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Abstract: This paper examines the transformative potential of generative artificial intelligence (Al)
and neuroaesthetic methodologies in archaeology, museum’s collections and art history. It introduces
the concept of the AI multiverse, which allows archaeologists and social scientists to construct
multiple plausible reconstructions of ancient environments and cultural practices, addressing the
inherent uncertainties in archaeological data. Generative Al tools create simulations and
visualizations that redefine traditional archaeological frameworks by incorporating multivocal and
dynamic interpretations. The study also integrates visual thinking strategies (VTS), eye tracking and
saliency map analyses to investigate how structured observation enhances cognitive and emotional
engagement with visual artifacts. A case study involving the painting My Mother, She Fell From the
Sky highlights the impact of VIS on guiding viewers' gaze and improving interpretive depth, as
evidenced by heatmaps and saliency distribution.
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1. Introduction

The application of generative artificial intelligence (Al) in archaeology, art and the humanities
is revolutionizing how researchers interpret, visualize and reconstruct material culture, from the past
to the present [1]. Generative AI2 refers to systems that create new content or data by learning
patterns from existing information, making it particularly well-suited to tackling the challenges of
incomplete or fragmented archaeological records. The world of digital archaeology is marked by
various definitions, milestones and methodological revolutions: virtual archaeology in 1996,
cyberarchaeology in 2008, (generative) Al archaeology in 2022.

If Virtual Archaeology was mainly focused on computer graphic reconstructions [3],
Cyberarchaeology [4] on virtual reality and simulations [,] AI-Archaeology is centered on the idea of
the past as multiverse.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Venn Diagram: Approaches to Archaeological Reconstructions
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Figure 1. Venn Diagram: intersections and goals of Virtual Archaeology, Cyberarchaeology and Al-
Archaeology.

Virtual archaeology mostly relied on a unidirectional approach to address a degree of
uncertainty: a photorealistic reconstruction founded on precise and validated facts. The downside of
this approach was to imagine the reconstruction of the past as a single digital world. Computer
graphics and photorealism were often very convincing in the validation of these kinds of digital data.
Cyber-archaeology was predominantly accessible to various reconstructions and simulations, with
the interaction of models being crucial. Al-Archaeology is inherently amenable to infinite iterations
of visualizations, reconstructions, and simulations [5]. This situation addresses the methodological
issue of uncertainty through exponentially expanding potential knowledge. The concept of the
multiverse refers to a hyperinformative realm without limitations for the development and
comparison of ideas, theories, and visions. This multiplication of content coming from machine
learning can reframe previous views and open new perspectives (figure 1). The Venn diagram in
Figure 1 shows the evolution of virtual and cyberarchaeology in Al-Archaeology [6] and the potential
of neural networks in the simulation-reconstruction process. We can imagine the AI multiverse as a
space of increased knowledge, rather than the simple result of a validation process. Multiverse Al
paves the way for multifactorial analyses by combining different ontologies of data and models. The
more we generate Al models, the more we learn and interpret. It is a different approach in
comparison with the usual bottom-up process in archaeology: data recording-single hypothesis-
validation. The link between data intake and output in generative Al is subject to multiple
validations: in theory endless processes, in practice the final ones are selected by specific scholarships
and consistency between research questions and final results. This methodology contradicts the
concept of reconstructing the past as a singular “snapshot” due to the dynamic and developing
characteristics of time and space; it is unfeasible to “freeze” the past, a city, a site, or a landscape, as
they perpetually coevolve into something new.

Generative ideas stimulate new and more advanced research questions, and this aspect is
extremely powerful when we deal with simulations of ancient societies, particularly in relation to
human activities. I believe that the “human factor”, so the interaction between human activities,
minds, artifacts, built and natural environments, can be properly investigated by AI [7].

Generative Al operates through machine learning models, such as neural networks, that analyze
vast datasets—including excavation records, artifact photographs, and environmental data—to
identify patterns and relationships8. Once trained, these models can produce simulations,
visualizations, and predictions that help fill gaps in the archaeological record. One notable
application of generative Al in archaeology is its ability to create detailed 3D models of ancient
structures and artifacts. By training on datasets of similar objects or architectural styles, Al can
generate reconstructions that align with known archaeological and cultural contexts.
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In this paper the research focus will be mainly on the use of Al in the interpretation and
perception of artifacts, images and visual information. Human vision is, in fact, multimodal [9] and
it is based on ranking, segmentation and discretization of the content [10]. Multimodality in vision
refers to the integration of various sensory inputs and cognitive processes that help humans perceive
and interpret visual information. Vision doesn't operate in isolation; it interacts with other modalities
such as touch, sound, and even memory. Human vision prioritizes certain elements of a scene based
on saliency and relevance. This involves ranking objects or features in terms of importance for
survival, decision-making, or attention. The visual system breaks down a complex scene into distinct
regions or objects to make sense of it. It prioritizes certain elements of a scene through ranking,
focusing attention on features like brightness, contrast, and emotional significance, which are most
relevant to survival or decision-making. Simultaneously, it employs segmentation to break down
complex visual scenes into distinct objects or regions by identifying edges, contrasts, and spatial
boundaries [11]. Depth perception further aids this process by distinguishing the foreground from
the background, enabling spatial awareness. Through discretization, the brain isolates and
categorizes visual features, organizing continuous input into manageable units for interpretation.
These processes collectively allow humans to navigate, understand, and interact with their
surroundings effectively. Saliency maps and neuroaesthetic experiments show that it is sufficient to
analyze just a percentage of an image in order to create and memorize a visual narrative.
Additionally, research on the primary visual cortex (V1) suggests [12] that V1 generates a saliency
map to guide attention, allowing observers to focus on the most informative parts of a scene. This
mechanism enables efficient processing and memory retention by prioritizing salient regions over
less conspicuous areas.

