Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2023 doi:10.20944/preprints202305.1683.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Thaw-Season InSAR Surface Displacements and Frost
Susceptibility Mapping to Support Community-Scale Planning
in Ilulissat, West-Greenland

1

Johanna Scheer!* 7, Rafael Caduff?, Penelope How®*("), Marco Marcer! ", Tazio Strozzi>(”, Annett Bartsch’® and

Thomas Ingeman-Nielsen!

Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby,
Denmark; joasc@dtu.dk or johanna.scheer73@gmail.com; marcma@dtu.dk; thin@dtu.dk

Gamma Remote Sensing, Giimligen (BE), Switzerland; caduff@gamma-rs.ch; strozzi@gamma-rs.ch

Asiaq Greenland Survey, Nuuk, Greenland

Department of Glaciology and Climate, Geological Survey of Denmark and Greenland (GEUS), Copenhagen,
Denmark; pho@geus.dk

b.geos GmbH, Industriestrasse 1,2100, Korneuburg, Austria; annett.bartsch@bgeos.com

*  Correspondence: joasc@dtu.dk

Abstract: In permafrost regions, ground surface deformations induced by freezing and thawing 1
threaten the integrity of the built environment. Mapping the frost susceptibility of the ground atahigh =
spatial resolution is of practical importance for the construction and planning sectors. We processed s
Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data from thawing seasons 2015 to 2019, 4
acquired over the area of Ilulissat, West Greenland. We used a least-squares inversion scheme to s
retrieve the average seasonal displacement (S) and long-term deformation rate (R). We secondly
investigated two different methods to extrapolate active layer thickness (ALT) measurements, based 7
on their statistical relationship with remotely-sensed surface characteristics. A Generalized Linear
Model (GLM) was first implemented, but the model was not able to fit the data and represent the o
ALT spatial variability over the entire study domain. ALT were alternatively averaged per vegetation 1o
class, using a land cover map derived by supervised classification of Sentinel-2 images. We finally = 11
estimated the active layer ice content and used it as a proxy to map the frost susceptibility of the 1=
ground at the community scale. Fine-grained sedimentary basins in Ilulissat were typically frost 13
susceptible and subject to average seasonal downward displacements of 3 to 8 cm. Areas following 14
a subsiding trend of up to 2.6 cm/yr were likely affected by permafrost degradation and melting  1s
of ground ice below the permafrost table. Our approach enabled us to identify frost-susceptible 16
areas subject to severe seasonal deformations, and/or long-term subsidence induced by degrading 17
permafrost. Used in combination with traditional site investigations, INSAR maps provide valuable  1s

information for risk management and community planning in the Arctic. 19
Keywords: INSAR; permafrost; active layer; Arctic infrastructure; ice content 20
1. Introduction 21

Building on frozen ground entails many geotechnical implications related to the prop- 22
erties and thermal regime of the ground [1]. Ground heave and subsidence induced by 2
seasonal freezing and thawing of the active layer (AL) generate stresses on infrastructures  2a
that can lead to damage and failures. In permafrost terrain, climate change, in conjunction  =s
with anthropogenic disturbances, has furthermore caused an increase in ground temper- 2o
ature and deepening of the active layer [2,3]. As a result, loss of bearing capacity [4-7], r
seasonal and long-term ground subsidence [e.g. 8-10] have been observed across the Arctic 2.
due to melting of the ground ice and soil consolidation. These changes severely threaten the 2o
integrity of the built environment and increasingly expose Arctic communities to hazards o
[11,12]. It is therefore paramount to adapt construction designs and mitigation solutions s
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to frost conditions and thermal regime changes. In this context, the monitoring of ground =2
surface deformations can serve as a powerful tool to manage permafrost-induced risks and 33
support community planning. 3a

The occurrence and magnitude of surface deformations is primarily controlled by the s
frost susceptibility of the ground, defined as the proneness of the ground (soil or rock) to form e
segregated ice (causing frost heave) under the required conditions of moisture supply and temper- sz
ature [13]. Frost susceptibility, soil particle size and ground ice content thereby strongly e
interrelate. Yet, assessing the spatial distribution of frost susceptible soils remains very o
complex. Determining ground properties and quantifying ground ice content typically 4o
require drilling and retrieving soil material for analyses. Such geotechnical investigations
are costly, labor intensive, and logistically challenging in Arctic environments. Furthermore, 4
sample extraction only provides punctual information in space and time, and hence is lim- 43
ited in portraying the complex spatial heterogeneity and temporal evolution of subsurface 4
properties under climate change [14]. 45

Remote sensing techniques provide continuous spatial information in areas where the 4
acquisition of in-situ data remains challenging. In this context, the potential of Interfero- 7
metric Synthetic Aperture Radar (InNSAR) has been extensively explored in the past years to s
monitor surface deformations in permafrost environments with a high spatial resolution 4o
[15]. Prior research has primarily been dedicated to develop InSAR techniques for the 5o
comprehension of freezing/thawing dynamics of the AL and identification of driving s
factors explaining the magnitude of ground movements [9,16-23]. It is worth mentioning s
the approach proposed by Liu et al. [16] and Schaefer et al. [24] who developed an active s
layer thickness (ALT) retrieval algorithm, based on the relationship between the thaw s
depth and InSAR derived surface displacement. By using Synthetic Aperture Radar (SAR) =5
scenes covering several thawing seasons, the authors were able to identify a seasonal and a  se
long-term component in the remotely-sensed displacement signal. Seasonal subsidence -
was attributed to thaw settlement, caused by phase and volume changes occurring in the  se
AL upon thawing, while long-term subsidence was explained by permafrost degradation s
and melting of the ice at the top of permafrost. Under the assumption that the seasonal o
subsidence can be related to the volume of melted ice in the AL, they finally estimated e
ALT from the InNSAR measurements by modeling the vertical distribution of the pore water e
within the AL. 63

Despite these advances, little work has been undertaken to map subsurface properties s
- such as the frost susceptibility or ground ice content - that are of practical interest to s
actors from the construction and planning sectors. In their paper, Zwieback and Meyer [14] s
notably explained the difficulty of deriving permafrost ground ice from remote sensing o
data and stressed the limitations of traditional mapping techniques, currently relying on s
expert knowledge and surface indicators of excess ice [25]. In an attempt to overcome oo
these challenges, the authors assessed the suitability of late-season subsidence derived 7
from InSAR, to identify the presence of ice-rich materials at the top of permafrost [14]. 7
They hypothesized that ice melting under the permafrost table occurs when the thaw front 7
penetrates frozen material towards the end of a warm summer season. Consequently, the 7
thawing of ice-rich top-of-permafrost would induce a peculiar acceleration of the INSAR 7
late-season subsidence. Their methodology proved to be most successful in the case of s
exceptionally warm and wet summers, but the separability of late-season subsidence signals 76
from ice-rich versus ice-poor areas, was reduced under cooler conditions. Those findings 7
agree with Bartsch et al. [20] which documented higher than average subsidence in an 7
exceptionally warm summer in regions known for presence of tabular ground ice at the 7
base of the active layer. Differences between landcover types (representing differencesin =0
soil properties) were, however, found. o1

Overall, InSAR techniques have rarely been used in an engineering context to prevent 2
the occurrence of infrastructure failures [10,26] and to help governmental and planning e
entities make informed decisions. Arctic communities could benefit from multi-disciplinary s
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approaches combining remote sensing and geotechnical data, at a time when adaptation s
strategies are urgently needed in response to climate change [27,28]. 86

Many Greenland settlements are facing the challenges previously mentioned. Dueto 7
limited resources and logistical constraints, detailed site investigations are rarely performed s
prior to construction projects. Available geotechnical information is hence scarce or not e
easily accessible, and construction designs are not sufficiently adapted to local sub-surface oo
conditions [27]. As a result, stability issues frequently affect existing infrastructure, and o
particularly roads crossing ice-rich sedimentary basins. Like in other regions of the Arctic, o2
stakeholders have expressed their interest in reliable decision support tools, to guide urban o3
planning on sensitive permafrost terrain and identify suitable mitigation solutions. oa

