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Article 

Federated Learning for XSS Detection: Analysing 
OOD, Non-IID Challenges, and Embedding 
Sensitivity 
Bo Wang *, Imran Khan, Martin White and Natalia Beloff 

University of Sussex, Brighton, United Kingdom 
* Correspondence: bw268@sussex.ac.uk 

Abstract: This paper investigates federated learning (FL) for cross-site-scripting (XSS) detection 
under realistic out-of-distribution (OOD) drift. Real-world XSS traffic mixes fragmented attack 
payloads, heterogeneous benign inputs and client-side imbalance, which erode conventional 
detectors. To emulate this variability, we construct two structurally divergent datasets: one 
containing obfuscated, fragmented attacks and mixed-structure benign samples that blend code, 
natural-language text and trace fragments, and another comprising syntactically regular examples. 
This split induces structural OOD in both malicious and benign classes. We train GloVe, 
GraphCodeBERT and CodeT5 in centralized and federated settings while tracking embedding drift 
and client-level gaps. FL generally strengthens OOD robustness by averaging stable decision 
boundaries from cleaner clients into noisier ones. In federated tests, transformer-based embeddings 
achieve the highest global accuracy, whereas static GloVe vectors remain the least sensitive to 
negative-class drift. These findings highlight both the limits and value of structure-aware features in 
FL and suggest FL as a practical, privacy-preserving defence against distributionally mismatched 
XSS attack. 

Keywords: web security; machine learning; cross-site scripting attack; federated learning; out of 
distribution; Code T5; GraphcodeBERT; GloVe; natural language processing (NLP) 
 

1. Introduction 

Cross-site scripting (XSS) attacks remain a persistent security threat due to their widespread 
occurrence and ease of exploitation [8]. Machine learning-based detection, including reinforcement 
learning [7,17] and ensemble learning [6,38], has advanced significantly, with earlier studies [4,6,12] 
and more recent works [1,3,5,10,38] focusing on improving model architectures and feature 
extraction. 

However, many methods still face generalisation issues due to the highly distributed data 
structure and privacy concerns. Federated Learning (FL) has emerged as a privacy-preserving 
alternative, allowing collaborative training without exposing raw data. This study explores the use 
of FL for XSS detection, addressing key challenges such as non-independent and identically 
distributed (non-IID) data, heterogeneity and out-of-distribution (OOD). While FL has been applied 
in cybersecurity [11,18], its role in XSS detection remains underexplored. Most prior works focus on 
network traffic analysis, rather than text-based XSS payloads. 

This study presents the first systematic application of federated learning to XSS detection under 
text-based XSS threat scenarios. Our key contributions are. 
1. We design a federated learning (FL) framework for XSS detection under structurally non-IID 

client distributions, incorporating diverse XSS types, obfuscation styles, and aĴack paĴerns. This 
setup reflects real-world asymmetry, where some clients contain partial or ambiguous indicators 
and others contain clearer aĴacks. Importantly, structural divergence also affects negatives, 
whose heterogeneity is a key yet underexplored factor in generalisation failure. Our framework 
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enables the study of bidirectional OOD, where fragmented negatives cause high false positive 
rates under distribution mismatch. 

2. Unlike prior work that mixes lexical or contextual features across splits, we maintain strict 
structural separation between training and testing data. By using an external dataset [57] as an 
OOD domain, we isolate bidirectional distributional shifts across both classes under FL. Our 
analysis shows that generalisation failure is can also be driven by structurally complicated 
benign samples not only by rare or obfuscated aĴacks, emphasizing the importance of structure-
aware dataset design. 

3. We compare three embedding models (GloVe [24], CodeT5 [26], GraphCodeBERT [25]) in 
centralised and federated seĴings, showing that generalisation depends more on embedding 
compatibility with class heterogeneity than on model capacity. Using divergence metrics and 
ablation studies, we demonstrate that structurally complex and underrepresented negatives lead 
to severe false positives. Static embeddings like GloVe show more robust generalisation under 
structural OOD, indicating that stability relies more on representational resilience than 
expressiveness. 

2. Related work 

Existing research on federated learning (FL) for XSS detection remains scarce. The most relevant 
work by Jazi & Ben-Gal [2] investigated FL’s privacy-preserving properties using simplified setups 
and traditional models (e.g., MLP, KNN). Their non-IID configuration assumes an unrealistic “all-
malicious vs. all-benign” client split, and evaluation is conducted separately on a handcrafted text-
based XSS dataset [57] and the CICIDS2017 intrusion dataset [28]. However, they do not consider 
data heterogeneity or OOD generalisation. Still, the dataset [57] they selected is structurally rich and 
thus serves as a suitable OOD test dataset in our experiments (see Section 3.2). 

Heterogeneity in datasets remains a significant challenge for XSS detection [14,15,39,61]. The 
absence of standardized datasets, particularly in terms of class variety and sample volume, can have 
a substantial impact on the decision boundaries learned by detection models [60,64]. Most existing 
studies, including [3–5,10], attempt to address this issue through labor-intensive manual processing, 
aiming to ensure strict control over data quality, feature representation, label consistency, and class 
definitions. 

However, we argue that complete reliance on manual curation often fails to reflect real-world 
conditions. In practical cybersecurity scenarios, data imbalance is both common and inevitable, 
especially regarding the ratio and diversity of attack versus non-attack samples [60–62]. This often 
results in pronounced structural and categorical divergence between positive and negative classes. 
For example, commonly used XSS filters frequently over-filter benign inputs [63], indicating a 
mismatch between curated datasets and actual deployment environments. 

In light of these challenges, federated learning demonstrates strong potential. It enables models 
to share decision boundaries through privacy-preserving aggregation [33,56], offering an effective 
alternative to centralized data collection and manual intervention. 

