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Article

A Unified Electro-Gravity Theory to Model Spiral
Galaxies without Dark Matter

Nirod K. Das

Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, 5

Metrotech Center, Brooklyn, NY 11201

Abstract: A unified electro-gravity (UEG) theory, which has been successfully used for modeling

an elementary particle, is applied in this paper to model gravitation in spiral galaxies. The new

UEG model would explain the “flat rotation curves” commonly observed in the spiral galaxies,

without need for any hypothetical dark matter. The UEG theory is implemented in a somewhat

different manner for a spiral galaxy, as compared to the simple application of the UEG theory to an

elementary particle. This is because the spiral galaxy, unlike the elementary particle, is not spherically

symmetric. The UEG constant γ, required in the new model to support the galaxies’ flat rotation

speeds, is estimated using measured data from a galaxy survey, as well as for a selected galaxy for

illustration. The estimates are compared with the γ derived from the UEG model of an elementary

particle. The UEG model for the galaxy is shown to explain the empirical Tully-Fisher Relationship

(TFR), is consistent with the Modified Newtonian Dynamics (MOND), and is also independently

supported by measured trends of galaxy thickness with surface brightness and rotation speed. The

UEG theory may similarly be extended to emulate the hypothetical dark matter in galaxy clusters as

well as in cosmology.

Keywords: Unified Electro-Gravity (UEG) Theory; Spiral Galaxy; Galaxy Cluster; Dark Matter;

Modified Newtonian Dynamics (MOND)

1. Introduction

Rotation curves of spiral galaxies [1] have been suspected not to confirm to gravitational forces

due to galaxies’ visible mass as per the Newton’s Law of gravitation, which is known to work well

in our day-to-day experience on earth as well for planetary orbits in our solar system. In order to

explain the observed rotation curves, it has been proposed and long believed that there is significant

amount of invisible “dark matter” surrounding almost all spiral galaxies. There was no other existing

theory which could explain the rotation behavior in a satisfactory manner, although modification of

the laws of Newtonian dynamics has been proposed [2]. Recently, a new unified electro-gravity (UEG)

theory is established, which has been successfully applied to model an elementary particle and the

Casimir Effect [3,4], where a new gravitational force proportional to electromagnetic energy density,

is introduced. In this paper, the simple UEG theory of [3,4], applicable for the spherically symmetric

structure of an elementary particle, would be extended for the non-spherical structure of a spiral

galaxy. The energy density due to star lights in the galaxy would contribute to a new gravitational

force, which could support the observed stellar rotation around the galaxy. A constant rotation speed

beyond certain radial distance would require a 1/r-dependent gravitational acceleration, in the given

region. When the UEG theory of [3,4] is properly modified for the non-spherical structure of a spiral

galaxy, the required 1/r-dependent acceleration may result, although the stellar light radiation from

the galaxy exhibit an approximate 1/r2 dependence, in the given region. This is possible, because

the energy density of the actual light radiation may need to be redistributed, based on the physical

asymmetry of the spiral galaxy. The UEG field may be defined in proportion to the redistributed,

effective energy density.

The required UEG constant γ of proportionality, between the UEG field and the associated

effective energy density, may be deduced from the new UEG model using measured data from galaxy
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survey as well as data for selected individual galaxies. The results may be compared with the UEG

constant deduced from [3,4], for validation or verification of the new UEG model. The functional

trends established from the new UEG model may be compared, for validation of the model, with those

from the empirical Tully-Fisher Relation (TFR) [5] and the Modified Newtonian Dynamics (MOND)

model [2,6]. The trends predicted from the UEG model would explicitly depend upon the spiral

galaxy’s aspect ratio (ratio of the scale lengths in radius and thickness), because the new model is

formulated based on the spherical asymmetry of the galaxy. This is distinct from the the MOND model,

where there may not be such definitive interrelation between the galaxy’s aspect ratio and the rotation

speed. The functional dependence of the galaxy’s aspect ratio on the surface brightness and rotation

velocity, as required for the UEG galaxy model to reproduce the rotation curves, may be compared

with available relevant measurements, for another independent validation of the basic UEG galaxy

model.

As mentioned earlier, the galaxy’s UEG force field is to be defined in proportion to an effective

distribution of energy density, not the actual energy density of stellar radiation as was the case in [3,4]

for a spherical structure. The effective energy density may be obtained by suitable redistribution of

the galaxy’s light radiation, in proportion to the distribution of the Newtonian gravitation potential

of the galaxy, as discussed in the following section. The divergence of the resulting UEG force field

surrounding the galaxy would be equivalent to having a fictitious “dark-matter” distribution [7], on

the basis of the conventional Newtonian gravitation, which may be needed in order to explain the

observed rotation behavior of the spiral galaxies, as well as formation and evolution of the galaxies.

Beyond a sufficiently large radial distance from the galactic center, the galaxy would “look” like a

point body with a spherically symmetric distribution of the Newtonian potential, and with a 1/r2

dependence of its light intensity. In this far region the radial UEG field would also be spherically

symmetric, and therefore the field would be directly proportional to the 1/r2-dependent light’s energy

density, without any need for redistribution of the energy density as per the proposed model. This

spherically symmetric, 1/r2-dependent radial UEG field in the far region is associated with zero

field divergence, and therefore with no dark matter. In contrast, the intermediate region where

the conventional Newtonian potential exhibits strong spherical asymmetry, the UEG field (with the

expected 1/r dependence) would be associated with a strong divergence, which would emulate

heavy presence of the dark-matter in the region. The UEG field in the innermost region, where the

spherical symmetry of the Newtonian potential is generally restored, would be associated with only

minimal presence of the dark-matter, much smaller in magnitude than the intermediate region. The

intermediate region of heavy dark-matter presence would at least include the smallest spherical region

which encloses most of the galaxy’s mass and light sources, and may extend much farther.

Section 2 presents the theoretical concepts and an analytical formulation of the theory. The results

for flat rotation velocity deduced from the model are validated with measured data for a galaxy survey

as well as for an individual galaxy, in sections 3, 4. The Tully-Fisher Relation (TFR) and the Modified

Newtonian Dynamics (MOND) model are studied in section 5, in relation to the present UEG galaxy

model, for further validation of the model. Possible extension of the theory to other astrophysical

problems are discussed in section 6, followed by general conclusion from the study in 7.

2. Theory

2.1. The UEG Theory of a Non-Spherical Radiating Body

As per the UEG theory, there exists a new gravitational force-field which is dependent on the

electromagnetic energy density. This is in addition to the conventional Newtonian gravitation. For

a simple spherical body, the new UEG field at any particular location is proportional to the energy

density at the given location, and is directed toward the gravitational center of the body [3,4]. For

completeness of understanding, a brief theory of [3,4] for an elementary particle is presented in the

Appendix A, in order to introduce the new UEG theory and to estimate the required constant of
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proportionality γ between the UEG field and the energy density. The UEG theory of [3,4] has been

successfully applied to model an electron, as well as predict the fine-structure constant and the Casimir

effect, establishing significant confidence to the new theory. Therefore, in order to be scientifically

consistent, a similar additional gravitational field must be included as well for a galaxy, dependent on

the radiation energy density associated with the galaxy’s light distribution. However, the simple, direct

relationship between the UEG field and the energy density, which is applicable for the spherically

symmetric structure of an electron in [3,4], may not be valid in its simple form for the non-spherical

structure of a galaxy.

