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Article 

Exploring Multiverses: Generative AI and 
Neuroaesthetic Perspectives 
Maurizio Forte 

Department of Classical Studies, Art, Art History and Visual Studies, Duke University, Italian Academy 
Fellow, 2024, maurizio.forte@duke.edu 

Abstract: This paper examines the transformative potential of generative artificial intelligence (AI) 
and neuroaesthetic methodologies in archaeology, museum’s collections and art history. It introduces 
the concept of the AI multiverse, which allows archaeologists and social scientists to construct 
multiple plausible reconstructions of ancient environments and cultural practices, addressing the 
inherent uncertainties in archaeological data. Generative AI tools create simulations and 
visualizations that redefine traditional archaeological frameworks by incorporating multivocal and 
dynamic interpretations. The study also integrates visual thinking strategies (VTS), eye tracking and 
saliency map analyses to investigate how structured observation enhances cognitive and emotional 
engagement with visual artifacts. A case study involving the painting My Mother, She Fell From the 
Sky highlights the impact of VTS on guiding viewers' gaze and improving interpretive depth, as 
evidenced by heatmaps and saliency distribution. 

Keywords: multiverse; generative AI; neuroaesthetics; saliency maps; eye-tracking; vision; human 
perception 
 

1. Introduction  

The application of generative artificial intelligence (AI) in archaeology, art and the humanities 
is revolutionizing how researchers interpret, visualize and reconstruct material culture, from the past 
to the present [1]. Generative AI2 refers to systems that create new content or data by learning 
patterns from existing information, making it particularly well-suited to tackling the challenges of 
incomplete or fragmented archaeological records. The world of digital archaeology is marked by 
various definitions, milestones and methodological revolutions: virtual archaeology in 1996, 
cyberarchaeology in 2008, (generative) AI archaeology in 2022.  

If Virtual Archaeology was mainly focused on computer graphic reconstructions [3], 
Cyberarchaeology [4] on virtual reality and simulations [,] AI-Archaeology is centered on the idea of 
the past as multiverse.  
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Figure 1. Venn Diagram: intersections and goals of Virtual Archaeology, Cyberarchaeology and AI-
Archaeology. 

Virtual archaeology mostly relied on a unidirectional approach to address a degree of 
uncertainty: a photorealistic reconstruction founded on precise and validated facts. The downside of 
this approach was to imagine the reconstruction of the past as a single digital world. Computer 
graphics and photorealism were often very convincing in the validation of these kinds of digital data. 
Cyber-archaeology was predominantly accessible to various reconstructions and simulations, with 
the interaction of models being crucial. AI-Archaeology is inherently amenable to infinite iterations 
of visualizations, reconstructions, and simulations [5]. This situation addresses the methodological 
issue of uncertainty through exponentially expanding potential knowledge. The concept of the 
multiverse refers to a hyperinformative realm without limitations for the development and 
comparison of ideas, theories, and visions. This multiplication of content coming from machine 
learning can reframe previous views and open new perspectives (figure 1). The Venn diagram in 
Figure 1 shows the evolution of virtual and cyberarchaeology in AI-Archaeology [6] and the potential 
of neural networks in the simulation-reconstruction process. We can imagine the AI multiverse as a 
space of increased knowledge, rather than the simple result of a validation process. Multiverse AI 
paves the way for multifactorial analyses by combining different ontologies of data and models. The 
more we generate AI models, the more we learn and interpret. It is a different approach in 
comparison with the usual bottom-up process in archaeology: data recording-single hypothesis-
validation. The link between data intake and output in generative AI is subject to multiple 
validations: in theory endless processes, in practice the final ones are selected by specific scholarships 
and consistency between research questions and final results. This methodology contradicts the 
concept of reconstructing the past as a singular “snapshot” due to the dynamic and developing 
characteristics of time and space; it is unfeasible to “freeze” the past, a city, a site, or a landscape, as 
they perpetually coevolve into something new.  

Generative ideas stimulate new and more advanced research questions, and this aspect is 
extremely powerful when we deal with simulations of ancient societies, particularly in relation to 
human activities. I believe that the “human factor”, so the interaction between human activities, 
minds, artifacts, built and natural environments, can be properly investigated by AI [7].  

Generative AI operates through machine learning models, such as neural networks, that analyze 
vast datasets—including excavation records, artifact photographs, and environmental data—to 
identify patterns and relationships8. Once trained, these models can produce simulations, 
visualizations, and predictions that help fill gaps in the archaeological record. One notable 
application of generative AI in archaeology is its ability to create detailed 3D models of ancient 
structures and artifacts. By training on datasets of similar objects or architectural styles, AI can 
generate reconstructions that align with known archaeological and cultural contexts.  
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In this paper the research focus will be mainly on the use of AI in the interpretation and 
perception of artifacts, images and visual information. Human vision is, in fact, multimodal [9] and 
it is based on ranking, segmentation and discretization of the content [10]. Multimodality in vision 
refers to the integration of various sensory inputs and cognitive processes that help humans perceive 
and interpret visual information. Vision doesn't operate in isolation; it interacts with other modalities 
such as touch, sound, and even memory. Human vision prioritizes certain elements of a scene based 
on saliency and relevance. This involves ranking objects or features in terms of importance for 
survival, decision-making, or attention. The visual system breaks down a complex scene into distinct 
regions or objects to make sense of it. It prioritizes certain elements of a scene through ranking, 
focusing attention on features like brightness, contrast, and emotional significance, which are most 
relevant to survival or decision-making. Simultaneously, it employs segmentation to break down 
complex visual scenes into distinct objects or regions by identifying edges, contrasts, and spatial 
boundaries [11]. Depth perception further aids this process by distinguishing the foreground from 
the background, enabling spatial awareness. Through discretization, the brain isolates and 
categorizes visual features, organizing continuous input into manageable units for interpretation. 
These processes collectively allow humans to navigate, understand, and interact with their 
surroundings effectively. Saliency maps and neuroaesthetic experiments show that it is sufficient to 
analyze just a percentage of an image in order to create and memorize a visual narrative. 
Additionally, research on the primary visual cortex (V1) suggests [12] that V1 generates a saliency 
map to guide attention, allowing observers to focus on the most informative parts of a scene. This 
mechanism enables efficient processing and memory retention by prioritizing salient regions over 
less conspicuous areas. 

