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Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD
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Abstract

Compelling epidemiologic data support the critical role of dietary fructose in the
epidemic of obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD).
The metabolic effects of fructose on the development of metabolic syndrome and
NAFLD are not completely understood. High fructose intake impairs copper status, and
copper-fructose interactions have been well documented in rats. Altered copper-fructose
metabolism leads to exacerbated experimental metabolic syndrome and NAFLD. A
growing body of evidence has demonstrated that copper levels are low in NAFLD
patients. Moreover, hepatic and serum copper levels are inversely correlated with the
severity of NAFLD. Thus, high fructose consumption and low copper availability are
considered two important risk factors in NAFLD. However, the causal effect of copper-
fructose interactions as well as the effects of fructose intake on copper status remain to be
evaluated in humans. The aim of this review is to summarize the role of copper-fructose
interactions in the pathogenesis of the metabolic syndrome and discuss the potential
underlying mechanisms. This review will shed light on the role of copper homeostasis
and high fructose intake and point to copper-fructose interactions as novel mechanisms in

the fructose induced NAFLD.
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1. Introduction

Accumulating evidence has shown that increased fructose consumption parallels the
rises in the obesity epidemic, metabolic syndrome and NAFLD in the United States and
worldwide (1-8). Moreover, fructose consumption is higher in patients with NAFLD
compared to healthy controls and is associated with severity of fibrosis, suggesting that
high fructose intake may be an important risk factor for the development and progression
of NAFLD (9-12). Fructose is consumed mainly as added sugars, such as sucrose and
high-fructose corn syrup (HFCS), which represents 45% and 41% of the total added
sugars ingested, respectively (13).

Fructose is distinct from glucose due to its unique metabolism (14) and limited
absorption (15, 16). The role of fructose in the induction of components of metabolic
syndrome, as well as NAFLD, has been well documented in numerous animal studies
(17-20). A recent study demonstrated dietary fructose is primarily metabolized in the
small intestine. However, excess fructose ingestion can saturate intestinal clearance
capacity; it then reaches the liver and colon microbiota where it is metabolized (21). In
line with these data, depletion or knockdown of ketohexokinase (KHK), a key enzyme of
fructose metabolism, markedly attenuated high fructose diet-induced NAFLD, obesity
and other metabolic effects (22-24). Similarly, toll like receptor 4 (TLR4) mutation or
oral antibiotics protected against high fructose diet-induced NAFLD in mice (17, 25),
highlighting the importance of the gut-liver axis in the pathogenesis of dietary fructose
associated NAFLD and metabolic syndrome. Despite the major progress that has been
made over the past two decades, the mechanisms underlying fructose-induced NAFLD

and metabolic syndrome are still incompletely understood. Even with increased de novo
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lipogenesis, only a small amount of fructose (<1%) ingested is converted to plasma
triglyceride (26). Thus, it was proposed that the general activation of lipogenesis and
blockade of fatty acid oxidation signaling might account for the fructose induced fat
accumulation in the liver (27). However, a gap still remains in our understanding of
increased de novo lipogenesis and hepatic fat accumulation during ingestion of fructose.
Although compelling epidemiologic data support the critical role of dietary fructose
in the epidemic of the metabolic syndrome (2, 8, 28-31), a causal link between fructose
consumption and the metabolic syndrome has not been firmly established in human
studies (32-36). Most of studies on fructose are limited by a short term of study and/or a
small study population. Moreover, hypercaloric effects cannot be excluded in some of the
studies (37). Of note, isocaloric dietary fructose restriction has been reported to be
beneficial in improving obesity and metabolic parameters (38-40). Animal studies also
showed the essential role of fructose in the methionine-choline-deficient (MCD) diet-
induced nonalcoholic steatohepatitis (NASH) model (41, 42). Thus, another key issue is
the complexity of the etiology of NAFLD, which involves multiple metabolic effects.
One crucial factor is the nutrition interactions. Results from animal studies demonstrated
that when fructose is ingested with fat, more severe hepatic steatosis and liver injury or
fibrosis was induced compared to high fat diet alone, even when consumed isocalorically
(43). Similarly, the metabolic effects of fructose are more obvious in obese patients with
NAFLD and insulin resistance (12, 32, 44-46), suggesting potential interactions between
fructose and other metabolites or a complex interplay with other metabolic pathways. We
and others have demonstrated copper-fructose interactions in inducing the components of

metabolic syndrome and NAFLD in rat model (47-51).
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A growing body of evidence indicates that hepatic copper level is lower in NAFLD
patients, and steatosis grades inversely correlate with hepatic copper content (52-56).
Moreover, dietary copper restriction induces hepatic steatosis and insulin resistance in
rats, suggesting that copper availability may be involved in the development of NAFLD
(52). The mechanism leading to low copper levels in NAFLD patients is not clear.
Multiple factors can lead to copper deficiency, including the amount of copper in the diet.
The Western diet often is low in copper (57, 58). Other factors, including bariatric
surgery, excessive use of denture cream high in zinc and excessive intake of soft drinks,
with added fructose, can also induce copper deficiency by impairing copper absorption
(59-66).