Instead, the radial UEG field for the galaxy is expected to be proportional to a suitable distribution

of an effective energy density, with the UEG constant γ [3,4] as the constant of proportionality. A

reasonable proposition would be to define the effective energy density at any given location, by

redistribution of the actual energy density of the galaxy’s stellar radiation on a spherical surface

passing through the location, in proportion to the galaxy’s conventional Newtonian potential on the

spherical surface. The redistribution would maintain the total integral of the actual and effective

energy densities on the spherical surface to be equal, which is a definite measure of the equivalent

UEG mass (dark-mass) enclosed inside the sphere. For the special case of a spherically symmetric

body, the effective energy density would be equal to the actual energy density, in consistency with the

simple UEG model [3,4] of an electron presented in the Appendix A.

2.2. Analytical Model for a Spiral Galaxy

The light radiation from a spherically distributed source, like a single isolated star for example,

exhibits a 1/r2 dependence of its radiation energy density with radial distance r, external to the

spherical source. Such 1/r2 dependence of radiation may also be seen for a non-spherical source, in an

approximate form, outside of a spherical region of certain threshold radius. For a spiral galaxy, such a

spherical region may be identified with a threshold radius equal to the galaxy’s scale radius R. This

means, the radiation of the galaxy establishes an approximate spherical symmetry beyond the radius

R.

A spherical source is defined by spherical equi-potential surfaces, which means all points on a

spherical surface of radius r have the same potential. In contrast, the spiral galaxy may be represented

as a thin disk of an average thickness z0, with the z0 much smaller than its disk radius ∼ R. The

equi-potential surfaces (as per Newtonian gravity) for the disk structure would be thin disk-like

surfaces in the vicinity enclosing the source disk (see Figure 1). Such equi-potential surfaces exhibit

spherical asymmetry inherent in the disk structure, and such asymmetry in the Newtonian potential

distribution may effectively extend well beyond the scale radius R. This is unlike the light’s energy

density discussed above, which establishes a fairly spherical symmetry beyond the galaxy’s scale

radius.
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Figure 1. .

Now, consider a spherical surface of radius r, with a common center as the disk galaxy, as shown

in Figure 1. The distribution of the Newtonian gravitational potential on this surface would in general

be non-uniform, with stronger potential values near the plane of the disk over a constant thickness

∼ z0 (independent of r), and weaker values in the rest of the spherical surface. As a first-order model,

one may approximate the potential distribution to be uniform over its strong region of area ∼ 2πrz0

Figure 1), and be negligible over the rest of the spherical surface. A uniform energy density Wτ of

light radiation over the surface may be redistributed in proportion to the potential distribution, as

approximated above, resulting in a stronger effective energy density Wτe near the galaxy plane. The

radial UEG force is proposed to be proportional to this effective energy density Wτe, not the actual

energy density Wτ . In accordance with the above principle, the two energy densities would in principle

be equal if the potential was spherically symmetric, with a uniform value everywhere on the spherical

surface of Figure 1.

[Wτ(r)× 4πr2] = [Wτe(r)× (∼ 2πrz0)],

Wτe(r) ∝ r
z0

× Wτ(r);

Wτ(r) ∼ 1
r2 , Wτe(r) ∼ 1

r , r > R. (1)

The original energy density Wτ with a ∼ 1/r2 dependence would transform into an effective

energy density Wτe with a ∼ 1/r dependence on the galaxy plane.

The gravitational potential distribution would exhibit closer spherical symmetry as one

approaches towards the center, resulting in the effective density Wτe to be close to the actual energy

density Wτ in the central region. Accordingly, as a first-order estimate, the effective and actual energy

densities may be assumed to be equal to each other for r < R. Based on this assumption and the above

modeling (1), the effective and actual energy densities may be expressed as follows.

Wτe(r) = Wτ(r), r < R;

Wτ(r) = Wτ(r = R)R2

r2 ,

Wτe(r) = Wτ(r = R)R
r , r > R. (2)

The energy density Wτ for r > R may be approximated using the total luminosity L and the speed

of light c, and assuming that the total light radiates in a spherically symmetric manner in the region, as
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if it radiates from a point source at the galaxy center. The total luminosity may be expressed using the

surface density µ, which may be modeled with an exponential profile with amplitude µ0 and scale

radius R.

Wτ(r) ≃ L
4πr2c

=
µ0R2

2r2c
, Wτ(r = R) ≃ µ0

2c , µ(r) = µ0e−r/R,

L =
∞
∫

0
µ(r)2πrdr =

∞
∫

0
µ0e−r/R2πrdr = 2πµ0R2. (3)

The approximate energy density Wτ at r = R can then be related to the light surface density µ

at r = R, with e/(2c) as the proportionality factor. For convenience of reference, the effective energy

density function Wτe(r > R) may be defined proportional to an equivalent effective surface density

function µe(r), with the same above factor e/(2c) of proportionality. Using the relation (2) between the

Wτe function and Wτ(r = R) in the proposed definition, the effective surface density function µe may

be related to the actual surface-density function µ.

Wτ(r = R) ≃ µ0
2c =

eµ(r=R)
2c ,

Wτe(r > R) =
eµe(r)

2c = Wτ(r = R)R
r

≃ eµ(r=R)×R
2cr = eb

2cr ,

b = µ(r = R)× R, µe(r) =
b
r =

µ(r=R)×R
r . (4)

The effective surface density function µe(r) may be viewed as a 1/r-functional fit to the actual

surface surface density function µ(r), such that they are equal to each other at r = R. As mentioned

above, the surface density function µ(r) is modeled as an exponential distribution with an amplitude

µ0 and a scale radius R. The amplitude b of the µe distribution may be related to the parameters µ0 and

R. Consequently, the total luminosity L in (3) may be expressed in terms of the parameters b and R.

µ(r) = µ0e−r/R; µ(r = R) = b
R = µ0e−1, µ0 = eb

R ,

L = 2πµ0R2 = 2πebR. (5)

If the amplitude µ0 is maintained to be approximately constant, then b would be proportional to

R, or equivalently the luminosity L would be proportional to b2. This may be the case for a large group

of high surface brightness (HSB) galaxies, which were believed to confirm to the Freeman’s Law [8] of

having an approximately constant central brightness µ0.

µ0 ∼ constant (Freeman′s Law, HSB Galaxy),

b ∝ R, L ∝ b2. (6)

The radial UEG field Egu may now be expressed proportional to the equivalent energy density

Wτe, with the constant of proportionality equal to the UEG constant γ. The potential function associated

with the above radial field could be obtained by integrating the field in the radial variable r, from

which the θ component of the field may also be derived (in principle) as the θ-derivative of the potential

function. However, we are interested here only on the radial UEG field, which completely determines

the orbital acceleration on the central plane of the galaxy, because the θ− component of the UEG field

on this plane would be zero. The magnitude Egu of the radial UEG field on the central galaxy plane

would be equal to the orbital acceleration v2/r. The Egu (for r > R) is proportional to the effective

surface density µe(r) = b/r, having the same 1/r dependence as the orbital acceleration. Accordingly,
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the rotation velocity v would exhibit a “flat” behavior for r > R, with v2 proportional to the constant

amplitude ‘b’.

Ēgu = −r̂Egu = −r̂γWτe = −r̂
γeµe

2c ,

Egu(r) =
γeµe(r)

2c = γeb
2cr = v2

r ,

v2 = γeb
2c , r > R. (7)

Combining (7,5), the luminosity L may be expressed in terms of the velocity v, radius R, and the

UEG constant γ.