Meanwhile, we argue that findings from FL research on malicious URL detection [9,37] are 
partially transferable to XSS detection. Although some malicious URLs may embed XSS payloads, 
the two tasks differ in semantic granularity, execution contexts, and structural variability. Given their 
shared challenges like class imbalance, distribution shift, and non-IID data, we think FL techniques 
proven effective for URL detection offer a reasonable foundation for XSS adaptation. 

The high sensitivity of XSS-related information such as emails or session tokens, makes sharing 
difficult without anonymisation. Yet studies [53,54] show that anonymisation often introduces 
significant distributional shifts due to strategy-specific biases. Disparities in logging, encoding, and 
user behaviour further distort data distributions, compromising generalisation [53,54]. 

For example, strings embedded in polyglot-style payloads are hard to anonymise, as minor 
changes may affect execution. Consider the following sample: 
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<javascript:/*-
><img/src=‘x’onerror=eval(unescape(/%61%6c%65%72%74%28%27%45%78%66%69%6c%3A%20%2
b%20%27%2b%60test@example.com:1849%60%29/))> 

Naively replacing “test@example.com” with an unquoted *** breaks JavaScript syntax, 
rendering the sample invalid and misleading detectors. While AST-based desensitisation can 
preserve structure, it is complex, labour-intensive, and lacks scalability [52]. 

To address these challenges, this study introduces a federated learning (FL) framework to 
enhance XSS detection while preserving data privacy, especially under an OOD scenario. FL enables 
collaborative training without exposing raw data [11,56], mitigating distributional divergence and 
improving robustness [56,59]. More importantly, our approach leverages structurally well-aligned, 
semantically coherent clients to anchor global decision boundaries, allowing their generalisation 
capabilities to be implicitly shared across clients with fragmented, noisy, or ambiguous data 
distributions. In doing so, we avoid the need for centralised, large-scale anonymisation or 
sanitisation, and instead provide low-quality clients with clearer classification margins without direct 
data sharing or manual intervention. This decentralised knowledge transfer mechanism forms the 
basis of our FL framework, detailed in Section 5, and evaluated under dual OOD settings across three 
embedding models. Section 4 will explain the Centralized OOD testing, 

3. Methodology and Experimental Design 

3.1. Settings and Rationale 

Please see Figure 1 for the project pipeline and Figure 2 for the overall paper logic flow. 

 
Figure 1. Project Pipeline. 
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Figure 2. Paper Logic flow. 

3.1.1. Experiment Environment 

Our experiments are based on the FLOWER framework [19], an open-source system for 
simulating federated learning that supports various federated learning (FL) schemes and aggregation 
algorithms, including FedAvg [21], FedProx [22], and robust methods such as Krum [23]. The 
experiments were conducted on the JADE2 high-performance computing (HPC) cluster, using a 
single NVIDIA V100 GPU (32GB) per run (used average ram 16GB for FL training). As JADE2 is a 
multi-user shared system, Centralized Training time varied between 0.1-0.5 hours and Federated 
training time varied between 0.5 - 2 hours, depending on system load and job scheduling conditions. 
(Typical time cost 2882.32s for GloVe with FedAvg, 4614.06s for GraphCodeBERT with FedAvg) 

3.1.2. Embedding Selection Rationale 

To evaluate the effectiveness of different natural language processing techniques in OOD XSS 
detection, we selected three representative word embedding paradigms: 
1. GloVe-6B-300d (static embedding): A word embedding model that maps words to fixed-

dimensional vectors based on co-occurrence statistics. 
2. GraphcodeBERT-base (BERT-derived, pre-trained with data flow graphs A transformer trained 

on code using masked language modeling, edge prediction, and token-graph alignment. It 
models syntax and variable dependencies, making it suited for well-structured XSS payloads. 

3. CodeT5-base (sequence-to-sequence, code-aware): A unified encoder-decoder model pre-
trained on large-scale code corpora. In our seĴing, we utilize the encoder component to extract 
contextual embeddings. CodeT5 captures both local and global structural paĴerns through its 
masked span prediction and identifier-aware objectives, making it suitable for modeling 
fragmented or obfuscated payloads that lack explicit syntax trees. 
Unlike GraphCodeBERT, which relies heavily on syntax-level alignment, CodeT5 learns a 

broader structural abstraction that generalizes better to heterogeneous inputs. This makes it 
particularly effective in detecting distributional shifts in structurally diverse or OOD payloads 
commonly seen in federated XSS detection scenarios. 

For practical considerations, we adopted mid-sized variants of each model to ensure 
computational feasibility and compatibility with federated learning environments. Larger-scale state 
of art (SOTA) models such as GPT-3/3.5/4 [43] and DeepSeek-coder-1B/6.7B [44], while potentially 
more expressive, are prohibitively expensive in terms of inference cost and memory footprint, even 
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when used solely for frozen embedding. Such overhead renders them unsuitable for decentralised 
training settings, especially when synchronous inference across heterogeneous clients is required. 

In addition, to ensure a fair and interpretable comparison, we intentionally avoided mixing 
model scale and design improvements. The selected models strike a practical balance between 
representation power and computational efficiency, enabling a focused evaluation of embedding 
characteristics without introducing confounding factors or excessive system complexity. 

3.1.3. Freeze Emebedding 

Despite the potential for improved downstream performance, we intentionally avoid fine-
tuning the embedding models (e.g., CodeT5, GraphCodeBERT) in our pipeline. This design choice 
reflects both practical and privacy-driven considerations. 
 In typical and classical FL settings, model training must occur on decentralised clients where raw 
data cannot be aggregated. Fine-tuning pre-trained models typically requires centralised access to 
data and intensive resources, which contradicts FL’s privacy-preserving assumptions. 
 Furthermore, recent studies [40,41,45] have demonstrated that fine-tuning can amplify privacy 
leakage risks by recovering previously “forgotten” personal information from language models 
(LMs). They will also increase the FL computation cost and complexity [45]. Therefore, we use frozen 
embedding models to better align with real-world FL deployments, where privacy and generalisation 
must coexist without heavy centralised retraining, and to reduce the risk of inference attacks [46] that 
exploit model updates to extract senssitive client information. 

