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Abstract 

      Compelling epidemiologic data support the critical role of dietary fructose in the 

epidemic of obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). 

The metabolic effects of fructose on the development of metabolic syndrome and 

NAFLD are not completely understood. High fructose intake impairs copper status, and 

copper-fructose interactions have been well documented in rats. Altered copper-fructose 

metabolism leads to exacerbated experimental metabolic syndrome and NAFLD. A 

growing body of evidence has demonstrated that copper levels are low in NAFLD 

patients. Moreover, hepatic and serum copper levels are inversely correlated with the 

severity of NAFLD. Thus, high fructose consumption and low copper availability are 

considered two important risk factors in NAFLD. However, the causal effect of copper-

fructose interactions as well as the effects of fructose intake on copper status remain to be 

evaluated in humans. The aim of this review is to summarize the role of copper-fructose 

interactions in the pathogenesis of the metabolic syndrome and discuss the potential 

underlying mechanisms. This review will shed light on the role of copper homeostasis 

and high fructose intake and point to copper-fructose interactions as novel mechanisms in 

the fructose induced NAFLD.   
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1. Introduction      

      Accumulating evidence has shown that increased fructose consumption parallels the 

rises in the obesity epidemic, metabolic syndrome and NAFLD in the United States and 

worldwide (1-8). Moreover, fructose consumption is higher in patients with NAFLD 

compared to healthy controls and is associated with severity of fibrosis, suggesting that 

high fructose intake may be an important risk factor for the development and progression 

of NAFLD (9-12). Fructose is consumed mainly as added sugars, such as sucrose and 

high-fructose corn syrup (HFCS), which represents 45% and 41% of the total added 

sugars ingested, respectively (13).  

      Fructose is distinct from glucose due to its unique metabolism (14) and limited 

absorption (15, 16).  The role of fructose in the induction of components of metabolic 

syndrome, as well as NAFLD, has been well documented in numerous animal studies 

(17-20). A recent study demonstrated dietary fructose is primarily metabolized in the 

small intestine. However, excess fructose ingestion can saturate intestinal clearance 

capacity; it then reaches the liver and colon microbiota where it is metabolized (21). In 

line with these data, depletion or knockdown of ketohexokinase (KHK), a key enzyme of 

fructose metabolism, markedly attenuated high fructose diet-induced NAFLD, obesity 

and other metabolic effects (22-24). Similarly, toll like receptor 4 (TLR4) mutation or 

oral antibiotics protected against high fructose diet-induced NAFLD in mice (17, 25), 

highlighting the importance of the gut-liver axis in the pathogenesis of dietary fructose 

associated NAFLD and metabolic syndrome. Despite the major progress that has been 

made over the past two decades, the mechanisms underlying fructose-induced NAFLD 

and metabolic syndrome are still incompletely understood. Even with increased de novo 
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lipogenesis, only a small amount of fructose (<1%) ingested is converted to plasma 

triglyceride (26). Thus, it was proposed that the general activation of lipogenesis and 

blockade of fatty acid oxidation signaling might account for the fructose induced fat 

accumulation in the liver (27). However, a gap still remains in our understanding of 

increased de novo lipogenesis and hepatic fat accumulation during ingestion of fructose.  

      Although compelling epidemiologic data support the critical role of dietary fructose 

in the epidemic of the metabolic syndrome (2, 8, 28-31), a causal link between fructose 

consumption and the metabolic syndrome has not been firmly established in human 

studies (32-36). Most of studies on fructose are limited by a short term of study and/or a 

small study population. Moreover, hypercaloric effects cannot be excluded in some of the 

studies (37). Of note, isocaloric dietary fructose restriction has been reported to be 

beneficial in improving obesity and metabolic parameters (38-40). Animal studies also 

showed the essential role of fructose in the methionine-choline-deficient (MCD) diet-

induced nonalcoholic steatohepatitis (NASH) model (41, 42). Thus, another key issue is 

the complexity of the etiology of NAFLD, which involves multiple metabolic effects. 

One crucial factor is the nutrition interactions. Results from animal studies demonstrated 

that when fructose is ingested with fat, more severe hepatic steatosis and liver injury or 

fibrosis was induced compared to high fat diet alone, even when consumed isocalorically 

(43). Similarly, the metabolic effects of fructose are more obvious in obese patients with 

NAFLD and insulin resistance (12, 32, 44-46), suggesting potential interactions between 

fructose and other metabolites or a complex interplay with other metabolic pathways. We 

and others have demonstrated copper-fructose interactions in inducing the components of 

metabolic syndrome and NAFLD in rat model (47-51).  
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      A growing body of evidence indicates that hepatic copper level is lower in NAFLD 

patients, and steatosis grades inversely correlate with hepatic copper content (52-56). 

Moreover, dietary copper restriction induces hepatic steatosis and insulin resistance in 

rats, suggesting that copper availability may be involved in the development of NAFLD 

(52). The mechanism leading to low copper levels in NAFLD patients is not clear. 

Multiple factors can lead to copper deficiency, including the amount of copper in the diet. 

The Western diet often is low in copper (57, 58). Other factors, including bariatric 

surgery, excessive use of denture cream high in zinc and excessive intake of soft drinks, 

with added fructose, can also induce copper deficiency by impairing copper absorption 

(59-66).  