In order to address Greenlandic stakeholders’ needs, we revisited the methodology s
of Liu et al. [16] and used InSAR data to map surface deformation trends in Ilulissat, West o6
Greenland. Previous tests for Illulisat indicated applicability for seasonal, as well as long- o7
term change monitoring applications [6,15]. We combine the INSAR results with local s
information to prepare a frost susceptibility index (FSI) map of the region. 99

2. Study area 100

Our study area is the settlement of Ilulissat (Figure 1a), which is centrally located 10
on the west coast of Greenland (69.2198° N, 51.0986° W) and is the seat of the Avannaata 102
municipality. Ilulissat is the third largest town in Greenland and an attractive tourist 1os
destination due to its proximity to the UNESCO World Heritage Site Ilulissat Icefjord. For 10s
these reasons and due to the current construction of an international airport, an extensive 105
expansion strategy has been planned for the town [29]. Reliable and lasting facilities will 106
therefore be needed in the coming years to sustain the development of economic activities 107
and possible demographic growth. 108

Over the past 20 years, mean annual air temperatures (MAAT) have increased by 00
4-5°C, reaching -1.8°C in the particularly warm year of 2019 [30]. The area of Ilulissat 110
is underlain by continuous and relatively warm permafrost, characterized by average iu
ground temperatures around -3°C [31,32]. ALTs are highly variable spatially, ranging 112
from 30 cm to more than 2 m, and follow an increasing trend (Figure 1c). During the 11
Holocene deglaciation, fine-grained marine sediments were deposited as a result of marine 114
transgression. The sedimentary deposits gradually became subaerial and exposed to s
precipitation and percolation due to isostatic uplift. Very ice-rich material (Figure 1b), 11
depleted of salts, is typically found at the permafrost table today. The ground ice content 117
decreases with depth as the pore water salinity increases [32], and for these reasons, s
permafrost is highly sensitive to climatic changes and surface disturbances. 110
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Figure 1. Study area and local permafrost conditions. a) Map of Ilulissat (69.2198° N, 51.0986° W) town area.

The orthophoto and infrastructure spatial dataset used for mapping are available online from Asiaq Greenland
Survey [33]. b) Permafrost core retrieved in the main sedimentary basin, showing ice-rich fine-grained sediments.
c) Evolution in average active layer thicknesses (ALT), measured at the Ilulissat Circumpolar Active Layer
Monitoring (CALM) grid.

The landscape is characterized by the presence of these fine-grained marine deposits,
lying between gentle bedrock outcrops and interspersed with a system of lakes and small
drainage channels. Periglacial features are relatively homogeneous across the area and
primarily dominated by frost boils, which are indicative of the presence of frost susceptible
sediments [25]. Natural water drainage channels and micro-topographic depressions form
mire zones, becoming wet to inundated during the thawing season, and colonized by
graminoids, bryophytes, and low Salix shrubs. In contrast, frost boil patches are vegetated
by dwarf-shrub cryptogam tundra or remain mainly barren, being more exposed to winds.

In this scenery, bedrock outcrops often offer a stable substrate for construction. How-
ever, roads and other linear infrastructure extending through sedimentary basins tend
to be more heavily affected by seasonal frost/thaw surface deformations and permafrost
thaw-induced damages.

3. Materials and Methods

The methodology applied in this study included two main steps outlined in Figure 2.
The first step consisted of processing SAR scenes from 2015 to 2019 and modeling INSAR
thaw-season displacements to retrieve seasonal and long-term trends from the remotely-
sensed signal (left side of the flowchart in Figure 2). Secondly, we assumed the average
seasonal displacement measured by InSAR to be related to the ALT and amount of melted
ice in the AL. Statistical-empirical relationships between in-situ ALT measurements and
surface characteristics (land cover and topography) were investigated with the aim of
extrapolating ALT over the study area (methods A and B in Figure 2). The average seasonal
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displacement and up-scaled ALT were finally used as inputs in our model to estimate the 1
amount of ice present in the AL (right side of the flowchart in Figure 2), which serves as an 12

indicator of the frost susceptibility of the ground. 143
1. Surface displacement model 2. Ice content estimation and frost susceptibility mapping
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Figure 2. Workflow of the methodology used in this study. Raw data are represented by dashed boxes, inter-
mediary products by colored boxes and final products are highlighted in red. Step 1 consisted of the synthetic
aperture radar (SAR) scene processing, production of yearly thaw-season surface displacement (D) maps, and
retrieval of average seasonal displacements (S) and average displacement rates (R). In step 2, ground truth data,
satellite optical images, and a digital elevation model (DEM) were used for classification of the land cover, and for
computation of vegetation and topographic indices. These inputs were used to extrapolate ALT measurements
over the study area. Finally, a frost susceptibility index (FSI) was calculated from extrapolated ALT and S.

3.1. Surface displacement model 148
3.1.1. InSAR observations and generation of ground surface displacement maps 145

Ground surface displacement can be measured and mapped from two SAR images, 1
acquired at different times over the same area, by calculating interferograms of the phase dif- 147
ference between the radar signals. With the aim of mapping ground displacements over the 14s
study area, available L1 Single Look Complex Data (SLC) scenes from the ESA/Copernicus 14
Sentinel-1 Constellation were acquired between May and September, spanning thawing 1so
seasons from 2015 to 2019. Acquisitions were available following a 6 to 12-day revisit-cycle 1s1
schedule. Repeat pass interferometry was used on interferometric wide swath acquisition sz
mode (IW-Mode), which is optimized for interferometric processing. 153

GAMMA Software [34] was used to perform the interferometric processing chain ise
consisting of the co-registration of the images to a common master scene, generation of the 1ss
interferograms via multi-baseline InSAR [6] and geocoding to a final resolution set to 10x10  1se
m. For the orbital correction, geocoding, and interferometric modeling, surface elevation s
information from the ArcticDEM [35] was used. Short temporal intervals of 12 days in 2015  1ss
and 2016, and 6 days since 2017, were mostly picked for the creation of the interferograms 1se
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in order to account for the significant spatial heterogeneity of AL surface deformations. In 160
the few cases of missing acquisitions, 24-day respectively 12-day temporal intervals were 161
considered. After removing the topographic, tropospheric and residual geometric phases ez
[6], the interferograms were unwrapped with a minimal cost-flow approach [36]. During  1es
this process, a stable point located on bedrock was taken as reference. 164

Although ground thaw begins in early May in Ilulissat, parts of the area may still 1es
be snow-covered. In order to avoid de-correlation and phase anomalies from the snow 166
cover, SAR scenes acquired from October to May were removed from the stacks. Gaps that e
resulted from de-correlated scenes had to be filled by bridging interferometric pairs that 1es
would form coherent interferograms again. This implies that the onset of thawing may e
not be covered by the temporal INSAR stack and thus not included in the time series of 170
total cumulative displacement. As a result, the displacement is underestimated [20,23], and 17
corrections need to be applied. Offset correction based on Accumulative Degree Days of 172
Thawing (ADDT) has been suggested and demonstrated applicable [20]. 173

The temporal InSAR stacks of the unwrapped interferograms were finally used to cal- 174
culate time series of the total cumulative displacements on an annual basis (sign convention 17s
positive up, meaning that subsidence is negatively valued). Raster maps of thaw-season 17e
surface displacement amplitude were generated by taking the maximum cumulative dis- 177
placement (minimum negative value) observed in the time series at each pixel location. 17s
Rasters of thaw-season surface displacements were finally converted from radar line-of- 17
sight (LOS) to vertical displacements, using a correction factor of 1.27, which accounts for s
incidence and elevation angles. 181

3.1.2. Modeling approach 102

At the onset of the thaw season, the active layer is fully frozen. As the soil starts to  es
thaw (Figure 3), the AL progressively deepens (dH). Melting of the ice in the AL gives 1ss
rise to volume changes and associated subsidence (J), until the AL has finally reached iss
its maximum thickness (referred to in our paper as the ALT or H). Assuming surface 1ss
deformations are caused exclusively by pore water phase changes in the soil column, and  1er
that lateral exchanges of water do not occur, the total subsidence reached at the end of one  1ss
thaw-season (d,,4x) can be correlated to the amount of ice melted. The latter consists of ice  1ss
formed during the previous year’s winter freeze-up of the AL and possibly ice contained 100
in the transient layer at the top of permafrost, in the case of permafrost degradation. 101
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Figure 3. SAR scene processing and retrieval of a seasonal component, S, and a long-term component, R, from
the temporal InSAR stack. S is the average seasonal ground displacement, related to the frost susceptibility of the
ground in the active layer. R is average rate of increase in surface displacement amplitude, reflecting changes in
the permafrost table depth. The thaw-season subsidence J can be related to the active layer thickness, H, and
active layer (AL) ice content at the end of the thawing season.