L = 2πebR = 4πRv2c
γ , γ = 4πRv2c

L . (8)

Accordingly, the UEG constant γ may be estimated from (8) using measured values of the L,

v and R, available from a galaxy survey [9]. Alternatively, the amplitude b for the effective surface

density µe(r) may be estimated directly from a measured surface-brightness profile µ(r) for a selected

individual galaxy, and then the γ be estimated using the b and the measured flat rotation velocity v, as

per (7,4). The estimation directly using measured data of an individual galaxy would complement

the estimation from the galaxy survey, providing an explicit illustration of the UEG model. However,

the estimation using an averaged data from the galaxy survey can, in principle, be more reliable than

that using data for individual galaxies. Inaccuracies from astronomical measurements of individual

galaxy parameters, as well as uncertainty due to deviation of individual galaxy characteristics from

any ideal theoretical assumptions, can often be significant. The resulting inaccuracy or uncertainty

in the estimation of the γ is expected to be minimized by using an “average” or a central data point

among a survey of large number of sample galaxies.

3. Estimation of γ Using Measured Data from Galaxy Survey

We first estimate the γ based on (8), using an average data point from the I-band measurement of

the galaxy survey [9]. As suggested above, the data point is located approximately at the statistical

center of the survey samples.

(I-band data):

L = 1010.4L0 = 3.828 × 1036.4W, v = 105.2m/s,

R = 100.5kpc = 100.5 × 3.086 × 1019m,

γ(I-band) = γI =
4π×3×3.086×101.5

3.828

= 0.96 × 103[(ms-2)/(Jm-3)]. (9)

Similarly, we estimate the γ from the K-band measurement of [9]. Note that an effective radius,

Re, is provided in [9] for the K-band measurements. The effective radius, defined as the radius of a

sphere that encloses half of the total luminosity, would be 1.678 times the scale radius R used in our

modeling, assuming an exponential light profile.
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(K-band data) :

L = 1010.8L0 = 3.828 × 1036.8W, v = 105.2m/s,

Re = 100.6kpc = 100.6 × 3.086 × 1019m, R = Re/1.678 ,

γ(K-band) = γK = 4π×3×3.086×101.2

3.828×1.678

= 0.29 × 103[(ms-2)/(Jm-3)]. (10)

Measurements in the K-band overestimates the luminosity and the energy density, leading to

underestimation of the γ. On the other hand, measurements in the I-band underestimates the energy

density, leading to overestimation of the γ. Accordingly, the above results estimate a useful range for

the value of the γ, which is consistent with the value of the γ = 0.6 × 103 (ms−2)/(Jm−3) deduced from

the UEG model [3,4] in the Appendix A for an elementary particle.

0.29 × 103
< γ < 0.96 × 103[(ms-2)/(Jm-3)],

γ = 0.6 × 103[(ms-2)/(Jm-3)]. (11)

The best estimate for γ is assumed to be the average of the two estimates in the I− and K− bands.

γ ≃ (γI+γK)
2 =0.63 × 103[(ms-2)/(Jm-3)]. (12)

The above estimate closely agrees with the γ from the particle model [3,4] in the Appendix A.

Considering that we used a first-order approximation in the UEG modeling of (1,2), such agreement is

remarkable. This means that the ideal conditions we assumed in the first-order UEG modeling of (1,2)

are remarkably valid for the central data point of [9] used in our estimation.

4. Estimation of γ Using Measured Data of an Individual Galaxy

Measured data for the surface brightness distribution µ(r) of a specific galaxy is first properly

fitted with an exponential, and then an effective surface brightness distribution µe(r), as defined in

(4). The data using mixed units, such as magnitude, arcsec, light-years, may be converted to suitable

standard units. The µe distribution can then be related to the rotation velocity v using (7).

Wτe =
eµe
2c =

s0×6.61×10−13

r J/m3,

UEG Acceleration(m/s2) = Egu

= γWτe =
γs0×6.61×10−13

r

= v2×1010
rm

= v2

r×d×4.6×106 ; v(105m/s),

1(lin-mag/arcsec2)v = 1.46 × 104(W/m2),

r(arcsec)=r × d × 4.6 × 1016(m)

= rm(m), at distance d(MLyr). (13)

The UEG constant γ is deduced using the amplitude b, or its equivalent parameter s0, of the

effective surface brightness distribution µe(r), the flat rotation velocity v and the distance d of the

galaxy. Suitable correction factors may be needed to relate the K- and U-band measured magnitudes to

a common reference of solar bolometric magnitude of 4.83. This assumes the solar magnitudes in the

K- and U-bands are 3.28 and 5.56, respectively.
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γ = v2×107

s0d×6.61×4.6
= v2×106

s0d×3.04
[(ms-2)/(Jm-3)] (Visible),

γ = ∆u×v2×106

s0d×3.04
[(ms-2)/(Jm-3)] (U-Band),

γ =
∆k×v2×106

s0d×3.04
[(ms-2)/(Jm-3)] (K-Band);

v(105m/s), d(MLyr),

∆k = 10(4.83−3.28)/2.5

= 4.17 = K-Band correction factor,

∆u = 10(4.83−5.56)/2.5

= 0.51 = U-Band correction factor. (14)

Using the U-band (assumed ≃ U’-band) surface-brightness data [10] for the galaxy NGC-2403,

presented in Figure 2, we estimate the amplitude parameter s0 = 32.9. This parameter, together with

the galaxy’s distance d = 11.4MLyr [11] and flat rotation velocity v = 1.35 × 105m/s [12], would provide

an estimate for the γu = 0.81 × 103 (ms−2)/(Jm−3), using the above relation (14). Similarly, using the

K-band data [13] for the same galaxy NGC-2403, presented in Figure 3, we estimate the amplitude

parameter s0 = 430. This would provide an estimate for the γk = 0.51 × 103 (ms−2)/(Jm−3), using

(14). An average of these two estimates for the γ would lead to the best estimate for the γ = 0.66 × 103

(ms−2)/(Jm−3) from the available data for the galaxy NGC-2403. This is close to the γ = 0.63 × 103

(ms−2)/(Jm−3) deduced from the galaxy survey in (12) or the γ = 0.60 × 103 (ms−2)/(Jm−3) from

particle model [3,4] in the Appendix A. Such remarkable agreement implies that any deviation from

the basic model of (1-4) due to differences in the surface brightness µ0 (see section 5)) of the individual

galaxy NGC-2403 from the “average” galaxy used in the estimation (12), is minimal. The µ0,k are

estimated to be roughly equal to 16.75 (mag/arcsec2) in both cases ([9], Figure 3), which is consistent

with the above expectation.

Figure 2. .
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Figure 3. .

NGC-2403:

γu=0.81 × 103(ms-2)/(Jm-3) (U-Band),

γk=0.51 × 103(ms-2)/(Jm-3)(K-Band),

γ = (γv + γk)/2

= 0.66 × 103(ms-2)/(Jm-3) (Best Estimate). (15)

5. The Tully-Fisher Relation (TFR) and the Modified Newtonian Dynamics (MOND) Model,
Derived from the UEG Model

Combining (5,7) and assuming an approximately constant µ0, a Tully-Fisher Relation (TFR) [5]

may be deduced, where the total luminosity L would be proportional to the fourth power of the flat

rotation velocity v. As mentioned before, the above condition of an approximately constant µ0 is

satisfied by a large group of high surface brightness (HSB) galaxies that were believed to confirm to

the Freeman’s Law [8].

L = 2πµ0R2 = 2πe2b2
µ0

= 8πv4c2

µ0γ2 , µ0 = eb
R ,

L ∝ v4 (TFR),

µ0 ∼ constant (Freeman′s Law, HSB Galaxy). (16)

However, the Freeman’s Law is no longer believed to be strictly valid, and galaxies are measured

to exhibit a broad range of amplitudes µ0 covering variations among the HSB galaxies as well as

extending to low surface brightness (LSB) galaxies with lower values of µ0. For a general treatment to

closely model the variation in the amplitude µ0, we may introduce a new parameter α for fitting the 1/r

profile of µe with the exponential profile of µ in (4). The unit reference value of α is expected to apply

for an “average” HSB galaxy, as assumed in the basic model of (4) and in the estimations of (12,15). The

µe may be adjusted to a smaller or larger value, relative to the µ(r = R), with a proportional adjustment

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints201910.0375.v3

https://doi.org/10.20944/preprints201910.0375.v3


10 of 20

of the parameter α, which would represent a smaller or large value of the UEG force, respectively, as

per (7).

