluate the performance of various Large
Language Models (LLM) in identifying duplicates, measuring accuracy through precision and recall
metrics. The objective is to determine which model best captures semantic similarities in job postings
and achieves the highest deduplication accuracy. This comparison offers valuable insights into the
effectiveness of LLMs for large-scale, text-based deduplication in the context of job postings.

Keywords: job posting deduplication; duplicate detection; Semantic Text Similarity; large language
models (LLMs); WordLlama Embedding Model; Natural Language Processing (NLP)

1. Introduction
The growing digitization of recruitment processes has created new opportunities and raised

numerous expectations. Artificial intelligence (AI) is proving its worth to recruitment teams by
providing benefits like efficiency, personalization, and data-informed decision-making [1]. Despite the
availability of advanced tools and methods for data collection, processing this information remains a
significant challenge. Especially when merging data from multiple sources, cleaning and archiving
the vast amount of captured records is crucial [2]. A key issue is the prevalence of duplicate job
postings, which arises as recruiters often publish vacancies across multiple platforms, and platform
providers scrape job postings from one another to expand their market coverage [3]. Although many
aspects of the recruitment process can already be automated effectively, identifying duplicates within
unstructured text remains a challenging problem [4]. This difficulty arises in part from platform and
company-specific constraints, which often lead to posts that are similar but not identical, whether they
represent different advertisements for the same project or different projects from the same company [5].

The presence of duplicates has a significant impact on data integrity and labor market analysis.
These duplicates introduce biases into the data analysis, resulting in misleading conclusions about
employment trends and the demand for specific skills. In addition, they impose unnecessary com-
putational and storage burdens, increasing the effort and resources required to process and manage
recruitment data effectively [6].

In order to tackle these challenges, it is essential to implement efficient deduplication methods.
Deduplication helps eliminate noise in datasets, enabling more precise labor market insights and
empowering recruiters to make better informed decisions. Furthermore, deduplication is crucial to
optimize computational and storage resources [7]. By removing duplicates, job portals can significantly
lower the costs associated with data processing and storage, improving operational efficiency and
scalability.
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This study introduces a novel methodology for duplicate job posting detection, combining a
two-stage approach to enhance accuracy. First, we employ a word embedding-based similarity mea-
surement technique to identify near-duplicates using predefined criteria. Second, we implement an
LLM-powered validation step to verify detected duplicates and reduce false positives. Addition-
ally, we perform a comparative analysis of open-source and commercial LLMs to evaluate potential
performance disparities in duplication tasks.

1.1. Related Work

For about a decade now, several studies have been developed on the analysis and review of
job postings using classical NLP techniques. Based on the study of Burk et al.[8], the detection of
duplication for online recruitment is addressed using n-grams in order to identify common words and
Jaccard similarity in order to quantify the overlap between words.

This study was a baseline for many other approaches. In one of these, [3] proposed a compre-
hensive framework for duplicate detection in online job postings, testing 24 different approaches
using various tokenization, vectorization and similarity measurement techniques, demonstrating that
overlap-based methods combined with TF-IDF outperformed baseline approaches.

The above approaches are limited in their ability to check for duplicates, as in the description
of many ads we see similar blocks of words in the text, but with different meanings many times.
Other research has dealt with the semantic analysis of texts using text embeddings. Gao et al.[9] use
Word2Vec embeddings [10] to detect duplicates of short text. This approach has potential, as short texts
in job advertisements, such as company name, job title, or location, are well suited for such methods.
However, since the job description serves as the primary source of information, a different and more
comprehensive approach is required.

Similarly, Engelbach et al. [6] combined text embeddings, domain knowledge, and keyword
matching to improve duplicate detection accuracy, emphasizing that no single method alone suffices,
but rather a hybrid approach enhances deduplication effectiveness.

In another recent research approach, we notice the usage of deep learning architectures to capture
semantic similarities beyond traditional string-matching methods. Notably, Shi et al. [11] proposed
PDDM-AL, a pre-trained Transformer-based deduplication model enhanced with active learning. Their
approach treats deduplication as a classification task, utilizing Transformer embeddings for semantic
understanding and iteratively selecting the most uncertain samples for expert labeling. In this way,
they reduce the manual labeling effort and achieve strong performance across multiple structured
datasets. Their model emphasizes structured data and domain-aware feature tagging.