Liu et al. [16] formulated the following relationship based on the vertical distribution 1e2
of the pore water in the AL: 103

H(t) w — Vi w — i
o) = [ g-s B Plam — g5 PP, M)

1 pl
where §(t) [m] is the subsidence at time ¢ [s] (with t spanning from the onset of thawing to  1es

the time of maximum ALT), H(t) [m] is the thaw depth at time t, dH [m] is the incremental 105
thickness of thawed soil column, ¢ [-] is the soil porosity, S, [-] is the total soil water 106

saturation, p, [g/cm?] is the density of pure water and p; [g/cm?] is the density of ice. 197
The porosity and saturation could be variable with depth but are considered constant 1ss
in our analysis, i.e. the ice content is considered homogeneous throughout the AL. 100

As further evidenced by Liu et al. [16], when measuring surface deformations by 2o
InSAR over several thaw-seasons, the total measured displacement can be modeled as the 20
combination of an average seasonal component, S, and a long-term displacement rate, R 202
(Figure 3). The seasonal component S is assumed to be representative of surface heave zos
and subsidence induced by freezing and thawing of the AL and the associated ice/water zos
phase and volume changes. The long-term rate is related to changes in the depth of z0s
the permafrost table - shallowing or deepening in the case of permafrost aggradation or =zoe
degradation, respectively. The magnitude of the seasonal component S is consequently  zor
strongly correlated with the ice content in the frozen AL, and therefore also to the frost zos
susceptibility of the soil material. On the other hand, the long-term change component Ris 200
related to the ice content at the top of the permafrost (Figure 3). 210

3.1.3. Adjustment for partial temporal coverage 211

As previously mentioned, INSAR-measured thaw-season surface displacements may  2:2
not span the entire thawing seasons (Figure 4), and, therefore, may need adjustment for 21
any additional settlements occurring outside the time span of the temporal INSAR stacks 214
(cf. Section 3.1.1). 215
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Figure 4. Schematic representation of total thaw-season surface displacement versus partial temporal
coverage of the INSAR stack. The thaw-season displacement is initiated at the onset of thawing ¢; and
reaches its maximum at time ¢,. The first scene in the InNSAR dataset is acquired at time £, after the
snow melt, and the last scene is acquired at time ¢;, corresponding to the time of maximum surface
deformation t,.

The Stefan equation [37] is an analytical solution originally developed to describe sea 216
ice formation, later applied to the freezing of soils by Berggren [38], and to the estimation =217
of thaw depths by e.g. Hinkel and Nicholas [39]. Widely used as a first approximation, the 21s
thaw depth at time ¢, H(t), may be estimated using the Stefan equation as follows: 210

H(t) = a- \/ADDT(t), @)

where « is a quasi-constant, depending on the thermal properties of the thawed soil, and 2z
ADDT is the Accumulated Degree Days of Thawing [°C - day]. The ADDT is a time- 2=
temperature integral calculated in practice by summing average daily temperatures [40]: 222

t
ADDT(t) = ) T;-1day , t; <t<t, (3)

i=h

where t is an integer representing the day of the year, t; and ¢, represent the start and end 223

of the thawing season (Figure 4), and T; [°C] is the average temperature on day i. 224
Based on Equation 1 and assuming the relationship in Equation 2 is valid, the surface 225
deformation at any time t is proportional to the square root of ADDT(t). 226

5(t) ~ /ADDT(t). )

In our case, ADDT time series were computed from daily averages of air temperature 227
records [41] and normalized such that the maximum value is one at the end of the thawing  zzs
season: 229
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o(t) | ADDT(¢
= 4/NADDT(¥),
1) (tz ADDT(¢t N (t) ©®)
resulting in hereinafter,

5(0 = (5(t2) . NADDT(t) , 1 <t<t, (6)

where 6(t) [m] and H(t) [m] are respectively the surface deformation and thaw depth at
time ¢, J5(t2) [m] and H(f;) [m] are respectively the maximum surface deformation and
maximum thaw depth reached at time t; (the end of the thawing season). NADDT () is
the Normalized Accumulated Degree Days of Thawing [-].

Using Equation 6, we describe the partial thaw-season surface displacement obtained
from the temporal INSAR stack by:

ASs = 8s(ty) — 65(ta) = 6(k) - (\/NADDT ty) — \/NADDT(tu)>, @)

where Ad; [m] is the partial thaw-season surface displacement observed between time
t; and t;, (time of acquisition of the first and last SAR scene used in the temporal stack,
represented as integer day-of-year). Subscript s represents values obtained from the InNSAR
analysis. 6(t) [m] represents the actual maximum thaw-season displacement, which is
reached at the end of the thawing season (time f;), and NADDT(t,) [-] and NADDT(t,)
[-] are normalized ADDT at time ¢, and t;.

The corrected total thaw-season displacement, D [m], is finally derived as:

Aés
/NADDT(#,) — /NADDT(t,) '

D =6(t) = ®)

3.1.4. Inversion methodology

To model the thaw season surface displacement, we use the following relationship:

D; = (R-dY; +5), 9)

where D; [m] is the total thaw season surface displacement in year i, S [m] is the average
seasonal displacement over the period of study (the seasonal component), and R is the
average rate of increase in surface displacement amplitude over the period of study. dY; is
the time span (in decimal years) from year i to the midpoint of the InNSAR dataset, and is
calculated as:

_I_
dy =y - LN, (10)

where yy and yy are respectively the first and last year in the INSAR dataset and y; repre-
sents the integer value of year i.

For multiple years of observations, this constitutes a set of linear equations expressed
as follows:

Dy, [dy, 1 -+ 0 0
: Do o Ry
Dy dyy 1 -+ 0 0| [S
e N (11)
Dyp 0 0 dy; 1| |Rp
: : Sp
_DNP L 0 0 dYN l_

230

244
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where N is the number of seasons/years in the INSAR temporal stack, and P is the number  2ss
of pixels in the dataset. Finally, in matrix notation, the system of equations may be reduced  2se
to: 257

D=M-RS, (12)

where D is the vector of yearly observed thaw-season displacement for every pixel (cor- 2se
rected for partial coverage using Equation 8), M is the model matrix of time spans and  =zse
ones, and RS is the vector of R and S parameters per pixel. 260

We finally solved the Equation 9 for R and S using a constrained linear least squares 26
inversion. The seasonal component S was constrained to negative values only, using a  ze:
modified version of the non-negativity-constrained linear least squares algorithm by Bro = zes
and De Jong [42]. The long-term rate R on the other hand, was allowed to take either zes
negative or positive values depending on the permafrost evolution trends of the area. 265

The available INSAR dataset was limited to five years, and relatively little data was zes
available to constrain the estimates of R and S for each pixel. To reduce noise, we chose 267
to include information from neighboring pixels in the inversion of R and S for each pixel, zes
effectively representing a spatial smoothing of the parameter estimates. This was done by  zee
augmenting the system of linear equations with a set of constraining equations as follows: 270

BRI

where K is a matrix of constraints, with each row representing the constraint of the Ror S =
parameter of one pixel to the R or S parameter of another pixel. O is a vertical vector of 272
zeros with the same number of elements as there are rows in K. 273

In practice, a 7x7 pixel moving window was used, and each pixel was constrained to 274
the 48 surrounding pixels. After inversion, only the parameters derived for the center pixel =7
were stored, and the window was moved to the center on the next pixel. A land cover mask 276
(cf. Section 3.2.2) was used to exclude non-vegetated pixels from the moving window, in 277
order to limit the inversion to sedimentary deposits. 278