The variable factor α is accommodated in the gravitational potential model of (1,2), Figure 1,

by recognizing the galaxy thickness z0 to be an active variable, like the scale radius R or the

surface brightness µ0, for parametrization of galaxy characteristics. In the potential model of (1),

an approximately uniform (spherically) potential would be established for all radial distances less

than a variable threshold radius Rt, dependent on a variable thickness z0, not less than the ideal fixed

threshold radius r = R assumed in (2). Accordingly, the effective energy density Wτe would match

with the actual energy density Wτ for all the radial distances less than the variable threshold radius,

not the ideal reference threshold r = R assumed in (2). Consequently, the Wτe(r = R) would no longer

be equal to Wτ(r = R) as ideally assumed in (2), but now be equal to αWτ(r = R), with the variable

factor α proportional to the normalized galaxy thickness R/z0.

The model of (1,2) may be revised as follows, as explained above.

Wτe ∝ Wτ × r
z0

= Wτ × r
R × R

z0
; Wτe ∼ 1

r , Wτ ∼ 1
r2 .

Wτe(r) ∝ Wτ(r = R)× R
r × R

z0
, r > R;

Wτe = Wτ , r < Rt ∝ z0. (17)

Using the above revisions and (3), the relation (4) between the surface density µ and effective

surface density µe, and the resulting expression for the luminosity L (5) using (7), may also be revised.

µe(r) =
b
r = α × µ(r=R)R

r , α ∝ R
z0

,

b
R = α × µ(r = R) = αµ0e−1, µ0 = eb

αR ,

L = 2πµ0R2 = 2πe2b2

α2µ0
= 8πv4c2

α2µ0γ2 . (18)

The TFR (16), which was established based on the simple assumption of an approximately constant

µ0, would still be valid for a range of different surface brightness µ0, if µ0α2 in (18) is approximately

a constant. This condition, of having a larger value of the α for a lower µ0, means there would be

relatively more contribution from the UEG force as the surface brightness µ0 reduces. This trend better

represents observed characteristics among the HSB galaxies, extending to LSB galaxies as well. The

higher UEG contribution for a lower surface brightness µ0 would be equivalent to having relatively

more “dark matter” contribution for a LSB galaxy [14], as per the current dark-matter paradigm.

L ∝ v4 (MOND, TFR),

µ0α2 = constant, α ∝ 1√
µ0

; α ∝ R
z0

, µ0 ∝ (
z0
R )

2
,

α (LSB Galaxy) > α (HSB Galaxy) ∼ 1,

Dark Matter (LSB) > Dark Matter (HSB),
z0
R (LSB) <

z0
R (HSB). (19)

The above TFR of having the luminosity proportional to the fourth power of the velocity v, is also

consistent with prediction from an alternate model using a modified Newtonian dynamics (MOND)

[2,6].

As derived in (17,18), the parameter α, which proportionately represents the equivalent

distribution Wτe or µe, is proportional to the normalized galaxy scale R/z0. Accordingly, the condition

(19) of a constant factor µ0α2, required for the validity of the TFR or MOND, would be satisfied if
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the normalized scale parameter (z0/R) is proportional to the square-root of the surface brightness µ0.

This general trend, of having the normalized galaxy thickness z0/R to be smaller for a lower surface

brightness µ0, may seem to be a sensible characteristic. The specific required relationship between the

galaxy thickness and the surface brightness may be compared and verified with the measured data in

[15].

Using the above required relationship (19) between the µ0 and the normalized scale z0/R in

(18,7) would translate to another galaxy scaling relationship between the absolute thickness z0 (not

normalized to R) and the flat rotation velocity v.

µ0 = eb
αR , v2 = γeb

2c =
γµ0αR

2c =
γ(µ0α2)R

2cα ∝ z0,

µ0α2 = constant, α ∝ R
z0

. (20)

Accordingly, the galaxy thickness z0 is required to be proportional to the square of the flat rotation

velocity v = vmax. This required relationship is clearly verified from the measured data of [15], as

presented in the Figure 4. It is significant to note that the above two required relations (a) between the

galaxy normalized thickness z0/R and the surface brightness µ0, and (b) between the thickness z0 and

the flat rotation velocity v, are independently predicted from the UEG model of (17,18), based on the

observed TFR (19,16), but could not have been anticipated either from the TFR of [5] or the MOND

[2,6]. Verification of the above predictions from [15] is a significant development, which strongly

validates the new UEG model of (1,17), as applied to the non-spherical structure of a galaxy.

Figure 4. .

5.1. Estimating the MOND Constant a0 from the UEG Theory

The Modified Newtonian Dynamics (MOND) theory [2,6], which successfully models galaxy

rotation without need for any hypothetical ”dark matter,” modifies the Newtonian gravitational

acceleration aN = GM/r2 due to the galaxy’s mass M into the actual rotational acceleration v2/r =

a =
√

aN a0, for small values of aN < a0. The threshold acceleration a0 used in the MOND theory is

believed to be a fundamental constant approximately equal to a0 ≃ 1.2 × 10−10 (m/s2), valid for any

galaxy modeling. However, the new Unified Electro-Gravity (UEG) theory presented here is expected
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to emulate the MOND theory, leading to consistent agreement of the UEG and MOND models with

the Tully-Fisher Relationship (TFR) deduced in (19). In order to further strengthen the validity of the

UEG theory, in consistency with the MOND theory, we would show that the empirical parameter a0

can actually be derived from the UEG model, as estimated in the following using data from the galaxy

survey [9] and the basic UEG relation (7,8).

a(UEG)= v2
r = γL

4πRcr ,

a(MOND)= v2
r =

√
aNa0 =

√

GM
r2 a0

=

√

GL
r2 (

M0
L0

)a0 = a(UEG) ,

a0 = a2(UEG)
aN

=
γ2LL0

16π2R2c2GM0
. (21)

The geometric mean values of the “central” data points from the I− and K−band survey [9] (see (9,10))

maybe used for luminosity L and radius R in the above expression, in order to find a reasonable

estimate of the a0.

L =
√

1010.4L0 × 1010.8L0 = 1010.6L0 ,

R =
√

100.5 × 100.6/1.678 (kpc), R2 = 101.1/1.678 (kpc)2

=(3.086)2/1.678 × 1039.1 (m2),

a0 =
γ2LL0

16π2R2c2GM0
= 62×3.8282×1.678×10−7.5

16×π2×3.0862×32×6.67×2

= 1.55 × 10−10 (m/s2). (22)

The gravitational constant G = 6.67 × 10−11 (m3kg−1s−2), the UEG constant γ = 600 (m/s2)/(J/m3)

from [3,4] in Appendix A (see also (12.15)), and the standard values of solar mass M0 = 2.0 × 1030

(kg) and luminosity L0 = 3.828 × 1026 (W), are used in the above calculation. The estimated value of

a0 = 1.55 × 10−19 (m/s2) from (22) is in good agreement with its empirical value a0 ≃ 1.2 × 10−10 (m/s2)

used in the MOND theory [2,6]. This is a significant finding, which suggests that the UEG theory is the

actual fundamental basis behind the success of the empirical MOND theory.