2. The multiverse 

The idea of the multiverse—a concept suggesting the existence of multiple, parallel realities 
[13]—has traditionally been the domain of physics [14] and speculative fiction. The concept of the 
multiverse, which posits the existence of multiple, parallel realities or universes, has traditionally 
been the domain of theoretical physics and speculative fiction. In physics, it emerges from theories 
such as quantum mechanics, string theory, and cosmic inflation, suggesting that our universe might 
be just one of many coexisting in a vast and complex multiverse [15]. Beyond physics, the multiverse 
has captured the imagination of writers and creators, serving as a rich narrative framework for 
exploring themes of identity, choice, and existence. Recently, the multiverse concept has transcended 
its original boundaries, entering philosophical discourse, popular culture, and even discussions in 
metaphysics and theology, as it invites profound questions about the nature of reality and our place 
within it [16]. 

However, its principles can be fruitfully applied to the realm of artificial intelligence (AI) in 
reconstructing and simulating ancient environments, societies and human lives. By leveraging the 
multiverse framework, archaeologists can develop a richer, multidimensional understanding of the 
past, where each reconstructed scenario or simulation represents a distinct "universe" or a parallel-
plausible interpretation. Instead of targeting the view of a “single” past, the multiverse vision 
embraces the idea of “multiple” past where the interpretation comes at the intersection of different 
views and hypotheses. This approach offers an innovative way to embrace the uncertainties inherent 
in archaeological data while providing new opportunities for visualization, hypothesis testing, and 
public engagement.  

In the study of ancient civilizations, the available evidence—whether material, stratigraphic, or 
paleoenvironmental—is often fragmentary and subject to interpretation. This incomplete nature of 
data makes it challenging to construct a singular, definitive model of ancient lifeways. The multiverse 
concept offers a solution by allowing for the coexistence of multiple plausible reconstructions, each 
grounded in a different interpretation of the data. Instead of forcing a single narrative, archaeologists 
can explore various "what-if" scenarios, effectively creating a multiverse of past environments and 
practices. The more we explore, the more we learn. Artificial intelligence is particularly adept at 
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implementing this multiverse structure. Machine learning algorithms can evaluate extensive 
archeological data, discern trends, and produce simulations based on varying input parameters. For 
instance, in reconstructing an ancient settlement, AI could produce multiple models by varying 
assumptions about spatial organization, resource distribution, or climatic conditions. Each model 
becomes a parallel universe within the multiverse, representing a possible iteration of past human 
behavior and environmental interaction. 

In the case of reconstruction of Etruscan sacred spaces, for example, limited architectural 
remains and conflicting interpretations make it difficult to determine their original layouts and 
symbolic functions. By applying AI, archaeologists can create multiple reconstructions based on 
varying interpretations of fragmentary remains, landscape features, and historical contexts. These 
reconstructions might include divergent alignments, material compositions, or decorative elements. 
Each simulation represents a distinct "universe" within the multiverse, offering insights into the range 
of possibilities for how these spaces might have been used and experienced. 

Similarly, AI can simulate the dynamics of ancient communities by modeling interactions 
between variables such as agricultural practices, resource availability, and social hierarchies. In 
studying the development of settlement patterns, for instance, researchers could generate parallel 
scenarios where different factors—such as population pressure, trade networks, or environmental 
change—play varying roles in shaping spatial organization. These simulations enable to test 
hypotheses and evaluate the relative plausibility of competing interpretations. 

The concept of the multiverse aligns well with the probabilistic nature of archaeological research. 
Data from excavations and surveys is inherently uncertain, often comprising incomplete structures, 
ambiguous stratigraphy, or degraded organic remains. Traditional approaches to reconstruction risk 
oversimplifying this complexity by presenting a single, deterministic model. 

AI, combined with the multiverse framework, allows archaeologists to embrace and even 
celebrate this uncertainty. By generating multiple plausible reconstructions, AI provides a platform 
for exploring the range of possibilities inherent in the data. This approach shifts the focus from 
seeking definitive answers to understanding the spectrum of potential realities that could have 
existed. 

Beyond academic research, the multiverse approach to AI-driven simulations has significant 
potential for education and public engagement. By presenting multiple reconstructions of ancient 
environments, these simulations can foster a deeper appreciation for the complexity and richness of 
past human experiences. It is important to emphasize that the multiverse vision tends to eradicate 
the idea that the best interpretation should come mainly from recognized scholarships. A multiverse 
opens the gate to other multivocal interpretations. 

Public engagement with the multiverse framework can also inspire a more inclusive 
understanding of the past. Traditional reconstructions often prioritize dominant narratives, 
marginalizing alternative perspectives and interpretations. By generating multiple reconstructions, 
AI allows for the inclusion of diverse viewpoints, ensuring that the archaeological record is 
represented as a complex, multifaceted tapestry rather than a monolithic story. 

The integration of AI and the multiverse framework in archaeology is still in its early stages, but 
the potential for growth is immense. Advances in machine learning, data processing, and simulation 
technologies will enable increasingly detailed and accurate reconstructions of ancient environments 
and cultural practices. 

One promising area of development is the use of generative AI models, such as neural networks, 
to create highly realistic visualizations of ancient landscapes. These models can combine data from 
multiple sources—including excavation records, paleoenvironmental reconstructions, and artifact 
analyses—to produce immersive, multidimensional simulations [17]. By iterating across different 
parameters, these models can generate a vast array of scenarios, enriching our understanding of the 
archaeological record. 