Collectively, high fructose consumption and inadequate copper intake represent two
important nutritional problems in the United States. Although copper-fructose
interactions have been well documented in experimental models (48-51, 67-71), limited
data are available from human studies. In this review, we will discuss the role of copper-
fructose interactions in the pathogenesis of the metabolic syndrome and NAFLD and
discuss potential underlying mechanisms.

2. Epidemiology of NAFLD, fructose consumption, and dietary copper intake

NAFLD is now the most common liver disease in the United States, and accounts for
more than 75% of chronic liver diseases. In contrast with the other chronic liver diseases,
whose prevalence has remained stable, the prevalence of NAFLD increased steadily from
5.51% (1988-1994) to 9.84% (1999-2004) to 11.01% (2005-2008) (72). The most recent
study showed that global prevalence of NAFLD is 25.24%, and is 24.13% in North

America (8). The increased prevalence of NAFLD parallels the increases in obesity, type
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2 diabetes (T2D), insulin resistance and hypertension (8, 72)—all hallmarks of the
metabolic syndrome. In particular, the prevalence of suspected NAFLD in adolescents
increased at an alarming rate, from 3.9% to 10.7% over the past 20 years (7). NASH, a
more advanced stage of NAFLD, is the third most common indication for liver
transplantation in the United States (73). Of note, NAFLD and NASH exhibit age and sex
differences, with a higher prevalence in males than in females in both adolescents and
adults until the age of 60. After age 60, the prevalence of NASH is higher in women (74,
75). Based on NHANES Il (1988-1994) data, mean fructose consumption was 54.7
grams per day and accounted for 10.2% of total caloric intake (4), about 50% higher than
the mean reported from the 1970’s (37g/day) (5). Consumption was highest among
adolescents at 72.8 g/day (12.1 % of total calories) (4). Although evidence showed that
consumption of sugar-sweetened beverages (SSBs), which are the leading source of
added sugars in the diet, has declined recently (76, 77), it remains high among children
and adolescents (78). Moreover, time-trend data over the past 3 decades have shown that
the increased consumption of SSBs parallels the obesity epidemic and is associated with
increased T2D risk in the United States (2). The prevalence of obesity increased from
approximately 5% (early 1970’s) to 17% (2011-2014) in children and adolescents, and
from 15% (late 1970’s) to 36.5% (2011-2014) in adults in the United States (79). The rise
of SSBs intake is mainly due to the dramatic increased consumption of HFCS, which is
the primary sweetener in SSBs (2, 13). The most common forms of HFCS contain either
42% (HFCS-42) or 55% (HFCS-55) fructose, along with glucose and water, with HFCS-
55 being the most common used form (13, 80). Therefore, SSBs appear to be the major

source of dietary fructose. It was estimated that 184,000 global deaths in 2010 were
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attributable to consumption of sugary beverages, with 72.3% from diabetes mellitus,
24.2% from cardiovascular diseases (CVDs) and 3.5% from cancer. United States is
ranked second in SSB-related mortality among the 20 most populous countries in the
world (81). Accordingly, Dietary Guidelines for Americans recommends decreasing
added sugars from 25% (2010-2015) to less than 10% (2015-2020) of calories per day
(31, 82).

The Recommended Dietary Allowance (RDA) for copper in adult men and women is
0.9 mg/day and the Estimated Average Requirement (EAR) for copper is 0.7 mg /day
(83). Klevay summarized the data from NHANES |11 and found that at least one fourth of
adults consume less than the EAR in both the United States and Canada (59, 84). A
recent study revealed that 62% and 36% of diets of 80 randomly selected adults in
Baltimore were below the RDA and EAR, respectively (85), suggesting that the Western
diet is often low in copper. Secondary copper deficiency can be caused by factors such as
gastric bypass surgery and high zinc exposure (86, 87).

Copper status is affected by age, gender and hormone use. Plasma copper
concentrations and ceruloplasmin levels were higher in women than in men (88). Lack of
good biomarkers make it challenging to monitor marginal copper deficiency status (87).
The copper-containing enzyme activities in blood cells, such as erythrocyte copper/zinc-
superoxide dismutase (SOD1) and platelet or leukocyte cytochrome ¢ oxidase (COX), are
sensitive to changes in copper stores and are better indicators of copper status than
plasma copper level and ceruloplasmin activity (88, 89).