3.1.4. Downstream Classifier 

The downstream classifier is a unified light transformer model with d_model = 256, nhead = 8, 
num_encoder_layers = 3, dim_feedforward = 512, dropout = 0.1, learning rate = 0.001. Batch_size = 64. 
The input dimensions of the three word-embedding models used are 768 for both CodeT5 and 
GraphcodeBERT, and 300 for GloVe, respectively. We used Cross Entropy Loss for both Centralised 
and FL tests. 

3.1.5. Optimization and Aggregation 

We applied FedAvg and FedProx with Focal Loss [34] to address client drift and imbalance in 
the Non-IID federated learning setting for aggregation. The Focal Loss modification helps mitigate 
the impact of class imbalance, particularly for rare XSS attack variants. For details, please see section 
5.1. 

In the overall framework, we avoided overly complex designs like federated domain adaptation 
[47] to minimise the influence of different factors on the advantages of federated learning. Our 
experiment design aims to verify the potential role of the federated learning framework in OOD XSS 
attack detection rather than to validate single models or approaches that have already been 
extensively studied and repeatedly tested, as mentioned earlier. Many of these models strongly 
depend on specific datasets and centralised training conditions, making them less applicable to real-
world FL scenarios with non-IID, privacy-constrained data distributions. The following sections will 
explain the dataset preparation, the central aggregation algorithms used for federated learning, and 
the experimental evaluation results. 

3.2. Dataset Design and Explanation 

3.2.1. Dataset Construction 

Following recent studies [1–4,15,20,39,57], we categorize XSS datasets into two types: text-
oriented and traffic-oriented. Our focus is on text-oriented datasets, which include raw payloads, 
JavaScript fragments, and event handlers, and more directly capture XSS surface forms. Unlike 
general intrusion datasets (e.g., CICIDS2017, NF-ToN-IoT [27]), XSS detection lacks large-scale, 
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standardized text corpora. Existing datasets are often small, domain-specific, and poorly documented 
[5,20,29,30]. 

We use two complementary datasets to support federated learning experiments: 
 Dataset 1: A manually curated training set (73,277 samples; 39,134 positives) sourced from 

OWASP, GitHub, and PortSwigger. It includes diverse XSS types (Reflected, Stored, DOM-
based) and obfuscation styles. Positive samples are often partial or fragmented payloads, while 
negative samples are heterogeneous, including mixed-format code snippets, incomplete traces, 
and unrelated injections. 

 Dataset 2: A structurally consistent test set (42,514 samples; 15,137 positives) from [57], 
dominated by fully-formed Reflected XSS payloads (~95.7%) with high lexical and syntactic 
regularity. Its negative samples are more cleanly separated (e.g., full URLs, plain text), resulting 
in lower structural ambiguity. 
To simulate FL-specific non-IID conditions: 

1. We partition Dataset 1 across five clients with attack-type and source-specific imbalance; 
2. We use Dataset 2 as an out-of-distribution (OOD) test set to evaluate generalisation under 

structural shift. 
No data augmentation or resampling was applied, in order to preserve natural fragmentation, 

partial injections, and scanning artifacts. The dataset continues to be refined to ensure that observed 
OOD effects stem from real-world variability, not artificial perturbations. 

We released both raw datasets in: 
https://github.com/Phillipswangbo/V1.4/tree/26dcf185a412f982cab28f8e113313ffeff565e1 
Our dataset design was also inspired by the research of Sun’s team [31], along with their formula 

for evaluating model generalisation errors: 
εgen ≔ 𝐸ௌ𝐸஺ൣ𝑅൫𝐴(𝑆)൯ − 𝑅ௌ

෢൫𝐴(𝑆)൯൧ (1) 

3.2.3. Semantic-Preserving Substitution and Lexical Regularisation 

In Dataset 1, we replaced high-frequency canonical payloads such as “alert” with syntactically 
valid but functionally diverse JavaScript APIs like prompt. See Table 1. These variants, although not 
strictly equivalent in runtime effect, remain plausible within XSS contexts and preserve executable 
structure. The substitutions were selected to expand structural diversity and better reflect real-world 
attack surface variability. Unlike traditional lexical regularisation that aims to preserve semantic 
identity, our transformation introduces controlled structural perturbations without altering the label 
or removing executable intent. While Dataset 2 retains conventional alert-style payloads, Dataset 1 
exposes the model to more varied expressions. This design enables us to evaluate robustness under 
structurally diverse but semantically plausible inputs, particularly relevant for fragmented or 
ambiguous samples in practical deployment scenarios. 

Table 1. High-frequency pattern replacements. 

Function Name Examples Rationale 
Console.error  Outputs an error message to the console. 

confirm  
Displays a confirmation dialog asking the 
user to confirm an action. 

prompt  Displays a prompt to input information. 