Our approach extends deduplication to unstructured textual content in job postings, combining
semantic similarity analysis between texts using an advanced version of word embeddings powered
by LLM. This enables us to evaluate whether the semantic similarity between two job ads is sufficient
to classify them as duplicates.

2. Methodology
2.1. Overview

This study introduces a hybrid framework to detect and validate duplicate job postings across
multiple platforms. The process starts with data preprocessing, where job postings are translated to
English, then cleaned, standardized, and filtered based on their scraping dates. Embedding model
identifies near duplicate job postings calculating semantic similarity scores for key fields (e.g., job
titles, descriptions) and applies field-specific thresholds. Differences between potential duplicates are
highlighted and displayed in HTML format for visual inspection. To further assess contextual similarity,
the results are evaluated using an open-source LLM. These candidate pairs are then validated by both
open source and commercial LLMs. The framework is tested and validated using a ground-truth
dataset comprising real job postings collected from Greek job portals.
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2.2. Translation Validation and Threshold Tuning Strategy

Before proceeding with the analysis of the individual components, we first outline the evalua-
tion we have done on the translation of job postings, and the selection of similarity thresholds for
embedding-based comparisons.

The quality of the translation is a crucial factor in the deduplication process of job postings, as
correct terminology and syntactic fidelity influence the quality of semantic similarity analysis. In
particular, poor translations may obscure subtle distinctions between job postings or misrepresent
shared content. For this reason, our goal is to compare the performance of locally run models, such as
DeepSeek-R1[12], mistral-7b[13] and Phi-4[14], against state-of-the-art large model GPT-4[15]. Among
these, Phi-4 demonstrated the closest alignment with GPT-4, achieving the highest overall scores in
both semantic accuracy and fluency for Greek-to-English translation tasks.

To determine optimal similarity thresholds for each field, we conducted a systematic parameter
sweep across a range of values (0.60 to 0.95 in 0.05 increments). Using a ground-truth dataset annotated
by domain experts, we evaluated the precision and recall of near duplicate detection at each threshold.
This empirical tuning allowed us to select field-specific thresholds that best balance semantic flexibility
with matching accuracy[16]. The process ensures our model remains robust to minor variations in text
while preserving discrimination between distinct job postings.

2.3. Data Gathering and Preprocessing

The most reputable and widely used Greek job portals have been selected as data sources. Using
scraping tools, we collect raw data and locate the fields in a compatible database structure. Figure 1
presents the structure of the MySQL table where the raw data is stored.

Figure 1. Raw data DB structure.

Following data collection, we proceed to the preprocessing phase, which is particularly critical
for text-based fields such as job descriptions [17]. Given that raw text often contains irrelevant
or noisy elements, we apply a series of normalization techniques, including encoding correction,
removal of HTML tags and URLs, elimination of special characters, translation of non-English text and
standardizing lowercase. These steps ensure that data are clean and consistent for further analysis.
The main actions are as follows:

1. Translate to English: Most job postings are written in Greek. So, translation of these postings
into English is necessary to ensure consistency of analysis. For this purpose, we use the Phi-4
local model, which demonstrates near state-of-the-art performance in preserving domain-specific
terminology and contextual meaning.

2. HTML tags removal: BeautifulSoup is used to parse HTML content and remove all HTML tags,
retaining only the plain text.
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3. Unicode Normalization: Many online job portals use non-English characters in their postings,
which can cause issues with data processing if not properly encoded. For example, if a job posting
in a language with non-ASCII characters (such as Greek or Chinese) is not encoded properly,
the text may appear as a series of unintelligible symbols. Fixing encoding problems involves
identifying and correcting these issues to ensure that the data can be properly processed. The
chardet library is used to detect the encoding of text and fix any encoding issues, ensuring that
all text is properly encoded in UTF-8.

4. Remove URLs: Some job postings contain links to external websites that are not relevant with the
scope of our analysis. We remove links, using regular expressions, in order to reduce the noise in
the data.

5. Remove Special Characters: Strips emojis and all non-alphanumeric symbols except basic
punctuation (.,;:!?’"()/-@€). Regular expressions are used for these transformations as well.

The data-cleansing and pre-preparation procedure is highlighted in Figure 2:

Figure 2. Raw data DB structure.

The job posting data used in this study was sourced exclusively from publicly accessible Greek job
portals(kariera1, jobseeker2, skywalker3, jobfind4, careerjet5, careernet6) that permit web scraping
for research purposes, as outlined in their terms of service. No sensitive personal information was
collected, and all data processing was complied with applicable data protection regulations, including
GDPR, where relevant.