3. Fructose absorption, metabolism and metabolic fate
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Dietary fructose is absorbed in the small intestine, and the absorption of fructose is
greater in the proximal and middle than in the distal small intestine (90). A murine study
with oral gavage of low dose *C-fructose demonstrated that labeled fructose 1-phosphate
(F1P), a specific metabolite of fructose, predominantly localized in the small intestine
(jejunum > duodenum > ileum). When high dose of 3C-fructose was orally gavaged to
mice, the majority of labeled F1P was detected in the jejunum and only a small amount of
labeled F1P accumulated in the liver, suggesting that most of ingested fructose is
metabolized in the small intestine and only excess fructose intake flows to the liver (21).
Similar results were obtained from an ex vivo study in rabbits (91), reinforcing that small
intestine is the primary site of fructose absorption and metabolism. Intravenous infusion
of BC-fructose revealed that liver, kidney, pancreas, and jejunum accumulate substantial
levels of labeled F1P (21). Fructose is absorbed into enterocytes by the fructose
transporter GLUTY5 in the apical membrane and exits to the portal blood via GLUT2 in
the basolateral membrane of enterocytes. The absorption of fructose in the liver is
mediated by GLUT2 (92). Recent studies demonstrated that GLUT8 also play an
important role in the hepatic and intestinal fructose absorption. Moreover, GLUT8
mediated fructose absorption exhibits sex differences (93-95). Of note, the distribution of
GLUT2 and GLUTS in the liver as shown by mRNA abundance is very similar between
humans and mice (94). GLUT5 is mainly expressed in the small intestine and kidney,
while the major sites of GLUT2 expression are the liver, pancreas, intestine, kidney, and
brain. The distribution of GLUTS5 in the small intestine exhibits a regional pattern which
is greater in the proximal segment compared to the distal segment (96). Moreover,

GLUTS is inducible and dramatically stimulated by early introduction of dietary fructose
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(96). In supporting this, the intestinal capacity for fructose absorption and metabolism is
markedly increased with prior fructose exposure, and this increased capacity is in parallel
to the rapid and robust induction of Glut5 expression (21). In fact, Glut5 deletion resulted
in more than a 75% reduction in fructose absorption in the small intestine and a decrease
of 90% of serum fructose concentration compared to wild-type mice (97). In addition,
GLUTS5 gene expression is tightly regulated by glucocorticoid and thyroid hormones and
circadian rhythm (96, 98).

Fructose is metabolized by KHK or fructokinase. (23, 99, 100). Fructose is
phosphorylated by KHK at the 1-position to generate F1P, which consumes ATP and
phosphate. F1P is then cleaved to glyceraldehyde and dihydroxyacetone phosphate
(DHAP) by aldolase B. At this point, glucose metabolism and fructose metabolism
converge. Unlike glycolysis, fructolysis bypasses phosphofructokinase, a rate-limiting
step in glycolysis, to circumvent feedback inhibition. Moreover, KHK is much faster than
hexokinase in phosphorylating their substrates (14), thus leading to rapid ATP depletion
and phosphate consumption (101). There are two KHK isoforms, KHK-C and -A, and
both can metabolize fructose, but KHK-C is considered the primary enzyme involved in
fructose metabolism because of its lower Michaelis constant (Km) (23, 100). Depletion of
KHK-C or KHK-A and -C, but not KHK-A alone, protects against fructose-induced
metabolic syndrome (23, 102, 103). When KHK knockout mice were gavaged with $3C-
fructose, no labeled F1P could be detected in the small intestine and liver, highlighting
the essential role of KHK in fructose metabolism (21). A reduction of intracellular
phosphate leads to the activation of adenosine monophosphate deaminase (AMPD),

which converts AMP to inosine monophosphate (IMP). IMP is subsequently converted to
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hypoxanthine and then to xanthine, ultimately leading to the generation of uric acid (104-
106) (Figure 1). Accumulated uric acid results in the inhibition of adenosine
monophosphate-activated protein kinase (AMPK) activity, which plays a central role in
the metabolic syndrome (107). Fructose metabolism-induced ATP depletion and
hyperuricemia has been validated in humans as well as in animal studies (reviewed by
Jensen, et al.) (27). Indeed, inhibition of xanthine oxidase (XO), a rate-limiting enzyme
that catalyzes uric acid production, protects against hepatic steatosis in mice (108).

The metabolic fate of fructose has been shown by studies with an isotope tracer. After
ingestion of fructose, approximately 50% is converted into glucose, 25% is converted
into lactate, 17% is converted to glycogen, and only less than 1% is converted to plasma
triglyceride. However, most of the tracer studies are short-term studies. Longer term
effects of fructose on the de novo lipogenesis need to be evaluated (13, 26). It appears
that fructose-induced fatty liver is unlikely the direct effect of fructose metabolism. This
leads to the hypothesis that the activation of lipogenesis and blockade of fatty acid
oxidation signaling might account for the hepatic steatosis induced by fructose
metabolism (27). Overall, knowing the fundamentals of fructose biochemistry is crucial
for the understanding of fructose induced metabolic disorders.

Recently, work from animal studies demonstrated that endogenous fructose,
generated from polyol pathway, plays a critical role in the development of metabolic
syndrome and NASH (in addition to dietary fructose) (22, 109). The polyol pathway is an
alternate route of glucose metabolism. The rate-limiting step of this polyol pathway is the

reduction of glucose to sorbitol which is catalyzed by aldose reductase (AR). Under
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normoglycemia, AR-catalyzed reduction is less than 3% of total glucose utilization,
whereas more than 30% glucose is used by AR under hyperglycemia (110, 111).
4. Copper absorption, distribution and utilization