The above estimation based on the formula (21) calculates the galaxy’s mass M, needed to find

the Newtonian acceleration aN = GM/r2, from the galaxy’s measured luminosity L, by assuming

that the mass-luminosity ratio of a galaxy, normalized to its standard solar reference value M0/L0,

is equal to unity. That is, M = L × (M/L), where (M/L) = ρ(M0/L0), with the parameter ρ assumed

to be unity. The formula (21) also assumes that the parameter α introduced earlier in (19,20), which

relates the amplitude b of the effective profile µe = b/r to the surface brightness µ0, to be unity. That is,

µ0 = eb/(αR) = eb/R. This led to expressing the UEG acceleration a(UEG) = v2/r in (21) in terms of the

luminosity L = 2πR2µ0, using (7,8), with the unit value of α = 1. That is, a(UEG) = v2/r = γeb/(2cr) =

γµ0αR/(2cr) = γLα/(4πRcr), with α = 1.

Accordingly, for a more accurate analysis, the expression of the MOND parameter a0 =

a2(UEG)/aN in (21) needs to be multiplied with an extra factor α2/ρ, which is assumed to be unity

for the central data points of the galaxy survey [9], for a reasonable estimate of the a0. For other

galaxies with relatively lower (higher) surface-brightness µ0, the parameter α2 is established to be

proportionately higher (lower) (see (20), µ0α2 remains constant), equivalently representing more

(less) “dark matter,” while the other parameter ρ is expected to be proportionately higher (lower),

representing relatively larger (smaller) baryonic mass-to-light ratio. Therefore, the extra factor α2/ρ is

expected to be approximately independent of any specific galaxy, so that the estimated value of a0 in

(21,22) would be applicable to all data points of the survey [9], and to all galaxies in general. This is a

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints201910.0375.v3

https://doi.org/10.20944/preprints201910.0375.v3


13 of 20

significant conclusion, which is consistent with the MOND hypothesis that the parameter a0 remains a

constant, uniformly applicable for all galaxy modeling.

5.2. Refinement in the Tully-Fisher Relation

Some refinement in the above TFR (19) may be needed, in order to confirm to the measured data

[5,9] more accurately, where the luminosity seems to be proportional to a smaller exponent (than the

ideal value of 4 in (19)) of the velocity v. This trend may be empirically established from (19) by having

the factor µ0α2 to be weakly dependent on the velocity v (proportional to a relatively small exponent

of v), instead of the ideal constant factor µ0α2 suggested above. This may be represented by suitable

refinement in the required relation in (19) between the galaxy normalized thickness z0/R and the

surface brightness µ0.

µ0α2 ∼ vb, 0 < b < 0.5;

L ∼ v4−b = vd, 3.5 < d < 4 . (23)

However, this refined TFR does not confirm to the MOND, where the luminosity is definitively

required to be proportional to the fourth power of the velocity v. It is not clear if the above refinement

(23) is really fundamental or is simply due to selection bias in the measurements of [5,9], resulting in a

limited range in the data over which the exponent d is estimated with a smaller value d < 4.

The total luminosity and surface brightness profile are usually proportional to the total baryonic

mass and its mass distribution, respectively, in which case the TFR would work as well if the luminosity

is interchanged with the baryonic mass. The proportionality between the baryonic mass and the

luminosity may not, however, strictly extend to all LSB galaxies, having smaller luminosity and

rotation velocity. In this case, the measured data follow a TFR more accurately, if the total baryonic

mass Mb is used in the relation (19,23), instead of the total luminosity L. The revised relation is referred

to as the Baryonic Tully-Fisher Relation (BTFR) [16]. The baryonic mass Mb would be proportional

either to the fourth power or to a smaller exponent of the velocity, if the baronic mass substitutes the

luminosity in the TFR versions (19) or (23), respectively. The former version of the BTFR is consistent

with MOND which, to fundamentally begin with, relates the baryonic mass to the fourth power of the

velocity v.

The deviation from the original TFR may be partly attributed to the larger contribution to

the rotation velocity v from the Newtonian gravity due to the proportionately larger regular mass

(baryonic), in the lower-luminosity LSB galaxies. More significantly, the revised trend may be

empirically accommodated by properly adjusting the parameter α in (18) to be dependent on both the

surface brightness µ0 and an equivalent baryonic surface mass density Ab of the galaxy. This would

be consistent with the basic principles of the present UEG model in (1- 5,17), where the gravitational

potential function that determines the redistribution of the energy density Wτ into the effective density

Wτe (see Figure 1) may be recognized to depend upon both the Newtonian gravitation (related to mass

profile) as well as the UEG field due to the light profile of a galaxy. However, more specific physical

explanation behind such an empirical trend, leading to the preference of the baryonic mass over the

luminosity in the BTFR, is at this point unclear, and is beyond the scope of the present work.

Mb = L × Mb
L = 8πv4c2

α2µ0γ2 × Mb
L

= 8πv4c2

α2(µ0
2/Ab)γ

2 ,
Mb
L =

Ab
µ0

,

Mb ∝ v4, α2 × (µ0
2/Ab) = constant. (24)
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Accordingly, for a given surface luminosity µ0, a larger value of the baryonic mass density Ab

is expected to result in a tighter confinement of the gravitational potential near the galaxy surface

(smaller z0), resulting in a larger α. The two refinements (23,24) may need to be studied together, which

may be associated with interdependent and/or mutually compensating physical effects.

6. Implication of the UEG theory for other Astrophysical Problems

The UEG theory for spiral galaxies is expected to be extended as well to model excess gravitational

mass observed in galaxy clusters. The UEG acceleration produced due to the Cosmic Microwave

Background (CMB) radiation surrounding a galaxy cluster could support the measured velocity

dispersion and gravitational lensing in the galaxy cluster, emulating the effect of the hypothetical

dark matter. For example, the effective gravitational mass M = 1.2 × 1015M0 of the Virgo cluster

[17,18], measured at the outer boundary of the cluster of diameter d = 4.6Mpc (± 8 degrees,

observed at the cluster’s average distance of R = 16.5Mpc) would be associated with an effective

gravitational acceleration a = 4GM/d2 = 3.18 × 10−11m/s2, where G = 6.67 × 10−11m3s−2kg−1 is the

universal gravitational constant and M0 = 2.0 × 1030kg is the reference solar mass. Assuming that

the hypothetical dark matter content of the cluster is typically about 90% of the total gravitational

mass [19], the required non-Newtonian acceleration is about a′ = 0.9a = 2.86 × 10−11m/s2. This can be

emulated by the UEG acceleration aUEG = γWτ(CMB) = 2.54 × 10−11m/s2 due to the energy density

Wτ(CMB) = (4σ/c)T4 of the CMB radiation surrounding the cluster, where σ = 5.670 × 10−8W/(m2K4) is

the Stefan-Boltzman constant, T = T0(1 + z)4 the CMB temperature around the cluster with a red-shift

z = 0.00385 = H0R/c, T0 = 2.7250K the current CMB temperature, H0 ≃ 70kms−1/Mpc the current

Hubble constant, γ = 600(m/s2)/(J/m3) the UEG constant [3,4] from Appendix A, and c = 3 × 108 the

speed of light. The required non-Newtonian acceleration a′ is quite close to the UEG acceleration aUEG

within 12% of difference, suggesting validity of the UEG theory. The small difference may, however,

be accommodated by having the measured distance R (hence cluster diameter d) larger about 6%

(R ≃ 17.6MPc). This is very likely, considering that the measurement of the distance R for the Virgo

cluster, based on measurement of distance of individual galaxies in the cluster, has a significant spread

[18].

