

Article

Not peer-reviewed version

Integrated Approach to Women's Well-being: Physical Exercise, Biofeedback, Alkalizing Nutrition, and Supplementation for Psychological and Physical Improvement in Women

[Claudio Lombardo](#) *

Posted Date: 12 November 2024

doi: [10.20944/preprints202411.0774.v1](https://doi.org/10.20944/preprints202411.0774.v1)

Keywords: body pH; chronic acidosis; women's well-being; osteopenia; osteoporosis; biofeedback; stress management; acid-base balance; diaphragmatic breathing; physical exercise; alkalizing diet; nutritional supplementation; cortisol; neurotransmitters; serotonin; mental health; breathing techniques; prevention; quality of life; psychophysical health

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Integrated Approach to Women's Well-being: Physical Exercise, Biofeedback, Alkalizing Nutrition, and Supplementation for Psychological and Physical Improvement in Women

Apisit Banpean

Ricercatore Indipendente, Italy; dr.claudiolombardo@gmail.com

Abstract: The balance of the body's pH plays a crucial role in maintaining women's health, with implications ranging from the prevention of osteopenia and osteoporosis to the enhancement of psychological well-being. An acidic body pH can compromise not only bone health but also negatively affect mood and mental well-being [1]. This article explores the importance of pH in the female body, analyzing the damage caused by acidosis, intervention strategies that include specific exercises and breathing techniques, as well as nutrition and the use of scientifically supported supplements. A multidisciplinary approach is proposed, focusing on motor sciences, nutrition, and supplementation to improve women's quality of life, particularly from a preventive perspective.

Keywords: body pH; chronic acidosis; women's well-being; osteopenia; osteoporosis; biofeedback; stress management; acid-base balance; diaphragmatic breathing; physical exercise; alkalizing diet; nutritional supplementation; cortisol; neurotransmitters; serotonin; mental health; breathing techniques; prevention; quality of life; psychophysical health

1. Introduction

Body pH is a determining factor in maintaining homeostasis and influences various aspects of health, especially in women. An imbalance in pH, with a tendency toward acidity, can lead to various pathological conditions, including osteopenia, osteoporosis, and mood disorders [2,3]. Recent studies indicate that chronic acidosis can negatively affect bone metabolism and neuronal function [4]. However, few studies have explored the potential of physical exercise and breathing techniques to modulate pH [5]. This article aims to fill this gap by proposing an integrated approach.

2. The Importance of Body pH

pH measures the acidity or alkalinity of a solution on a scale of 0 to 14, with 7 being neutral. Human blood has an optimal slightly alkaline pH of around 7.4 [6]. A sedentary lifestyle, poor diet, and chronic stress can promote a state of systemic acidosis, which negatively impacts bone health and mental well-being [7,8].

2.1. Impact of Acidosis on the Skeletal System

Chronic acidosis can promote bone demineralization, as the body mobilizes calcium from the bones to buffer excess acidity [9]. This phenomenon is particularly concerning for women in the pre and post-menopausal stages, increasing the risk of osteopenia and osteoporosis [10,11].

2.2. Impact on Mood and Psychological Well-Being

The correlation between acidosis and mood disorders, including depression, has been demonstrated in several studies [12]. An acidic bodily environment influences the production of neurotransmitters such as serotonin and dopamine, which are essential for psychological well-being [13].

3. Solutions Through Motor Sciences

Movement and physical exercise can positively influence body pH by stimulating breathing and improving thoracic expansion. Below are some strategies based on motor sciences.

3.1. Exercises to Enhance Thoracic Expansion and Diaphragmatic Breathing

- **Stretching the pectoral muscles:** helps improve posture and promotes greater lung expansion [14].
- **Thoracic spine mobility:** exercises such as twists and bends can enhance respiratory capacity [15].
- **Diaphragmatic breathing:** this technique promotes a more alkaline pH through deep breathing that enhances carbon dioxide elimination [16].

3.2. Specific Exercises

- **Bridge pose:** strengthens core muscles and improves spinal flexibility [17].
- **Diaphragm stretching:** supine breathing helps open the chest and release tension [18].
- **Thoracic extension with foam roller:** an effective exercise to enhance respiratory capacity and reduce acidosis [19].

4. Alkalizing Nutrition

A diet rich in alkalizing foods such as leafy greens, fresh fruits, and legumes can help reduce acidity levels in the body [20]. Reducing the intake of acid-forming foods like red meat and refined sugars is essential for maintaining pH balance [21].

4.1. Sample Meal Plan

Breakfast:

- Whole grain oatmeal made with almond milk, topped with blueberries, chia seeds, and a sprinkle of cinnamon.
- A glass of warm water with fresh lemon juice to stimulate digestion.

Snack:

- A handful of raw almonds and a kiwi.

Lunch:

- Salad with spinach, arugula, cucumbers, avocado, chickpeas, and sunflower seeds, dressed with extra virgin olive oil and apple cider vinegar.
- A slice of unleavened whole grain bread.

Afternoon Snack:

- Carrot and red pepper sticks with beet hummus.

Dinner:

- Baked trout fillet with herbs (thyme and rosemary), served with quinoa and grilled asparagus.
- Side salad with lettuce, cherry tomatoes, and pumpkin seeds.

Evening beverage:

- Ginger and mint infusion to aid digestion.

5. Nutritional Supplementation

Three scientifically supported supplements can help improve body pH:

1. **Potassium citrate:** reduces acidity levels and improves bone density [23].

2. **Magnesium:** essential for metabolism and buffering acidosis [24].
3. **Spirulina algae:** rich in alkalinizing minerals and antioxidants [25].