2.4. Detect Near Duplicate Job Postings

The first step in identifying duplicate job advertisements is to establish clear criteria for compari-
son. The two primary criteria that we consider are (1) the time interval between the postings and (2)
the specific fields within the job advertisements that are used to assess similarity.

With regard to the time window, some studies adopt a 60-day threshold. Although these studies
acknowledge that duplicate records can occur in much shorter time frames, they opt for a longer

1 https://www.kariera.gr
2 https://www.jobseeker.gr
3 https://www.skywalker.gr
4 https://www.jobfind.gr
5 https://www.careerjet.gr
6 https://www.careernet.gr
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window to account for legitimate reposting scenarios, such as when a position remains unfilled and
the ad is re-issued.[3]

In our case, however, we argue that such a broad window introduces excessive noise from
repeated postings, many of which are not meaningful duplicates. Through exploratory analysis of
job posting datasets and discussions with domain experts, we observed that a large portion of these
near-identical ads, often generated by bots or automated systems, appear on a daily or weekly basis.
These are likely meant to keep the listing visible at the top of the job boards. To reduce the impact of
such spam-like activity, we adopt a more conservative time window of two weeks (14 days) when
determining whether two job advertisements should be considered duplicates.

Regarding the fields that are used to assess similarity, the job description is the main source, which
usually contains the most detailed information, but also the job title, company name and location we
try to identify all those sources that could differentiate 2 job postings. To accomodate these differences,
we employ distinct similarity thresholds for different fields based on their semantic characteristics
and matching requirements. For high-precision fields such as location and company, we adopt a strict
threshold of 0.9 to ensure precise matching with minimal tolerance for typographical variations. Prior
work emphasizing the importance of high precision for named entities in entity matching tasks[18].
Job titles receive a moderately lower threshold of 0.8 to account for minor phrasing differences while
maintaining semantic equivalence (e.g., “Software Developer” vs. “Backend Engineer”). This strategy
supported in the work conSultantBERT[19], which acknowledge variability in title phrasing. For job
descriptions, we adopt the most lenient threshold (0.7), as these texts often differ in structure and
verbosity despite describing identical roles. Similar leniency has been justified in duplicate detection
and text similarity tasks involving unstructured data[6]. Our tiered thresholding strategy is empirically
derived and aligns with prior findings, striking a balance between semantic sensitivity and tolerance
for linguistic variation in real-world job data.

In our experiment, we use WordLlama, a fast and lightweight NLP toolkit designed for efficient
handling of tasks like fuzzy-deduplication, similarity calculation, classification, ranking and more
tasks. More particularly, we utilize it for semantic similarity measurement. Designed for efficiency,
WordLlama delivers strong performance on CPU hardware with minimal inference-time dependencies.
Moreover, it outperforms word models like GloVe 300d on MTEB benchmarks while maintaining a
significantly smaller size of 16MB for its default 256-dimensional model. The unique approach of this
tool is based on the fact that it recycles components from large language models to create compact and
efficient word representations. Gain insights into its process of extracting token embedding codebooks
from several models, including LLama3 70B and phi 3 medium, and training a small context-less
model in a general purpose embedding framework[20].

The core deduplication component generates dense vector embeddings for key textual fields such
as job titles, locations, company names and descriptions in order to capture their semantic meaning and
contextual nuances. These embeddings enable for precise comparison between job postings through
cosine similarity scoring, which quantifies alignment in vector space. Figure 3 illustrates the duplicate
detection pipeline.

Version June 12, 2025 submitted to Electronics 6 of 14

based on their semantic characteristics and matching requirements. For high-precision 171

fields such as location and company, we adopt a strict threshold of 0.9 to ensure precise 172

matching with minimal tolerance for typographical variations. Prior work emphasizing 173

the importance of high precision for named entities in entity matching tasks[18]. Job titles 174

receive a moderately lower threshold of 0.8 to account for minor phrasing differences while 175

maintaining semantic equivalence (e.g., “Software Developer” vs. “Backend Engineer”). 176

This strategy supported in the work conSultantBERT[19], which acknowledge variability in 177

title phrasing. For job descriptions, we adopt the most lenient threshold (0.7), as these texts 178

often differ in structure and verbosity despite describing identical roles. Similar leniency has 179

been justified in duplicate detection and text similarity tasks involving unstructured data[6]. 180