Another exciting prospect is the application of AI to "counterfactual archaeology," where 
researchers explore how different environmental or cultural variables might have altered the 
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development of ancient societies. For example, what if certain Etruscan settlements had adapted 
differently to changing climatic conditions? AI-driven multiverse simulations could model alternate 
scenarios, offering insights into the resilience and adaptability of past human communities. 

As technology continues to advance, the multiverse framework will open new frontiers in 
archaeological research, education, and cultural preservation. By leveraging the power of AI, we can 
move beyond static, singular reconstructions to a richer, more dynamic understanding of ancient 
environments and practices—a multiverse of the past waiting to be explored. 

3. AI and Neuroaesthetics 

Neuro-aesthetics and AI represent a significant intersection between the study of human 
perception, cognitive processes, and the role of advanced technology in understanding and 
enhancing artistic experiences. This exploration bridges the disciplines of neuroscience, psychology, 
and artificial intelligence, aiming to uncover how art can influence human emotions and cognition 
and how AI can assist in decoding and even augmenting these effects.  

The integration of neurometrics and advanced tools such as EEG and eye-tracking technologies 
has revolutionized the field of neuro-aesthetics [18]. These tools allow researchers to measure brain 
activity, eye movement, and emotional responses in real-time. For instance, using devices like head 
mounted displays and eye-tracking recorders, scientists can analyze mental states during the 
observation of art. Neurometric indices, such as attention, emotional intensity, and cognitive 
workload, reveal profound insights into how individuals interact with visual stimuli. A case study 
on “The Sarcophagus of the Spouses” demonstrated significant differences in cognitive and 
emotional engagement between viewing the artifact in a museum versus a virtual reality (VR) 
environment. While attention remained stable in the VR setting, the physical museum experience 
elicited higher emotional engagement, particularly in the initial moments of observation[19]. This 
underscores the unique power of physical artifacts in evoking emotional responses, even as VR 
provides a controlled and immersive alternative. 

Empathy [20] plays a central role in art perception, particularly in the context of faces and 
expressions depicted in sculptures and paintings. The fusiform face area’s specialization in face 
recognition [21] underscores the importance of human representation in art. Sculptures like “The 
Sarcophagus of the Spouses” not only depict human features but also evoke deep emotional 
connections by mirroring real-life expressions of happiness, sadness, or tranquility. This empathetic 
engagement is further supported by neuroimaging studies that reveal activation in the limbic system 
when individuals view such artworks. The emotional resonance elicited by these pieces highlights 
art’s ability to transcend time and culture, fostering universal connections through shared human 
experiences. 

Advancements in AI have enabled researchers to delve even deeper into these neuro-aesthetic 
phenomena. By combining machine learning algorithms with eye-tracking and EEG data, AI can 
analyze complex patterns and predict emotional and cognitive responses to art. This technology also 
offers the potential to create personalized artistic experiences, tailoring content to individual 
preferences and emotional states. In museum settings, AI-driven systems can guide visitors through 
curated pathways that align with their interests and cognitive profiles, enhancing both engagement 
and understanding. Moreover, AI-generated art itself raises intriguing questions about creativity and 
the nature of aesthetic appreciation. As machines produce works that evoke genuine emotional 
responses, the boundaries between human and artificial creativity become increasingly blurred. 

The comparative analysis of VR and physical art experiences provides valuable insights into the 
strengths and limitations of each medium. While VR offers a controlled environment for studying 
cognitive and emotional processes, physical settings retain a unique ability to elicit strong emotional 
connections. The initial moments of museum visits often evoke heightened attention and emotional 
intensity, reflecting the sensory richness and authenticity of the experience. In contrast, VR excels in 
accessibility and replicability, making it an invaluable tool for education and outreach. By 
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understanding these differences, researchers and practitioners can leverage the strengths of both 
mediums to create complementary experiences that cater to diverse audiences. 

Cognitive processes associated with art perception involve specific brain regions, including the 
parietal, frontal, and temporal lobes. The parietal lobe plays a critical role in spatial awareness and 
the analysis of somatosensory stimuli, which is essential for understanding the physical context of an 
artwork [22]. The frontal lobe contributes to decision-making and planning, particularly when 
interpreting complex artistic compositions. The temporal lobe, especially the fusiform face area, is 
crucial for recognizing and responding to human faces depicted in art [23]. This cortical region is 
uniquely sensitive to faces, triggering emotional responses mediated by the limbic system and 
amygdala. These responses can mirror the emotions elicited by real human expressions, highlighting 
the profound empathetic connections between viewers and artistic representations of humanity. 

The application of neurometrics extends beyond the laboratory to practical settings like 
museums and cultural heritage sites. By integrating eye-tracking data with cognitive and emotional 
indices [24], researchers can observe mental states in real time, correlating these states with specific 
visual stimuli. This capability allows for a deeper understanding of how individuals engage with art 
and provides a basis for designing experiences to enhance emotional and cognitive impact. For 
example, heatmaps generated from eye-tracking studies reveal gender-based differences in viewing 
patterns and dwelling times. Similarly, background skills and expertise influence how individuals 
interact with art, offering insights into the role of cultural and educational contexts in shaping 
aesthetic experiences. 

The future of neuro-aesthetics and AI lies in fostering interdisciplinary collaboration and 
expanding the scope of research. By bringing together neuroscientists, artists, technologists, and 
psychologists, the field can develop holistic approaches to understanding and enhancing aesthetic 
experiences. This collaboration extends to practical applications in education, cultural preservation, 
and public engagement. For example, interactive exhibits that combine AI, neuroimaging, and 
traditional art forms can provide visitors with immersive and educational experiences, deepening 
their appreciation for both art and science. 

In conclusion, the intersection of neuro-aesthetics and AI offers a rich and dynamic field of 
exploration, bridging the gaps between art, science, and technology. By studying how humans 
perceive and respond to art, and by leveraging AI to analyze and augment these experiences, 
researchers can unlock new dimensions of understanding and creativity. This interdisciplinary 
approach not only advances scientific knowledge but also enriches our cultural and emotional lives, 
affirming the enduring power of art in the human experience.  