     Collectively, high fructose consumption and inadequate copper intake represent two 

important nutritional problems in the United States. Although copper-fructose 

interactions have been well documented in experimental models (48-51, 67-71), limited 

data are available from human studies. In this review, we will discuss the role of copper-

fructose interactions in the pathogenesis of the metabolic syndrome and NAFLD and 

discuss potential underlying mechanisms.   

2. Epidemiology of NAFLD, fructose consumption, and dietary copper intake 

      NAFLD is now the most common liver disease in the United States, and accounts for 

more than 75% of chronic liver diseases. In contrast with the other chronic liver diseases, 

whose prevalence has remained stable, the prevalence of NAFLD increased steadily from 

5.51% (1988-1994) to 9.84% (1999-2004) to 11.01% (2005-2008) (72). The most recent 

study showed that global prevalence of NAFLD is 25.24%, and is 24.13% in North 

America (8). The increased prevalence of NAFLD parallels the increases in obesity, type 
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2 diabetes (T2D), insulin resistance and hypertension (8, 72)—all hallmarks of the 

metabolic syndrome. In particular, the prevalence of suspected NAFLD in adolescents 

increased at an alarming rate, from 3.9% to 10.7% over the past 20 years (7). NASH, a 

more advanced stage of NAFLD, is the third most common indication for liver 

transplantation in the United States (73). Of note, NAFLD and NASH exhibit age and sex 

differences, with a higher prevalence in males than in females in both adolescents and 

adults until the age of 60. After age 60, the prevalence of NASH is higher in women (74, 

75). Based on NHANES III (1988-1994) data, mean fructose consumption was 54.7 

grams per day and accounted for 10.2% of total caloric intake (4), about 50% higher than 

the mean reported from the 1970’s (37g/day) (5). Consumption was highest among 

adolescents at 72.8 g/day (12.1 % of total calories) (4). Although evidence showed that 

consumption of sugar-sweetened beverages (SSBs), which are the leading source of 

added sugars in the diet,  has declined recently (76, 77), it  remains high among children 

and adolescents (78). Moreover, time-trend data over the past 3 decades have shown that 

the increased consumption of SSBs parallels the obesity epidemic and is associated with 

increased T2D risk in the United States (2). The prevalence of obesity increased from 

approximately 5% (early 1970’s) to 17% (2011-2014) in children and adolescents, and 

from 15% (late 1970’s) to 36.5% (2011-2014) in adults in the United States (79). The rise 

of SSBs intake is mainly due to the dramatic increased consumption of HFCS, which is 

the primary sweetener in SSBs (2, 13). The most common forms of HFCS contain either 

42% (HFCS-42) or 55% (HFCS-55) fructose, along with glucose and water, with HFCS-

55 being the most common used form (13, 80). Therefore, SSBs appear to be the major 

source of dietary fructose. It was estimated that 184,000 global deaths in 2010 were 
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attributable to consumption of sugary beverages, with 72.3% from diabetes mellitus, 

24.2% from cardiovascular diseases (CVDs) and 3.5% from cancer. United States is 

ranked second in SSB-related mortality among the 20 most populous countries in the 

world (81). Accordingly, Dietary Guidelines for Americans recommends decreasing 

added sugars from 25% (2010-2015) to less than 10% (2015-2020) of calories per day 

(31, 82). 

      The Recommended Dietary Allowance (RDA) for copper in adult men and women is 

0.9 mg/day and the Estimated Average Requirement (EAR) for copper is 0.7 mg /day 

(83). Klevay summarized the data from NHANES III and found that at least one fourth of 

adults consume less than the EAR in both the United States and Canada (59, 84). A 

recent study revealed that 62% and 36% of diets of 80 randomly selected adults in 

Baltimore were below the RDA and EAR, respectively (85), suggesting that the Western 

diet is often low in copper. Secondary copper deficiency can be caused by factors such as 

gastric bypass surgery and high zinc exposure (86, 87).  

      Copper status is affected by age, gender and hormone use. Plasma copper 

concentrations and ceruloplasmin levels were higher in women than in men (88). Lack of 

good biomarkers make it challenging to monitor marginal copper deficiency status (87). 

The copper-containing enzyme activities in blood cells, such as erythrocyte copper/zinc-

superoxide dismutase (SOD1) and platelet or leukocyte cytochrome c oxidase (COX), are 

sensitive to changes in copper stores and are better indicators of copper status than  

plasma copper level and ceruloplasmin activity (88, 89). 

3. Fructose absorption, metabolism and metabolic fate 
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      Dietary fructose is absorbed in the small intestine, and the absorption of fructose is 

greater in the proximal and middle than in the distal small intestine (90). A murine study 

with oral gavage of low dose 13C-fructose demonstrated that labeled fructose 1-phosphate 

(F1P), a specific metabolite of fructose, predominantly localized in the small intestine 

(jejunum ˃ duodenum ˃ ileum). When high dose of 13C-fructose was orally gavaged to 

mice, the majority of labeled F1P was detected in the jejunum and only a small amount of 

labeled F1P accumulated in the liver, suggesting that most of ingested fructose is 

metabolized in the small intestine and only excess fructose intake flows to the liver (21). 