3.2.4. Quantitative Lexical-Level Analysis Reveals Distributional Divergence 

To quantify lexical-level divergence between Dataset 1 and Dataset 2, we extracted top-100 TF-
IDF features from 3,000 sampled samples. In positive samples, 63 features overlapped (Jaccard = 
45.98%, Cosine = 0.4988), showing moderate consistency. In contrast, negative samples had only 20 
overlaps (Jaccard = 10.5%, Cosine = 0.2230), reflecting greater lexical diversity. While this suggests 
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notable variation in negative samples, We hypothesise that generalisation gaps cannot be solely 
attributed to this, as structural inconsistencies in positive samples also play a key role. See Table 2. 
For the formulation, 𝑇ଵ refers to the Top-k TF-IDF features from Dataset 1, same to 𝑇ଶ , the overlap 
count is defined as | 𝑇ଵ ∩  𝑇ଶ| where 𝑇ଵ, 𝑇ଶ denote the sets of top-k TF-IDF features in each dataset. 
cosine similarity between aggregated TF-IDF vectors is given by 

௩భሬሬሬሬ⃗ ⋅௩మሬሬሬሬ⃗

|௩భሬሬሬሬ⃗ ||௩మሬሬሬሬ⃗ |
, where 𝑣ଵሬሬሬሬ⃗  𝑣ଶሬሬሬሬ⃗  represent the 

mean TF-IDF vectors of each dataset. However, since TF-IDF cannot effectively capture structural 
differences in positive samples (similar to GloVe, which also lacks structural awareness), we further 
employed other measurements to visualise such differences in the following paragraphs of section 
4.2. 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐶𝑜𝑢𝑛𝑡 =  | 𝑇ଵ ∩  𝑇ଶ| (2) 
Jaccard Similarity =

| భ்∩ మ்|

| భ்∪ మ்|
 (3) 

Cosine Similarity =
௩భሬሬሬሬ⃗ ⋅௩మሬሬሬሬ⃗

|௩భሬሬሬሬ⃗ ||௩మሬሬሬሬ⃗ |
 (4) 

Table 2. Quantitative feature-level analysis. 

   Metrics Baseline (IID)    Negative samples      Positive Samples 
Top-100 TF-IDF  70-90     20 ± 1                 63 ± 1 

Jaccard similarity 70-90%    10.50% ± 1            45.98% ± 1 
cosine similarity 0.85-0.95   0.2230 ± 0.01          0.4988 ± 0.01 

3.2.5. Visualisation of Different Datasets’ Positive Samples 

While we initially considered multiple projection methods, such as T-SNE [32], we ultimately 
chose UMAP [58] for this analysis, we used GraphCodeBERT embeddings, as it offers better 
sensitivity to structural and token-level variation in code-like or script-based inputs, which are 
common in XSS payloads. We focused on positive samples for visualisation since our dataset mainly 
contains potential payloads and a relatively minor portion of actual attacks. As shown in Figure 3, 
Dataset 1 appears fragmented, reflecting obfuscated or diverse payloads, while Dataset 2 forms a 
more compact and uniform cluster. This structural contrast supports the presence of feature-level 
drift across datasets. 

 

Figure 3. UMAP of GraphcodeBERT’s embedding positive samples distributions between two datasets. 

3.3. Experimental Procedure Overview 

We conducted four groups of experiments to evaluate model generalisation, feature sensitivity, 
and federated learning performance: 
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1. Centralized Embedding Evaluation: We tested three embedding models, GloVe, 
GraphcodeBERT, and CodeT5 under centralised settings using Dataset 1 for training and Dataset 
2 for testing. This setup evaluates each model’s generalisation ability to unseen attack structures 
in an OOD context. 

2. Dataset Swap OOD Test: To further explore the impact of feature distribution divergence, we 
reversed the datasets: training on Dataset 2 and testing on Dataset 1. This demonstrates how 
models trained on one domain generalise (or fail to generalise) to structurally distinct inputs. 

3. Federated Learning with Non-IID Clients: We simulated a more realistic extreme horizontal FL 
setup with five clients. Dataset 1 and Dataset 2 were partitioned across clients to introduce 
heterogeneous distributions. Each client was trained locally and evaluated on unseen data from 
the other dataset. We used FedAvg and FedProx for aggregation, evaluating accuracy, false 
positive rate, recall, and precision. 

4. Centralised In-Distribution Control Test: As a baseline, we trained and evaluated the classifier 
based on three embedding models on a single, fully centralised test set that merge both datasets. 
This set-up lets us contrast truly centralised learning with our federated-learning regime, isolate 
any performance gains attributable to data decentralisation, and expose the limits of federated 
learning when distributional heterogeneity is removed. 

4. Independent Client Testing with OOD Distributed Data 

In the first part of our evaluation, we trained on Dataset 1 and tested on Dataset 2, then reversed 
the setup. While both datasets target reflected XSS, they differ in structural and lexical characteristics, 
as detailed in Section 3.1. This asymmetry, present in both positive and negative samples, led to 
significant generalisation gaps. In particular, models trained on one dataset exhibited lower precision 
and increased false positive rates when tested on the other, reflecting the impact of data divergence 
under OOD settings. 

We evaluated all three embedding models under both configurations. Confusion matrices 
(Figure 4 and Figure 5) illustrate the classification differences when trained on low- versus high-
generalisation data, respectively. Before this, we established performance baselines via 20% splits on 
the original training set to rule out overfitting (Table 3). Figure 6 summarises cross-distribution 
performance under each model, and Figure 7 highlights the extent of performance shifts under 
structural OOD. These results confirm that both positive and negative class structures play a critical 
role in the generalisation performance of XSS detectors 

 

Figure 4. Confusion matrices (per-class normalised, percentage) of the classifier trained on dataset 1. 
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Figure 5. Confusion matrices (per-class normalised, percentage) of the classifier trained on dataset 2. 

 

Figure 6. Cross-Dataset Classification Performance across Embedding Models. (CT5 refers to CodeT5). 

 

Figure 7. Classifier’s performance change under OOD scenarios. 

Table 3. Overfitting validation on same dataset. 