4. AI, Eye-Tracking and Visual Thinking Strategies 

During the Fall semester 2023 in my undergraduate class “Why Art” at Duke University I had 
the chance to setup an experiment involving eye-tracking, visual thinking strategies and AI with the 
scope to understand the mechanics of visual osbervation of museum’s paintings [25.] The subject of 
this research test was My mother, she fell from the sky, by Liên Trương, 2021 an Oil, silk, acrylic, 
copper pigment, and enamel on canvas. From the collection of the Nasher Museum of Art at Duke 
University. 72 × 96 inches (182.88 × 243.84 cm, fig.). The first part of the experiment consisted of 
measuring eye-tracking from a distance of 3 meters from the artfact and from the same position. The 
eye-tracking device was Pupil Invisible [26], a lightweight, wearable eye-tracking device developed 
by Pupil Labs. It has an Inward-facing infrared cameras for eye tracking and an Outward-facing scene 
camera (1080p, 30 fps) for recording the user’s field of view. The experiment consisted of 30 seconds 
of continous observation of the same painting from the same distance and position (3 meters from 
the artwork). 

The class of 18 students (18 and 19 years old) was split in two groups: the first group was asked 
to spent 3 minutes to describe the visual narrative of the artifact by specific questions and then to 
start the eye-tracking experiment, while the second group started immediately the eye-tracking 
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experiment (without taking any additional time in the observation). The questions for the visual 
narrative were based on the visual thinking strategies protocol:  

What’s going on in this image/artwork/object? 
What do you see that makes you say that? 
What more can we find? 

 
Figure 2. Liên Trương, My mother, she fell from the sky, 2021. Oil, silk, acrylic, copper pigment, and enamel on 
canvas. Collection of the Nasher Museum of Art at Duke University. 

Visual Thinking Strategies (VTS) [27]provide a foundational approach to understanding how 
individuals perceive and interpret art. VTS emphasizes observation without requiring prior 
knowledge of the artifact, making it an accessible and inclusive method. By comparing groups 
exposed to this technique with those who are not, researchers can isolate its impact on perception 
and interpretation.  

The heat maps generated by each group of osbervers show different results of the cumulative 
eye-tracking. In fact, the two heat maps illustrate how eye-tracking patterns change when students 
engage with an artwork with and without the guidance of Visual Thinking Strategies (VTS).  

. 

Figure 3. Heat maps of the eye-tracking experiment concerning the first group of students observing the picture 
without VTS. 

Heat Map 1 (figure 3): Without Visual Thinking. The first heat map shows that the participants' 
gaze is more diffuse, with attention spread across the entire canvas. There are no strong, concentrated 
areas of fixation. This suggests that students are observing the painting in a more casual or 
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unstructured manner, without honing in on specific features. The scattered heat zones imply that 
viewers are exploring the painting without a clear framework or prompts to guide their 
interpretation.  

. 

Figure 4. Heat maps of the eye-tracking experiment concerning the group of students observing the picture after 
VTS. 

Heat Map 2: After Visual Thinking Concentrated Gaze. The second heat map has two distinct 
focal points where gaze is heavily concentrated (red areas). This suggests that participants are now 
focusing on specific features of the painting. These focused areas likely correspond to features or 
elements of the painting that were highlighted or emphasized during the VTS process. The more 
structured pattern implies that participants are engaging with the painting more deeply, possibly 
influenced by questions or discussions that directed their attention to specific areas. 

It is interesting to notice that in the first NVTS image the percentage of red heat maps is 44.13%, 
while in the second one is 77.86%. This means also a more extensive visual focus after VTS. 

. 

Figure 5. Heat maps comparison: on the left eye-tracking without VTS, on the right with VTS (no background). 

Figure 5 shows the visual comparison between the cumulative heat maps of the non-VTS group 
(left) and the VTS group. The lack of the original backround of the image helps to better understand 
that the gaze after VTS becomes much more focused and extended in the main regions of interest.  

The guided VTS process significantly changed how participants engage with the artwork. 
Without VTS, observation is random and exploratory; after VTS, observation is targeted and 
deliberate. The concentrated gaze points in the second heat map may indicate participants are not 
only looking but interpreting and analyzing specific elements of the painting. The shift from diffuse 
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to focused gaze patterns demonstrates how VTS can foster a more thoughtful and analytical 
engagement with visual material. This comparison highlights how structured approaches like VTS 
can transform casual observation into a more intentional and meaningful interaction with art.  

. 

Figure 6. Comparison of the relevant features in the first and second heat maps. 

Figure 6 bar chart compares the percentage of relevant areas in the two heat maps. It visually 
highlights the difference in the proportion of the most focused regions based on eye-tracking data. 
The second heat map shows a significantly larger coverage of relevant features compared to the first 
one, demonstrating the increased attention and focus on specific areas. 

. 

Figure 7. AI generated images (Distillery) concerning the VTS prompt of a group of 8 students of the class Why 
Art, Duke University. 

All the students involved in the VTS experiment wrote a specific narrative concerning their own 
interpretation of the original image (figures 7 and 8). The narrative of each student was used as a 
prompt for generating AI images with the same style of the original one. For this experiment we use 
FolloFox AI Distillery [28], an open source text-to-image generator. Figures 7-8 show a collection of 
AI images generated by the VTS prompts of 16 students: each gallery show slighty different subjects. 

The last reseach question of the experiment was to evaluate and compare the consistency of the 
textual prompt of the VTS with the original image and the AI generated image. In this case it was 
chosen the case of a student whose VTS narrative described the original painting in this way: “A 
ritual is occurring where a person is being sacrificed in the center of a fire. There seems to be an 
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orange and yellow patch at the center with human hand figures on it. There are ghostly figures that 
may represent souls, floating above the center pit. These seem to be spirits who are making contact 
with the people on the ground below. There are " "also red shadows around the people on the ground 
which could represent violence.” Therefore this statement became the main prompt of the AI text-to-
image processing. In this case Distillery was trained with the colors and style of the original image in 
order to avoid discrepancies in the general design of the scene. 