2. The multiverse

The idea of the multiverse—a concept suggesting the existence of multiple, parallel realities
[13]—has traditionally been the domain of physics [14] and speculative fiction. The concept of the
multiverse, which posits the existence of multiple, parallel realities or universes, has traditionally
been the domain of theoretical physics and speculative fiction. In physics, it emerges from theories
such as quantum mechanics, string theory, and cosmic inflation, suggesting that our universe might
be just one of many coexisting in a vast and complex multiverse [15]. Beyond physics, the multiverse
has captured the imagination of writers and creators, serving as a rich narrative framework for
exploring themes of identity, choice, and existence. Recently, the multiverse concept has transcended
its original boundaries, entering philosophical discourse, popular culture, and even discussions in
metaphysics and theology, as it invites profound questions about the nature of reality and our place
within it [16].

However, its principles can be fruitfully applied to the realm of artificial intelligence (AI) in
reconstructing and simulating ancient environments, societies and human lives. By leveraging the
multiverse framework, archaeologists can develop a richer, multidimensional understanding of the
past, where each reconstructed scenario or simulation represents a distinct "universe" or a parallel-
plausible interpretation. Instead of targeting the view of a “single” past, the multiverse vision
embraces the idea of “multiple” past where the interpretation comes at the intersection of different
views and hypotheses. This approach offers an innovative way to embrace the uncertainties inherent
in archaeological data while providing new opportunities for visualization, hypothesis testing, and
public engagement.

In the study of ancient civilizations, the available evidence —whether material, stratigraphic, or
paleoenvironmental —is often fragmentary and subject to interpretation. This incomplete nature of
data makes it challenging to construct a singular, definitive model of ancient lifeways. The multiverse
concept offers a solution by allowing for the coexistence of multiple plausible reconstructions, each
grounded in a different interpretation of the data. Instead of forcing a single narrative, archaeologists
can explore various "what-if" scenarios, effectively creating a multiverse of past environments and
practices. The more we explore, the more we learn. Artificial intelligence is particularly adept at
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implementing this multiverse structure. Machine learning algorithms can evaluate extensive
archeological data, discern trends, and produce simulations based on varying input parameters. For
instance, in reconstructing an ancient settlement, Al could produce multiple models by varying
assumptions about spatial organization, resource distribution, or climatic conditions. Each model
becomes a parallel universe within the multiverse, representing a possible iteration of past human
behavior and environmental interaction.

In the case of reconstruction of Etruscan sacred spaces, for example, limited architectural
remains and conflicting interpretations make it difficult to determine their original layouts and
symbolic functions. By applying Al, archaeologists can create multiple reconstructions based on
varying interpretations of fragmentary remains, landscape features, and historical contexts. These
reconstructions might include divergent alignments, material compositions, or decorative elements.
Each simulation represents a distinct "universe" within the multiverse, offering insights into the range
of possibilities for how these spaces might have been used and experienced.

Similarly, Al can simulate the dynamics of ancient communities by modeling interactions
between variables such as agricultural practices, resource availability, and social hierarchies. In
studying the development of settlement patterns, for instance, researchers could generate parallel
scenarios where different factors—such as population pressure, trade networks, or environmental
change—play varying roles in shaping spatial organization. These simulations enable to test
hypotheses and evaluate the relative plausibility of competing interpretations.

The concept of the multiverse aligns well with the probabilistic nature of archaeological research.
Data from excavations and surveys is inherently uncertain, often comprising incomplete structures,
ambiguous stratigraphy, or degraded organic remains. Traditional approaches to reconstruction risk
oversimplifying this complexity by presenting a single, deterministic model.

Al, combined with the multiverse framework, allows archaeologists to embrace and even
celebrate this uncertainty. By generating multiple plausible reconstructions, Al provides a platform
for exploring the range of possibilities inherent in the data. This approach shifts the focus from
seeking definitive answers to understanding the spectrum of potential realities that could have
existed.

Beyond academic research, the multiverse approach to Al-driven simulations has significant
potential for education and public engagement. By presenting multiple reconstructions of ancient
environments, these simulations can foster a deeper appreciation for the complexity and richness of
past human experiences. It is important to emphasize that the multiverse vision tends to eradicate
the idea that the best interpretation should come mainly from recognized scholarships. A multiverse
opens the gate to other multivocal interpretations.

Public engagement with the multiverse framework can also inspire a more inclusive
understanding of the past. Traditional reconstructions often prioritize dominant narratives,
marginalizing alternative perspectives and interpretations. By generating multiple reconstructions,
Al allows for the inclusion of diverse viewpoints, ensuring that the archaeological record is
represented as a complex, multifaceted tapestry rather than a monolithic story.

The integration of Al and the multiverse framework in archaeology is still in its early stages, but
the potential for growth is immense. Advances in machine learning, data processing, and simulation
technologies will enable increasingly detailed and accurate reconstructions of ancient environments
and cultural practices.

One promising area of development is the use of generative Al models, such as neural networks,
to create highly realistic visualizations of ancient landscapes. These models can combine data from
multiple sources—including excavation records, paleoenvironmental reconstructions, and artifact
analyses—to produce immersive, multidimensional simulations [17]. By iterating across different
parameters, these models can generate a vast array of scenarios, enriching our understanding of the
archaeological record.

Another exciting prospect is the application of Al to "counterfactual archaeology," where
researchers explore how different environmental or cultural variables might have altered the
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development of ancient societies. For example, what if certain Etruscan settlements had adapted
differently to changing climatic conditions? Al-driven multiverse simulations could model alternate
scenarios, offering insights into the resilience and adaptability of past human communities.

As technology continues to advance, the multiverse framework will open new frontiers in
archaeological research, education, and cultural preservation. By leveraging the power of AL, we can
move beyond static, singular reconstructions to a richer, more dynamic understanding of ancient
environments and practices—a multiverse of the past waiting to be explored.