Similar results were obtained from an ex vivo study in rabbits (91), reinforcing that small 

intestine is the primary site of fructose absorption and metabolism. Intravenous infusion 

of 13C-fructose revealed that liver, kidney, pancreas, and jejunum accumulate substantial 

levels of labeled F1P (21). Fructose is absorbed into enterocytes by the fructose 

transporter GLUT5 in the apical membrane and exits to the portal blood via GLUT2 in 

the basolateral membrane of enterocytes. The absorption of fructose in the liver is 

mediated by GLUT2 (92). Recent studies demonstrated that GLUT8 also play an 

important role in the hepatic and intestinal fructose absorption. Moreover, GLUT8 

mediated fructose absorption exhibits sex differences (93-95). Of note, the distribution of 

GLUT2 and GLUT8 in the liver as shown by mRNA abundance is very similar between 

humans and mice (94). GLUT5 is mainly expressed in the small intestine and kidney, 

while the major sites of GLUT2 expression are the liver, pancreas, intestine, kidney, and 

brain. The distribution of GLUT5 in the small intestine exhibits a regional pattern which 

is greater in the proximal segment compared to the distal segment (96). Moreover, 

GLUT5 is inducible and dramatically stimulated by early introduction of dietary fructose 
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(96). In supporting this, the intestinal capacity for fructose absorption and metabolism is 

markedly increased with prior fructose exposure, and this increased capacity is in parallel 

to the rapid and robust induction of Glut5 expression (21). In fact, Glut5 deletion resulted 

in more than a 75% reduction in fructose absorption in the small intestine and a decrease 

of 90% of serum fructose concentration compared to wild-type mice (97). In addition, 

GLUT5 gene expression is tightly regulated by glucocorticoid and thyroid hormones and 

circadian rhythm (96, 98).  

      Fructose is metabolized by KHK or fructokinase. (23, 99, 100). Fructose is 

phosphorylated by KHK at the 1-position to generate F1P, which consumes ATP and 

phosphate. F1P is then cleaved to glyceraldehyde and dihydroxyacetone phosphate 

(DHAP) by aldolase B. At this point, glucose metabolism and fructose metabolism 

converge. Unlike glycolysis, fructolysis bypasses phosphofructokinase, a rate-limiting 

step in glycolysis, to circumvent feedback inhibition. Moreover, KHK is much faster than 

hexokinase in phosphorylating their substrates (14), thus leading to rapid ATP depletion 

and phosphate consumption (101). There are two KHK isoforms, KHK-C and -A, and 

both can metabolize fructose, but KHK-C is considered the primary enzyme involved in 

fructose metabolism because of its lower Michaelis constant (Km) (23, 100). Depletion of 

KHK-C or KHK-A and -C, but not KHK-A alone, protects against fructose-induced 

metabolic syndrome (23, 102, 103). When KHK knockout mice were gavaged with 13C-

fructose, no labeled F1P could be detected in the small intestine and liver, highlighting 

the essential role of KHK in fructose metabolism (21). A reduction of intracellular 

phosphate leads to the activation of adenosine monophosphate deaminase (AMPD), 

which converts AMP to inosine monophosphate (IMP). IMP is subsequently converted to 
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hypoxanthine and then to xanthine, ultimately leading to the generation of uric acid (104-

106) (Figure 1). Accumulated uric acid results in the inhibition of adenosine 

monophosphate-activated protein kinase (AMPK) activity, which plays a central role in 

the metabolic syndrome (107). Fructose metabolism-induced ATP depletion and 

hyperuricemia has been validated in humans as well as in animal studies (reviewed by 

Jensen, et al.) (27). Indeed, inhibition of xanthine oxidase (XO), a rate-limiting enzyme 

that catalyzes uric acid production, protects against hepatic steatosis in mice (108).  

      The metabolic fate of fructose has been shown by studies with an isotope tracer. After 

ingestion of fructose, approximately 50% is converted into glucose, 25% is converted 

into lactate, 17% is converted to glycogen, and only less than 1% is converted to plasma 

triglyceride. However, most of the tracer studies are short-term studies. Longer term 

effects of fructose on the de novo lipogenesis need to be evaluated (13, 26). It appears 

that fructose-induced fatty liver is unlikely the direct effect of fructose metabolism. This 

leads to the hypothesis that the activation of lipogenesis and blockade of fatty acid 

oxidation signaling might account for the hepatic steatosis induced by fructose 

metabolism (27). Overall, knowing the fundamentals of fructose biochemistry is crucial 

for the understanding of fructose induced metabolic disorders.  

      Recently, work from animal studies demonstrated that endogenous fructose, 

generated from polyol pathway, plays a critical role in the development of metabolic 

syndrome and NASH (in addition to dietary fructose) (22, 109). The polyol pathway is an 

alternate route of glucose metabolism. The rate-limiting step of this polyol pathway is the 

reduction of glucose to sorbitol which is catalyzed by aldose reductase (AR). Under 
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normoglycemia, AR-catalyzed reduction is less than 3% of total glucose utilization, 

whereas more than 30% glucose is used by AR under hyperglycemia (110, 111).        