Embedding 
Model 

  Accuracy FPR Recall Precision  Test Dataset Type 

GloVe-6B-300d 98.12±1% 1.31±1% 98.45±1% 98.29±1%  20% of Same dataset 
CodeT5 98.30±1% 2.21±2% 98.31±1% 98.16±1%  20% of Same dataset 

GraphcodeBERT 99.24±0.5%  0.87±2% 99.40±0.5% 99.02±0.5%  20% of Same dataset 
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To isolate the impact of positive sample structure, we conducted cross-set training where the 
training positives originated from the high-generalisation Dataset2 while retaining fragmented 
negatives from Dataset1 on the most structure sensitive model GraphcodeBERT. Compared to the 
baseline trained entirely on Dataset1, this setup substantially improved Accuracy (from 56.80% to 
71.57%) and precision (from 44.82% to 68.39%), with Recall slightly increased to 99.70%. These 
findings highlight that structural integrity in positive samples enhances model confidence and 
generalisability even under noisy negative supervision. Conversely, negatives primarily increase 
false positives (FPR 68.19%). See Table 4. 

Table 4. Exchanged positive samples in dataset 2 (As a test dataset) performance comparison. 

Embedding Model Accuracy FPR Precision Recall  Positive Sample 
GraphcodeBERT 

  
56.80% 66.22% 44.82% 99.69%     Dataset 1 
71.57% 68.19% 68.39% 99.70%     Dataset 2 

4.1. Generalisation Performance Analysis 

When We evaluate the generalisation ability of GloVe, GraphCodeBERT, and CodeT5 
embeddings by testing on the high-generalisation dataset (Dataset 2) and training on the structurally 
diverse and fragmented Dataset 1. All models experience a significant drop in performance, 
particularly in precision and false positive rate (FPR), indicating high sensitivity to structural shifts 
across datasets. 

GraphCodeBERT shows the most severe performance degradation, with precision dropping 
from 84.38% to 45.03% (−39.35%), and FPR increasing from 19.16% to 65.62% (+46.46%). Despite 
maintaining nearly perfect recall (99.63%), it heavily overpredicts positives when faced with 
unfamiliar structures, suggesting poor robustness to syntactic variance due to its code-centric 
pretraining. 

CodeT5 suffers slightly less, but still significant degradation: precision drops from 84.50% to 
46.36% (-38.14%), and FPR rises from 18.47% to 61.95% (+43.48%). This suggests that while its span-
masked pretraining aids structural abstraction, it still fails under negative class distribution shift. 

GloVe demonstrates the most stable cross-dataset performance, with a precision decline from 
90.13% to 51.58% (−38.55%), and FPR increasing from 11.90% to 47.90 (+36.00%). Although static and 
context-agnostic, GloVe is less vulnerable to structural OOD, likely due to its reliance on global co-
occurrence statistics rather than positional or syntactic features. 

These results support that structural generalisation failure arises from both positive class 
fragmentation and negative class dissimilarity. Models relying on local syntax (e.g., 
GraphCodeBERT) are more prone to false positives, while those leveraging global distributional 
features (e.g., GloVe) exhibit relatively better robustness under extreme OOD scenarios. 

4.1.1. Sensitivity of Embeddings to Regularization Under OOD 

Under structural OOD conditions, CodeT5 achieved high recall (≥99%) but suffered from low 
precision and high FPR, indicating overfitting to local patterns. Stronger regularization (dropout = 
0.3, lr = 0.0005) led to improved precision (+4.73%) and reduced FPR (−10.89%), showing modest gains 
in robustness. GloVe benefited the most from regularization, with FPR dropping to 29.49% and 
precision rising to 63.41%. In contrast, GraphCodeBERT remained not very sensitive to 
regularization, with relatively smaller change across settings. These results suggest that structure-
sensitive embeddings require tuning to remain effective under structural shift, while static 
embeddings like GloVe offer more stable performance. 

Notably, we also observed that stronger regularization on dropout tends to widen the 
performance gap between best and worst OOD scenarios, especially for GloVe (4%~9%). These results 
suggest that structure-sensitive embeddings require tuning to remain effective under distributional 
shift. See Table 5. 
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Table 5. Regurgitation of two embedding model, downstream Average (5times) performance comparison. 

Embedding 
Model 

Accuracy Recall Precision  FPR 
 Classifier 
Hyperparameters 

GloVe-6B-300d 
 
  

65.84% 
69.31%            
79.00% 

98.53% 
98.08% 
94.74% 

50.65% 
53.38% 
63.41% 

51.79% 
46.21% 
29.49% 

 Lr = 0.005, drop out = 0.1 
Lr = 0.001, drop out = 0.1 
Lr = 0.001, drop out = 0.5  

GraphcodeBERT 56.80% 99.69% 44.82% 66.22%  Lr = 0.001, drop out = 0.1 
 57.25% 99.63% 45.03% 65.24%  Lr = 0.0005, drop out = 0.3
    CodeT5 59.50% 99.26% 46.36% 61.95%  Lr = 0.001, drop out = 0.1 
                             66.42%         97.86% 51.09% 51.06%  Lr = 0.0005, drop out = 0.3

4.2. Embedding Level Analysis 

To assess whether embedding similarity correlates with generalisation, we computed pairwise 
Jensen-Shannon Divergence (JSD) [49] and Wasserstein distances (WD) [50] across models on both 
datasets. 𝑃 and 𝑄 : Probability distributions of two embedding sets, 𝑀 : Mean distribution. KL : 
Kullback–Leibler divergence from one distribution to another. 𝐹௉(𝑥) − 𝐹ொ(𝑥) : Cumulative 
distribution functions. JSD(𝑃 ∥ 𝑄) reflects a symmetric, smoothed divergence metric capturing the 
balanced difference between 𝑃 and 𝑄. 