3. Al and Neuroaesthetics

Neuro-aesthetics and Al represent a significant intersection between the study of human
perception, cognitive processes, and the role of advanced technology in understanding and
enhancing artistic experiences. This exploration bridges the disciplines of neuroscience, psychology,
and artificial intelligence, aiming to uncover how art can influence human emotions and cognition
and how Al can assist in decoding and even augmenting these effects.

The integration of neurometrics and advanced tools such as EEG and eye-tracking technologies
has revolutionized the field of neuro-aesthetics [18]. These tools allow researchers to measure brain
activity, eye movement, and emotional responses in real-time. For instance, using devices like head
mounted displays and eye-tracking recorders, scientists can analyze mental states during the
observation of art. Neurometric indices, such as attention, emotional intensity, and cognitive
workload, reveal profound insights into how individuals interact with visual stimuli. A case study
on “The Sarcophagus of the Spouses” demonstrated significant differences in cognitive and
emotional engagement between viewing the artifact in a museum versus a virtual reality (VR)
environment. While attention remained stable in the VR setting, the physical museum experience
elicited higher emotional engagement, particularly in the initial moments of observation[19]. This
underscores the unique power of physical artifacts in evoking emotional responses, even as VR
provides a controlled and immersive alternative.

Empathy [20] plays a central role in art perception, particularly in the context of faces and
expressions depicted in sculptures and paintings. The fusiform face area’s specialization in face
recognition [21] underscores the importance of human representation in art. Sculptures like “The
Sarcophagus of the Spouses” not only depict human features but also evoke deep emotional
connections by mirroring real-life expressions of happiness, sadness, or tranquility. This empathetic
engagement is further supported by neuroimaging studies that reveal activation in the limbic system
when individuals view such artworks. The emotional resonance elicited by these pieces highlights
art’s ability to transcend time and culture, fostering universal connections through shared human
experiences.

Advancements in Al have enabled researchers to delve even deeper into these neuro-aesthetic
phenomena. By combining machine learning algorithms with eye-tracking and EEG data, Al can
analyze complex patterns and predict emotional and cognitive responses to art. This technology also
offers the potential to create personalized artistic experiences, tailoring content to individual
preferences and emotional states. In museum settings, Al-driven systems can guide visitors through
curated pathways that align with their interests and cognitive profiles, enhancing both engagement
and understanding. Moreover, Al-generated art itself raises intriguing questions about creativity and
the nature of aesthetic appreciation. As machines produce works that evoke genuine emotional
responses, the boundaries between human and artificial creativity become increasingly blurred.

The comparative analysis of VR and physical art experiences provides valuable insights into the
strengths and limitations of each medium. While VR offers a controlled environment for studying
cognitive and emotional processes, physical settings retain a unique ability to elicit strong emotional
connections. The initial moments of museum visits often evoke heightened attention and emotional
intensity, reflecting the sensory richness and authenticity of the experience. In contrast, VR excels in
accessibility and replicability, making it an invaluable tool for education and outreach. By
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understanding these differences, researchers and practitioners can leverage the strengths of both
mediums to create complementary experiences that cater to diverse audiences.

Cognitive processes associated with art perception involve specific brain regions, including the
parietal, frontal, and temporal lobes. The parietal lobe plays a critical role in spatial awareness and
the analysis of somatosensory stimuli, which is essential for understanding the physical context of an
artwork [22]. The frontal lobe contributes to decision-making and planning, particularly when
interpreting complex artistic compositions. The temporal lobe, especially the fusiform face area, is
crucial for recognizing and responding to human faces depicted in art [23]. This cortical region is
uniquely sensitive to faces, triggering emotional responses mediated by the limbic system and
amygdala. These responses can mirror the emotions elicited by real human expressions, highlighting
the profound empathetic connections between viewers and artistic representations of humanity.

The application of neurometrics extends beyond the laboratory to practical settings like
museums and cultural heritage sites. By integrating eye-tracking data with cognitive and emotional
indices [24], researchers can observe mental states in real time, correlating these states with specific
visual stimuli. This capability allows for a deeper understanding of how individuals engage with art
and provides a basis for designing experiences to enhance emotional and cognitive impact. For
example, heatmaps generated from eye-tracking studies reveal gender-based differences in viewing
patterns and dwelling times. Similarly, background skills and expertise influence how individuals
interact with art, offering insights into the role of cultural and educational contexts in shaping
aesthetic experiences.

The future of neuro-aesthetics and Al lies in fostering interdisciplinary collaboration and
expanding the scope of research. By bringing together neuroscientists, artists, technologists, and
psychologists, the field can develop holistic approaches to understanding and enhancing aesthetic
experiences. This collaboration extends to practical applications in education, cultural preservation,
and public engagement. For example, interactive exhibits that combine AI, neuroimaging, and
traditional art forms can provide visitors with immersive and educational experiences, deepening
their appreciation for both art and science.

In conclusion, the intersection of neuro-aesthetics and Al offers a rich and dynamic field of
exploration, bridging the gaps between art, science, and technology. By studying how humans
perceive and respond to art, and by leveraging Al to analyze and augment these experiences,
researchers can unlock new dimensions of understanding and creativity. This interdisciplinary
approach not only advances scientific knowledge but also enriches our cultural and emotional lives,
affirming the enduring power of art in the human experience.