Copper is an essential trace element. It serves as a cofactor for a number of enzymes,
including COX, SOD1, ceruloplasmin, hephaestin, and lysyl oxidase, etc., which are
involved in mitochondrial respiration, antioxidant defense, copper and iron export,
connective tissue maturation, etc. (112). In addition, copper also functions as a cellular
signal to regulate cellular and molecular events, such as proteasome degradation of
copper chaperone for SOD1 (CCS) and hypoxia inducible factor-1 (HIF-1) activation
(113, 114). Mammals acquire copper through the diet. Copper absorption, distribution,
and utilization are tightly regulated to maintain copper homeostasis. Dietary copper is
primarily absorbed from the small intestine via copper transporter 1 (Ctrl). Ctrl is
considered the major copper transporter in mammalian cells (115-117). Mice with
intestinal-specific deletion of Ctrl died of severe weight loss within three weeks, and
these mice can be rescued by a single intraperitoneal injection of copper (118). Similarly,
cardiac-specific knockout of the Ctrl results in cardiac copper deficiency and severe
cardiomyopathy (119), suggesting that Ctrl is required for copper absorption. In human
adults, the amount of copper absorption is inversely correlated with dietary copper intake;
high dietary copper intake results in low copper absorption (120). After import, the
copper ion in the cytoplasm is stored either in a complex with metallothioneins (MT)
mediated by GSH, or is distributed to proteins or organelles by specific Cu chaperone
proteins that function in the delivery of Cu to mitochondrial COX (via Cox17), to SOD1

(via CCS), and to the cytosolic Cu binding domain of the P-type Cu-transporting
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ATPases, ATP7A or ATP7B (via Atox1) (121). ATP7A and ATP7B are required for
transport of copper into the trans-Golgi network (TGN) for biosynthesis of several
secreted cuproenzymes and for efflux of copper. ATP7A is required for copper efflux in
the intestine and ATP7B is required for the biliary excretion of excess copper in the liver
(121) (Figure 2).

5. Copper Homeostasis and NAFLD

Disturbance of copper homeostasis is associated with a variety of clinical
manifestations. In this review, we focus on the copper dyshomeostasis associated
NAFLD and its risk factors.

Analysis of 124 adult biopsy-proven NAFLD patients revealed that serum copper as
well as liver copper levels are lower compared to healthy controls and patients with other
types of liver diseases, including hepatitis C virus (HCV) infection, autoimmune
hepatitis, and alcoholic liver disease. Among these NAFLD patients, NASH patients
displayed even lower hepatic copper levels than those with simple steatosis. Hepatic
copper level is lower in NAFLD patients with the metabolic syndrome and T2D
compared to those without metabolic syndrome and T2D (52). Moreover, NAFLD
patients with lower serum copper and lower liver copper exhibited higher serum ferritin
levels and hepatic iron levels, which were associated with decreased mRNA expression
of liver ferroportin-1 (FP-1) (53). Similar results were obtained from pediatric NAFLD
patients (54, 56). More severe NAFLD (NAFLD activity score, NAS, >5) patients,
particularly in those with ballooning hepatocytes, displayed significantly lower serum
copper and ceruloplasmin levels compared to the patients with less severe NAFLD

(NAS<5) (56). Moreover, dietary copper restriction induces hepatic steatosis and insulin
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resistance in rats, further suggesting that copper availability may be involved in the
development of NAFLD (52).

Mutations in the ATP7B gene leads to Wilson’s disease (WD), an inherited
autosomal recessive disorder of copper dyshomeostasis, characterized by excessive
hepatic copper accumulation and decreased serum ceruloplasmin levels. In the earlier
stage, it manifests as hepatic steatosis which is often indistinguishable from NAFLD
(122); it may progress to hepatic fibrosis and cirrhosis, and eventually liver failure (123).
The mechanism(s) by which hepatic copper accumulation leads to hepatic steatosis are
not clear, but likely involve mitochondrial damage (124), global DNA hypomethylation
(125), and/or nuclear receptors (126). In addition to WD, evidence from animal studies
indicates a critical role of copper homeostasis in the pathogenesis of liver fibrosis. Bile
duct ligation results in copper accumulation in the liver. Treatment with a copper chelator
protects against bile duct ligation-induced liver fibrosis. However, overdose of copper
chelator results in copper deficiency and accentuates liver injury and fibrosis (127, 128).
Thus, both copper deficiency and excess may lead to hepatic steatosis and, in some cases,
more severe distinct liver pathology.

6. Copper-fructose Interactions.

Extensive studies in 1980’s demonstrated that dietary copper-fructose interactions
worsened copper deficiency-induced metabolic syndrome. The severity of experimental
copper deficiency was exacerbated by a diet containing high fructose compared to
animals with diets containing high glucose or starch (50, 51, 68-70), and this was
characterized by lowered body weight and hematocrit, and increased liver weight, blood

urea nitrogen, ammonia, cholesterol and triglycerides. Switching the type of dietary
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carbohydrate from fructose to either starch or glucose ameliorated the severity of copper
deficiency (50). In line with animal studies, a human study demonstrated that adult males
displayed significantly reduced SODL1 activity in erythrocytes after consumption of a low
copper (1.03 mg/day/2850 kcal) and high fructose (20% calorie) diet for eleven weeks
compared to those who consumed diets with low copper and starch (60), suggesting
dietary fructose intake can affect indices of copper status.