4. Copper absorption, distribution and utilization  

      Copper is an essential trace element. It serves as a cofactor for a number of enzymes, 

including COX, SOD1, ceruloplasmin, hephaestin, and lysyl oxidase, etc., which are 

involved in mitochondrial respiration, antioxidant defense, copper and iron export, 

connective tissue maturation, etc. (112).  In addition, copper also functions as a cellular 

signal to regulate cellular and molecular events, such as proteasome degradation of 

copper chaperone for SOD1 (CCS) and hypoxia inducible factor-1 (HIF-1) activation 

(113, 114). Mammals acquire copper through the diet. Copper absorption, distribution, 

and utilization are tightly regulated to maintain copper homeostasis. Dietary copper is 

primarily absorbed from the small intestine via copper transporter 1 (Ctr1). Ctr1 is 

considered the major copper transporter in mammalian cells (115-117). Mice with 

intestinal-specific deletion of Ctr1 died of severe weight loss within three weeks, and 

these mice can be rescued by a single intraperitoneal  injection of copper (118). Similarly, 

cardiac-specific knockout of the Ctr1 results in cardiac copper deficiency and severe 

cardiomyopathy (119), suggesting that Ctr1 is required for copper absorption. In human 

adults, the amount of copper absorption is inversely correlated with dietary copper intake; 

high dietary copper intake results in low copper absorption (120). After import, the 

copper ion in the cytoplasm is stored either in a complex with metallothioneins (MT) 

mediated by GSH, or is distributed to proteins or organelles by specific Cu chaperone 

proteins that function in the delivery of Cu to mitochondrial COX (via Cox17), to SOD1 

(via CCS), and to the cytosolic Cu binding domain of the P-type Cu-transporting 
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ATPases, ATP7A or ATP7B (via Atox1) (121). ATP7A and ATP7B are required for 

transport of copper into the trans-Golgi network (TGN) for biosynthesis of several 

secreted cuproenzymes and for efflux of copper.  ATP7A is required for copper efflux in 

the intestine and ATP7B is required for the biliary excretion of excess copper in the liver 

(121) (Figure 2).  

5.  Copper Homeostasis and NAFLD  

      Disturbance of copper homeostasis is associated with a variety of clinical 

manifestations. In this review, we focus on the copper dyshomeostasis associated 

NAFLD and its risk factors.  

       Analysis of 124 adult biopsy-proven NAFLD patients revealed that  serum copper as 

well as liver copper levels are lower compared to healthy controls and patients with other 

types of liver diseases, including hepatitis C virus (HCV) infection, autoimmune 

hepatitis, and alcoholic liver disease. Among these NAFLD patients, NASH patients 

displayed even lower hepatic copper levels than those with simple steatosis. Hepatic 

copper level is lower in NAFLD patients with the metabolic syndrome and T2D 

compared to those without metabolic syndrome and T2D (52). Moreover, NAFLD 

patients with lower serum copper and lower liver copper exhibited higher serum ferritin 

levels and hepatic iron levels, which were associated with decreased mRNA expression 

of liver ferroportin-1 (FP-1) (53). Similar results were obtained from pediatric NAFLD 

patients (54, 56). More severe NAFLD (NAFLD activity score, NAS, ˃5) patients, 

particularly in those with ballooning hepatocytes, displayed significantly lower serum 

copper and ceruloplasmin levels compared to the patients with less severe NAFLD 

(NAS˂5) (56). Moreover, dietary copper restriction induces hepatic steatosis and insulin 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 October 2018                   doi:10.20944/preprints201810.0429.v1

Peer-reviewed version available at Nutrients 2018, 10, 1815; doi:10.3390/nu10111815

http://dx.doi.org/10.20944/preprints201810.0429.v1
http://dx.doi.org/10.3390/nu10111815


 13 

resistance in rats, further suggesting that copper availability may be involved in the 

development of NAFLD (52).  

      Mutations in the ATP7B gene leads to Wilson’s disease (WD), an inherited 

autosomal recessive disorder of copper dyshomeostasis, characterized by excessive 

hepatic copper accumulation and decreased serum ceruloplasmin levels. In the earlier 

stage, it manifests as hepatic steatosis which is often indistinguishable from NAFLD 

(122); it may progress to hepatic fibrosis and cirrhosis, and eventually liver failure (123). 

The mechanism(s) by which hepatic copper accumulation leads to hepatic steatosis are 

not clear, but likely involve mitochondrial damage (124), global DNA hypomethylation 

(125), and/or nuclear receptors (126). In addition to WD, evidence from animal studies 

indicates a critical role of copper homeostasis in the pathogenesis of liver fibrosis. Bile 

duct ligation results in copper accumulation in the liver. Treatment with a copper chelator 

protects against bile duct ligation-induced liver fibrosis. However, overdose of copper 

chelator results in copper deficiency and accentuates liver injury and fibrosis (127, 128).  

Thus, both copper deficiency and excess may lead to hepatic steatosis and, in some cases, 

more severe distinct liver pathology.  

6. Copper-fructose Interactions.  

      Extensive studies in 1980’s demonstrated that dietary copper-fructose interactions 

worsened copper deficiency-induced metabolic syndrome. The severity of experimental 

copper deficiency was exacerbated by a diet containing high fructose compared to 

animals with diets containing high glucose or starch (50, 51, 68-70), and this was 

characterized by lowered body weight and hematocrit, and increased liver weight, blood 

urea nitrogen, ammonia, cholesterol and triglycerides. Switching the type of dietary 
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carbohydrate from fructose to either starch or glucose ameliorated the severity of copper 

deficiency (50). In line with animal studies, a human study demonstrated that adult males 

displayed significantly reduced SOD1 activity in erythrocytes after consumption of a low 

copper (1.03 mg/day/2850 kcal) and high fructose (20% calorie) diet for eleven weeks 

compared to those who consumed diets with low copper and starch (60), suggesting 

dietary fructose intake can affect indices of copper status.  