3.1.5. Ice content estimation and frost susceptibility index 279

Compared to geotechnical investigations, ALT measurements are cost and time effec-  2eo
tive, especially when conducted in the close surroundings of Arctic settlements. For this  2e
reason, by taking the reverse approach to that of Liu et al. [16] and Schaefer et al. [24], we  zs2
estimated the AL ice content at the end of one thawing season, by using ALT measurements  zss
and the average seasonal displacement (S). Our model therefore assumes homogeneous soil 284
properties and ice content within the AL and at the top of permafrost. Based on Equation 1, 2es
we estimated the average AL ice content at each pixel location over the period of study as  2es
follows: 287

pi S|
¢-sr pw—pi H ’ 14

where ¢ [-] is the soil porosity, S, [-] is the total soil water saturation, p; [g/ cm?] is the  zss
density of ice, p, [g/cm?] is the density of liquid water. On a pixel by pixel basis, S [m] is  zs
the average seasonal displacement measured by InNSAR over the period of study 2015-2019, =200
and H [m] is the active layer thickness. Based on prior site investigations conducted in 202
the area, fully saturated soil conditions can generally be assumed (S, ~ 1) at the onset of 202
winter freezing [32], and we assume this to be true throughout the winter until the onset of 203
thawing. The term ¢ - S, thus reflect the average AL ice content estimated from the surface 204
deformation caused by the thawing of the AL, assuming no lateral water exchange. 205

Finally, since the frost susceptibility of a soil is related to its proneness to build up 2¢6
segregated ice, we used the AL ice content as a proxy to map the frost susceptibility of ez
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the ground at the community scale. The derived frost susceptibility index, FSI, therefore zos
corresponds to the value of the product: 200

FSI = ¢-5,. (15)

3.2. Data collection and processing 300

Several studies [e.g. 43—-48] demonstrated the influence of topography and environ- so:
mental factors (hydrology, vegetation cover, landforms, snow cover) on ALT. Vegetation o2
first strongly influences the surface energy balance, snow cover, soil moisture, and organic  sos
content [48]. Vegetation composition and canopy height may consequently provide valu- sos
able information on permafrost properties and ALT [43]. In addition, biophysical and  ses
physiological properties of plants confer singular spectral reflectance signatures to distinct  sos
vegetation units [49]. Topography and microtopography secondly influence vegetation o
distribution and snow accumulation. As demonstrated in previous studies [44,46,50,51], 08
terrain attributes can therefore be used as an alternative or complement to land cover maps  sos
to extrapolate ALT. 310

Both optical and radar satellite data have been tested for statistical and empirical s
relationships [15]. They were notably used to model ALT based on correlations with surface 312
characteristics [e.g. 44-46,48,52]. We, therefore, investigated the spatial distribution of 1
ALT and its relationship with vegetation and topographic variables derived from remote s
sensing. Based on established correlations, ALT measurements conducted over the study s
domain were extrapolated and finally used as inputs in Equation 14 to estimate the AL ice 16
content and derive FSI values. We finally validated the InNSAR displacement and FSI maps =17

with geotechnical data collected during the study period. 318
3.2.1. Ground truth data 310
Active layer thicknesses 320

Active layer probing was undertaken every year from 2015 to 2021 (except 2017) at = s
[ulissat’s Circumpolar Active Layer Monitoring (CALM) site. The CALM site is a 50x50 m  sz2
grid of 111 points located in a homogeneous zone of frost boils dominated by cryptogams 23
and dwarf shrubs. ALT was additionally measured in 2020 and 2021 at 36 locations spread  sza
across the study area. In order to better understand the influence of surface characteristics 25
on the ALT distribution, six transects crossing different landforms and vegetation units 326
were probed in 2020 and 2021. AL probing was always conducted at the end of thawing sz
seasons (when the AL had reached its maximum) with a 110 cm graduated metal rod (ALT  s2s
probe). The measurement was generally repeated from two to five times at each location sz
and values were averaged. The accuracy of the measurements is on the order of 1 cm. 330

In order to preserve the greatest number of observations, ALT locations that had been  ss:
exclusively measured in 2021 were recalculated for 2020. To this end, a linear regression 3=
was fitted on measurements undertaken both in 2020 and 2021 (Figure 5). In the rest of the = sss
paper, we refer to this dataset as ALTyg /1. 334

Finally, points located at the transition between distinct vegetation units were dis- s3s
carded from the analysis to reduce ambiguity. A resulting dataset of 335 points was used in 336
the further analysis. 337
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Figure 5. Bivariate linear regression plot of ALT measured in 2020 and 2021 at the same locations.

Floristic surveys and surface characteristics 338

As a way to map local vegetation, floristic surveys were conducted at distributed 330
locations and concurrently along ALT transects. Due to time constraints, the floristic com- 340
position (species identification) and Braun-Blanquet (BB) indices of abundance-dominance sa:
[53,54] were assessed only once per surveyed homogeneous vegetation unit. At each a2
location, the vegetation was photographed and sampled within a 20 by 20 cm quadrat = sas
(September 2020), or 50 by 50 cm quadrat (September 2021). BB indices were converted s
to percent cover for each of the main plant functional types (PFT) [55], categorized as: s
non-vegetated (NV), shrubs (S), graminoids (G) including the subcategories grasses (GG), sas
tussock-sedges (GTS), non-tussock sedges (GS) and rushes (GR), forbs (F), bryophytes (B), 47
lichens (L) and pteridophytes (P) (Figure A2, Appendix A.2). Periglacial and geomorpho- s
logical features were described at each survey location, and surface drainage conditions s
were qualitatively assessed with a scale ranging from Very dry to Partly inundated. 350

Agglomerative Hierarchical Clustering (AHC) using Ward’s method [56,57] was ap- s
plied to regroup survey locations based on their similarities in PFT percent cover. Clustered  ss2
data were depicted with a dendogram and plotted in a 2D space using the Non-metric s
Multidimentional Scaling (NMDS) ordination method [58,59] (Figure A1, Appendix A.1). s

Ten main geomorphological and vegetation units, illustrated in Figure 6 and described  sss
in Table 1, were identified based on the clustering results and knowledge of the area. 356
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A.LOW AND DWARF SHRUB TUNDRA
EBDST (Empetrum & Betula) BLDST (Betula)
B. CRYPTOGAM TUNDRA (Bare and vegetated frost boils)
B.1. Dominated by dwarf shrubs B.2. Mixed plant functional types  B.3. Dominated by cryptogams
BSBFB & BSVFB SGCBFB & SGCVFB LBFB & LVFB
C. GRAMINOID TUNDRA
TSGT (Tussock-sedges) SEERNA ORI, Tyshees. GGT (Grasses)
sedges)
SGBT (Shrubs, graminoids,
bryophytes)
Figure 6. Main vegetation units (described in Table 1) identified from the Agglomerative Hierarchical Clustering
(AHC) and regrouped by dominant plant functional type (PFT).
Geotechnical data 357

Site investigations were conducted in Ilulissat at 24 locations from 2016 to 2021. sse
Drilling operations, retrieval of soil material, and installation of thermistor strings were  sso
notably undertaken in August 2016 and 2018, and in April 2021. 360

Ground temperatures (GT) were recorded at seven borehole locations established in e
2016. As part of the SAR scene processing, GT time series were used to determine the e
onsets and ends of the thawing seasons. In-situ observations showed that the AL typically ses
starts to thaw in May and that the maximum thaw depth (ALT) is reached before or at ses
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Table 1. Vegetation class descriptions.