6.1. Copper-fructose Interaction and NAFLD

Our studies demonstrated that dietary high fructose intake further impaired copper
status and exacerbated liver injury and fat accumulation in marginally copper deficient
rats (Figure 3)(48). Moreover, we found that not only high dietary fructose (30% (w/v)
fructose in the drinking water) impairs copper status, but also modest fructose
consumption (3% (w/v) fructose in the drinking water) has a similar adverse effect on
copper status (48, 49). The limitation of these studies is the AIN-76 based rodent diet
which contains 49% sucrose, which could be a potential confounding factor. However,
when extra fructose was given from drinking water, it still worsened the copper status.

Of note, the expression of copper transporter, Ctr-1, in duodenum was markedly
upregulated when animals were exposed to a marginal copper deficient diet, and this
upregulation was abrogated by high fructose feeding (48), suggesting that high fructose
intake may impair copper absorption, which is likely a mechanism underlying copper-
fructose interactions. Results from previous studies also support the concept that impaired
copper absorption from gut might account for the more severe copper deficiency
associated with copper-fructose interaction (61, 62). How dietary fructose impairs copper

absorption and whether it is mediated by Ctr-1 remain open questions.
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The mechanisms by which copper-fructose interaction induces NAFLD are not clear.
Marginal copper deficient diet with high fructose feeding (CuMF) significantly
upregulates hepatic fatty acid synthase (FAS) protein expression compared to either
marginal copper deficient diet or high fructose feeding alone (48). Copper-fructose
interaction induced hepatic steatosis is completely abrogated by Kupffer cell (KC)
depletion, which is associated with the downregulation of hepatic sterol regulatory
element-binding protein-1 (SREBP-1) (48, 129). Upregulation of FAS and SREBP-1 by
copper deficiency was also observed in other studies (130-132). Pretreatment of KCs
isolated from CuMF rats with an intracellular lysosomal iron chelator significantly
attenuated lipopolysaccharide (LPS)-induced monocyte chemoattractant protein-1 (MCP-
1) production in culture medium, suggesting that the MCP-1 signaling pathway was
mediated, at least partially, by intracellular iron (129). A role for MCP-1 in inducing
steatosis in hepatocytes has been described (133, 134). The precise mechanism
underlying the role of KC in CuMF induced hepatic steatosis remain to be defined.

Iron overload is considered as a partial potential mechanism underlying copper
deficiency and fructose induced metabolic syndrome (135-138). We showed that
marginal copper deficient and high fructose diet markedly increased liver iron level
(Figure 4) (49) as well as plasma ferritin level in rats (48). Similarly, NAFLD patients
with low copper levels had hepatic iron overload (52, 53). Mechanism(s) by which
copper deficiency induces iron overload have been partially elucidated. Cellular iron
export requires members of a family of copper-containing ferroxidases, including
ceruloplasmin and hephaestin which oxidize iron from the ferrous to ferric forms. The

ferric form of iron binds to Apo-transferrin, thereby facilitating transferrin delivery to
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peripheral organs. Hephaestin functions to move iron across the basolateral membrane of
intestinal epithelial cells into the circulation. Hephaestin-deficient mice display iron
deficiency anemia with accumulation of iron in enterocytes (139). Ceruloplasmin exerts
its action on intestinal iron absorption, iron release from macrophages and hepatocytes
(140, 141). A clinical phenotype of NAFLD that we regularly see is a young adult male
with modestly decreased serum ceruloplasmin, increased serum ferritin, and high fructose
intake via sugared pop.

Decreased activities of cuproenzymes, such as SOD1 and COX (142, 143), may lead
to decreased antioxidant defense and mitochondrial dysfunction, which are likely
mechanisms leading to liver injury and hepatic fat accumulation. A previous study
showed that the hepatocytes from rats with moderate copper deficiency (liver copper
level of 4-8 ug/g dry weight, equal to marginal copper deficiency in our study) (48) have
enlarged, bizarre-shaped mitochondria and disarranged endoplasmic reticulum (ER) as
assessed by electron microscopy (144). In rats with severe copper deficiency (liver
copper level of < 2 ug/g dry weight), the hepatocyte ultrastructure displayed dramatic
changes characterized by the giant, misshapen mitochondria which occupy most of the
cytoplasmic space and squeeze out and obscure otherwise normal-looking organelles.
The mitochondrial matrix is less dense than normal (144). These apparent morphological
alterations of mitochondria appear to be linked to their abnormal functions. Whether and
how severe copper deficiency affects ER and lysosome function leading to ER stress and
defective autophagy remain elusive.

Pharmacological suppression of systemic copper levels with a chelating drug

impaired mitochondrial energy metabolism and decreased ATP levels despite induction
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of glycolysis (145). Of note, it is well documented that fructose metabolism also leads to
ATP depletion (101, 104, 105). Thus, one may postulate the additive or synergistic effect
of copper deficiency and high fructose intake could be lethal. In fact, this effect has been
demonstrated in experimental animals (146, 147). However, the effects of severe copper
deficiency in rats fed with fructose can be reversed by replacing fructose with either
glucose or starch (50, 70).