4. Al, Eye-Tracking and Visual Thinking Strategies

During the Fall semester 2023 in my undergraduate class “Why Art” at Duke University I had
the chance to setup an experiment involving eye-tracking, visual thinking strategies and AI with the
scope to understand the mechanics of visual osbervation of museum’s paintings [25.] The subject of
this research test was My mother, she fell from the sky, by Lién Truong, 2021 an Oil, silk, acrylic,
copper pigment, and enamel on canvas. From the collection of the Nasher Museum of Art at Duke
University. 72 x 96 inches (182.88 x 243.84 cm, fig.). The first part of the experiment consisted of
measuring eye-tracking from a distance of 3 meters from the artfact and from the same position. The
eye-tracking device was Pupil Invisible [26], a lightweight, wearable eye-tracking device developed
by Pupil Labs. It has an Inward-facing infrared cameras for eye tracking and an Outward-facing scene
camera (1080p, 30 fps) for recording the user’s field of view. The experiment consisted of 30 seconds
of continous observation of the same painting from the same distance and position (3 meters from
the artwork).

The class of 18 students (18 and 19 years old) was split in two groups: the first group was asked
to spent 3 minutes to describe the visual narrative of the artifact by specific questions and then to
start the eye-tracking experiment, while the second group started immediately the eye-tracking
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experiment (without taking any additional time in the observation). The questions for the visual
narrative were based on the visual thinking strategies protocol:

What's going on in this image/artwork/object?

What do you see that makes you say that?

What more can we find?

Figure 2. Lién Truong, My mother, she fell from the sky, 2021. Oil, silk, acrylic, copper pigment, and enamel on
canvas. Collection of the Nasher Museum of Art at Duke University.

Visual Thinking Strategies (VTS) [27]provide a foundational approach to understanding how
individuals perceive and interpret art. VIS emphasizes observation without requiring prior
knowledge of the artifact, making it an accessible and inclusive method. By comparing groups
exposed to this technique with those who are not, researchers can isolate its impact on perception
and interpretation.

The heat maps generated by each group of osbervers show different results of the cumulative
eye-tracking. In fact, the two heat maps illustrate how eye-tracking patterns change when students
engage with an artwork with and without the guidance of Visual Thinking Strategies (VTS).

Figure 3. Heat maps of the eye-tracking experiment concerning the first group of students observing the picture
without VTS.

Heat Map 1 (figure 3): Without Visual Thinking. The first heat map shows that the participants'
gaze is more diffuse, with attention spread across the entire canvas. There are no strong, concentrated
areas of fixation. This suggests that students are observing the painting in a more casual or
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unstructured manner, without honing in on specific features. The scattered heat zones imply that
viewers are exploring the painting without a clear framework or prompts to guide their
interpretation.

Figure 4. Heat maps of the eye-tracking experiment concerning the group of students observing the picture after
VTS.

Heat Map 2: After Visual Thinking Concentrated Gaze. The second heat map has two distinct
focal points where gaze is heavily concentrated (red areas). This suggests that participants are now
focusing on specific features of the painting. These focused areas likely correspond to features or
elements of the painting that were highlighted or emphasized during the VTS process. The more
structured pattern implies that participants are engaging with the painting more deeply, possibly
influenced by questions or discussions that directed their attention to specific areas.

It is interesting to notice that in the first NVTS image the percentage of red heat maps is 44.13%,
while in the second one is 77.86%. This means also a more extensive visual focus after VTS.

Figure 5. Heat maps comparison: on the left eye-tracking without VTS, on the right with VTS (no background).

Figure 5 shows the visual comparison between the cumulative heat maps of the non-VTS group
(left) and the VTS group. The lack of the original backround of the image helps to better understand
that the gaze after VIS becomes much more focused and extended in the main regions of interest.

The guided VTS process significantly changed how participants engage with the artwork.
Without VTS, observation is random and exploratory; after VTS, observation is targeted and
deliberate. The concentrated gaze points in the second heat map may indicate participants are not
only looking but interpreting and analyzing specific elements of the painting. The shift from diffuse


https://doi.org/10.20944/preprints202501.2273.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 d0i:10.20944/preprints202501.2273.v1

9 of 22

to focused gaze patterns demonstrates how VTS can foster a more thoughtful and analytical
engagement with visual material. This comparison highlights how structured approaches like VTS
can transform casual observation into a more intentional and meaningful interaction with art.

100 Comparison of Relevant Area Coverage in Heat Maps

80

60

45.0%

40

25.0%

Percentage of Relevant Features (%)

20

Heat Map 1 Heat Map 2

Heat Maps

Figure 6. Comparison of the relevant features in the first and second heat maps.

Figure 6 bar chart compares the percentage of relevant areas in the two heat maps. It visually
highlights the difference in the proportion of the most focused regions based on eye-tracking data.
The second heat map shows a significantly larger coverage of relevant features compared to the first
one, demonstrating the increased attention and focus on specific areas.

Figure 7. Al generated images (Distillery) concerning the VIS prompt of a group of 8 students of the class Why
Art, Duke University.

All the students involved in the VTS experiment wrote a specific narrative concerning their own
interpretation of the original image (figures 7 and 8). The narrative of each student was used as a
prompt for generating Al images with the same style of the original one. For this experiment we use
FolloFox Al Distillery [28], an open source text-to-image generator. Figures 7-8 show a collection of
Alimages generated by the VTS prompts of 16 students: each gallery show slighty different subjects.

The last reseach question of the experiment was to evaluate and compare the consistency of the
textual prompt of the VIS with the original image and the Al generated image. In this case it was
chosen the case of a student whose VTS narrative described the original painting in this way: “A
ritual is occurring where a person is being sacrificed in the center of a fire. There seems to be an
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orange and yellow patch at the center with human hand figures on it. There are ghostly figures that
may represent souls, floating above the center pit. These seem to be spirits who are making contact

with the people on the ground below. There are
which could represent violence.” Therefore this statement became the main prompt of the AI text-to-

also red shadows around the people on the ground

image processing. In this case Distillery was trained with the colors and style of the original image in
order to avoid discrepancies in the general design of the scene.