Similarly, the effective gravitational mass M = 5.1 × 1014M0 of the Bullet cluster [20,21] would

be associated with an effective gravitational acceleration a = 4GM/d2 = 7.92 × 10−11m/s2, measured

at a selected spherical boundary of diameter d ≃ 1.9Mpc (expected to be somewhat larger than

an estimated d ≃ 1.5Mpc of the cluster’s 2-D gravitational-lensing boundary). The required

non-Newtonian acceleration a′ = 0.9a = 7.13 × 10−11m/s2 can be emulated by the UEG acceleration

aUEG = γWτ(CMB) = 7.14 × 10−11m/s2 due to the energy density Wτ(CMB) = (4σ/c)T4
0 (1 + z)4 of the

CMB radiation surrounding the cluster, with measured redshift z = 0.3. Like for the Virgo cluster,

the required non-Newtonian acceleration a′ for the Bullet cluster is reasonably emulated by the UEG

acceleration aUEG, reconfirming the success of the UEG theory. Similar to the modeling for the

spiral galaxies, the distribution of the UEG force, and equivalently of the gravitational mass for the

non-spherical structure of the bullet cluster, is expected to be most concentrated around the region

of strong Newtonian gravitation, which would clearly be confined around the radial axis connecting

the Bullet sub-clusters. The analysis maybe followed further, based on a useful simplified model that

the region of strong Newtonian potential due to the Bullet sub clusters constitute a cylindrical space

enclosing the sub clusters, with the cylinder’s cross-sectional diameter close to the diameter of each

sub cluster (assumed symmetrical), and the length of the cylinder extending somewhat beyond the

axial ends of the clusters. The uniform UEG acceleration due to the uniform CMB radiation would be

associated with equivalent gravitational mass, enclosed within in a spherical volume of a given radius,

to increase with the square of the radius. This mass, to be concentrated in the cylindrical volume

described above, as per the proposed UEG theory, would result in linearly increasing density of the

gravitational mass in the cylinder, with increasing radial distance away from the center. This would
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result in the peak density towards the axial ends of the cylindrical region, which is radially offset away

from the Newtonian mass centers of the sub clusters. This predicted offset of the gravitational mass

concentration would be consistent with the gravitational lensing measurements of the Bullet cluster

[22]. Any finer improvement of the analysis may involve proper modeling of the Newtonian potentials

due to the separate gaseous and visible (galaxies) mass concentrations, as well as including additional

contributions from any equivalent UEG gravitational mass outside of the idealized cylindrical region

discussed above.

The above success of the UEG model for the Virgo and the Bullet clusters, is expected to extend

as well to other galaxy clusters. Using median values of cluster mass M = 5 × 1014M0 (1014 to 1015M0)

and diameter d = 6Mpc (2 to 10Mpc) [19], the calculated acceleration a = 0.78 × 10−11m/s2 at the outer

boundary of a median cluster is lower than the UEG acceleration aUEG = 2.5 × 10−11m/s2 (assuming

redshift z ∼ 0, see calculations above). The difference between the accelerations a and aUEG would be

reduced, with somewhat larger M and/or lower d. The calculations suggest there is adequate UEG

acceleration to emulate the clusters’ gravitational effects, without any hypothetical dark matter.

The role of the hypothetical dark matter (possibly dark energy) in a cosmological model could

also be similarly emulated by the UEG acceleration due to the CMB radiation (as well as current and

future star lights). Specific details of the cosmological modeling based on the new UEG theory is

beyond the scope of the present work, and is separately explored [23].

7. Conclusion

The estimate of the UEG constant γ from measured data from a galaxy survey [9], based on the

new UEG model, agrees well with an accurate value derived from the UEG model in the Appendix

A for an elementary particle [3,4]. This is based on a statistically average data point from the survey

samples. Direct analysis of measured brightness profile and rotation curve of a specific selected galaxy

is also illustrated to provide a similar estimate for the γ, that is consistent with the estimate from the

galaxy survey. Further, the UEG galaxy model confirms to the TFR [5,16] for varying range of galaxy

amplitudes, and is consistent with results from a modified Newtonian dynamics (MOND) [2,6] model.

The required condition for the agreement between the UEG model, TFR and MOND is supported

by measured relations of the galaxy thickness with the surface brightness and the rotation velocity

[15], which may be considered as an independent validation of the UEG model. The above studies

strongly support validity of the new UEG model, established for the non-spherical structure of a disk

galaxy. The UEG theory is intended to serve as a theoretical substitute for the current “dark-matter”

hypothesis. Further, the UEG model may similarly be applicable to model excess gravitation observed

in galaxy clusters, as well as to model cosmological expansion of the universe.

The UEG theory, which is shown to be consistently applicable to model elementary particles [3,4]

and spiral galaxies, and is extended as well to galaxy clusters and possibly for cosmological modeling,

could provide a new unified theoretical paradigm for a broad range of physical concepts, covering

both small and large size scales of nature, and spherically symmetric as well as asymmetric structures.

Appendix A. A Unified Electro-Gravity Theory, Applied to an Elementary Charged Particle

A Unified Electro-Gravity (UEG) theory is established based on the following basic principles:

(a) The mass m and its associated energy W = mc2 of a given body is assumed to be inversely

proportional to the relative permittivity ǫr, or directly proportional to the inverse-relative permittivity

ǫr = 1/ǫr, of the surrounding medium. This is in consistency with the energy W =
q2

8πǫrq
of a spherical

surface charge q of radius rq, placed in a medium with permittivity ǫ = ǫ0ǫr. The ǫ0 is the permittivity

of an “ideal free-space” having an ideal unit relative permittivity ǫr = 1, which is assumed to exist far

away from any gravitating body r̄ → ∞.
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Using the above concept of mass, a gravitational force F(r̄) at a given location r̄, and its associated

field Eg(r̄) = F(r̄)/m0 defined as the gravitational force applied on a unit free-mass m0, may be modeled

in terms of the gradient of the inverse-relative permittivity function ǫr(r̄).

Eg = F
m0

=
−∇W(r̄)

m0
=

−∇[m(r̄)c2]
m0

=
−∇[m0ǫr(r̄)c

2]
m0

= −c2∇ǫr(r̄). (A1)

(b) The gravitational field, conventionally defined by the Newton’s Law of gravitation, needs to be

modified by adding a new part which is a function of the energy density Wτ associated with an

electromagnetic field at a given location. As a simple first-order approximation, the new gravitational

field Egu, referred to as the UEG field, is assumed to be directly proportional to the energy density,

with the proportionality constant γ referred to as the unified electro-gravity (UEG) constant. The

proposed modification would maintain the Newtonian gravitational field as the total field for an

electrically-neutral, non-radiating massive body (like planet earth), in the external region where the

electromagnetic energy density is zero. It would, however, change the nature of gravitation for an

electrically-charged body (like an electron), or a radiating body (like a star or galaxy), where the energy

density associated with the electrical charge or light radiation is non-zero. Similarly, it would also

change the nature of gravitation in the internal region of an electrically neutral body (like a neutron

or neutrino,) which is assumed to consist of internal charged substructures. The modified theory

may be alternately interpreted by not modifying the Newton’s Law of gravitation, but re-defining the

energy density in an electromagnetic field, such that the total energy/mass of a neutral body remains

unchanged.

The modified theory will fundamentally shape the physical structure of any charged particle, such

as an electron. The new electro-gravitational field would determine the inverse-relative permittivity

function ǫr(r̄) around an electron, as per the relation (A1). We may further assume that the new

gravitational field Egu = −γWτ r̂, directed toward the center along −r̂, is much stronger than the

conventional Newtonian gravitational field, and therefore would essentially be equal to the total

gravitational field Eg.