As shown in Table 6, the three embedding models respond differently to structural variation. 
GraphCodeBERT has the lowest JSD (0.2444) but the highest WD (0.0758), suggesting its embeddings 
shift more sharply in space despite low average token divergence. This sensitivity leads to poor 
generalisation, with false positive rates exceeding 65% under OOD tests. GloVe shows the highest 
JSD (0.3402) and moderate WD (0.0562), indicating broader but smoother distribution changes. It 
performs most stably in OOD scenarios, likely due to better tolerance of structural drift. CodeT5 has 
the lowest WD (0.0237), meaning its embeddings change little across structure shifts. However, this 
low sensitivity results in degraded precision, especially for negative-class drift. 

JSD(𝑃 ∥ 𝑄) =
ଵ

ଶ
 KL(𝑃 ∥ 𝑀) +

ଵ

ଶ
 KL(𝑄 ∥ 𝑀),  𝑀 =

ଵ

ଶ
(𝑃 + 𝑄) (5) 

𝑊(𝑃, 𝑄) = ∫ ห𝐹௉(𝑥) − 𝐹ொ(𝑥)ห
ஶ

ିஶ
 𝑑𝑥 (6) 

Table 6. Jensen-Shannon and Wasserstein divergence between Dataset 1 and Dataset 2 across different 
embedding models. 

Comparison    JSD      WD 
GraphCodeBERT 0.2444 0.0758 

GloVe 0.3402 0.0562 
CodeT5 0.3008 0.0237 

4.2.1. Kernel-Based Statistical Validation of OOD Divergence 

While metrics like JSD and Wasserstein quantify distributional shifts, they do not assess 
statistical significance. To address this, we compute the Maximum Mean Discrepancy (MMD) 
between Dataset 1 and Dataset 2 using Random Fourier Features (RFF) for efficiency, with 40,000 
samples per set, for details. 
1. MMD score scope for different models embedding in all samples: 0.001633 (GraphcodeBERT) - 

0.082517 (GloVe) - 0.118169 (CodeT5). 
2. In positive samples: 0.000176 (GloVe) - 0.000853(GraphcodeBERT) - 0.106470 (CodeT5). 
3. In negative samples: 0.004105(GraphcodeBERT) - 0.007960 (CodeT5) - Glove (0.517704) 
4. All Embeddings’ 𝑃 − 𝑉𝐴𝐿𝑈𝐸 < 0.001(refers to a distinct OOD) 

These data confirmed a statistically significant distributional shift and semantic OOD in negative 
samples. For formulation, please see below. 𝒳, 𝒴 refers to the set of different embeddings. 𝜙(𝑥௜) 
means the kernel feature mapping approximated via Random Fourier Features (RFF). For 𝑃 −
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𝑉𝐴𝐿𝑈𝐸, 𝑠 is the observed MMD score, 𝑘 represents the number of permutations, 𝑠௜ is the MMD 
value obtained for the 𝑖 permutation. 

MMD2(𝒳, 𝒴) = ⃦
ଵ

௡
∑ 𝜙(𝑥௜)

௡
௜ୀଵ −

ଵ

௠
∑ 𝜙൫𝑦௝൯ ௠

௝ୀଵ ⃦ଶ (7) 

𝑝 =
ଵା∑ ூ(௦೔ஹ௦)ೖ

೔సభ

௞ାଵ
 (8) 

The unusually high negative-class MMD of GloVe largely arises from lexical-surface drift along 
dimensions that have negligible classifier weights. Suggesting the decision boundary learned during 
hard-negative mining is far from benign regions in these dimensions, the model maintains a low 
false-positive rate under OOD settings despite the apparent distribution gap. Conversely, contextual 
models display smaller overall MMD yet place their boundary closer to benign clusters, yielding 
higher FPR. This suggests that absolute MMD magnitude is not a sufficient indicator of OOD 
robustness; alignment between drift directions and decision-relevant subspaces is critical. 

These results, supported by lexical analysis (Section 3.2) indicate that the observed 
generalisation gap is attributable to systematic data divergence, particularly in negative sample 
distributions, rather than random fluctuations. 

5. Federated Learning Tests Under Non-IID Scenarios 

This paragraph will investigate whether such generalisation holds under decentralised settings, 
to validate our original idea that Federated learning can enhance the model’s generalisation even 
under an OOD situation. 

5.1. Federated Learning Settings 

5.1.1. Dataset Distribution 

The rest of the training and test splits were partitioned according to the label and sample 
categories described in Section 3.2, using fixed random seeds (= 42) to ensure reproducibility. We set 
three representative non-IID configurations: (1) clients with severe class imbalance (e.g., skewed 
positive/negative ratios), (2) clients with varied total data quantities and randomly sampled label 
distributions, and (3) clients with composite distribution skew involving both label imbalance and 
quantity mismatch, potentially including noisy samples. An example of the composite configuration 
(3) is illustrated in Figure 8. For the remaining parts of the two datasets, approximately 50% of the 
labels and sample sizes are evenly distributed among five clients as the test set. However, the test 
sets for clients 1 to 4 are derived from dataset 2, while the test set for client 5 is from dataset 1. This 
forms the OOD distribution. This setup reflects a realistic federated setting where label and 
distributional skews co-occur [48,56]. 

 

Figure 8. Train data distribution strategy and sample numbers. 

5.1.2. Federated Learning Setup 
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We simulate a horizontal FL setup with five clients, each holding structurally distinct training 
data. Clients 1–4 use imbalanced and diverse samples from Dataset 1, while Client 5 holds 
syntactically regular data from Dataset 2, forming a heterogeneous training landscape with inter-
client label and structure skew. 

All clients participate in 30 global rounds with learning rate = 0.005, dropout = 0.1, using FedAvg 
and FedProx (proximal term = 0.2) for aggregation. Clients train locally for 10 epochs with SGD and 
Focal Loss (α = 1.4, γ = 2.0), and StepLR scheduler (step = 5, γ = 0.5). After each round, the global 
model is redistributed and evaluated on each client’s mismatched test set and Clients 1–4 are tested 
on Dataset 2, Client 5 on Dataset 1, to enable systematic evaluation under structural OOD. 