 

Figure 8. AI generated images (Distillery) concerning the VTS prompt of a second group of 8 students of the 
class Why Art, Duke University. 

The last step of the process was to compare the AI generated image, based one of the students’ 
prompt with the original painting in order to evaluate the consistency of the prompt and the fidelity 
of the AI interpretation. This analysis helps also to understand the relationship between art and AI 
art/machine learning and, particularly, to visualize how different observers can interpret a cultural 
subject in several ways. The interaction between the artist and its creation and the feedback of the 
public generate always new content and different symbolic meanings. This part of AI analysis 
involved ChatGBT 4/o in combination with Python (accessed on January 15, 2025).  

The first processing was the edge detection/structural comparison (figure 9) of the original 
picture with the AI-generated one. The edges in the AI-generated image are clearer and more defined, 
with a focus on distinct objects such as the firepit, human figures, and the surrounding environment. 
The composition is more structured and less layered, with identifiable shapes and minimal 
abstraction. The AI image prioritizes clarity and narrative focus, reflecting the key elements described 
in the prompt (e.g., the central firepit and human participants). The reduced edge complexity 
highlights the AI's tendency to simplify and emphasize specific aspects, at the expense of broader 
symbolic representation. 
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Figure 9. Edge detection of the main scene of the painting in the original picture (left) and in the AI-generated 
image (right). ChatGBT 4/o in combination with Python (accessed on January 15, 2025). 

The second analysis of the heatmaps (figure 10) provides a visualization of three metrics (SSIM, 
MSE, and Similarity) comparing the Original Image and the AI-Generated Image. The SSIM 
(Structural Similarity Index) value indicates a low-to-moderate level of structural similarity between 
the two images. The edges and overall structural components in the AI-generated image align only 
partially with those in the original, reflecting a focus on certain features (e.g., the firepit) rather than 
the broader abstract composition. The MSE (Mean Squared Error) score, relatively low, suggests that 
the pixel-level differences between the original and AI-generated images are not extreme. However, 
the AI-generated image simplifies and emphasizes certain areas (e.g., human figures, firepit), leading 
to fewer nuanced variations found in the original painting. 

Finally, the Semantic Similarity reflects how well the AI-generated image captures the 
conceptual meaning or narrative of the original. The score suggests that while the AI image aligns 
with the general theme (e.g., ritual, firepit, human figures), it diverges in the subtleties and 
complexity of the abstract symbolism. The AI-generated image captures the narrative core (firepit 
and figures) but simplifies the broader context, as reflected by low-to-moderate SSIM and Semantic 
Similarity scores. The MSE indicates that pixel-level differences are subtle, highlighting the AI's 
ability to retain some visual harmony. The AI seems to prioritize clarity and focus on specific 
narrative elements, sacrificing the nuanced abstraction present in the original. 
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Figure 10. Comparison metrics concerning the original image and the AI generated one based on SSIM 
(structural similarity) MSE (Mean Squared Error, Pixel-level intensity) and Similarity (Conceptual alignment 
using semantic analysis). ChatGBT 4/o in combination with Python (accessed on January 15, 2025). 

This bar chart illustrates the semantic similarity scores between the original image and the AI-
Generated Image when compared with the provided narrative prompt. The relatively low score 
reflects the abstract and symbolic nature of the original image. While the original image may align 
conceptually with the narrative prompt, its abstract elements and lack of clearly defined structures 
reduce its semantic alignment with explicit descriptions. This suggests that the original image's 
meaning is open to interpretation and not tightly bound to a single narrative. 

The AI-generated image has a slightly higher semantic similarity score compared to the original 
image. This increase in similarity is due to the AI's clear depiction of key elements from the prompt, 
such as a central firepit. Human figures surrounding the ritual. A structured scene that matches the 
described ritualistic activity. The AI-generated image prioritizes a direct narrative alignment with the 
prompt over artistic abstraction. 

The AI-generated image focuses on literal and recognizable elements, leading to a higher 
semantic similarity with the narrative prompt. The original image, by contrast, emphasizes 
abstraction and symbolic representation, resulting in a lower semantic score. The original image's 
abstraction allows for multiple interpretations but reduces alignment with a specific narrative. The 
AI image sacrifices abstraction for clarity, ensuring stronger alignment with the explicit elements of 
the prompt. The score difference (0.0632) is small, indicating that both images reflect the prompt to 
some extent but in vastly different ways—one abstract, the other literal. 

This analysis highlights how AI-generated art tends to prioritize narrative clarity and prompt-
specific alignment over abstraction and symbolism. The original image's abstraction may make it 
more engaging for interpretation, but it aligns less closely with the specific semantic content of the 
prompt.  

Figure 11 compares the semantic alignment of the original and AI-generated images with the 
narrative prompt: Original Image: Semantic similarity score is 0.2698, reflecting its abstract and 
ambiguous representation. AI-Generated Image: Semantic similarity score is 0.3330, showing a 
stronger alignment with the prompt's described scene. 
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. 

Figure 11. Semantic similarity between the original image and the AI generated image. ChatGBT 4/o in 
combination with Python (accessed on January 15, 2025). 

. 

Figure 12. AI generated image (Distillery) based on a student’s prompt during the VTS experiment. ChatGBT 
4/o in combination with Python (accessed on January 15, 2025). 

Global Variance, figure 13. The AI-generated image has a higher global variance (3622.66) 
compared to the original image (2904.91), indicating greater overall contrast in pixel intensities. The 
variance for the center region of the original painting (3102.74) is similar to its global variance, 
showing consistent intensity distribution. AI Firepit: The variance for the AI firepit region is 
significantly lower (870.60), suggesting that the firepit has a more uniform and focused intensity 
distribution compared to the abstract center in the original painting. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2025 doi:10.20944/preprints202501.2273.v1

https://doi.org/10.20944/preprints202501.2273.v1


 14 of 22 

 

. 