Vegetation class abbreviation Description

SLST Salix-dominated low shrub tundra

EBDST Empetrum and Betula-dominated dwarf shrub tundra

BSBFB Betula shrub-dominated, partially bare frost boils

BSVFB Betula shrub-dominated vegetated frost boils

BSFB Betula shrub-dominated frost boils

SGCBFB Shrub, graminoid and cryptogam-dominated, partially bare
frost boils

SGCVFB Shrub, graminoid and cryptogam-dominated vegetated frost
boils

SGCFB Shrub, graminoid and cryptogam-dominated frost boils

LBFB Lichen-dominated, partially bare frost boils

LVFB Lichen-dominated vegetated frost boils

TSGT Tussock sedge-dominated graminoid tundra

BRSGT Bryophyte, rush and sedge-dominated graminoid tundra

GGT Grass-dominated graminoid tundra

SGBT Shrub, graminoid and bryophyte-dominated tundra

the onset of freezing (mid-August). Based on this information, the INSAR time series of es
total cumulative displacements could be adjusted to the actual evolution of the thaw front. see
The timing of maximum AL development and maximum thaw-season displacement were e
thereby well aligned. GT records were secondarily used to assess the performance of the ses
surface displacement model (based on the Stefan equation), in reproducing the progression  es
of the thaw front depth. 370

Soil classification experiments and laboratory analyses were conducted on AL sam- s
ples and permafrost cores in order to validate S, R, and FSI maps [60]. As described in 372
Chamberlain [13], the most common criteria used to evaluate the frost susceptibility of s7s
soils rest upon the characterization of particle size. The frost susceptibility classification s7s
system developed by Berg and Johnson [61] consists of i) the determination of the soil type 75
according to the Unified Soil Classification System (USCS) [62], ii) percentage of particles a7
finer than 0.02 mm, iii) and laboratory frost heave testing. The ice content, porosity, grain sz
size distribution, and Atterbergs plasticity limits were therefore determined on samples sz
collected within the first three meters below the ground surface (AL and top of permafrost). a7
Using the grain size distributions and Atterberg plasticity limits, the samples were then s
classified based on the USCS [62]. Frost heave experiments were not conducted as part s
of this study. The frost groups of the samples were finally derived from determined soil se2
properties based on the frost susceptibility classification system mentioned hereinabove  ses

[61]. 380
3.2.2. Geospatial dataset and environmental predictors 385
Vegetation 386

In our study, spectral information was derived from pre-processed multi-temporal ser
Sentinel-2 bands, acquired during the summers of 2016 and 2017 and resampled to 10  ses
m spatial resolution (Table 2). The spatial resolution differs between the bands. Super- s
resolution processing (DSen2, [63]) has been applied to obtain 10 m for all bands. Further o0
pre-processing steps encompassed sen2cor atmospheric correction, cloud, shadows, snow  se:
masking as well as fusion of different image acquisitions [as detailed in 64]. In order to e
investigate the correlation between spectral data and in-situ ALT measurements, several sos
vegetation indices (i.e. Normalized Difference Vegetation Index, Enhanced Vegetation sss
Index, etc.), as summarized in Table A1, Appendix B, were firstly derived from the set of 05
ten optical bands. 396
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Table 2. Sentinel-2 optical image specifications.

| Optical images | Available bands | Acquisition dates | Spatial resolution
Sentinel-2 B02 - BLUE 13-08-2016 10 m
S2A_MSIL2A B03 - GREEN 08-08-2017 10m
B04 - RED 15-08-2017 10m
B05 - RED1 20m
B06 - RED2 20m
B07 - RED3 20m
BO08 - NIR 10m
BOSA - NIR2 20m
B11 - SWIR1 20m
B12 - SWIR2 20m

A Principal Component Analysis (PCA) [65] was performed to remove possibly redun-
dant spectral information in the Sentinel-2 imagery. Concurrently, a K-means unsupervised
classification [66] was applied to the bands to pre-determine the best number of spectral
classes to use for the classification process.

Training and validation samples were secondly prepared by extracting representative
pixels of non-vegetated and vegetated units within each image band. On average, 80 to
100 pixels were picked for each class of the training dataset, while 40 to 60 were picked for
each class of the validation dataset. The previously defined vegetation classes were used
to inform the selection process. Spectral distances and signatures of the training samples
were computed to ensure sufficient spectral separability between the classes. Classes with
low separability were merged, resulting in seven final classes (described in Tables 3 and 1).

Table 3. In the left column, vegetation classes originally identified from ground truth data (described
in Table 1). To the right, ground-truth classes regrouped based on their spectral separability and
forming the final classes used for the classification of the remote-sensing (r-s) data. Cross symbols
indicate classes that could not be spectrally distinguished and that were discarded from the classifica-
tion procedure.

Vegetation classes Vegetation classes
(ground-truth) (r-s land cover classification)
GGT GGT
TSGT TSGT
BRSGT BRSGT
SGBT X
SLST X
EBDST EBDST
BLDST BLDST
o
SGCBFB
oD SGCFB
LVFB

Different supervised classifiers were finally trained on the training samples and respec-
tively applied to: i) the three principal components (PC) derived from the PCA, ii) the set of
ten Sentinel-2 image bands and, iii) to the Sentinel-2 bands combined with the PC (13 bands
in total). The classification results were individually assessed with the validation dataset,
by computing the overall accuracy, Kappa coefficient and confusion matrix. The best scores
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were achieved by using a Random Forest Classifier (RFC) [10,67] on the ten Sentinel-2 s
bands. Misclassified pixels were reduced by using ancillary data such as elevation and 414
slope rasters presented in the following paragraph. Finally, all non-vegetated classes were s
merged into one class, representing areas that are not sedimentary deposits in the study 416
area. a1z

Topography a18

A subset of the ArcticDEM [35], characterized by a spatial resolution of 2 m, was used 410
in this study to derive terrain parameters. Terrain and hydrological variables derived from  a20
elevation data were computed in QGIS [68] with SAGA-GIS tools [69] and are summarized 421
in Table A1, Appendix B. az2

3.2.3. ALT extrapolation techniques a23

Two different methods were tested to extrapolate ALT measurements over the study sza
domain: A) a statistical model based on relevant predictor variables from among the a2
remotely-sensed vegetation and topographic indices; and B) ALT measurements averaged 42e
per vegetation unit and redistributed over the area using the land cover classification raster. 27
The most successful approach was selected to predict and map ALT. a2

Method A: Statistical modeling a20

Hypothesizing that the environmental predictors computed from remote sensing data 430
control the ALT across the study area, we used the ALTy 51 as the dependent variable, and 42
retrieved the corresponding set of predictor values for each ALT measurement location by 432
sampling the predictor rasters. Correlations between the dependent and predictor variables 33
were then investigated with bivariate regression plots. A reduced subset of predictors sss
appearing correlated with ALT, was selected and further investigated. 435

Due to the limited number of observations (N=335), we used a simple Generalized a:s
Linear Model (GLM) to predict ALT. Compared to more complex statistical models that may as7
result in overfitting, the GLM is advantageous due to its transparency and interpretability 4se
[70,71]. The model, consisting of a multiple linear regression and using topographic and  as
vegetation predictors as inputs, is expressed as follows (Equation 16), and is fitted by a0
ordinary least squares. a1

y = PotpiXi+BXo+ ...+ BuXn+te, (16)

where y is the predicted ALT [m] (dependent variable) , X; (i varying from 1 to n) are the sa2
environmental predictors (independent variables), B; (i varying from 1 to n) are the regres- 4as
sion coefficients associated to the independent variables, 7 is the number of independent  ass
variables, and € is the model’s error term. 445

In order to select the best environmental predictors from the subset, a stratified K-fold ass
cross-validation (ten folds) was implemented to assess the model’s predictive performance a4z
on all possible combinations of predictors. The Akaike Information Criterion (AIC) and co- 4ss
efficient of determination (R2) were used as performance metrics. Stratified cross-validation 4
techniques enable to randomly split the model’s inputs into training and validation sets 4so
while preserving the number of samples in a given class. Here, the land cover classifica- as:
tion (cf. Section 3.2.2) was used to ensure an equitable distribution of observations per s
homogeneous terrain unit. 453