Client training and evaluation run in parallel, and metrics (accuracy, recall, precision, F1, FPR) 
are computed locally and aggregated at the server. 

5.1.3. Aggregation Algorithms 

We adopt two standard aggregation methods to evaluate FL under non-IID settings: FedAvg 
and FedProx. FedAvg computes the global model as a weighted average of client updates, 
proportionally based on each client’s local data size. This method ensures that clients with more data 
significantly influence the global model, which enhances the model’s performance and generalisation 
ability. 

FedAvg Formulas: 
𝑤௧ାଵ = ∑

௡ೖ

௡

௄
௞ୀଵ 𝑤௧

௞ (9) 
𝒘𝒕ା𝟏: The weight of the global model after round t+1. 
𝑲: The number of participating clients. 
𝒏𝒌: The data size of client k 
𝒏: The total data size across all clients 
𝒘𝒕

𝒌: The local model weight of client k after round t 
FedProx is particularly suitable for non-IID settings, as it stabilises training by reducing local 

model drift. We include it to evaluate how regularised aggregation affects generalisation under 
heterogeneous XSS data. 

FedProx Formulas: 
𝑤௧ାଵ

௞ = ar g m in௪ ቀ𝑓௞(𝑤) +
ஜ

ଶ
|𝑤 − 𝑤௧|ଶቁ (10) 

𝒘𝒕ା𝟏
𝒌 : The optimised weight of the local model on client k after round t+1. 

𝒇𝒌(𝒘) : The loss function for client k. 
𝛍 : The regularisation parameter (proximal term). 
𝒘𝒕: The weight of the global model after round t. 
𝐚𝐫 𝐠 𝐦 𝐢𝐧𝒘: The argument of the minimum indicates that 𝑤௧ାଵ

௞  minimises the expression within 
the parentheses. 

5.2. Federated Learning Performance 

Firstly, we examined the global classifier’s performance under two different algorithms. We 
selected GLOVE-6B-300D as an example (the other two models showed different convergence 
optimisation, while GraphCodeBERT shows the most improvement), as shown in Figure 9. 
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Figure 9. Classifier convergence curve with GloVe-6b-300d embeddings under FedAvg and FedProx (Global 
classifier Learning rate = 0.005). 

Under a unified learning rate of 0.005, the global model demonstrates severe oscillation during 
training, regardless of the optimisation algorithm. Additional experiments show that this instability 
is caused by the non-adaptiveness of GloVe embeddings under client-wise OOD and non-IID 
conditions. To mitigate this, significantly smaller learning rates = 0.001 are required to achieve 
smoother convergence curves. See Figure 10. 

 

Figure 10. Classifier convergence curve with GloVe-6b-300d embeddings under FedAvg and FedProx (Global 
classifier Learning rate = 0.001). 

We also observed that although the global model trained with GloVe embeddings achieves more 
stable convergence under a reduced learning rate (e.g., 0.001), this stability comes at the cost of slower 
convergence and requires more communication rounds to reach comparable performance. 

For instance, after 30 rounds of aggregation, under FedProx, the global model using GloVe 
embeddings under a learning rate of 0.001 achieves an aggregated accuracy of 93.59% and an FPR of 
8.7%, which is lower than the performance obtained under 0.005 learning rate (accuracy = 97.14%, 
FPR = 3.2%). 

Despite this, GraphcodeBERT and CodeT5 demonstrated different effects, especially in terms of 
convergence stability, which contrasted sharply with their extremely poor performance under OOD. 
we separately record the Global classifier’s aggregated accuracy and FPR convergence curves of three 
embedding models, under the two aggregation algorithms. See Figure 11 and 12. 
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Figure 11. Classifier convergence comparison under FedAvg aggregation with different embedding models. 

 

Figure 12. Classifier convergence comparison under FedProx aggregation with different embedding models. 

FedProx improves training stability across all embeddings but slightly hinders final 
performance for GloVe and CodeT5. In contrast, GraphCodeBERT benefits from FedProx, showing 
improved final accuracy, though the CodeT5 still achieved a better performance on single client. This 
suggests that FedProx better aligns structural variations, which particularly helps structurally 
sensitive models. Table 7 reports peak global and worst client-side results under FedProx. 

Table 6. Global Classifier’s performance records under FedProx with different embedding models after 30 
rounds of aggregation. 

Embedding 
Model 

Accuracy    FPR  Precision  Recall    F-1  

GraphcodeBERT 
  99.92 / 
95.02% 

0.69 / 6.76% 99.94 / 86.48% 99.94 / 99.49% 
99.94 / 
92.86% 

GloVe-6b-300d 
  98.63 / 
94.06% 

1.35 / 9.69% 99.69 / 86.84% 99.61 / 98.87% 
99.65 / 
93.25% 

Code T5 
  99.64 / 
96.13% 

0.31 / 3.19% 99.70 / 94.48% 99.74 / 99.04% 
99.04 / 
96.77% 

5.2.1. Centralised No Data Isolation Testing Baseline 

We also tested the classifier performance of three different embedding models, without data 
isolation, to demonstrate a comparison with federated learning. In this scenario, the train dataset 
contains data from both Dataset 1 and Dataset 2 (25% from the high generalisation dataset, the test 
dataset also includes 25% from the original train dataset, dataset1), with balanced negative, positive 
samples. See Figure 13 and Table 8. 

 
Figure 13. Confusion matrices (per-class normalised, percentage) under centralised training without data 
isolation. 