Fructose and glucose are distinct in several aspects, including intestinal absorption,
metabolic pathways and the organ of its major metabolism. The unique features of
fructose absorption and metabolism provide clues for mechanisms of copper-fructose
interactions. Rats treated with allopurinol, a competitive inhibitor of xanthine oxidase,
displayed improved symptoms induced by copper deficient and high fructose diet,
including anemia and decreased mortality, and this was associated with a dramatic
reduction of uric acid. The beneficial role of allopurinol is likely attributable to protection
against the catabolism of purines and increased nucleotides pool (148), suggesting the
complexity of copper-fructose interactions in NAFLD.

Copper is required for the activity of COX, and copper deficiency was associated
with decreased COX activity in multiple organs, including heart, liver, intestine, in mouse
and rat models (119, 142, 149). Whether or not copper deficiency induced metabolic
phenotypic alteration through COX deficiency mediated mitochondrial dysfunction and
the potential molecular mechanisms are not clear. COX (or complex 1V) is the terminal
enzyme of the electron transport chain in the inner mitochondrial membrane and
catalyzes the transfer of electrons from reduced cytochrome ¢ to molecular oxygen.

Complex 1V is composed of 14 subunits, and three of these (subunits I-111) form the

d0i:10.20944/preprints201810.0429.v1
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highly conserved catalytic core of the enzyme encoded by mitochondrial DNA. The
remaining less conserved subunits are encoded by nuclear genomes and were considered
to be related to structural stability and enzyme activity. Highly conserved domains within
subunit | include two heme moieties (heme a and a3) and a copper binding site (CuB),
and subunit Il also contains a copper binding site (CuA). The assembly of the complex IV
protein is achieved by more than 20 different assembly proteins (150, 151). SCO2
encodes a copper chaperone required for the insertion of copper into the active site of
subunit 11 of complex IV, but it is not essential for complete holoenzyme formation.
SCO2 deficient mice exhibit increased adiposity, hepatic steatosis and insulin resistance
along with 20-60% reduction in complex IV activity (152). In vitro research in human
myoblasts demonstrated that COX deficiency due to mutations in SCO2 can be rescued
by copper supplementation (153). Whether the copper deficiency-induced reduction in
COX activity is through SCO2 remains to be elucidated. However, mice lacking SURF1,
a complex IV assembly protein, displayed an improved metabolic phenotype, including
reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis despite of
more than 50% reduction in COX activity (154-156).

In addition, previous studies from ATP7B knockout mice revealed that copper
accumulation dysregulated nuclear receptors which contribute to liver function and lipid
metabolism, such liver X receptor (LXR), farnesoid X receptor (FXR), retinoid X
receptor (RXR), and small heterodimer partner (SHP) (126, 157). However, the effects of
copper deficiency and high fructose on the regulation of nuclear receptors remain elusive.

6.2. Copper-fructose Interaction and Hyperlipidemia


http://dx.doi.org/10.20944/preprints201810.0429.v1
http://dx.doi.org/10.3390/nu10111815

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2018 d0i:10.20944/preprints201810.0429.v1

Copper-fructose interactions-induced hypercholesterolemia and hypertriglyceridemia
have been well demonstrated (48, 50, 71, 130, 135, 136, 158-161). In a population-based
cohort study with 1197 subjects, dietary copper intake was inversely associated with
plasma total cholesterol and LDL-cholesterol. Serum copper levels from a randomly
identified subgroup of 231 men were also inversely associated with plasma total
cholesterol and LDL-cholesterol, implying a crucial role of copper in cholesterol
metabolism (158). Rats exposed to a copper deficient diet for 3-4 weeks developed
hypercholesterolemia, and this effect was more significant when the diet carbohydrate
component was solely fructose, but not the starch, suggesting that a copper-fructose
interaction is instrumental in the development of hypercholesterolemia. Moreover,
hypercholesterolemia is further worsened by a diet high in saturated fat, but not
polyunsaturated fat. However, copper-fructose interaction induced hypertriglyceridemia
can be exacerbated by both high saturated fat diet and high polyunsaturated fat diet (71,
159, 161). Of note, both hypertriglyceridemia and hypercholesterolemia are associated
with hepatic iron overload and are ameliorated by dietary iron restriction (135, 136).
Restriction of dietary iron intake significantly decreased blood cholesterol and
triglyceride levels associated with decreased lipid peroxidation in rats fed with a copper
deficient and high fructose diet. Similarly, the severity of copper deficiency was
attenuated by the iron chelator, deferoxamine (135, 138, 162). Moreover, increased iron
intake further increased blood cholesterol and triglyceride levels in copper deficient diet
fed rats (136). Copper deficiency induced hypercholesterolemia is likely due to increased
cholesterol synthesis (160). Hepatocytes isolated from rats fed with a copper deficient

diet for 7-8 weeks exhibited 90% reduction of copper content compared to those from
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adequate copper fed rats. After 3 hours incubation, these cells displayed 2-3 fold increase
in the intracellular glutathione (GSH) synthesis rate along with the increased intracellular
and extracellular GSH (163). Treatment with L-buthionine sulfoximine (BSO), a specific
GSH synthesis inhibitor, abolished the hypercholesterolemia and increased HMG-CoA
reductase (HMGCR) activity in rats fed with copper deficient diet (130). These results
suggest that copper deficiency induced hypercholesterolemia and increased HMG-CoA
are the consequence of increased GSH synthesis. Moreover, the induction of FAS
expression was also prevented by BSO in copper deficient rats (132). One hypothesized
mechanism for the increased synthesis of GSH is a compensatory mechanism to the
decreased antioxidant defenses due to the decreased cuproenzymes (48, 142).
6.3. Copper-fructose Interaction and Glucose Tolerance