Figure 13. Variance analysis, global and key regions. ChatGBT 4/o in combination with Python (accessed on 
January 15, 2025). 

In the semantic and symbolic comparison (figure 14), the AI interpretation highlights a more 
structured and socially grounded scene, emphasizing communal participation around a central fire. 
The arrangement of figures suggests hierarchy and intentional roles within the ritual, contrasting the 
ambiguous roles in the original image. The central fire is the focal point, symbolizing transformation, 
energy, or purification. This element reinforces the theme of ritualistic change, perhaps linked to 
rebirth or spiritual transcendence. 

Human figures are distinct and actively engaged, portraying clear roles within the ritual (e.g., 
offering, watching, or conducting the ceremony). This structured representation contrasts with the 
shadows in the original image, where individual roles are obscured. 

The original image uses abstraction to evoke mystery and fluidity, suitable for an interpretive, 
symbolic exploration of ritual. In contrast, the AI-generated image provides a concrete, structured 
depiction, making the ritual more accessible and straightforward. It emphasizes a symbiotic 
relationship with nature, integrating its motifs as part of the ritual. The AI-generated image shifts the 
focus to human agency and the fire as a transformative medium. 

The shadows in the original image convey universality and inclusiveness, aligning with rituals 
that transcend individual identity. The AI-generated image emphasizes distinct roles and 
interactions, reflecting a more hierarchical or role-based ritual structure. 
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. 

Figure 14. Semantic and symbolic comparison between the original painting and the AI-prompt-based generated 
image. ChatGBT 4/o in combination with Python (accessed on January 15, 2025). 

4. Saliency maps 

One of the key factors of human interpretation of images [29] is the information encoding, that 
means how much we need to capture for interpreting and transmitting visual content. What kinds of 
cultural and contextual elements can influence this process and what methods we can adopt for this 
kind of research? 

Saliency maps are an essential tool in both neuroscience and artificial intelligence (AI), offering 
a means to visualize and quantify the most important features of an image or scene that capture 
human attention or drive AI model decisions. In the context of art, saliency maps provide fascinating 
insights into how people perceive and interact with visual works, revealing the underlying patterns 
and elements that guide focus and evoke emotional or cognitive responses.  

Saliency maps are computational or visual representations [30] that highlight the regions of an 
image that are most likely to draw attention. They are rooted in the concept of saliency—the quality 
that makes certain aspects of a visual scene stand out. Saliency is influenced by both low-level 
features, such as color, contrast, and brightness, and high-level cognitive factors, including context, 
meaning, and prior knowledge. In computational terms, saliency maps are often generated using 
algorithms that model human visual attention. These algorithms analyze an image to identify regions 
of interest based on feature contrasts. For example, bright, saturated colors in an otherwise muted 
scene, or sharp edges in a soft, blurry context, are likely to appear as salient. 

In neuroscience, saliency maps are connected to studies of the visual cortex and attention 
mechanisms in the brain [31]. Eye-tracking studies frequently use saliency maps to correlate gaze 
patterns with specific visual stimuli, providing data on how people process visual information in real 
time. 

Art has always been a powerful medium for engaging visual attention, often deliberately 
playing with elements like color, composition, and texture to guide the viewer’s gaze. Saliency maps 
offer a quantitative approach to studying these effects, revealing how artists manipulate visual 
elements to create focal points or evoke specific emotional responses. One of the most direct 
applications of saliency maps in art is through eye-tracking studies. These studies track the 
movement of viewers’ eyes as they explore a painting or sculpture, generating data that can be 
transformed into saliency maps. The resulting heatmaps highlight areas where viewers spend the 
most time looking, as well as the sequence of their gaze. 
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Eye-tracking studies have also shown that saliency in art is not solely driven by low-level visual 
features. High-level factors, such as cultural context, personal experience, and the narrative 
embedded in a work, significantly influence gaze patterns.  

In applying a saliency map analysis to the above-mentioned case study we can better evaluate 
the difference between an empirical experiment, the eye-tracking, and the AI simulation of a saliency 
map over the same subject (figure 15). 

The saliency map (on the right) indicates regions of the image that are most visually or 
semantically prominent. The central area of the original image, which likely contains significant 
features (such as the bright yellow-orange area), is highlighted strongly in red. This suggests that this 
region is the most attention-grabbing. The outer regions of the image, such as the edges and corners, 
show low saliency (yellow or white areas). This indicates that these areas contain less visually 
significant information and are less likely to attract attention. Bright colors, such as yellows and 
oranges, and high contrast in the original image have a strong influence on the saliency. The heatmap 
reflects this by assigning these areas higher attention weights. The saliency map also captures 
contextual elements, such as the figures on the sides of the original image, albeit with lower intensity. 
This implies that while these figures are part of the composition, they do not dominate attention in 
the way the central elements do. 

 

Figure 15. Saliency map (right) of the original painting (on the left). ChatGBT 4/o in combination with Python 
(accessed on January 15, 2025). 

Saliency maps generated by AI models offer a unique perspective on how machines “see” art32. 
These models, often trained on large datasets, use neural networks to predict the most salient regions 
of an image. Comparing AI-generated saliency maps with human gaze patterns provides insights 
into both human and machine perception33. 

While human saliency is influenced by emotional, cultural, and contextual factors, AI saliency 
is typically based on algorithmic rules and data patterns. This distinction can lead to interesting 
divergences in interpretation. For example, an AI model might focus on fine details or high-contrast 
areas that humans might overlook in favor of more emotionally or contextually relevant regions. 
These differences highlight the challenges and opportunities in teaching AI systems to better 
understand human aesthetics. 