Figure 8. Al generated images (Distillery) concerning the VTS prompt of a second group of 8 students of the
class Why Art, Duke University.

The last step of the process was to compare the Al generated image, based one of the students’
prompt with the original painting in order to evaluate the consistency of the prompt and the fidelity
of the Al interpretation. This analysis helps also to understand the relationship between art and Al
art/machine learning and, particularly, to visualize how different observers can interpret a cultural
subject in several ways. The interaction between the artist and its creation and the feedback of the
public generate always new content and different symbolic meanings. This part of Al analysis
involved ChatGBT 4/o in combination with Python (accessed on January 15, 2025).

The first processing was the edge detection/structural comparison (figure 9) of the original
picture with the Al-generated one. The edges in the Al-generated image are clearer and more defined,
with a focus on distinct objects such as the firepit, human figures, and the surrounding environment.
The composition is more structured and less layered, with identifiable shapes and minimal
abstraction. The Al image prioritizes clarity and narrative focus, reflecting the key elements described
in the prompt (e.g., the central firepit and human participants). The reduced edge complexity
highlights the Al's tendency to simplify and emphasize specific aspects, at the expense of broader
symbolic representation.


https://doi.org/10.20944/preprints202501.2273.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2025 d0i:10.20944/preprints202501.2273.v1

11 of 22

Edge Detection: Structural Comparison

Edges: Original Image Edges: Al-Generated Image

Figure 9. Edge detection of the main scene of the painting in the original picture (left) and in the Al-generated

image (right). ChatGBT 4/o in combination with Python (accessed on January 15, 2025).

The second analysis of the heatmaps (figure 10) provides a visualization of three metrics (SSIM,
MSE, and Similarity) comparing the Original Image and the AI-Generated Image. The SSIM
(Structural Similarity Index) value indicates a low-to-moderate level of structural similarity between
the two images. The edges and overall structural components in the Al-generated image align only
partially with those in the original, reflecting a focus on certain features (e.g., the firepit) rather than
the broader abstract composition. The MSE (Mean Squared Error) score, relatively low, suggests that
the pixel-level differences between the original and Al-generated images are not extreme. However,
the Al-generated image simplifies and emphasizes certain areas (e.g., human figures, firepit), leading
to fewer nuanced variations found in the original painting.

Finally, the Semantic Similarity reflects how well the Al-generated image captures the
conceptual meaning or narrative of the original. The score suggests that while the Al image aligns
with the general theme (e.g. ritual, firepit, human figures), it diverges in the subtleties and
complexity of the abstract symbolism. The Al-generated image captures the narrative core (firepit
and figures) but simplifies the broader context, as reflected by low-to-moderate SSIM and Semantic
Similarity scores. The MSE indicates that pixel-level differences are subtle, highlighting the Al's
ability to retain some visual harmony. The Al seems to prioritize clarity and focus on specific
narrative elements, sacrificing the nuanced abstraction present in the original.
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Figure 10. Comparison metrics concerning the original image and the Al generated one based on SSIM
(structural similarity) MSE (Mean Squared Error, Pixel-level intensity) and Similarity (Conceptual alignment

using semantic analysis). ChatGBT 4/0 in combination with Python (accessed on January 15, 2025).

This bar chart illustrates the semantic similarity scores between the original image and the Al-
Generated Image when compared with the provided narrative prompt. The relatively low score
reflects the abstract and symbolic nature of the original image. While the original image may align
conceptually with the narrative prompt, its abstract elements and lack of clearly defined structures
reduce its semantic alignment with explicit descriptions. This suggests that the original image's
meaning is open to interpretation and not tightly bound to a single narrative.

The Al-generated image has a slightly higher semantic similarity score compared to the original
image. This increase in similarity is due to the Al's clear depiction of key elements from the prompt,
such as a central firepit. Human figures surrounding the ritual. A structured scene that matches the
described ritualistic activity. The Al-generated image prioritizes a direct narrative alignment with the
prompt over artistic abstraction.

The Al-generated image focuses on literal and recognizable elements, leading to a higher
semantic similarity with the narrative prompt. The original image, by contrast, emphasizes
abstraction and symbolic representation, resulting in a lower semantic score. The original image's
abstraction allows for multiple interpretations but reduces alignment with a specific narrative. The
Al image sacrifices abstraction for clarity, ensuring stronger alignment with the explicit elements of
the prompt. The score difference (0.0632) is small, indicating that both images reflect the prompt to
some extent but in vastly different ways—one abstract, the other literal.

This analysis highlights how Al-generated art tends to prioritize narrative clarity and prompt-
specific alignment over abstraction and symbolism. The original image's abstraction may make it
more engaging for interpretation, but it aligns less closely with the specific semantic content of the
prompt.

Figure 11 compares the semantic alignment of the original and Al-generated images with the
narrative prompt: Original Image: Semantic similarity score is 0.2698, reflecting its abstract and
ambiguous representation. Al-Generated Image: Semantic similarity score is 0.3330, showing a
stronger alignment with the prompt's described scene.
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Figure 11. Semantic similarity between the original image and the AI generated image. ChatGBT 4/o in
combination with Python (accessed on January 15, 2025).
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Figure 12. Al generated image (Distillery) based on a student’s prompt during the VTS experiment. ChatGBT

4/o in combination with Python (accessed on January 15, 2025).

Global Variance, figure 13. The Al-generated image has a higher global variance (3622.66)
compared to the original image (2904.91), indicating greater overall contrast in pixel intensities. The
variance for the center region of the original painting (3102.74) is similar to its global variance,
showing consistent intensity distribution. Al Firepit: The variance for the Al firepit region is
significantly lower (870.60), suggesting that the firepit has a more uniform and focused intensity
distribution compared to the abstract center in the original painting.
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Figure 13. Variance analysis, global and key regions. ChatGBT 4/o in combination with Python (accessed on
January 15, 2025).