Our tiered thresholding strategy is empirically derived and aligns with prior findings, 181

striking a balance between semantic sensitivity and tolerance for linguistic variation in 182

real-world job data. 183

In our experiment, we use WordLlama, a fast and lightweight NLP toolkit designed 184

for efficient handling of tasks like fuzzy-deduplication, similarity calculation, classification, 185

ranking and more tasks. More particularly, we utilize it for semantic similarity measure- 186

ment. Designed for efficiency, WordLlama delivers strong performance on CPU hardware 187

with minimal inference-time dependencies. Moreover, it outperforms word models like 188

GloVe 300d on MTEB benchmarks while maintaining a significantly smaller size of 16MB 189

for its default 256-dimensional model. The unique approach of this tool is based on the 190

fact that it recycles components from large language models to create compact and efficient 191

word representations. Gain insights into its process of extracting token embedding code- 192

books from several models, including LLama3 70B and phi 3 medium, and training a small 193

context-less model in a general purpose embedding framework[20]. 194

The core deduplication component generates dense vector embeddings for key textual 195

fields such as job titles, locations, company names and descriptions in order to capture 196

their semantic meaning and contextual nuances. These embeddings enable for precise 197

comparison between job postings through cosine similarity scoring, which quantifies 198

alignment in vector space. Figure 3 illustrates the duplicate detection pipeline. 199

> 15 days
Yes

No

WordLlama
Embeddings

Distinct Job
Opportunities

Job_Id_1
Job_Id_2

No

abs(jp_date(job_id_1)
- jp_date(job_id_2))

job_id_2

job_id_1

if similarity > threshold

Field Similarity Thresholds

Field Threshold

Job Title 0.8

Location 0.9

Company 0.9

Description 0.7

Potential Duplicate
Pair 

[Job_Id_1,Job_Id_2]

Yes

Figure 3. Detect Potential Duplicate Pairs

So, according to the figure 3, if the criteria are met, the output is a list of candidate 200

duplicate pairs, which are then passed to an LLM for further validation, ensuring a robust 201

and accurate deduplication process. 202

2.5. Highlight Differences Using HTML 203

The outcome of the WordLlama process is a set of duplicate pairs. For each pair, 204

we retrieve the corresponding job postings and highlight differences in key fields such 205

as job title, location, company, and description. To accomplish this, we use a method 206

that compares two text inputs and highlights the differences between them using HTML 207

formatting. It begins by splitting the input texts into individual words and then uses 208

Python’s difflib.SequenceMatcher to identify differences at the word level. The function 209

iterates through the differences, wrapping non-matching words in HTML <span> tags 210

Figure 3. Detect Potential Duplicate Pairs.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2025 doi:10.20944/preprints202506.1143.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1143.v1
http://creativecommons.org/licenses/by/4.0/


6 of 12

So, according to the Figure 3, if the criteria are met, the output is a list of candidate duplicate pairs,
which are then passed to an LLM for further validation, ensuring a robust and accurate deduplication
process.

2.5. Highlight Differences Using HTML

The outcome of the WordLlama process is a set of duplicate pairs. For each pair, we retrieve the
corresponding job postings and highlight differences in key fields such as job title, location, company,
and description. To accomplish this, we use a method that compares two text inputs and highlights the
differences between them using HTML formatting. It begins by splitting the input texts into individual
words and then uses Python’s difflib.SequenceMatcher to identify differences at the word level. The
function iterates through the differences, wrapping non-matching words in HTML <span> tags with a
yellow background and black text to make them visually distinct. This allows for easy identification
of discrepancies between the two texts. This practice is widely used in the literature on document
similarity. Visualization tools and libraries that support the highlighting of text differences [21] are
important for managing redundant content, improving information retrieval, and supporting version
control. Document similarity in HTML can be effectively measured using sentence-based [22], feature-
based [23], and semantic approaches [24]. Moreover, there are instances where the identification of
duplicates is straightforward, but others present greater ambiguity, making it challenging to determine
whether they are truly duplicates. So, highlighting text differences through an HTML display and
semantic analysis conducted by LLM using carefully crafted prompts, we can effectively resolve such
cases. Below are some examples to demonstrate these scenarios.

(a) (b)

(c) (d)

Figure 4. (a) Duplicate job postings - similar contextual meaning. (b) Distinct job postings - different locations (c)
Duplicate job postings - different employment type (d) Distinct job postings - different job titles.