Copper-deficient rats displayed improved glucose tolerance when they were switched
from high fructose diet to high glucose diet for 4 weeks after being fed with a high
fructose diet for 5 weeks. Similarly, changing the dietary carbohydrates in the copper-
deficient diet from fructose to starch increased insulin levels and decreased blood glucose
in response to a glucose tolerance test compared to rats continuously fed fructose. These
results suggest that the copper-fructose interaction was more diabetogenic compared to
copper-glucose. (70). In addition, a copper deficient or a marginally copper deficient diet
induced impaired glucose tolerance compared to an adequate copper diet, suggesting that
copper deficiency may interfere with glucose utilization (164, 165).
6.4. Copper-fructose Interaction and Gut Permeability

Our recent study demonstrated that expression of the tight junction proteins, claudin-1

and occludin, was significantly downregulated in the ileum of rats fed with marginal
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copper deficient diet. This effect was synergistically or additively enhanced by high
fructose feeding, suggesting copper-fructose interaction in the small intestine may play a
vital role in gut barrier function (47). A recent study showed that the metabolism of
microbiota-derived butyrate in the gut epithelial cells through B-oxidation results in the
depletion of oxygen and contributes to the maintenance of “physiologic hypoxia”, which,
in turn, leads to the stabilization of HIF-1 (166). HIF-1 is a transcription factor which
plays a central role in the protection of gut barrier function in multiple ways, including
transcriptional regulation of tight junction protein expression (167, 168), induction of
Tregs activation (169), and differentiation via transcriptional regulation of FoxP3 (170). It
is known that copper is required for the activation of HIF-1 (114, 171). Our previous
study demonstrated that the fecal short chain fatty acid (SCFA), butyrate, was
significantly decreased in high fructose fed male rats (172). However, questions of
whether or not decreased fecal SCFAs play a causal role and whether or not copper-
fructose interaction induced gut barrier dysfunction is mediated by HIF-1 remain to be
elucidated. In addition, in vitro studies demonstrated that increased copper concentration
in the culture medium may induce Caco-2 cell apoptosis and increased permeability of
the Caco-2 cell monolayer (173-175). Collectively, copper homeostasis plays a crucial
role in maintaining intestinal integrity.
6.5. Copper-fructose Interaction and Gut Microbiome

Our data showed that the gut microbiome of rats fed with 30% fructose (w/v) in the
drinking water and AIN-76 based rodent diet (ad libitum) for four weeks exhibited an
obesity phenotype characterized by a markedly increased ratio of Firmicutes/Bacteroides

, and this effect was further exacerbated with a marginal copper deficient diet, associated


http://dx.doi.org/10.20944/preprints201810.0429.v1
http://dx.doi.org/10.3390/nu10111815

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2018

—c

with increased gut permeability, exacerbated hepatic steatosis and liver injury (47, 48).
These findings indicate that copper-fructose interaction may alter the gut microbiome.
The mechanisms involved are not clear. Several lines of evidence indicate that copper
might be involved in the regulation of gut microbiota and gut barrier function. First,
copper has been used as an antimicrobial agent throughout the ages (176), and the
response to copper stress varies among different bacteria species (177, 178). Second, one
of the copper containing enzymes, diamine oxidase, was found in high concentrations in
intestinal mucosa and its circulating enzyme activity serves as a marker of mucosal
maturation and integrity, as does the copper level (179-181). Thus, decreased copper
levels may exacerbate dietary fructose-induced gut microbiota dysbiosis and/or gut
barrier dysfunction. Whether copper-fructose interaction induced gut barrier dysfunction
is the direct role of copper-fructose interaction in the intestine and/or mediated by the gut
microbiota requires further investigation.
6.6. Sex Difference in the Copper-fructose Interaction

Sex differences in the metabolic effects of fructose and/or copper deficiency have
long been noted in the animal studies (146, 182-184) as well as in humans (185, 186),
with males being sensitive to the deleterious effects of fructose and/or copper deficiency,
and females being protected, which is consistent with the sex differences in NAFLD
prevalence (74, 187). However, the mechanistic link between fructose, copper deficiency
and sex is not well established. Experimental study from rats implies the level of
testosterone in the males may play a role in the severity of copper deficiency (183). In
line with this, evidence from a murine study demonstrated that testosterone robustly

suppressed hepcidin transcription through epidermal growth factor receptor (Egfr)
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signaling, and these suppressive effects were more obvious in male mice than in female
mice (188). Our work also showed significantly decreased plasma hepcidin levels in
CuMF male rats compared to controls (129). Sex differences in the copper-fructose
interaction were also shown with regard to the enzyme activities involved in fructose
metabolism pathway and their relevant metabolites (189, 190). A previous study showed
that female rats displayed lower hepatic KHK and triose kinase activities, but higher
triose phosphate isomerase activity compared to male rats in response to high fructose
with either adequate copper or copper deficient diet (189). Moreover, F1P levels were
elevated to a greater extent in male rats compared to female rats on copper deficient diet
(190). In addition, high fructose feeding resulted in markedly elevated serum uric acid
levels in male rats compared to female rats, and it was further increased by copper
deficient diet compared to adequate copper diet (189). However, inhibition of uric acid
generation with allopurinol showed beneficial effects on copper-fructose interactions
(148). Collectively, a sex difference in copper-fructose interactions likely contributes to
sex variances in fructose metabolism and susceptibility to NAFLD/metabolic syndrome.
7. Conclusions