Eg = −c2∇ǫr(r̄) ≃ Egu = −γWτ r̂. (A2)

Appendix A.1. Energy Density in a Non-Linear Medium

In the above unified electro-gravity (UEG) model, the permittivity distribution of the free-space is

dependent upon the energy density distribution, which is dependent upon the source charge. This is

unlike a linear dielectric medium where the permittivity function is independent of the field strength

or the source charge. Having the permittivity distribution to be a function of the source charge, is

equivalent to having the electric field distribution to be a non-linear function of the source charge. The

energy density in such a non-linear medium needs to be properly modeled, using a general expression

for the energy density.

The electric field E and the electric flux density D produced due to a spherical surface charge q of

radius rq, at a distance r from the center of the charge, in the presence of a permittivity distribution

ǫ(r) = 1/ǫ(r), may be expressed using the Coulomb’s Law.

E =
q

4πr2ǫ(r)
r̂, D =

q

4πr2 r̂, E = D
ǫ(r)

= ǫ(r)D. (A3)
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The total energy W and the associated mass m = W/c2 of the charge may be calculated by integrating

the energy density Wτ in its electric field over the spherical volume τ outside of the charge r > rq. The

electric field, and the associated energy density, in the spherical region with r < rq would be zero.

The Wτ may be expressed in (A4) in terms of the flux density D = ǫE due to the charge q, and its

incremental value dD due to an incremental change dq of the charge. This expression of the energy

density would be valid for a general non-linear medium, which may be simplified as Wτ = (1/2)ǫ|D|2
for a linear medium.

W =
∫ ∫ ∫

τ Wτdτ =
∫ ∫ ∫

τ(
q
∫

q=0
dWτ)dτ = m0c2,

Wτ =
q
∫

q=0
dWτ =

q
∫

q=0
ǫD · dD = 1

2 ǫ′|D|2,

ǫ′ = 2
q2

q
∫

q=0
ǫ(q)qdq =

2ǫ0
q2

q
∫

q=0
ǫr(q)qdq = ǫ0ǫ′r . (A4)

In equivalency to a conventional definition of the energy density for a linear medium, it would be

useful to define a new variable ǫ′ for a non-linear medium. The conventional expression of the energy

density for a linear medium, with the inverse-permittivity ǫ for the linear medium simply substituted

by the new equivalent variable ǫ′, would be valid as well for a non-linear medium.

Now, combining (A4,A3) with (A2), a governing relationship for the inverse-relative permittivity

function ǫr(r̄) is established.

c2∇ǫr(r̄) ≃ γWτ r̂ = γr̂

16π2r4ǫ0

q
∫

0
qǫr(q, r)dq. (A5)

Appendix A.2. Series Solution for the Inverse-Relative Permittivity Function ǫr(r̄)

The inverse-relative permittivity function ǫr(r) may be solved by expanding it as power-series

of r−i with unknown coefficients bi, i = 0, 1, 2, · · · , and then finding the coefficients in order to satisfy

the above UEG relation (A5). This would be possible by establishing an iterative process, relating a

coefficient bi with an increasingly higher index i to those with a lower index, starting with the known

value for the lowest coefficient b0. In the limit of large distance r, the ǫr(r) would approach unity, fixing

the coefficients b0 = 1.

The governing relationship (A5) for ǫr(r) would require the series solution with non-zero values

of the coefficients bi only for i = 0, 3, 6, 9, · · · . Accordingly, the series solution for the ǫr(r) may be

conveniently expressed as a power series of a normalized variable t = (rµ/r)1.5, with even powers

of t. The normalization parameter rµ is to be determined from (A5), which may be shown to be

proportional to γ1/3. We need not present the detailed steps, as prescribed above, to derive the

individual coefficients for the series. The final solution for ǫr(r) is expressed in (A6), which may simply

be substituted in (A5) to verify its validity. The series (A6) may be recognized as the zeroth-order

Bessel function J0(t).

ǫr(r) ≃ 1 − t2

22[1!]2
+ t4

24[2!]2
− t6

26[3!]2
+ · · · ; t = (rµ/r)1.5,

rµ = (
γq2

24π2c2ǫ0
)1/3 = 5.14 × 10−16γ1/3 . (A6)
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Figure A1. .

Appendix A.3. Particle Energy and Mass, as a Function of the Charge Radius

Once the inverse-relative permittivity function ǫr(r) is solved, the energy density can be expressed

in terms of the ǫr(r) using (A4), which can then be integrated over the total volume outside the charge

radius (there is no field inside the charge radius) to obtain the total energy or the equivalent mass

m = m0 of the particle.

m = m0 = W
c2 = 1

4πc2ǫ0

∞
∫
r

1
r2

q
∫
0

qǫr(q, r)dqdr

= mµ
∞
∑

k=0

(−1)kt
(2k+ 2

3 )

22k(k!)2(k+1)(3k+1)
,

mµ =
q2

8πc2ǫ0rµ
= 2.49 × 10−30γ−1/3. (A7)

The charge radius in (A7) is maintained as a general variable (=r). The general mass function m(r)

in (A7) would also represent the equivalent energy (=c2m(r)) contained in the field external to a sphere

of radius r, produced due to the charge placed at any radius less than r.

Figure A1 plots the normalized mass m/mµ of (A7) as a function of the normalized radius rµ/r,

showing an oscillatory behavior of the mass function. Any of the minimum points of the mass function

would correspond to a possible stable particle with the particular charge radius r = rq.

The smallest possible stable mass deduced from the oscillatory mass of (A7) Figure A1) is expected

to be the mass of an electron (or a positron) without any spin. This is referred to as the static UEG mass

m′
e of an electron. We will assume that the static UEG mass m′

e of an electron is about half of the total

electron mass me, that includes additional mass/energy due to the electron’s spin. This factor of about

2 between the m′
e and me is suggested by recognizing that the electron’s spin g-factor is approximately

equal to 2. The same conclusion may also be suggested by observing that the orbital magnetic moment

of an atomic electron with an orbital angular momentum h̄ is approximately equal to the magnetic

moment of a spinning electron with spin angular momentum h̄/2.

With the assumption of m′
e = me/2 for the minimum stable mass in Figure A1, the value of the

normalization constant mµ can be calculated, from which the value of the UEG constant γ is estimated.

m′
e

mµ
= me

2mµ
= 1.5425,

mµ = me
3.085 = 2.49 × 10−30γ−1/3,

γ1/3 = 3.085 × 2.49 × 10−30/me,

γ = 5.997 × 102(m/s2)/(J/m3). (A8)
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As per the UEG theory of the electron, the constant γ is declared to be a new natural constant,

which is equal to a new gravitational acceleration in m/s2 toward the center of gravity, produced due

to one J/m3 of energy density.

Appendix A.4. General Relationship Between the UEG Constant γ, the Particle Mass and Classical Radius

The above estimate of the value of the UEG constant γ is associated the actual value of the

UEG static mass m′
e of the electron, and carries a specific dimensional unit of (m/s2)/(J/m3). More

fundamentally, a dimension-less relationship between the smallest stable UEG static mass m′
e of any

elementary particle, the corresponding classical radius r′e, and the UEG constant γ required to produce

the mass m′
e, can be derived based on the expressions for the reference mass mµ (A7) and reference

radius rµ (A6) used in the above analysis.

(
mµ

m′
e
)3 =

3q4

64πc4ǫ2
0γm′

e
3 =

3r′e
2

π

γm′
e

,

γm′
e

r′e
2 = 3π(

m′
e

mµ
)3, m′

e =
q2

8πǫ0r′ec2 . (A9)

The value of the ratio m/mµ = 1.5425 from the Figure A1, for the smallest possible stable mass m = m′
e.

Using this value, the γ, m′
e and r′e may be related in term of a dimensionless constant.