6.1. Copper-fructose Interaction and NAFLD  

     Our studies demonstrated that dietary high fructose intake further impaired copper 

status and exacerbated liver injury and fat accumulation in marginally copper deficient 

rats (Figure 3)(48). Moreover, we found that not only high dietary fructose (30% (w/v) 

fructose in the drinking water) impairs copper status, but also modest fructose 

consumption (3% (w/v) fructose in the drinking water) has a similar adverse effect on 

copper status (48, 49). The limitation of these studies is the AIN-76 based rodent diet 

which contains 49% sucrose, which could be a potential confounding factor. However, 

when extra fructose was given from drinking water, it still worsened the copper status.  

      Of note, the expression of copper transporter, Ctr-1, in duodenum was markedly 

upregulated when animals were exposed to a marginal copper deficient diet, and this 

upregulation was abrogated by high fructose feeding (48), suggesting that high fructose 

intake may impair copper absorption, which is likely a mechanism underlying copper-

fructose interactions. Results from previous studies also support the concept that impaired 

copper absorption from gut might account for the more severe copper deficiency 

associated with copper-fructose interaction (61, 62). How dietary fructose impairs copper 

absorption and whether it is mediated by Ctr-1 remain open questions.  
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      The mechanisms by which copper-fructose interaction induces NAFLD are not clear. 

Marginal copper deficient diet with high fructose feeding (CuMF) significantly 

upregulates hepatic fatty acid synthase (FAS) protein expression compared to either 

marginal copper deficient diet or high fructose feeding alone (48). Copper-fructose 

interaction induced hepatic steatosis is completely abrogated by Kupffer cell (KC) 

depletion, which is associated with the downregulation of hepatic sterol regulatory 

element-binding protein-1 (SREBP-1) (48, 129). Upregulation of FAS and SREBP-1 by 

copper deficiency was also observed in other studies (130-132). Pretreatment of KCs 

isolated from CuMF rats with an intracellular lysosomal iron chelator significantly 

attenuated lipopolysaccharide (LPS)-induced monocyte chemoattractant protein-1 (MCP-

1) production in culture medium, suggesting that the MCP-1 signaling pathway was 

mediated, at least partially, by intracellular iron (129). A role for MCP-1 in inducing 

steatosis in hepatocytes has been described (133, 134). The precise mechanism 

underlying the role of KC in CuMF induced hepatic steatosis remain to be defined.  

      Iron overload is considered as a partial potential mechanism underlying copper 

deficiency and fructose induced metabolic syndrome (135-138). We showed that 

marginal copper deficient and high fructose diet markedly increased liver iron level 

(Figure 4) (49) as well as plasma ferritin level  in rats (48). Similarly, NAFLD patients 

with low copper levels had hepatic iron overload (52, 53). Mechanism(s) by which 

copper deficiency induces iron overload have been partially elucidated. Cellular iron 

export requires members of a family of copper-containing ferroxidases, including 

ceruloplasmin and hephaestin which oxidize iron from the ferrous to ferric forms. The 

ferric form of iron binds to Apo-transferrin, thereby facilitating transferrin delivery to 
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peripheral organs. Hephaestin functions to move iron across the basolateral membrane of 

intestinal epithelial cells into the circulation. Hephaestin-deficient mice display iron 

deficiency anemia with accumulation of iron in enterocytes (139). Ceruloplasmin exerts 

its action on intestinal iron absorption, iron release from macrophages and hepatocytes 

(140, 141).  A clinical phenotype of NAFLD that we regularly see is a young adult male 

with modestly decreased serum ceruloplasmin, increased serum ferritin, and high fructose 

intake via sugared pop.   

      Decreased activities of cuproenzymes, such as SOD1 and COX (142, 143), may lead 

to decreased antioxidant defense and mitochondrial dysfunction, which are likely 

mechanisms leading to liver injury and hepatic fat accumulation. A previous study 

showed that the hepatocytes from rats with moderate copper deficiency (liver copper 

level of 4-8 µg/g dry weight, equal to marginal copper deficiency in our study) (48) have 

enlarged, bizarre-shaped mitochondria and disarranged endoplasmic reticulum (ER) as 

assessed by electron microscopy (144). In rats with severe copper deficiency (liver 

copper level of ˂ 2 µg/g dry weight), the hepatocyte ultrastructure displayed dramatic 

changes characterized by the giant, misshapen mitochondria which occupy most of the 

cytoplasmic space and squeeze out and obscure otherwise normal-looking organelles. 

The mitochondrial matrix is less dense than normal (144). These apparent morphological 

alterations of mitochondria appear to be linked to their abnormal functions. Whether and 

how severe copper deficiency affects ER and lysosome function leading to ER stress and 

defective autophagy remain elusive.  

      Pharmacological suppression of systemic copper levels with a chelating drug 

impaired mitochondrial energy metabolism and decreased ATP levels despite induction 
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of glycolysis (145). Of note, it is well documented that fructose metabolism also leads to 

ATP depletion (101, 104, 105). Thus, one may postulate the additive or synergistic effect 

of copper deficiency and high fructose intake could be lethal. In fact, this effect has been 

demonstrated in experimental animals (146, 147). However, the effects of severe copper 

deficiency in rats fed with fructose can be reversed by replacing fructose with either 

glucose or starch (50, 70).  