High fructose consumption and low copper availability are two risk factors identified
in NAFLD patients. Evidence of copper-fructose interactions comes largely from animal
studies. Hepatic iron overload and mitochondrial dysfunction are likely mechanisms.
Whether high fructose consumption results in impaired copper status in humans has not
yet been firmly established. Therefore, larger cohort studies are needed to examine the
correlation between copper status and fructose consumption in healthy controls, obese

and NAFLD patients. The causal role of copper-fructose interactions in the pathogenesis
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of NAFLD patients remains to be firmly established. However, we suggest that there are
multiple NAFLD phenotypes, with one such NAFLD phenotype being relatively young
males with high sugar sweetened beverage (and high fructose) consumption and modestly
depressed serum copper/ceruloplasmin. A beneficial role for restricting dietary fructose
intake to improve obesity and the metabolic syndrome has been clearly demonstrated and

further studies may confirm the additional role of low copper availability.
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Figure legends

Figure 1. Fructose and Glucose metabolism. AR, aldose reductase; SDH, sorbitol
dehydrogenase; KHK, ketohexokinase; PFK, phosphofructokinase; AMPD, adenosine
monophosphate deaminase; IMP, inosine monophosphate; XO, xanthine oxidase; ACC,
acetyl-CoA carboxylase; FAS, fatty acid synthase; ACSL, long chain acyl-CoA
synthetase.

Figure 2. Cellular copper distribution. Ctrl, copper transporter 1; MT, metallothionein;
GSH, glutathione; CCS, copper chaperone for SOD1; COX, cytochrome c oxidase;
Atox1, antioxidant 1 copper chaperone; SOD1, copper/zinc-superoxide dismutase; TGN,
trans-Golgi network.

Figure 3. Effects of marginal copper deficiency and fructose feeding on liver injury
and lipid accumulation in male weanling Sprague-Dawley rats. (A) Plasma AST. (B)
Representative photomicrographs of the H&E and Oil Red O staining of liver section
(200x). Data represent means + SD (n=5-9) and analyzed by two-way ANOVA, *p<0.05;
#, interaction between copper and fructose is significant (p<0.05). AST, aspartate
aminotransferase; A, adequate copper diet; M, marginal copper deficient diet; AF,
adequate copper diet + 30% fructose drinking; MF, marginal copper deficient diet + 30%
fructose drinking.

Figure 4. Effect of fructose feeding on liver iron in male weanling Sprague-Dawley
rats. Data represent means + SD (n=5-10) and analyzed by two-way ANOVA, *p<0.05;
A, adequate copper diet; M, marginal copper deficient diet; AF, adequate copper diet +

3% fructose drinking; MF, marginal copper deficient diet + 3% fructose drinking.
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Abbreviations:

NAFLD

KC

HFCS

KHK

TLR4

MCD

NASH

T2D

SSBs

CVDs

RDA

EAR

SOD1

COX

F1P

DHAP

AMPD

IMP

AMPK

X0

AR

CCS

nonalcoholic fatty liver disease
Kupffer cell
high-fructose corn syrup
ketohexokinase
toll like receptor 4
methionine choline deficient
nonalcoholic steatohepatitis
type 2 diabetes
sugar-sweetened beverages
cardiovascular diseases
Recommended Dietary Allowance
Estimated Average Requirement
copper/zinc-superoxide dismutase
cytochrome c oxidase
fructose 1-phosphate
dihydroxyacetone phosphate
adenosine monophosphate deaminase
inosine monophosphate
adenosine monophosphate-activated protein kinase
xanthine oxidase
aldose reductase

copper chaperone for SOD1
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HIF-1

Ctrl

MT

Atox1

TGN

HCV

FP-1

NAS

WD

FAS

SREBP-1

BSO

LPS

MCP-1

LXR

FXR

RXR

SHP

ER

GSH

GSSG

HMGCR

GPx

hypoxia inducible factor-1
copper transporter 1
metallothionein

antioxidant 1 copper chaperone
trans-Golgi network

hepatitis C virus

ferroportin-1

NAFLD Activity Score
Wilson’s disease

fatty acid synthase

sterol regulatory element-binding protein-1
L-buthionine sulfoximine
lipopolysaccharide

monocyte chemoattractant protein-1
liver X receptor

farnesoid X receptor

retinoid X receptor
small heterodimer partner
endoplasmic reticulum
glutathione

glutathione disulfide
HMG-CoA reductase

glutathione peroxidase
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SCFA short chain fatty acid

Egfr epidermal growth factor receptor
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