γm′
e

r′e
2 = 3π(

m′
e

mµ
)3 = 34.590 . (A10)

If we simply assume the total mass me of the elementary particle with spin to be twice the UEG mass

m′
e, and the classical radius re associated with me half of that (= r′e) with m′

e, the γ, me and re may be

related using a new dimensionless constant, which would be eight times the above constant.

γme
r2
e

= 24π(
m′

e
mµ

)3 = 8 × 34.590 = 276.720 . (A11)

Notice that the above constant is close to twice the inverse-fine structure constant 1/α = 137.036, and

the earlier constant in (A10) is one fourth of the 1/α, with less than one percent of difference. The

small difference may be due to lack of generality or rigor of the basic UEG static theory for the particle,

presented in this paper with assumption of a simple UEG function in (A2), and without including the

particle’s spin. The small difference may perhaps be related to the small difference between the actual

value of the g-factor and its ideal value of 2 as discussed before. This may point to possible physical

origin of the g-factor associated with the spin, governed by a more rigorous version of the new UEG

theory.

Leaving aside any small difference due to lack of generality or rigor of the basic UEG model,

the close relations of the above dimensionless constant (A10 or A11) to the fine-structure constant is

intriguing. The very existence of a dimensionless constant based on the UEG theory, and its intriguing

close numerological relationship with the known fine-structure constant α, may strongly suggest

certain fundamental basis and significance of the new UEG theory. The theory is further validated

in [3,4] by successfully modeling the Casimir effect, and would be applied in this paper to model

gravitation in spiral galaxies and reconfirm the estimate for the UEG constant γ.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints201910.0375.v3

https://doi.org/10.20944/preprints201910.0375.v3


20 of 20

References

1. Rubin, V.; Thonard, N.; W. K. Ford, J. Rotational Properties of 21 Sc Galaxies with a Large Range of

Luminosities and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophysical Journal, Part 1 1980,

238, 471–487.

2. Milgrom, M. A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass

Hypothesis. Astrophysical Journal, Part 1 1983, 270, 365–370.

3. Das, N. A New Unified Electro-Gravity Theory for the Electron. Preprints, 2019070052 (https://doi.org/10.

20944/preprints201907.0052.v2) 2019.

4. Das, N. A Unified Electro-Gravity Theory of a Spinning Electron, and the Fundamental Origins of the Fine

Structure Constant and Quantum Concepts. American Physical Society April 2020 Meeting, Paper ID: Y15.00004

(https://meetings.aps.org/Meeting/APR20/Session/Y15.4) 2020.

5. Tully, R.B.; Fisher, J.R. A New Method of Determining Distances to Galaxies. Astronomy and Astrophysics

1977, 54, 661–673.

6. Milgrom, M. A Modification of the Newtonian Dynamics - Implications for Galaxies. Astrophysical Journal,

Part 2 1983, 270, 371–389.

7. Borriello, A.; Salucci, P. The Dark Matter Distribution in Disk Galaxies. Monthly Notices of the Royal

Astronomical Society 2001, 323, 285–292.

8. Freeman, K.C. On the Disks of Spiral and SO Galaxies. Astrophysical Journal 1970, 160, 811–830.

9. Courteau, S.; Dutton, A.A.; van den Bosch, F.C.; MacArthur, L.A.; Dekel, A.; McIntosh, D.H.; Dale, D.A.

Scaling Relations of Spiral Galaxies. Astrophysical Journal 2007, 671, 203–225.

10. Weavers, B.M.H.R.; van der Kruit, P.C.; Allen, R.J. The Palomar-Westerbork Survey of Northern Spiral

Galaxies. Astronomy and Astrophysics Supplement Series 1986, 66, 505–662.

11. NED. Nasa Extragalactic Database, Results for NGC-2403. http://ned.ipac.caltech.edu, Retrieved February

2017, 2017.

12. Begeman, K. HI Rotation Curves of Spiral Galaxies. PhD Thesis, University of Groningen, Netherlands 2006.

13. Munoz-Mateos, J.; de Paz, A.G.; Boissier, S.; Zamorano, J.; Jarrett, T.; Gallego, J.; Madore, B.F. Specific

Star Formation Rate Profiles in Nearby Spiral Galaxies: Quantifying the Inside-Out Formation of Disks.

Astrophysical Journal 2007, 658, 1006–1026.

14. de Blok, W.J.G.; McGaugh, S.S. The dark and Visible Matter Content of Low Surface Brightness Disc Galaxies.

Monthly Notices of the Royal Astronomical Society 1997, 290, 533–552.

15. Bizyaev, D.; Kajsin, S. The Stellar Disk Thickness of Low Surface Brightness Galaxies. The Astrophysical

Journal 2004, 613, 886–897.

16. McGaugh, S.S.; Schombert, J.M.; Bothun, G.D.; de Blok, W.J.G. The Baryonic Tully-Fisher Relation. The

Astrophysical Journal 2000, 533, L99–L102.

17. Wikipedia. Virgo Cluster. http://en.wikipedia.org/wiki/Virgo_Cluster, Retrieved January 2020, 2020.

18. Fouque, P.; Solanes, J.M.; Sanchis, T.; Balkowski, C. Structure, Mass and Distance of the Virgo Cluster from a

Tolman-Bondi Model. Astronoly and Astrophysics 2001, 375, 770–780.

19. Wikipedia. Galaxy Cluster. http://en.wikipedia.org/wiki/Galaxy_cluster, Retrieved January 2020, 2020.

20. Wikipedia. Bullet Cluster. http://en.wikipedia.org/wiki/Bullet_Cluster, Retrieved January 2020, 2020.

21. Clowe, D.; Gonzalez, A.H.; Markevitch, M. Weak Lensing Mass Reconstruction of the Interacting Cluster 1E

0657-558: Direct Evidence for the Existence of Dark Matter. The Astrophysical Journal 2004, 6o4, 596–603.

22. Clowe, D.; Bradac, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A Direct

Impirical Proof of the Dark Matter. The Astrophysical Journal Letters 2006, 648, 109–113.

23. Das, N. The Unified Electro-Gravity (UEG) Theory Applied to Cosmology. Paper #7, pp.74-86, in “A Unified

Electro-Gravity (UEG) Theory of Nature," http://wp.nyu.edu/ueg, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints201910.0375.v3

https://doi.org/10.20944/preprints201907.0052.v2
https://doi.org/10.20944/preprints201907.0052.v2
https://meetings.aps.org/Meeting/APR20/Session/Y15.4
http://ned.ipac.caltech.edu
http://en.wikipedia.org/wiki/Virgo_Cluster
http://en.wikipedia.org/wiki/Galaxy_cluster
http://en.wikipedia.org/wiki/Bullet_Cluster
http://wp.nyu.edu/ueg
https://doi.org/10.20944/preprints201910.0375.v3

	Introduction
	Theory
	The UEG Theory of a Non-Spherical Radiating Body
	Analytical Model for a Spiral Galaxy

	Estimation of  Using Measured Data from Galaxy Survey
	Estimation of  Using Measured Data of an Individual Galaxy
	The Tully-Fisher Relation (TFR) and the Modified Newtonian Dynamics (MOND) Model, Derived from the UEG Model
	Estimating the MOND Constant a0 from the UEG Theory
	Refinement in the Tully-Fisher Relation

	Implication of the UEG theory for other Astrophysical Problems
	Conclusion
	A Unified Electro-Gravity Theory, Applied to an Elementary Charged Particle
	Energy Density in a Non-Linear Medium
	Series Solution for the Inverse-Relative Permittivity Function r()
	Particle Energy and Mass, as a Function of the Charge Radius
	General Relationship Between the UEG Constant , the Particle Mass and Classical Radius

	References