In our study, multiple environmental predictors were derived from the same data s
sources (Sentinel-2 images and DEM); therefore, correlations may exist between them. Our  ass
final selection was based, on one hand, on the results of the cross-validation (performance 4ss
metrics), and on the other hand, on bivariate regression plots of the predictors, ensuring a  4s7
low degree of correlation between the latter. The Green Normalized Difference Vegetation ass
Index (GNDVI), slope, and flow accumulation (computation detailed in Table A1, Appendix 4se
B) were selected as predictors in the final model. a60
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Stratified K-fold cross-validation was lastly repeated (with 5 and 10 folds) to evaluate e
the final model performance. The average performance of the model was calculated on 462
predictions from all cross-validation test sets. 463

Method B: Averaging per vegetation class 464

All ALT measurements from ALT,y,,1 dataset were averaged per vegetation class. In 45
order to assess the significance of the differences between the ALT averages, we performed ase
pairwise statistical t-tests. As the distribution of our observations was close to normal, s
but the size and variance of the class samples were strongly variable, Welch’s t-tests were sss
specifically conducted [72]. Finally, averaged ALT values were spatially distributed over the  4eo
study domain using the land cover classification map. Due to the surface and subsurface a7
conditions, ALT measurements were relatively scarce or unreliable within some of the 47
vegetation units such as EBDST and TSGT (Table 1). In this case, borehole logs and ground a2
temperature records (cf. Section 3.2.1) were used as complementary information to estimate 473

an ALT value for these vegetation units. 474
4. Results 478
4.1. InSAR-derived surface displacement maps 476
4.1.1. Average seasonal displacement and long-term displacement rate a7

Maps 7a and 7b show the derived average seasonal thaw displacement (S) and long- 47s
term displacement rate (R) for the study period (2015-2019). Negative values correspond to  47s
downward displacement, or in other words, subsidence of the ground surface. Conversely, aso
positive values indicate surface heave. S has a minimum value of -7.5 cm/yr and is -2.7 &+ 4e
2.0 cm/yr (4 £ 10) on average over the sedimentary areas. Ris -0.6 &= 0.5 cm/yr, and shows  ss2
a general subsidence of the sedimentary basins. The maximum subsidence rate observed in  es
the area is -2.6 cm/yr. Our results indicate that permafrost is globally degrading over the  ass
study domain, and the ground surface is subsiding due to ice melting near the permafrost aes
table. These observations are supported by AL probing at the CALM site (Figure 1c) which 4ss
show an increase of around 5 cm/year of the AL over the period of study. However, the ss7
range of R values obtained (-1 cm/year in average) at the same location seems to indicate 4ss
that the long-term subsidence rate is likely underestimated by our model. 280

The coefficient of determination (R?) was calculated for each pixel (Figure 7c), based  aso
on the same pixels included in the moving window inversion. The R? was 0.15 & 0.32 401
(# = 10) on average over sedimentary areas (non-vegetated areas excluded). 38.5 and 12.5 42
% of the R? pixels were larger than 0.25 and 0.5 respectively. The lowest values often e
occurred in the close vicinity of bedrock, wetlands, surface water, and densely vegetated o4
areas where the InSAR signal may be mixed. Removing pixels located within 50 m from  ses
bedrock increased the average R? value to 0.25 4 0.28. a96

According to the S and R maps, sedimentary deposits in small depressions between o7
bedrock outcrops typically exhibit lower seasonal displacement and long-term subsidence  4es
than those observed in larger sedimentary basins (Figure 7a and b). The former areas are 4e0
usually characterized by relatively dry surface conditions and by the presence of coarse soo
sediments such as sand and stones. In comparison, clays and silts are the most frost- so.
susceptible sediments and expectedly display high S and R values. Table 4 summarizes S o2
and R values observed at three borehole locations characterized by different soil types. s03

4.1.2. Assessment of surface displacement model performance 504

Our approach to correcting the INSAR derived subsidence amplitudes is based ona  sos
model of AL development as function of air temperature. In order to assess the ability sos
of our model to reproduce the evolution of the thaw front, we used ground temperature sor
records from seven local boreholes (cf. Section 3.2.1) to calculate time series of the depth of  sos
the zero-degree isotherm in 2018, and compared these to the AL evolution modeled with  sos
the Stefan equation (Equation 2). Each time series is normalized to the maximum thaw s
depth to reduce the dependency on local geological and microclimatic conditions, and s
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Table 4. Comparison of S and R values at borehole locations characterized by different soil types.

Borehole name ILU2021-03 ILU16002T ILU16010T
Dominant AL soil type SILT CLAY SAND
USCS' soil type ML or MH CL SP or SW
S (m) -0.041 -0.031 -0.016

R (m/yr) -0.010 -0.008 -0.003
Ice content below the AL" (%) 80-90 30-40 10-15

t Unified Soil Classification System [62].
* The ice content was visually assessed on permafrost cores retrieved below the permafrost table, based on
the Standard Practice For Description Of Frozen Soils [73].

to mimic the approach taken in the INSAR correction. These time series are illustrated in  si2
Figure 8, and show that the onset of thaw is modelled accurately, while the maximum thaw s
occurs in late August, somewhat earlier than predicted by the model. During most of the s
thawing season, the model slightly underestimates the normalized thaw depth (by up to s
18 % in mid July). This means that the correction factor applied to the InNSAR amplitudes s
is typically underestimated, resulting in conservative estimates of the total thaw season sz

deformations. 518
0.0
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Figure 8. Comparison of the thaw front depth evolution derived from ground temperatures (GT)
recorded at seven borehole locations (BH stands for borehole) in summer 2018, versus modelled with
the Stefan equation from air temperatures.

4.2. ALT spatial distribution and land cover s19
4.2.1. Spatial variability of measured ALT 520

The ALT database compiled as part of this study demonstrated the high spatial and sz
temporal variability of ALT over the study domain, e.g. ALT ranged from 0.30 m to more sz
than 2 m in 2020. s23

At the CALM site, where the vegetation and landforms are homogeneous, ALT mea- sz
surements conducted from 2015 to 2021 were characterized by standard deviations of sz
10 to 13 cm and coefficients of variation of 15 to 20 %. Yet, differences in thaw depths sz
could be identified between distinct vegetation and landform units. Figure 9 illustrates the 27
distribution of ALT along one of the transects probed in 2021 across different terrain units. szs
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Figure 9. Spatial variations in ALT across different vegetation and landform units (vegetation classes described
in Table 1). The orthophoto used for mapping is available online from Asiaq Greenland Survey [33]

Small mounds and terrain patches dominated by higher and denser Betula shrubs sz
(BLDST) were characterized by shallower ALT, in the order of 0.40 - 0.50 m. Vegetated and  sso
partially bare frost boils, colonized by cryptogams (LBFB and LVFB), mixed plant functional ss:
types (SGCBFB and SGCVEFB), or shrubs (BSBFB and BSVFB), had average ALT between  ss:
0.60 and 0.80 m. Finally, the deepest ALT (often more than 1 m) were measured across sss
ponds and natural water drainage channels, which typically classify as tussock sedges and  sss
bryophytes (BRSGT and TSGT). Manual probing and ground temperatures recorded in sss
vegetation units EBDST and TSGT showed that ALT values varied in the approximate range  sss
from 1.0 to 2.5 m. These areas are often drier, partially bare or covered by dwarf shrubs sz
such as Betula nana and Empetrum hermaphroditum (EBDST). These results are generally s
consistent with ALT measurements conducted in other regions of the Arctic. Ronkko and s
Seppald [74] and Cao et al. [75] both found that a dense and high vegetation cover, notably s
dominated by low Betula shrubs, may reduce heat losses due to more significant snow s
accumulation. Ronkko and Seppéléd [74] also reported thicker ALT in the case of drier and  sa

coarser soil conditions. sa3

Overall, our observations supported the existence of interrelations between the thaw  sas
depths, vegetation composition, soil moisture and landforms across the study area. 545
4.2.2. Supervised land cover classification results sa6

The influence of the vegetation zonation on the spatial variability of ALT was evident s
in Ilulissat. The map in Figure 13a represents the land cover classification produced by su- s
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pervised learning from Sentinel-2 optical images. The overall accuracy of the classification sas
was 82.51 %, and the Kappa coefficient was 81.40 %. At the exception of wetland areas, sso
vegetation units were successfully separated from non-vegetated areas. As illustrated by ss:
Figure 10, the spectral signatures of some of the classes were similar. Within non-vegetated ss:
classes, many bedrock pixels were erroneously classified as wetlands. Built-up surfaces, s
gravel, barren areas, and bedrock pixels were also often mistaken. Some of these pixels sss
could nonetheless be reclassified with the help of ancillary data such as topographic indices. sss
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Figure 10. Spectral signatures of the training pixels extracted for each non-vegetated and vegetated
units (vegetation classes described in Tables 1 and 3).