In figure 16, similar to the previous saliency map, the strongest highlights (in red) are 
concentrated in the central area, specifically around the fire and the human figures in the center of 
the composition. The flame and the figures directly below it dominate the visual field, indicating their 
critical role in capturing attention. The saliency map also picks up on some peripheral figures, such 
as those on the left and right of the central scene. However, their importance is relatively diminished 
compared to the central flame and figures. 
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The saliency map reflects vertical attention, with the fire extending upwards and maintaining a 
visually significant streak in the middle. The bright vertical saliency suggests that viewers’ attention 
might naturally follow the fire’s upward trajectory. The contrast between the fire's bright orange glow 
and the dark background plays a key role in determining saliency. The map effectively captures this 
contrast, emphasizing regions where there is a stark difference in brightness. This saliency map aligns 
well with the likely narrative intention of the artwork: focusing on the central ritualistic scene while 
maintaining peripheral awareness of the surrounding figures. The central focus supports the visual 
hierarchy, leading viewers to the most crucial elements of the composition first. 

The balance of saliency here is better distributed compared to the previous example, as 
secondary attention is given to surrounding elements, making the overall scene more dynamic. The 
visual weight reinforces a theatrical composition, emphasizing the ritual and its participants. 
Overlaying this saliency map onto the original image could provide further clarity on how well the 
artwork communicates its intended narrative. Additional analyses could examine whether the 
surrounding figures could draw slightly more attention to enhance balance. 

The first saliency map reflects a complex and distributed visual structure, where attention is 
spread across multiple elements. This indicates that the original image invites exploration and 
encourages the viewer to construct meaning through interaction with different parts of the 
composition. The second saliency map reveals a hierarchical and centralized focus, emphasizing the 
ritual as the core of the narrative. This suggests a simpler visual interaction that guides the viewer to 
a specific interpretation. 

 

Figure 16. Comparison between the AI-image generated (on the left, created by a student’s prompt) and its 
saliency map. ChatGBT 4/o in combination with Python (accessed on January 15, 2025). 

In the chart of figure 17 both maps display nearly identical distributions of saliency between the 
central and peripheral regions. This might suggest a similar spatial distribution of salient features in 
the two saliency maps. The high peripheral saliency could mean that the visual elements or features 
in the images being analyzed are distributed towards the edges rather than concentrated in the center. 
If Map 1 (figure 17, 20.802298% central, 79.197702 peripheral) represents the original artwork and 
Map 2 (figure 17, 19.358028%, central 80.641972%, peripheral) represents an AI-generated 
interpretation, this result implies that the AI-generated image mimics the spatial saliency distribution 
of the original. This is an additional confirmation that the student’s prompt was deeply influenced 
by the observation during the VTS experiment. On of top this the two images recalls the main spatial 
structure of the scene. 

In visual design or art, saliency in the peripheral regions can engage viewers by encouraging 
exploration beyond the center. If the purpose of the AI-generated image was to replicate the visual 
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structure of the original, this similarity in saliency distribution might indicate that it successfully 
captured the spatial dynamics of the original. 

. 

Figure 17. Comparison between central and peripheral saliency of the original and AI generated images. 
ChatGBT 4/o in combination with Python (accessed on January 15, 2025). 

4.1. Saliency Maps and AI 

As discussed before, saliency denotes the capacity of some visual features to inherently capture 
attention owing to their contrast, prominence, or significance within a particular context. In art [34] 
and artifacts, saliency functions on two levels. It illustrates the physical attributes of an artwork, 
including edges, color contrasts, and symbolic areas that automatically capture the viewer's 
attention35. Conversely, computationally created saliency maps are visual depictions produced by 
algorithms that replicate human attention, providing a method to examine viewer interaction with 
visual compositions. Saliency maps offer a means to evaluate human perception and interaction with 
art. These maps delineate areas of significant visual prominence within an image, with luminous 
zones signifying components that capture attention owing to pronounced edges, contrasts, or 
geometric configurations. In an architectural picture, elements such as obelisks and domes are 
prominent due to their structural uniqueness and symmetry. In contrast, darker areas on a saliency 
map indicate regions of diminished visual importance, such as untextured backgrounds or uniform 
hues. This approach corresponds with human inclinations to concentrate on structured patterns, 
symmetry, and details that have aesthetic or cultural importance. In artworks like frescoes, saliency 
maps often highlight the outlines of human figures, complex patterns, or components that direct 
attention and enhance the narrative or emotional resonance of the piece. 

By incorporating saliency analysis into these systems [36], artists can guide AI models to 
produce works that align with human aesthetic preferences [37]. For example, an AI model might be 
programmed to generate abstract art that maximizes saliency in certain regions, creating 
compositions that naturally draw the viewer’s eye [38]. Alternatively, artists can use saliency maps 
to evaluate and curate AI-generated pieces [39], selecting those that achieve the desired balance of 
attention and impact. 

The interplay between saliency maps and art raises important questions about aesthetics, 
creativity, and the nature of human attention [40]. As AI systems become more sophisticated, they 
not only analyze but also influence the way we perceive and create art. This dynamic has both 
exciting possibilities and potential challenges. Saliency maps can be used to enhance viewer 
engagement with art in museums and galleries [41]. For example, interactive exhibits could display 
real-time saliency maps based on visitors’ gaze patterns, offering insights into how different people 
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perceive the same work. This could spark discussions about the subjective nature of art and the 
diverse factors that influence visual attention. 

Moreover, saliency maps could guide the curation of exhibitions, helping curators design 
layouts that optimize viewer engagement. By analyzing gaze patterns and attention flows, curators 
can position artworks in ways that encourage exploration and discovery. 

The use of saliency maps in art also challenges traditional notions of aesthetics and artistic 
intention. If saliency maps reveal that viewers consistently focus on unintended elements of a work, 
does this undermine the artist’s original vision? Or does it highlight the dynamic and participatory 
nature of art, where meaning is co-created by the artist and the viewer? In the context of AI-generated 
art, saliency maps further blur the boundaries between creator and audience. When an AI system 
generates a piece based on saliency principles, is the resulting work a product of the machine’s 
“vision,” the programmer’s intent, or the viewer’s response? These questions challenge us to rethink 
the relationship between technology, creativity, and human experience. 