Table 7. No data isolation scenario: Classifier performance results. 
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Embedding model Accuracy  FPR Precision Recall F1-Score 
GloVe-6B-300d 99.01%±1.2 1.05%±1.4 98.56%±1.5 99.10%±1.5 98.83%±1.1 

CodeT5 98.90%±0.5 1.60%±1.1 97.83%±0.5 99.59%±0.3 98.70%±1.4 
GraphcodeBERT 99.05%±0.7 0.93%±1.2 98.72%±1.5 99.03%±0.5 98.87%±1.2 

5.3. Federated Learning Result Analysis 

This part evaluates the embedding-level performance of GloVe, GraphCodeBERT, and CodeT5 
under FedProx, with special focus on convergence stability and generalisation capacity in non-IID 
federated learning scenarios. 

Contrary to prior expectations, for GloVe, despite its strong performance in centralised OOD 
settings, it exhibited the most unstable training dynamics under FedProx. The global model’s 
accuracy oscillated sharply, and although final performance (Accuracy = 96.2%, FPR = 5.5%) was 
competitive, the path to convergence was highly erratic. This indicates a poor tolerance to structural 
divergence across clients, likely due to GloVe’s static and non-contextual nature. 

GraphCodeBERT, on the other hand, delivered the most stable convergence trajectory 
throughout 30 rounds. Starting from a lower baseline (~77.3%), it steadily improved to reach 96.8% 
accuracy and 4.7% FPR. This suggests that GraphCodeBERT’s structural encoding is well-suited to 
federated alignment, benefitting from client-specific variability rather than being hindered by it. 

CodeT5 demonstrated rapid initial gains, quickly surpassing 90% accuracy in early rounds. 
However, it later suffered from increased fluctuation, with clear signs of overfitting or instability 
under client aggregation. While its final performance was strong (Accuracy = 97.6%, FPR = 3.5%), the 
convergence was less smooth compared to GraphCodeBERT. 

We also recorded the client’s best performance improvements, Initial means the metrics of first-
time aggregation result tested on single client’s test dataset, see Figure 14. 

These findings strongly support our initial assumption that federated learning can achieve 
significant performance gains even under extreme XSS data heterogeneity (primarily on negative 
samples and then positive samples) when adopted with better aggregation mechanisms and 
structure-sensitive embeddings. The contrast between these configurations highlights the importance 
of architectural compatibility between local feature extraction and global aggregation in non-IID 
federated settings. 

 

Figure 13. Client’s best performance improvement comparison. 

6. Conclusions 

This study explores the feasibility of federated learning (FL) for XSS detection under structural 
out-of-distribution (OOD) and non-IID conditions. We demonstrate that while FL offers privacy 
benefits and avoids raw data sharing, its generalisation ability is tightly linked to the behaviour of 
the embedding model during distributed training. 
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Among the three evaluated embeddings, GloVe shows the best OOD generalisation in 
centralised settings but suffers from unstable convergence in FL due to its static nature and high 
divergence across clients. CodeT5 achieves rapid early convergence but experiences performance 
drift in later rounds, indicating weaker robustness to client drift. In contrast, GraphCodeBERT, 
despite poor centralised OOD performance, benefits most from FL aggregation. Its structure-aware 
design aligns well with FedProx, resulting in smooth convergence and reduced FPR over rounds. 

Contrary to prior assumptions, we find that model generalisation failure arises from both 
negative-sample heterogeneity and fragmented or incomplete positive examples. Visualisation and 
distributional metrics (JSD, Wasserstein, MMD) further confirm meaningful embedding-level shifts, 
particularly in the negative class, validating the design of our dual OOD setup. 

Overall, FL enhances global decision boundaries by diffusing stable structural priors from 
cleaner clients to noisier participants, reducing the impact of structural asymmetry without direct 
data sharing. These findings establish FL as a practical and privacy-aligned solution for OOD-
resilient XSS detection, while also emphasising the critical role of embedding stability and alignment. 

7. Limitations and Future Work 

1. Incorporating Partial Participation with Invariant Learning. Our current setup assumes 
synchronous client participation per round, whereas real-world FL often involves dropout or 
intermittent availability. While we do not explicitly simulate asynchronous updates, recent 
methods such as FEDIIR [55] have shown robustness under partial participation by implicitly 
aligning inter-client gradients to learn invariant relationships. Extending such approaches to our 
structure-variant OOD setting may improve robustness in realistic, non-synchronous FL 
environments. 

2. Data Quality as a Structural Bottleneck. A key challenge in federated XSS detection lies not in 
algorithmic optimisation, but in the difficulty of acquiring high-quality, generalisable data 
across all clients. Our results suggest that if no clients possess substantial structural diversity or 
sufficient sample representation, the global model’s generalisation ability will be severely 
impaired, even with robust aggregation. Federated learning in XSS detection contexts 
fundamentally depends on partial data sufficiency among clients. As part of future work, we 
plan to expand the dataset to include more structurally complex XSS payloads, especially 
context-dependent polyglot attacks that combine HTML, CSS, and JavaScript in highly 
obfuscated forms. Such samples are essential to better simulate real-world, evasive behaviours 
and stress-test federated models under extreme structural variability. 

3. Deployment Feasibility and Optimisation Needs. 
While the current framework employs a lightweight Transformer classifier, future work may 
explore further simplification of the downstream classifier through distilled models (e.g., 
TinyBERT), linear-aĴention architectures (e.g., Performer), or hybrid convolution-aĴention 
designs to reduce computational overhead and improve real-world deplorability. 

Abbreviations 

The following abbreviations are used in this manuscript: 

OOD out-of-distribution 
XSS Cross-Site Scripting 
FL federated learning 
IID Independent and Identically Distributed 
Non-IID Non-Independent and Identically Distributed 
FPR False Positive Rate 
MMD Maximum Mean Discrepancy 
NLP Natural Language Processing 
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JSD Jensen-Shannon Divergence 
WD Wasserstein Distance 
TF-IDF Term Frequency–Inverse Document Frequency 
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