Figures 4(a-d) illustrate key scenarios in duplicate detection. In Figure 4(a), two job postings
share the same company and location. Despite minor textual differences in the title and description of
the job (e.g., ’crew’ versus ’staff’), the semantic equivalence of these terms suggests that the postings
are duplicates. Figure 4(b), however, highlights a different case: while the job title, description, and
company are nearly identical, a difference in location - explicitly mentioned in the job description
- indicates separate opportunities. Figure 4(c) similarly with the previous, it indicates different
employment type, although the rest of the text is almost the same. Conversely, Figure 4(d) showcases a
nuanced distinction: postings share the same company and location but differ in role specificity (e.g.,
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’Computer Technician’ versus ’Mobile Technician’). This divergence in both the title and the description
signals distinct positions, underscoring the importance of contextual analysis in deduplication.

Therefore, in conclusion, we notice that the LLM assistance can clarify when the small differences
that may exist in near duplicate advertisements actually constitute distinct job opportunities or are
simply manual errors when registering the advertisement in the portal

2.6. Evaluate Duplicate Pairs Using LLM

Utilizing open source LLMs like Mistral and Meta-llama and commercial LLM like gpt-4, we have
set up an experiment that follows a structured, real-world, and comparative approach to assist the
duplicate validation.

2.6.1. Open-Source vs Closed-Source LLM

For our research, we use open source and large commercial LLMs. Open-source models, such
as LLaMA-3-8b[25] and Mistral-7b[13], provide full access to their architecture, training data, and
fine-tuning processes. This transparency enables researchers to deeply analyze model behavior, verify
outputs, and customize systems through fine-tuning with domain-specific datasets. The ability to
deploy these models on local infrastructure not only ensures data privacy but also eliminates recur-
ring costs associated with commercial APIs, making them ideal for long-term or budget-conscious
projects. However, these benefits come with trade-offs: open-source models typically lag behind
commercial counterparts in reasoning complexity and knowledge freshness, require significant compu-
tational resources for fine-tuning, and may struggle with highly specialized tasks without substantial
adaptation.

On the other hand, commercial LLMs, like GPT-4 offer state-of-the-art performance in natural
language understanding, cross-domain reasoning, and multilingual tasks[26]. Their API-based ar-
chitecture allows for seamless integration with minimal setup, while continuous backend updates
ensure access to the latest knowledge and improvements. These models particularly shine in scenarios
requiring advanced capabilities like few-shot learning or multimodal processing. Nevertheless, their
proprietary nature imposes critical constraints: users cannot inspect training data, modify model archi-
tectures, or avoid escalating API costs at scale—factors that may limit their suitability for applications
demanding customization, reproducibility, or cost efficiency.

Closed-source LLMs are most commonly placed as a means of safeguarding proprietary knowl-
edge, ensuring security, and maintaining compliance with regulatory frameworks[27]. In contrast,
open-source LLMs, by providing publicly accessible model architectures, training datasets, and algo-
rithmic transparency, foster a collaborative research ecosystem that facilitates iterative development
and rigorous external validation [28].

2.6.2. Evaluation Metrics and Statistical Significance Testing

To evaluate the performance of our duplicate detection models, we use standard classification
metrics and statistical tests to determine if differences between models are significant. More specifically,
to measure alignment between predicted duplicates and ground-truth annotations, we use classification
metrics[29,30] and to assess the statistical significance of performance differences between models, we
also apply McNemar’s test[31].

1. Classification Metrics

• Precision: The proportion of correctly identified duplicates among all pairs flagged by the
model. High precision indicates minimal false positives, critical for ensuring that distinct
job postings are not erroneously merged. Precision is defined as:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(1)
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• Recall: The proportion of actual duplicates correctly detected by the model. High recall
ensures comprehensive deduplication, reducing noise in datasets. Recall is calculated as:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(2)

• Accuracy: The overall correctness of the model, reflecting the ratio of all true predictions
(both duplicates and non-duplicates) to the total pairs evaluated:

Accuracy =
TP + True Negatives (TN)

TP + TN + FP + FN
(3)

• F1-score: The harmonic mean of precision and recall, balancing both metrics to evaluate
models where false positives and false negatives carry similar costs:

F1-Score = 2 × Precision × Recall
Precision + Recall

(4)

2. Statistical Significance Testing
To determine whether performance differences between models are statistically significant, we
use:

• p-value: The probability of observing the results if the null hypothesis (no difference between
models) is true. A p-value < 0.05 indicates statistical significance [32].