In the art world, the use of saliency maps to optimize viewer engagement could lead to a 
homogenization of aesthetic experiences, where works are designed to appeal to predictable patterns 
of attention rather than fostering genuine creativity and diversity. Balancing the benefits of saliency 
analysis with the need to preserve artistic integrity and authenticity is an ongoing challenge. 

Human figures, for instance, often dominate saliency maps due to their distinct edges, contrasts 
in clothing, and expressive gestures. Simultaneously, backgrounds with minimal texture or contrast 
are de-emphasized, showcasing the ability of saliency analysis to suppress visually inactive areas. In 
works where details like drapery, musical instruments, or symbolic gestures are prevalent, saliency 
is often distributed evenly across these intricate regions, reflecting their shared importance in guiding 
the viewer gaze. This analysis aligns with cognitive research showing that human attention gravitates 
toward areas with significant transitions, contrasts, or culturally resonant symbols. In terms of 
practical applications, saliency maps serve as tools for evaluating and interpreting visual focus in 
both art and artifacts. They provide valuable insights into artistic techniques, revealing how creators 
manipulate visual elements to guide attention or evoke specific responses. In neuromarketing, 
saliency maps are used to assess how people engage with visual stimuli, offering metrics that can 
inform design strategies for advertisements, branding, and user interfaces. They are also increasingly 
applied in the creation and evaluation of algorithmic or generative art. By identifying regions that 
align with human aesthetic preferences, saliency maps help refine and curate AI-generated works to 
enhance their visual impact. Furthermore, when paired with eye-tracking data, these maps validate 
and complement computational predictions, allowing researchers to compare algorithmic models 
with real-world gaze patterns. The examples presented illustrate how saliency maps are applied to 
analyze both architectural and artistic compositions.  

Saliency maps also provoke deeper questions about perception, interpretation, and artistic 
intention. They highlight a dynamic interaction between the viewer and the artwork, revealing how 
certain elements capture attention while others recede into the background. This raises intriguing 
questions about whether saliency maps reflect the artist intended focal points or simply the natural 
tendencies of human perception. The comparison between human and algorithmic attention further 
enriches this dialogue, revealing areas of overlap and divergence that highlight the challenges of 
teaching AI to fully understand human aesthetics. 

In conclusion, saliency maps offer a powerful lens through which to explore the interplay 
between art and attention. Whether used to analyze existing works, guide new creations, or enhance 
viewer engagement, they provide valuable insights into the mechanisms of visual perception and the 
dynamics of aesthetic experience.  

5. Conclusions 

This paper has demonstrated the transformative potential of integrating generative AI, 
neuroaesthetic tools, and methodologies like Visual Thinking Strategies (VTS) in archaeological and 
art historical research. By leveraging cutting-edge technologies such as AI-generated simulations, 
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eye-tracking experiments, and saliency map analyses, we explored how these approaches contribute 
to understanding human interaction with cultural heritage and reconstructing multiple narratives of 
the past. 

Generative AI proved to be an invaluable tool for simulating alternative interpretations of 
archaeological contexts and art, enabling the conceptualization of the past as a multiverse rather than 
a fixed timeline. The AI-generated visualizations highlighted multiple plausible scenarios based on 
human input and descriptive prompts. These simulations captured the complexity of cultural models 
by offering nuanced visual interpretations that are rooted in data-driven creativity. This "multiverse 
approach" opens pathways for engaging with uncertainties and contradictions inherent in material 
cultures, fostering a more inclusive and diverse understanding of ancient societies. 

Eye-tracking experiments provided critical insights into human cognitive engagement with 
visual stimuli, including original artworks and AI-generated interpretations. The results revealed 
that VTS significantly influences how individuals visually explore art, guiding attention toward 
specific features and fostering a deeper understanding of symbolic and structural elements. Before 
applying VTS, viewers exhibited diffuse patterns of attention, while post-VTS results demonstrated 
more focused and interpretively rich visual engagement. This underscores the pedagogical value of 
VTS in enhancing observational and interpretive skills, as well as the importance of guided 
frameworks in art and archaeological education. 

Saliency map analysis complemented the eye-tracking results by quantifying the visual impact 
of central and peripheral regions in both original and AI-generated imagery. The comparison 
between central and peripheral saliency distribution highlighted differences in how human-created 
and AI-generated images emphasize key visual elements. AI interpretations often concentrated 
saliency in symbolically charged areas, such as the central fire or ritual objects, while the original 
images showed more diffuse saliency, reflecting the complexity of human artistic intention. This 
analysis illustrates how saliency maps can bridge the gap between computational and humanistic 
approaches to visual studies, providing actionable insights into visual storytelling and composition. 

The integration of these tools raises profound implications for archaeology, art history, and 
neuroaesthetics: 

Enhanced Multimodality: Combining AI simulations with human-centric tools like eye-tracking 
and VTS creates a multimodal framework for exploring cultural artifacts, blending quantitative 
precision with qualitative interpretation. 

Cognitive Engagement: Eye-tracking and saliency maps underscore the importance of 
understanding human perception and attention when observing and interpreting artifacts, both to 
academic audiences and the public. 

Ethical Responsibility: While generative AI offers creative and interpretive potential, its use 
necessitates transparency in methodologies and careful consideration of biases introduced by 
prompts, datasets, and algorithms. Collaborative engagement with diverse communities ensures 
inclusivity and ethical integrity. 

This research illustrates how the fusion of generative AI, cognitive tools, and interpretive 
methodologies can revolutionize the study of material culture and art. By harnessing these 
technologies, researchers can transcend traditional limitations, reimagining historical narratives as 
dynamic, multifaceted, and participatory. However, the power of these tools comes with the 
responsibility to contextualize their results critically, ensuring that technological innovation aligns 
with the values of historical authenticity, inclusivity, and cross-disciplinary collaboration. This 
paradigm shift ultimately enriches not only our understanding of the past but also our collective 
cultural imagination. 
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