Regrouping vegetation classes according to Table 3 contributed to increasing their sse
spectral distances and separability. However, as expected, vegetation units with resembling sz
species composition and PFT percent cover remained difficult to dissociate. Pixel confusion sss
was considerable for areas covered by a relatively high percentage of shrubs (EBDST, sss
BLDST, BSFB and SGCFB). Similarly, pixels dominated by graminoids and bryophytes were  sso
sometimes erroneously divided between the predefined graminoid classes (GGT, BRSGT  sex

and TSGT) 562
4.3. ALT extrapolation 563
4.3.1. ALT extrapolation based on Method A: statistical modeling 564

Following the approach detailed in Section 3.2.3, we investigated the relationships ses
between the entire ALT,(,,1 dataset and the remotely-sensed environmental variables. As  ses
a result, the correlations between the ALT and the predictors were found to be weak. The  ser
GNDVI, NDVI, OSAV], slope, mid-slope position, aspect and flow accumulation (Table A1, ses
Appendix B) were slightly correlated to the ALT and were thereby considered the most ses
relevant vegetation and topographic predictors. 570

A linear regression was first fitted onto the ALT;(,»; and GNDVI data only (Figure sn
11), for which the highest R? was obtained (0.10). s72
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Figure 11. Relationship between observed ALTj /1 and the Green Normalized Difference Vegetation
Index (GNDVI), sampled at the ALT measurement sites.

Secondly using the GNDVI, slope, and flow accumulation as inputs in our GLM, sz
was still not successful in improving the model performance. Fluctuating and poor cross- sz
validation accuracies (R? and AIC) were obtained when testing the model on randomly sz
generated training and validation datasets. Even though the respective relationship be- sz
tween the ALTy/»1 and the predictors was statistically significant (p<0.05), the model was s~
not able to fit the data, and thereby was not representative of the ALT spatial distribution sz
over the entire study domain. Moreover, the GNDVI, which seemed to be the strongest pre- sz
dictor, was inversely correlated to the ALTyg /51 (Figure 11). This result was in contradiction  sso
to ground-truth ALT measurements, notably observed over water channels (Figure 9). se1

The statistical extrapolation of ALT, using a combination of vegetation and topographic ss:
indices derived from remote sensing, was not successful in our study area. This method ss:
was therefore excluded from predicting ALT and mapping the frost susceptibility. 584

4.3.2. ALT extrapolation based on Method B: vegetation classes s85

Figure 12 presents the average ALT values that were allocated to each vegetation class ses
of the land cover classification raster. The extrapolation procedure resulted in the largest ser
errors for: i) vegetation classes characterized by an extensive range of ALT values and, sss
ii) misclassified pixels inherited from the supervised land cover classification (cf. Section  sse
4.2.2). The map in Figure 13b presents the ALT,(,»; extrapolated over the study domain seo
and used to compute the FSI. 591
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Figure 12. Box plots showing the average ALT and spread of the ALT measurements per vegetation
class (vegetation classes described in Tables 1 and 3). The height of each box represents the interquar-
tile range of the underlying data, and it extends from the 25th to the 75th percentile. The horizontal
bar within the box indicates the mean value, and the text above it, the number of observations (n) for
the given class. The whiskers extend to the maximum and minimum values recorded for the given
class, excluding outliers, which are indicated with dots.

Based on the results of the Welch’s pairwise t-tests, the ALT means of most of the se2
vegetation classes were found to be statistically different (p<0.05). P-values superior to 0.05  ses
were obtained when respectively comparing the pairs BSFB-SGCFB, BLDST-GGT, SGCFB-  sos
BRSGT and SGCFB-GGT (Table 1), indicating the lack of statistical difference between ses
these classes. The similarity in ALT means of BSFB and SGCEFB is inherent to the actual ses
ALT of these frost boil units, although characterized by different floristic compositions. ser
The vegetation class BRSGT often occurs between frost boils or at the transition between  ses
distinct land cover units. For this reason, ALT values were significantly variable within see
this class, and the average ALT turned out to be similar to that of SGCFB. Similarly, few oo
measurements were available for the class GGT, which was also characterized by a wide e
range in ALT. Finally, as mentioned in Section 3.2.3, an approximate ALT value of 1.5 m o2
was attributed to the pixels classified as EBDST. This approximation was used as a proxy to eos
discern areas with the thickest AL, which often correspond to coarse sedimentary deposits  eos
(Table 4). 605

4.4. Frost susceptibility index mapping 606

Figure 13c shows the FSI derived from extrapolated ALT and S component. The FSI 607
ranges from 0 to 1.7 [unitless]. 608
As a first step towards validating the potential of the FSI, we used AL and permafrost eos
soil properties to assess the frost susceptibility of the ground at different borehole locations 10
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(cf. Section 3.2.1). Borehole sites were classified based on the dominant soil type present e
in the AL or in the first 3 m below the ground surface. Coarse deposits, categorized as o2
sands (SW and SP in the USCS), gravels and gravel-sand mixtures (GW and GP in the e
USCS), belong to Non-Frost Susceptible (NFS) to low frost susceptible soils (S2) according  e1a
to the U.S. Army Corps of Engineers Frost Design Soil Classification System (FDSCS) es
described in Berg and Johnson [61]. These deposits, identified at five borehole locations, es
were associated with average FSI values of 0.21 £ 0.10 (u = 10). The rest of the borehole &7
sites were characterized by clays and silts (CL and ML in the USCS). These sediments are s
highly to very highly frost susceptible (F3 - F4) according to the FDSCS [61]. The FSI for 1o
this group ranged from 0.14 to almost 0.96, with an average of 0.55 £ 0.25. Table 5 shows 20
typical FSI values encountered at borehole locations characterized by different soil types. 621

Table 5. Comparison of FSI values at borehole locations characterized by different soil types.

Borehole name ILU2021-03 ILU16002T ILU16010T
Dominant AL soil type SILT CLAY SAND
USCS' soil type ML or MH CL SP or SW
FSI(-) 0.63 0.48 0.11
Frost group’ F4' F3' - F4 PFS - F2

? Unified Soil Classification System [62].

b The frost groups were determined using the U.S. Army Corps of Engineers Frost Design Soil Classification
System described in Berg and Johnson [61] based on grain size distribution and Atterbergs limits of AL and
permafrost samples.

¢ F4 corresponds to very highly frost susceptible soil types.

4 F3 corresponds to highly frost susceptible soil types.

¢ PFS corresponds to possibly frost susceptible soil types.

f F2 corresponds to moderately frost susceptible soil types.