In the semantic and symbolic comparison (figure 14), the Al interpretation highlights a more
structured and socially grounded scene, emphasizing communal participation around a central fire.
The arrangement of figures suggests hierarchy and intentional roles within the ritual, contrasting the
ambiguous roles in the original image. The central fire is the focal point, symbolizing transformation,
energy, or purification. This element reinforces the theme of ritualistic change, perhaps linked to
rebirth or spiritual transcendence.

Human figures are distinct and actively engaged, portraying clear roles within the ritual (e.g.,
offering, watching, or conducting the ceremony). This structured representation contrasts with the
shadows in the original image, where individual roles are obscured.

The original image uses abstraction to evoke mystery and fluidity, suitable for an interpretive,
symbolic exploration of ritual. In contrast, the Al-generated image provides a concrete, structured
depiction, making the ritual more accessible and straightforward. It emphasizes a symbiotic
relationship with nature, integrating its motifs as part of the ritual. The Al-generated image shifts the
focus to human agency and the fire as a transformative medium.

The shadows in the original image convey universality and inclusiveness, aligning with rituals
that transcend individual identity. The Al-generated image emphasizes distinct roles and
interactions, reflecting a more hierarchical or role-based ritual structure.
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Figure 14. Semantic and symbolic comparison between the original painting and the Al-prompt-based generated
image. ChatGBT 4/o in combination with Python (accessed on January 15, 2025).

4. Saliency maps

One of the key factors of human interpretation of images [29] is the information encoding, that
means how much we need to capture for interpreting and transmitting visual content. What kinds of
cultural and contextual elements can influence this process and what methods we can adopt for this
kind of research?

Saliency maps are an essential tool in both neuroscience and artificial intelligence (Al), offering
a means to visualize and quantify the most important features of an image or scene that capture
human attention or drive Al model decisions. In the context of art, saliency maps provide fascinating
insights into how people perceive and interact with visual works, revealing the underlying patterns
and elements that guide focus and evoke emotional or cognitive responses.

Saliency maps are computational or visual representations [30] that highlight the regions of an
image that are most likely to draw attention. They are rooted in the concept of saliency —the quality
that makes certain aspects of a visual scene stand out. Saliency is influenced by both low-level
features, such as color, contrast, and brightness, and high-level cognitive factors, including context,
meaning, and prior knowledge. In computational terms, saliency maps are often generated using
algorithms that model human visual attention. These algorithms analyze an image to identify regions
of interest based on feature contrasts. For example, bright, saturated colors in an otherwise muted
scene, or sharp edges in a soft, blurry context, are likely to appear as salient.

In neuroscience, saliency maps are connected to studies of the visual cortex and attention
mechanisms in the brain [31]. Eye-tracking studies frequently use saliency maps to correlate gaze
patterns with specific visual stimuli, providing data on how people process visual information in real
time.

Art has always been a powerful medium for engaging visual attention, often deliberately
playing with elements like color, composition, and texture to guide the viewer’s gaze. Saliency maps
offer a quantitative approach to studying these effects, revealing how artists manipulate visual
elements to create focal points or evoke specific emotional responses. One of the most direct
applications of saliency maps in art is through eye-tracking studies. These studies track the
movement of viewers’ eyes as they explore a painting or sculpture, generating data that can be
transformed into saliency maps. The resulting heatmaps highlight areas where viewers spend the
most time looking, as well as the sequence of their gaze.
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Eye-tracking studies have also shown that saliency in art is not solely driven by low-level visual
features. High-level factors, such as cultural context, personal experience, and the narrative
embedded in a work, significantly influence gaze patterns.

In applying a saliency map analysis to the above-mentioned case study we can better evaluate
the difference between an empirical experiment, the eye-tracking, and the Al simulation of a saliency
map over the same subject (figure 15).

The saliency map (on the right) indicates regions of the image that are most visually or
semantically prominent. The central area of the original image, which likely contains significant
features (such as the bright yellow-orange area), is highlighted strongly in red. This suggests that this
region is the most attention-grabbing. The outer regions of the image, such as the edges and corners,
show low saliency (yellow or white areas). This indicates that these areas contain less visually
significant information and are less likely to attract attention. Bright colors, such as yellows and
oranges, and high contrast in the original image have a strong influence on the saliency. The heatmap
reflects this by assigning these areas higher attention weights. The saliency map also captures
contextual elements, such as the figures on the sides of the original image, albeit with lower intensity.
This implies that while these figures are part of the composition, they do not dominate attention in
the way the central elements do.

Saliency Map (Deep Learning)

Original Image

Figure 15. Saliency map (right) of the original painting (on the left). ChatGBT 4/o0 in combination with Python
(accessed on January 15, 2025).

Saliency maps generated by Al models offer a unique perspective on how machines “see” art32.
These models, often trained on large datasets, use neural networks to predict the most salient regions
of an image. Comparing Al-generated saliency maps with human gaze patterns provides insights
into both human and machine perception33.

While human saliency is influenced by emotional, cultural, and contextual factors, Al saliency
is typically based on algorithmic rules and data patterns. This distinction can lead to interesting
divergences in interpretation. For example, an AI model might focus on fine details or high-contrast
areas that humans might overlook in favor of more emotionally or contextually relevant regions.
These differences highlight the challenges and opportunities in teaching AI systems to better
understand human aesthetics.