• McNemar’s test: A non-parametric test for paired nominal data (e.g., comparing two models
on the same dataset). It evaluates whether the disagreement rates between models are
significant [31]. The formula is:

χ2 =
(|b − c| − 1)2

b + c
(5)

where b is the count of samples misclassified by Model A but not Model B, and c is the
reverse. The degrees of freedom (d f ) is 1.

2.6.3. Experiment Setup and Data Collection

To evaluate the effectiveness of LLM in validating duplicate job postings, we conducted an
experiment using job postings collected from Greek online job portals. In our database, about 500 job
postings from various Greek portals are scraped daily. Since we evaluated potential duplicates in a
14-day period, we have chosen to examine about 6000 job postings. Following data preprocessing, the
WordLlama-based duplicate detection algorithm was applied, which identified 214 pairs of potential
duplicate job postings. To ensure the quality of duplicate detection results, a structured human
annotation protocol was implemented. A panel of three domain experts (recruitment professionals
with 5+ years of experience in Greek job market analytics) manually annotated the detected pairs,
labeling them as ’True Duplicates’ and ’Near-Duplicates’. The experts were trained in 50 prelabeled
examples, achieving strong consensus (Fleiss k = 0.82). Fleiss’ kappa is a statistical measure used
to assess the inter-rater reliability or agreement among three or more raters when classifying items
into categories. It quantifies how well raters agree beyond what would be expected by chance[33].
Each pair was independently reviewed by two annotators, with conflicts (10.3%) resolved by a third
expert. Borderline cases were flagged for guideline refinement. A random re-evaluation 10% showed
consistency of the label 98%, and the rationales for ambiguous cases were documented to refine the
LLM prompts.
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2.6.4. Model Configuration for Deterministic Outputs

To ensure consistent and reliable outputs from the language model (LLM), we used Pydantic
models in conjunction with the Instructor library. Pydantic allowed us to define a structured schema for
LLM responses, ensuring that the output adhered to predefined fields such as isDuplicate, JobTitleDiff,
JobDescDiff, LocationDiff and CompanyDiff. The Instructor library facilitates the integration of Pydantic
with the LLM, enabling automatic parsing and validation of the model responses. This approach
ensured that the LLM outputs were not only semantically accurate but also structurally consistent,
reducing the need for manual error handling [34]. By combining structured output with a carefully
designed prompt, we achieved a robust and reliable deduplication evaluation in a wide range of job
postings Figure 5.

LLM Used

Mistal-7b-instruct-0.3
Meta-Llama-3.1-8b-instruct
gpt-4o

Prompt Logic

Analyze only highlighted content
Focus on semantic equivalence
Treat company/location as significant
Classify as duplicate ("Yes") or distinct
("No")

Expected Output
       IsDuplicate: Bool

   JobTitleDiff: str
    JobDescDiff: str
     LocationDiff: str

      CompanyDiff: str

Figure 5. Deduplication Evaluation.

To guide the language model (LLM) in analyzing job postings for deduplication, we designed a
structured prompt that explicitly instructs the model to focus on key fields en_title, location, company,
and en_description and the highlighted parts of the HTML content. The prompt emphasizes semantic
equivalence over minor linguistic, grammatical, or formatting differences, ensuring that the model
prioritizes meaningful distinctions. Specifically, the prompt directs the model to consider whether
differences in the highlighted text affect the overall meaning or intent of the job postings. For example,
synonyms, minor phrasing variations, or slight differences in company name formatting (e.g. abbrevia-
tions or additional words) are not considered meaningful if they refer to the same entity or concept(see
Appendix A.1).

We set the LLM’s temperature to 0.2 to minimize randomness, favoring high-probability tokens
and near-deterministic responses. General-purpose models typically benefit from a lower temperature
to remain focused on relevant content[35].