Fructose and glucose are distinct in several aspects, including intestinal absorption, 

metabolic pathways and the organ of its major metabolism. The unique features of 

fructose absorption and metabolism provide clues for mechanisms of copper-fructose 

interactions. Rats treated with allopurinol, a competitive inhibitor of xanthine oxidase, 

displayed improved symptoms induced by copper deficient and high fructose diet, 

including anemia and decreased mortality, and this was associated with a dramatic 

reduction of uric acid. The beneficial role of allopurinol is likely attributable to protection 

against the catabolism of purines and increased nucleotides pool (148), suggesting the 

complexity of copper-fructose interactions in NAFLD. 

      Copper is required for the activity of COX, and copper deficiency was associated 

with decreased COX activity in multiple organs, including heart, liver, intestine, in mouse 

and rat models (119, 142, 149). Whether or not copper deficiency induced metabolic 

phenotypic alteration through COX deficiency mediated mitochondrial dysfunction and 

the potential molecular mechanisms are not clear. COX (or complex IV) is the terminal 

enzyme of the electron transport chain in the inner mitochondrial membrane and 

catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. 

Complex IV is composed of 14 subunits, and three of these (subunits I-III) form the 
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highly conserved catalytic core of the enzyme encoded by mitochondrial DNA. The 

remaining less conserved subunits are encoded by nuclear genomes and were considered 

to be related to structural stability and enzyme activity. Highly conserved domains within 

subunit I include two heme moieties (heme a and a3) and a copper binding site (CuB), 

and subunit II also contains a copper binding site (CuA). The assembly of the complex IV 

protein is achieved by more than 20 different assembly proteins (150, 151). SCO2 

encodes a copper chaperone required for the insertion of copper into the active site of 

subunit II of complex IV, but it is not essential for complete holoenzyme formation. 

SCO2 deficient mice exhibit increased adiposity, hepatic steatosis and insulin resistance 

along with 20-60% reduction in complex IV activity (152). In vitro research in human 

myoblasts demonstrated that COX deficiency due to mutations in SCO2 can be rescued 

by copper supplementation (153). Whether the copper deficiency-induced reduction in 

COX activity is through SCO2 remains to be elucidated. However, mice lacking SURF1, 

a complex IV assembly protein, displayed an improved metabolic phenotype, including 

reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis despite of 

more than 50% reduction in COX activity (154-156).  

      In addition, previous studies from ATP7B knockout mice revealed that copper 

accumulation dysregulated nuclear receptors which contribute to liver function and lipid 

metabolism, such liver X receptor (LXR), farnesoid X receptor (FXR), retinoid X 

receptor (RXR), and small heterodimer partner (SHP) (126, 157). However, the effects of 

copper deficiency and high fructose on the regulation of nuclear receptors remain elusive. 

6.2. Copper-fructose Interaction and Hyperlipidemia 
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      Copper-fructose interactions-induced hypercholesterolemia and hypertriglyceridemia 

have been well demonstrated (48, 50, 71, 130, 135, 136, 158-161). In a population-based 

cohort study with 1197 subjects, dietary copper intake was inversely associated with 

plasma total cholesterol and LDL-cholesterol. Serum copper levels from a randomly 

identified subgroup of 231 men were also inversely associated with plasma total 

cholesterol and LDL-cholesterol, implying a crucial role of copper in cholesterol 

metabolism (158). Rats exposed to a copper deficient diet for 3-4 weeks developed 

hypercholesterolemia, and this effect was more significant when the diet carbohydrate 

component was solely fructose, but not the starch, suggesting that a copper-fructose 

interaction is instrumental in the development of hypercholesterolemia. Moreover, 

hypercholesterolemia is further worsened by a diet high in saturated fat, but not 

polyunsaturated fat. However, copper-fructose interaction induced hypertriglyceridemia 

can be exacerbated by both high saturated fat diet and high polyunsaturated fat diet (71, 

159, 161). Of note, both hypertriglyceridemia and hypercholesterolemia are associated 

with hepatic iron overload and are ameliorated by dietary iron restriction (135, 136). 

Restriction of dietary iron intake significantly decreased blood cholesterol and 

triglyceride levels associated with decreased lipid peroxidation in rats fed with a copper 

deficient and high fructose diet. Similarly, the severity of copper deficiency was 

attenuated by the iron chelator, deferoxamine (135, 138, 162). Moreover, increased iron 

intake further increased blood cholesterol and triglyceride levels in copper deficient diet 

fed rats (136). Copper deficiency induced hypercholesterolemia is likely due to increased 

cholesterol synthesis (160). Hepatocytes isolated from rats fed with a copper deficient 

diet for 7-8 weeks exhibited 90% reduction of copper content compared to those from 
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adequate copper fed rats. After 3 hours incubation, these cells displayed 2-3 fold increase 

in the intracellular glutathione (GSH) synthesis rate along with the increased intracellular 

and extracellular GSH (163).  Treatment with L-buthionine sulfoximine (BSO), a specific 

GSH synthesis inhibitor, abolished the hypercholesterolemia and increased HMG-CoA 

reductase (HMGCR) activity in rats fed with copper deficient diet (130). These results 

suggest that copper deficiency induced hypercholesterolemia and increased HMG-CoA 

are the consequence of increased GSH synthesis. Moreover, the induction of FAS 

expression was also prevented by BSO in copper deficient rats (132). One hypothesized 

mechanism for the increased synthesis of GSH is a compensatory mechanism to the 

decreased antioxidant defenses due to the decreased cuproenzymes (48, 142).  