In figure 16, similar to the previous saliency map, the strongest highlights (in red) are
concentrated in the central area, specifically around the fire and the human figures in the center of
the composition. The flame and the figures directly below it dominate the visual field, indicating their
critical role in capturing attention. The saliency map also picks up on some peripheral figures, such
as those on the left and right of the central scene. However, their importance is relatively diminished
compared to the central flame and figures.
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The saliency map reflects vertical attention, with the fire extending upwards and maintaining a
visually significant streak in the middle. The bright vertical saliency suggests that viewers’ attention
might naturally follow the fire’s upward trajectory. The contrast between the fire's bright orange glow
and the dark background plays a key role in determining saliency. The map effectively captures this
contrast, emphasizing regions where there is a stark difference in brightness. This saliency map aligns
well with the likely narrative intention of the artwork: focusing on the central ritualistic scene while
maintaining peripheral awareness of the surrounding figures. The central focus supports the visual
hierarchy, leading viewers to the most crucial elements of the composition first.

The balance of saliency here is better distributed compared to the previous example, as
secondary attention is given to surrounding elements, making the overall scene more dynamic. The
visual weight reinforces a theatrical composition, emphasizing the ritual and its participants.
Overlaying this saliency map onto the original image could provide further clarity on how well the
artwork communicates its intended narrative. Additional analyses could examine whether the
surrounding figures could draw slightly more attention to enhance balance.

The first saliency map reflects a complex and distributed visual structure, where attention is
spread across multiple elements. This indicates that the original image invites exploration and
encourages the viewer to construct meaning through interaction with different parts of the
composition. The second saliency map reveals a hierarchical and centralized focus, emphasizing the
ritual as the core of the narrative. This suggests a simpler visual interaction that guides the viewer to
a specific interpretation.

Saliency Map (Deep Learning)

Original Image

Figure 16. Comparison between the Al-image generated (on the left, created by a student’s prompt) and its
saliency map. ChatGBT 4/o in combination with Python (accessed on January 15, 2025).

In the chart of figure 17 both maps display nearly identical distributions of saliency between the
central and peripheral regions. This might suggest a similar spatial distribution of salient features in
the two saliency maps. The high peripheral saliency could mean that the visual elements or features
in the images being analyzed are distributed towards the edges rather than concentrated in the center.
If Map 1 (figure 17, 20.802298% central, 79.197702 peripheral) represents the original artwork and
Map 2 (figure 17, 19.358028%, central 80.641972%, peripheral) represents an Al-generated
interpretation, this result implies that the Al-generated image mimics the spatial saliency distribution
of the original. This is an additional confirmation that the student’s prompt was deeply influenced
by the observation during the VTS experiment. On of top this the two images recalls the main spatial
structure of the scene.

In visual design or art, saliency in the peripheral regions can engage viewers by encouraging
exploration beyond the center. If the purpose of the Al-generated image was to replicate the visual
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structure of the original, this similarity in saliency distribution might indicate that it successfully
captured the spatial dynamics of the original.

Central vs. Peripheral Saliency Comparison

80 mmm Central Region (%)
mmm peripheral Region (%)

70 A
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Figure 17. Comparison between central and peripheral saliency of the original and Al generated images.
ChatGBT 4/o in combination with Python (accessed on January 15, 2025).

4.1. Saliency Maps and Al

As discussed before, saliency denotes the capacity of some visual features to inherently capture
attention owing to their contrast, prominence, or significance within a particular context. In art [34]
and artifacts, saliency functions on two levels. It illustrates the physical attributes of an artwork,
including edges, color contrasts, and symbolic areas that automatically capture the viewer's
attention35. Conversely, computationally created saliency maps are visual depictions produced by
algorithms that replicate human attention, providing a method to examine viewer interaction with
visual compositions. Saliency maps offer a means to evaluate human perception and interaction with
art. These maps delineate areas of significant visual prominence within an image, with luminous
zones signifying components that capture attention owing to pronounced edges, contrasts, or
geometric configurations. In an architectural picture, elements such as obelisks and domes are
prominent due to their structural uniqueness and symmetry. In contrast, darker areas on a saliency
map indicate regions of diminished visual importance, such as untextured backgrounds or uniform
hues. This approach corresponds with human inclinations to concentrate on structured patterns,
symmetry, and details that have aesthetic or cultural importance. In artworks like frescoes, saliency
maps often highlight the outlines of human figures, complex patterns, or components that direct
attention and enhance the narrative or emotional resonance of the piece.

By incorporating saliency analysis into these systems [36], artists can guide AI models to
produce works that align with human aesthetic preferences [37]. For example, an AI model might be
programmed to generate abstract art that maximizes saliency in certain regions, creating
compositions that naturally draw the viewer’s eye [38]. Alternatively, artists can use saliency maps
to evaluate and curate Al-generated pieces [39], selecting those that achieve the desired balance of
attention and impact.

The interplay between saliency maps and art raises important questions about aesthetics,
creativity, and the nature of human attention [40]. As Al systems become more sophisticated, they
not only analyze but also influence the way we perceive and create art. This dynamic has both
exciting possibilities and potential challenges. Saliency maps can be used to enhance viewer
engagement with art in museums and galleries [41]. For example, interactive exhibits could display
real-time saliency maps based on visitors” gaze patterns, offering insights into how different people
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perceive the same work. This could spark discussions about the subjective nature of art and the
diverse factors that influence visual attention.

Moreover, saliency maps could guide the curation of exhibitions, helping curators design
layouts that optimize viewer engagement. By analyzing gaze patterns and attention flows, curators
can position artworks in ways that encourage exploration and discovery.

The use of saliency maps in art also challenges traditional notions of aesthetics and artistic
intention. If saliency maps reveal that viewers consistently focus on unintended elements of a work,
does this undermine the artist’s original vision? Or does it highlight the dynamic and participatory
nature of art, where meaning is co-created by the artist and the viewer? In the context of Al-generated
art, saliency maps further blur the boundaries between creator and audience. When an Al system
generates a piece based on saliency principles, is the resulting work a product of the machine’s
“vision,” the programmer’s intent, or the viewer’s response? These questions challenge us to rethink
the relationship between technology, creativity, and human experience.