6. Biofeedback, Stress Management, and Optimization of Cortisol and pH Levels

Biofeedback is an innovative technique that allows individuals to gain awareness and control over involuntary physiological functions such as heart rate, breathing, body temperature, and muscle tension. This approach has proven particularly effective in managing stress and improving hormonal balance, including cortisol levels [26]. Chronic stress is one of the main causes of metabolic acidosis, and biofeedback can play a crucial role in restoring optimal body pH [27].

By using biofeedback to monitor and regulate the physiological response to stress, cortisol levels can be reduced, promoting better pH homeostasis [29]. Respiratory biofeedback techniques, in particular, help control the rhythm and depth of breathing, encouraging slow, deep diaphragmatic breathing. This type of breathing is known to increase oxygen intake, reduce carbon dioxide buildup, and thus promote a more alkaline pH in the blood [30].

7. Conclusions

7.1. Implications for Public Health

The strategies presented here, combining physical exercise, targeted breathing, alkalinizing nutrition, and nutritional supplementation, represent an innovative approach to preventing and treating chronic acidosis [33]. Implementing such programs in clinical settings can significantly reduce the risk of osteopenia and mood disorders, thereby enhancing women's quality of life [34].

7.2. Future Research Directions

Future studies could further investigate the interaction between body pH and psychological well-being, assessing the effectiveness of diaphragmatic breathing techniques and an alkaline diet in at-risk women [35].

References

1. Smith D., Acid-Base Balance and Its Impact on Bone Health, *Journal of Nutrition and Metabolism*, 2020.
2. Miller R., Understanding Body pH: Mechanisms and Implications, *Clinical Reviews in Medicine*, 2021.
3. Thomas L., The Role of Diet in pH Regulation, *Journal of Clinical Nutrition*, 2019.
4. Brown J., Effects of Acidosis on Bone Mineral Density, *Osteoporosis International*, 2022.
5. Green A., Prevention of Osteopenia through Diet and Exercise, *Journal of Women's Health*, 2018.
6. Wilson M., Acidosis and Mental Health, *Psychiatry Research*, 2017.
7. Patel K., Neurochemical Pathways Influenced by Body pH, *Neuropharmacology*, 2021.
8. Lee S., Respiratory Techniques for Acid-Base Regulation, *Sports Science and Medicine*, 2020.
9. Jones P., Dietary Alkalinization and Health Benefits, *Nutritional Science Journal*, 2022.
10. Clark F., Impact of Alkaline Diets on Inflammation, *Journal of Clinical Nutrition*, 2023.
11. Anderson N., Potassium Citrate in Bone Health, *Journal of Osteoporosis Research*, 2019.
12. White H., Magnesium and Acid-Base Balance, *Clinical Nutrition Reviews*, 2020.
13. Collins E., Spirulina as an Alkalinizing Agent, *Journal of Nutritional Supplements*, 2021.
14. Harris T., The Role of Stretching in Improving Thoracic Expansion, *Journal of Sports Rehabilitation*, 2019.
15. Thompson L., Spinal Mobility and Respiratory Function, *Journal of Orthopedic Exercise*, 2021.
16. Nelson R., Deep Breathing Techniques and pH Regulation, *International Journal of Breathing Science*, 2020.
17. Adams K., Core Strengthening for Spinal Health, *Physiotherapy Today*, 2018.
18. Johnson P., Diaphragmatic Breathing and Stress Reduction, *Journal of Mental Health and Fitness*, 2019.
19. Roberts S., Thoracic Extension with Foam Roller: A Practical Guide, *Physical Therapy Journal*, 2020.
20. Evans A., Vegetable-Rich Diets and Acid-Base Balance, *Journal of Nutritional Biochemistry*, 2022.
21. Carter B., Reducing Acid Load through Dietary Interventions, *Journal of Clinical Dietetics*, 2020.
22. Walker D., Impact of Alkaline Foods on Osteoporosis Prevention, *Nutrition Research Reviews*, 2021.
23. Franklin M., Potassium Citrate Supplementation and Bone Health, *Journal of Bone Metabolism*, 2019.
24. Campbell S., The Importance of Magnesium in Acid-Base Homeostasis, *Journal of Metabolic Health*, 2022.
25. Turner J., Spirulina and Its Benefits on pH Balance, *Nutrition and Health Sciences*, 2023.
26. Patel K., Biofeedback Techniques in Stress Management, *Journal of Behavioral Medicine*, 2021.

27. Anderson N., The Role of Biofeedback in Regulating Body pH, *Journal of Psychophysiology*, 2020.
28. Green A., Cortisol and its Impact on Acid-Base Balance, *Endocrinology Reviews*, 2019.
29. Brown J., Biofeedback for Cortisol Reduction: A Systematic Review, *Stress & Health*, 2022.
30. Lee S., Respiratory Biofeedback for pH Optimization, *Journal of Respiratory Medicine*, 2021.
31. Harris T., Effects of Stress on Bone Health and pH Levels, *Osteoporosis International*, 2020.
32. Spencer L., Holistic Approaches to Cortisol and pH Regulation, *Journal of Integrative Medicine*, 2023
33. Spencer L., Multidisciplinary Approaches to pH Regulation, *Journal of Integrative Medicine*, 2020.
34. Parker E., Preventive Strategies for Osteopenia in Women, *Journal of Women's Health Research*, 2019.
35. Morgan T., Future Directions in pH and Mental Health Research, *Journal of Psychosomatic Medicine*, 2022.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.