6.3. Copper-fructose Interaction and Glucose Tolerance 

      Copper-deficient rats displayed improved glucose tolerance when they were switched 

from high fructose diet to high glucose diet for 4 weeks after being fed with a high 

fructose diet for 5 weeks. Similarly, changing the dietary carbohydrates in the copper-

deficient diet from fructose to starch increased insulin levels and decreased blood glucose 

in response to a glucose tolerance test compared to rats continuously fed fructose. These 

results suggest that the copper-fructose interaction was more diabetogenic compared to 

copper-glucose. (70). In addition, a copper deficient or a marginally copper deficient diet 

induced impaired glucose tolerance compared to an adequate copper diet, suggesting that 

copper deficiency may interfere with glucose utilization (164, 165).       

6.4. Copper-fructose Interaction and Gut Permeability  

      Our recent study demonstrated that expression of the tight junction proteins, claudin-1 

and occludin, was significantly downregulated in the ileum of rats fed with marginal 
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copper deficient diet. This effect was synergistically or additively enhanced by high 

fructose feeding, suggesting copper-fructose interaction in the small intestine may play a 

vital role in gut barrier function (47). A recent study showed that the metabolism of 

microbiota-derived butyrate in the gut epithelial cells through β-oxidation results in the 

depletion of oxygen and contributes to the maintenance of “physiologic hypoxia”, which, 

in turn, leads to the stabilization of HIF-1 (166). HIF-1 is a transcription factor which 

plays a central role in the protection of gut barrier function in multiple ways, including 

transcriptional regulation of tight junction protein expression (167, 168), induction of 

Tregs activation (169), and differentiation via transcriptional regulation of FoxP3 (170). It 

is known that copper is required for the activation of HIF-1 (114, 171). Our previous 

study demonstrated that the fecal short chain fatty acid (SCFA), butyrate, was 

significantly decreased in high fructose fed male rats (172). However, questions of 

whether or not decreased fecal SCFAs play a causal role and whether or not copper-

fructose interaction induced gut barrier dysfunction is mediated by HIF-1 remain to be 

elucidated.  In addition, in vitro studies demonstrated that increased copper concentration 

in the culture medium may induce Caco-2 cell apoptosis and increased permeability of 

the Caco-2 cell monolayer (173-175). Collectively, copper homeostasis plays a crucial 

role in maintaining intestinal integrity.  

6.5. Copper-fructose Interaction and Gut Microbiome 

      Our data showed that the gut microbiome of rats fed with 30% fructose (w/v) in the 

drinking water and AIN-76 based rodent diet (ad libitum) for four weeks exhibited an 

obesity phenotype characterized by a markedly increased ratio of Firmicutes/Bacteroides 

, and this effect was further exacerbated with a marginal copper deficient diet, associated 
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with increased gut permeability, exacerbated hepatic steatosis and liver injury (47, 48). 

These findings indicate that copper-fructose interaction may alter the gut microbiome. 

The mechanisms involved are not clear. Several lines of evidence indicate that copper 

might be involved in the regulation of gut microbiota and gut barrier function. First, 

copper has been used as an antimicrobial agent throughout the ages (176), and the 

response to copper stress varies among different bacteria species (177, 178). Second, one 

of the copper containing enzymes, diamine oxidase, was found in high concentrations in 

intestinal mucosa and its circulating enzyme activity serves as a marker of mucosal 

maturation and integrity, as does the copper level (179-181).  Thus, decreased copper 

levels may exacerbate dietary fructose-induced gut microbiota dysbiosis and/or gut 

barrier dysfunction. Whether copper-fructose interaction induced gut barrier dysfunction 

is the direct role of copper-fructose interaction in the intestine and/or mediated by the gut 

microbiota requires further investigation.  

6.6. Sex Difference in the Copper-fructose Interaction  

      Sex differences in the metabolic effects of fructose and/or copper deficiency have 

long been noted in the animal studies (146, 182-184) as well as in humans (185, 186), 

with males being sensitive to the deleterious effects of fructose and/or copper deficiency, 

and females being protected, which is consistent with the sex differences in NAFLD 

prevalence (74, 187). However, the mechanistic link between fructose, copper deficiency 

and sex is not well established. Experimental study from rats implies the level of 

testosterone in the males may play a role in the severity of copper deficiency (183). In 

line with this, evidence from a murine study demonstrated that testosterone robustly 

suppressed hepcidin transcription through epidermal growth factor receptor (Egfr) 
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signaling, and these suppressive effects were more obvious in male mice than in female 

mice (188).  Our work also showed significantly decreased plasma hepcidin levels in 

CuMF male rats compared to controls (129). Sex differences in the copper-fructose 

interaction were also shown with regard to the enzyme activities involved in fructose 

metabolism pathway and their relevant metabolites (189, 190). A previous study showed 

that female rats displayed lower hepatic KHK and triose kinase activities, but higher 

triose phosphate isomerase activity compared to male rats in response to high fructose 

with either adequate copper or copper deficient diet (189). Moreover, F1P levels were 

elevated to a greater extent in male rats compared to female rats on copper deficient diet 

(190). In addition, high fructose feeding resulted in markedly elevated serum uric acid 

levels in male rats compared to female rats, and it was further increased by copper 

deficient diet compared to adequate copper diet (189). However, inhibition of uric acid 

generation with allopurinol showed beneficial effects on copper-fructose interactions 

(148). Collectively, a sex difference in copper-fructose interactions likely contributes to 

sex variances in fructose metabolism and susceptibility to NAFLD/metabolic syndrome.  