In the art world, the use of saliency maps to optimize viewer engagement could lead to a
homogenization of aesthetic experiences, where works are designed to appeal to predictable patterns
of attention rather than fostering genuine creativity and diversity. Balancing the benefits of saliency
analysis with the need to preserve artistic integrity and authenticity is an ongoing challenge.

Human figures, for instance, often dominate saliency maps due to their distinct edges, contrasts
in clothing, and expressive gestures. Simultaneously, backgrounds with minimal texture or contrast
are de-emphasized, showcasing the ability of saliency analysis to suppress visually inactive areas. In
works where details like drapery, musical instruments, or symbolic gestures are prevalent, saliency
is often distributed evenly across these intricate regions, reflecting their shared importance in guiding
the viewer gaze. This analysis aligns with cognitive research showing that human attention gravitates
toward areas with significant transitions, contrasts, or culturally resonant symbols. In terms of
practical applications, saliency maps serve as tools for evaluating and interpreting visual focus in
both art and artifacts. They provide valuable insights into artistic techniques, revealing how creators
manipulate visual elements to guide attention or evoke specific responses. In neuromarketing,
saliency maps are used to assess how people engage with visual stimuli, offering metrics that can
inform design strategies for advertisements, branding, and user interfaces. They are also increasingly
applied in the creation and evaluation of algorithmic or generative art. By identifying regions that
align with human aesthetic preferences, saliency maps help refine and curate Al-generated works to
enhance their visual impact. Furthermore, when paired with eye-tracking data, these maps validate
and complement computational predictions, allowing researchers to compare algorithmic models
with real-world gaze patterns. The examples presented illustrate how saliency maps are applied to
analyze both architectural and artistic compositions.

Saliency maps also provoke deeper questions about perception, interpretation, and artistic
intention. They highlight a dynamic interaction between the viewer and the artwork, revealing how
certain elements capture attention while others recede into the background. This raises intriguing
questions about whether saliency maps reflect the artist intended focal points or simply the natural
tendencies of human perception. The comparison between human and algorithmic attention further
enriches this dialogue, revealing areas of overlap and divergence that highlight the challenges of
teaching Al to fully understand human aesthetics.

In conclusion, saliency maps offer a powerful lens through which to explore the interplay
between art and attention. Whether used to analyze existing works, guide new creations, or enhance
viewer engagement, they provide valuable insights into the mechanisms of visual perception and the
dynamics of aesthetic experience.

5. Conclusions

This paper has demonstrated the transformative potential of integrating generative Al
neuroaesthetic tools, and methodologies like Visual Thinking Strategies (VTS) in archaeological and
art historical research. By leveraging cutting-edge technologies such as Al-generated simulations,
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eye-tracking experiments, and saliency map analyses, we explored how these approaches contribute
to understanding human interaction with cultural heritage and reconstructing multiple narratives of
the past.

Generative Al proved to be an invaluable tool for simulating alternative interpretations of
archaeological contexts and art, enabling the conceptualization of the past as a multiverse rather than
a fixed timeline. The Al-generated visualizations highlighted multiple plausible scenarios based on
human input and descriptive prompts. These simulations captured the complexity of cultural models
by offering nuanced visual interpretations that are rooted in data-driven creativity. This "multiverse
approach" opens pathways for engaging with uncertainties and contradictions inherent in material
cultures, fostering a more inclusive and diverse understanding of ancient societies.

Eye-tracking experiments provided critical insights into human cognitive engagement with
visual stimuli, including original artworks and Al-generated interpretations. The results revealed
that VTS significantly influences how individuals visually explore art, guiding attention toward
specific features and fostering a deeper understanding of symbolic and structural elements. Before
applying VTS, viewers exhibited diffuse patterns of attention, while post-VTS results demonstrated
more focused and interpretively rich visual engagement. This underscores the pedagogical value of
VTS in enhancing observational and interpretive skills, as well as the importance of guided
frameworks in art and archaeological education.

Saliency map analysis complemented the eye-tracking results by quantifying the visual impact
of central and peripheral regions in both original and Al-generated imagery. The comparison
between central and peripheral saliency distribution highlighted differences in how human-created
and Al-generated images emphasize key visual elements. Al interpretations often concentrated
saliency in symbolically charged areas, such as the central fire or ritual objects, while the original
images showed more diffuse saliency, reflecting the complexity of human artistic intention. This
analysis illustrates how saliency maps can bridge the gap between computational and humanistic
approaches to visual studies, providing actionable insights into visual storytelling and composition.

The integration of these tools raises profound implications for archaeology, art history, and
neuroaesthetics:

Enhanced Multimodality: Combining Al simulations with human-centric tools like eye-tracking
and VTS creates a multimodal framework for exploring cultural artifacts, blending quantitative
precision with qualitative interpretation.

Cognitive Engagement: Eye-tracking and saliency maps underscore the importance of
understanding human perception and attention when observing and interpreting artifacts, both to
academic audiences and the public.

Ethical Responsibility: While generative Al offers creative and interpretive potential, its use
necessitates transparency in methodologies and careful consideration of biases introduced by
prompts, datasets, and algorithms. Collaborative engagement with diverse communities ensures
inclusivity and ethical integrity.

This research illustrates how the fusion of generative Al, cognitive tools, and interpretive
methodologies can revolutionize the study of material culture and art. By harnessing these
technologies, researchers can transcend traditional limitations, reimagining historical narratives as
dynamic, multifaceted, and participatory. However, the power of these tools comes with the
responsibility to contextualize their results critically, ensuring that technological innovation aligns
with the values of historical authenticity, inclusivity, and cross-disciplinary collaboration. This
paradigm shift ultimately enriches not only our understanding of the past but also our collective
cultural imagination.
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