3. Results
To evaluate the performance of the language models, LLaMA-3-8b, Mistral-7b, and GPT-4, we

measured precision, recall and accuracy metrics against a human-annotated ground truth for all 214
job posting pairs. Human annotators carefully reviewed each pair and labeled them as duplicates or
distinct job postings based on semantic equivalence, role differences, and location differences. These
annotations served as a benchmark for assessing the models’ ability to correctly classify job postings.
In the following Table 1, we present the results of this evaluation, highlighting the performance of
open-source models compared to the commercial model.
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Table 1. Performance Comparison of Language Models on Job Posting Deduplication.

model Precision (%) Recall (%) Accuracy (%) F1-score (%)

LLaMA-3-8b 95.1% 96.7% 95.3% 95.9%
Mistral-7b 92.2% 98.3% 94.4% 95.2%
GPT-4 98.3% 96.7% 97.2% 97.5%

The GPT-4 model slightly outperforms both the LLaMA-3-8b and Mistal-7b models in all three
metrics. Generally, we observe high performance rates for the metrics for all models, so we want to
extract whether there is a significant statistical difference between the results. Although all models
demonstrate strong performance across evaluation metrics, we conduct McNemar’s test of paired
proportions to determine whether the observed differences are statistically significant. This non-
parametric test evaluates the null hypothesis that competing models have equal error rates, particularly
suited for our binary classification task (duplicate vs. non-duplicate). As shown in the following
results Table 2, the test reveals that the differences between the models are not statistically significant.
This suggests that open-source models have reached commercial-grade performance for this specific
task.

Table 2. McNemar’s Test Results.

Model Comparison p-value Interpretation

GPT-4 vs LLaMA-3-8b 0.424 Not Significant
GPT-4 vs Mistral-7b 0.424 Not Significant

LLaMA-3-8b vs Mistral-7b 0.964 Not Significant

4. Discussion
The findings of this study demonstrate how large language models can significantly enhance job

posting deduplication by capturing semantic relationships that traditional lexical matching approaches
often miss. Where conventional methods relying on string similarity or rule-based filters fail to
recognize content or synonymous expressions, LLMs provide nuanced contextual understanding that
improves both precision and recall.

Several important limitations warrant consideration when interpreting these results. The exclusive
use of Greek job postings, while valuable for studying a localized labor market, raises questions about
generalizability to other languages and regions. Although we mitigated linguistic variability through
machine translation, this preprocessing step can introduce subtle semantic distortions that could
affect both embedding quality and LLM evaluations. Future research should explore cross-lingual
embedding techniques or native multilingual models to address this constraint. The dynamic nature
of job markets presents another challenge, as evolving hiring trends and terminologies may gradually
reduce model accuracy without continuous adaptation through mechanisms like temporal decay
functions or periodic fine-tuning.

To further reduce time consumption in duplicate detection, future implementations could leverage
clustering methods to group job postings by shared attributes (e.g., title, industry, or company) before
pairwise comparisons. By first clustering semantically similar posts, the computational burden of
comparing all descriptions one-by-one can be significantly reduced. This hierarchical approach, which
combined broad clustering with fine-grained LLM validation, could improve scalability for large
datasets while maintaining accuracy.

In addition, the effectiveness of LLM validation depends on carefully crafted prompts. Future
work could explore autonomous agent-based systems to dynamically select or optimize prompts based
on contextual cues (e.g., job industry or detected ambiguities). Such agents could adapt prompts to
prioritize specific fields (e.g., location differences in remote roles) or adjust confidence thresholds,
improving robustness across diverse posting types.
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Appendix A
Appendix A.1 Full Prompt Used for LLM Deduplication Evaluation

The following prompt was used for LLM-based duplicate detection:

prompt = (
"<s>[INST] Please analyze the following job postings content strictly based on the

↪→ highlighted parts in the HTML."
"Your task is to analyze the content with a specific focus on the formatted (

↪→ highlighted) parts within the HTML. The fields that we are interested in are
↪→ en_title , location , company , and en_description ."

"The highlighted sections contain key textual (or contextual) differences that are
↪→ critical for determining the nature of the job postings ."

"When analyzing the content , focus on ** semantic equivalence ** rather than minor
↪→ linguistic , grammatical , or formatting differences ."

"However , **role differences ** (e.g., job titles , required qualifications , role levels)
↪→ and ** location differences ** must always be treated as meaningful and should
↪→ result in the job postings being classified as distinct opportunities , even if
↪→ all other fields are identical ."

"Based on your analysis of these formatted parts , decide if the job postings represent
↪→ duplicate posts of the same job or distinct opportunities ."

"Respond only with ’yes ’ if the highlighted textual content indicates the job postings
↪→ are essentially the same , or ’no’ if the highlighted content suggests they are
↪→ different. "

"Respond ONLY in JSON format according to the predefined schema
+ html_content + " [/INST]"
)
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