7. Conclusions  

      High fructose consumption and low copper availability are two risk factors identified 

in NAFLD patients. Evidence of copper-fructose interactions comes largely from animal 

studies. Hepatic iron overload and mitochondrial dysfunction are likely mechanisms. 

Whether high fructose consumption results in impaired copper status in humans has not 

yet been firmly established. Therefore, larger cohort studies are needed to examine the 

correlation between copper status and fructose consumption in healthy controls, obese 

and NAFLD patients. The causal role of copper-fructose interactions in the pathogenesis 
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of NAFLD patients remains to be firmly established. However, we suggest that there are 

multiple NAFLD phenotypes, with one such NAFLD phenotype being relatively young 

males with high sugar sweetened beverage (and high fructose) consumption and modestly 

depressed serum copper/ceruloplasmin. A beneficial role for restricting dietary fructose 

intake to improve obesity and the metabolic syndrome has been clearly demonstrated and 

further studies may confirm the additional role of low copper availability.  
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Figure legends 

Figure 1. Fructose and Glucose metabolism. AR, aldose reductase; SDH, sorbitol 

dehydrogenase; KHK, ketohexokinase; PFK, phosphofructokinase; AMPD, adenosine 

monophosphate deaminase; IMP, inosine monophosphate; XO, xanthine oxidase; ACC, 

acetyl-CoA carboxylase; FAS, fatty acid synthase; ACSL, long chain acyl-CoA 

synthetase. 

Figure 2. Cellular copper distribution. Ctr1, copper transporter 1; MT, metallothionein; 

GSH, glutathione; CCS, copper chaperone for SOD1; COX, cytochrome c oxidase; 

Atox1, antioxidant 1 copper chaperone; SOD1, copper/zinc-superoxide dismutase; TGN, 

trans-Golgi network.  

Figure 3. Effects of marginal copper deficiency and fructose feeding on liver injury 

and lipid accumulation in male weanling Sprague-Dawley rats. (A) Plasma AST. (B) 

Representative photomicrographs of the H&E and Oil Red O staining of liver section 

(200×). Data represent means ± SD (n=5-9) and analyzed by two-way ANOVA, *p<0.05; 

#, interaction between copper and fructose is significant (p<0.05). AST, aspartate 

aminotransferase; A, adequate copper diet; M, marginal copper deficient diet; AF, 

adequate copper diet + 30% fructose drinking; MF, marginal copper deficient diet + 30% 

fructose drinking.  

Figure 4. Effect of fructose feeding on liver iron in male weanling Sprague-Dawley 

rats.  Data represent means ± SD (n=5-10) and analyzed by two-way ANOVA, *p<0.05; 

A, adequate copper diet; M, marginal copper deficient diet; AF, adequate copper diet + 

3% fructose drinking; MF, marginal copper deficient diet + 3% fructose drinking.  
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Abbreviations: 

NAFLD    nonalcoholic fatty liver disease  

KC           Kupffer cell 

HFCS       high-fructose corn syrup  

KHK        ketohexokinase 

TLR4        toll like receptor 4  

MCD         methionine choline deficient  

NASH        nonalcoholic steatohepatitis 

T2D            type 2 diabetes 

SSBs          sugar-sweetened beverages 

CVDs          cardiovascular diseases 

RDA           Recommended Dietary Allowance  

EAR            Estimated Average Requirement 

SOD1          copper/zinc-superoxide dismutase  

COX            cytochrome c oxidase  

F1P              fructose 1-phosphate  

DHAP         dihydroxyacetone phosphate 

AMPD         adenosine monophosphate deaminase  

IMP             inosine monophosphate  

AMPK        adenosine monophosphate-activated protein kinase  

XO              xanthine oxidase  

AR              aldose reductase  

CCS            copper chaperone for SOD1  
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HIF-1          hypoxia inducible factor-1  

Ctr1             copper transporter 1  

MT              metallothionein  

Atox1          antioxidant 1 copper chaperone 

TGN            trans-Golgi network 

HCV            hepatitis C virus 

FP-1             ferroportin-1 

NAS            NAFLD Activity Score     

WD             Wilson’s disease   

FAS             fatty acid synthase  

SREBP-1     sterol regulatory element-binding protein-1  

BSO             L-buthionine sulfoximine  

LPS             lipopolysaccharide  

MCP-1         monocyte chemoattractant protein-1  

LXR            liver X receptor  

FXR            farnesoid X receptor 

RXR            retinoid X receptor 

SHP            small heterodimer partner 

ER               endoplasmic reticulum  

GSH            glutathione  

GSSG          glutathione disulfide 

HMGCR      HMG-CoA reductase 

GPx             glutathione peroxidase  
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SCFA          short chain fatty acid  

Egfr           epidermal growth factor receptor  
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