As expected, FSI values are higher for fine-grained deposits, suggesting that our ez
approach successfully detected frost-susceptible areas. The degree of frost-susceptibility ezs
of a given soil type can be relatively broad and controlled by parameters other than the 24
grain size [13]. In addition, the FSI inherited uncertainties and inaccuracies from the ez
processing of the InNSAR signal and extrapolation of ALT from the landcover classification. eze
We notably demonstrated that sedimentary deposits surrounded by, or located in the close 27
vicinity of bedrock outcrops were subject to poorer inversion performances (Figure 7). e2s
These arguments may explain the higher variability of the FSI within sedimentary deposits ez

described as fine-grained (clays and silts). 630
5. Discussion 631
5.1. InSAR surface displacement model and maps 632

In this study, we modified the algorithm of Liu ef al. [8] and applied it to Sentinel-1 33
SAR scenes acquired between 2015 and 2019. Maps of average seasonal displacement (S) e3a
and long-term displacement rate (R) were successfully produced for the community of ess
Ilulissat with a final spatial resolution of 10 m. The magnitude of the seasonal deformations 36
was found to be predominantly related to the soil type and moisture conditions. Compared s
to fine-grained sedimentary deposits that exhibited severe surface displacements, less e3s
subsidence was observed in coarser and drier areas. These observations, which were sub- e3s
stantiated by soil properties measured at borehole locations [60], corroborate the findings  eso
of Schaefer et al. [24]. The R map also highlighted zones of larger downward displacement  es
trends, that were interpreted as degrading permafrost areas. Our results generally con- s
firmed the measured increase in AL over the study time frame but underestimated the s
magnitude of the long-term subsidence. 644

Overall, our surface displacement model was able to explain up to 25 % of the INSAR  ess
data variation over the sedimentary basins. The model performance was considerably ess
reduced over high shrubs, inundated areas, and in the close vicinity of bedrock. In their e


https://doi.org/10.20944/preprints202305.1683.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2023 doi:10.20944/preprints202305.1683.v1

26 of 38

studies, Jia et al. [76], Strozzi et al. [6] and Zwieback and Meyer [14] experienced similar s
errors characteristic of the use of InNSAR over low-land permafrost, densely vegetated, s
barren, and rocky areas. As discussed by the authors, changes in ionospheric, vegetation, eso
and soil moisture conditions exert an influence on radar penetration and may introduce s
biases in the InNSAR signal and measured surface displacement. This phenomenon partly es:
explains our inversion results, and the positive R values specifically observed at a few ess
locations and indicating a decreasing trend in ALT. These areas typically align with wet- ess
lands, where ponds and water accumulation may have affected the coherence of the INSAR  ess
signal. Anthropogenic modifications may also have resulted in heave or mixed signals in  ese
the derived S and R maps at specific locations. 657

The main contribution of our approach lied in the implementation of a moving- ess
windowed constrained linear least-squares inversion. In order to compensate for the es
lack of points in the temporal INSAR dataset and assuming that spatial variations were seo
smooth, several pixel values were used in the inversion, providing more information from s
neighboring areas and reducing the noise in the data. However, this technique may not es2
have been sufficient to entirely balance out the fact that only four years of INSAR images 63
could be processed. For this reason, the R component, which represented the long-term ees
trend in surface deformations, should still be considered cautiously. The robustness of the  sss
inversion and retrieval of the R component could be improved if longer INSAR time series  ses
of surface displacements were available or if the inversion was weighted depending on the sz
land cover classes. o68

Secondly, the generation of the displacement time series and variations in the tem- eeo
poral coverage of the InNSAR stacks (and, therefore, in the measured thaw-season vertical oo
displacement) may have also lessened the inversion capability of our algorithm. Our model o7
notably relied on the Stefan equation to reproduce the evolution of the thaw front. By e
validating the evolution of the thawing front with ground temperature measurements, we o
demonstrated that the Stefan approximation is well suited to model the onset of thawing ez
but that predicted thaw depths are somewhat underestimated. The correction factor ap- s
plied to the INSAR amplitudes was therefore also underestimated, and the final Sand R «7s
products should thus be considered conservative estimates. In our dataset, the 2015 time o7
series notably started very late in the thawing season which may have contributed toa o7
larger variation in the observations, and a poorer regression fits. Such effects especially o7
impact relatively short stacks (study periods) such as ours. 680

In our model, we also assumed that vertical displacements of the ground surface e
would only be caused by volume changes induced by the freezing and thawing of the AL. es2
Assuming no lateral water exchanges was appropriate for the area of Ilulissat where the e
topography is flat. Nonetheless, as mentioned by Liu et al. [8,16], secondary driving mecha- ess
nisms such as erosion, clay contraction, inundation, and other changes in soil properties ess
may contribute to ground movements but were not accounted for in our model. o86

In comparison, sinusoidal models have been tested by Li et al. [17] and Jia ef al. [76] ez
and generally proved performant. However, many physical processes influencing the ess
occurrence and magnitude of surface deformations do not follow sinusoidal trends [17,76]. ees
Further modeling efforts are required to improve the representation of ground movements es0
occurring in permafrost regions. 601

The S and R values retrieved from the inversion were assessed against AL and top-of- es2
permafrost soil properties determined at borehole locations. Even though our results were o3
coherent with subsurface conditions at these locations, measurements of the surface dis- eos
placements are still needed to quantitatively validate seasonal and long-term deformation ess
trends. To this aim, subsidence sticks could be deployed in the study area, as described in  es6
Antonova et al. [9] and Bartsch ef al. [20]. 607

5.2. ALT extrapolation techniques 608

We investigated the correlations between a set of remotely-sensed environmental eso
predictors and ALT probed in 2020 and 2021 (ALTyg,»1). Field measurements conducted 700
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in Ilulissat evidenced the strong spatial variability of ALT across the study domain. Our 7o
observations are in line with previous studies that reported large variations in ALT within 72
study sites across the Arctic [e.g. 16,46,76]. 703

Weak linear correlations were found between ALT,(,,1 and a subset of predictors. 7o
Therefore, we first attempted to extrapolate ALT,;,»; with a GLM whose predictive capa- 7os
bility was evaluated by cross-validation. The model performed poorly and was unstable 706
when fitted and validated on randomly generated samples. With this approach, we were 7o
not able to reproduce the variability in ALT across the study domain. Other researchers 7os
have experienced similar challenges when statistically predicting ALT from geospatial 700
datasets. Karjalainen et al. [12], who used an ensemble model at the pan-Arctic scale, 710
notably reported relatively large uncertainties associated with the predictions of present 71
and past ALT (adjusted R? of respectively 0.37 and 0.57). The geographically weighted 72
regression approach implemented by Mishra and Riley [46] over the state of Alaska was 713
also characterized by a moderate predictive capability. 714

The poor performance of our model could be attributed to the combination of ALT s
measurements, predictors, and algorithm selected for this study. Before 2020, ALT mea- 716
surements were scarce and relatively localized. Averaging ALT values over the study 7
period 2015-2019 (cf. Equation 14) was not possible in our case since the dataset would s
not have been representative of the natural spatial variability of ALT. In order to maximize 71
the spatial distribution of our dataset and the robustness of the extrapolation procedure, 720
ALT measured in 2020 and 2021 were used instead. However, as field protocols changed 721
with our understanding of the area throughout the project, ALT probing was conducted 7z
inconsistently across vegetation and landform units in 2020 and 2021. Final sample sizes 72
were therefore, larger among certain vegetation classes, while others remained underrepre- 7z«
sented. For the same reason, our dataset did not span entirely and evenly the spectrum 725
of values of the environmental predictor rasters, which were sampled at the ALT probing 726
locations only. We recommend that the density and distribution of ALT measurements 77
for validation purposes is carefully considered to appropriately represent different terrain  7zs
units in future studies. 720

Furthermore, the area of Ilulissat is characterized by a gentle relief and homogenous s
periglacial features (frost boils). Floristic, hydrological, and geomorphological disparities s
evidently exist, but their spatial gradients are relatively small. Within a homogeneous 7s:
terrain unit, intra-variations in vegetation composition, soil moisture, micro-topography, 7ss
and ALT additionally occur. However, the resolution of the remotely-sensed datasets 7sa
acquired for this study was likely insufficient to grasp such nuances. Statistical models 735
applied at smaller scales (hundreds of meters) and using high-resolution surface elevation 736
and multi-spectral data were generally successful in predicting ALT [44]. In this context, a7
Anderson et al. [77] showed that hyperspectral imaging can be more suitable in relation to 73
statistical extrapolations. Acquiring predictors with a higher resolution could contribute to 739
improving our ALTy ;1 predictions. 740

Finally, a different statistical model could be tested on our datasets, provided that e
more observations are collected. In our case, a GLM was chosen due to the reduced number 72
of measurements and ease of interpretability [70]. Relationships between the ALT and  7as
surface characteristics may not all be linear. For this reason, generalized additive models 7ss
(GAM), which present the advantage of accounting for non-linear effects, could be a more  zas
flexible alternative to the GLM. 746

To overcome these difficulties, we exploited the correlation between the thaw depths  ze7
and vegetation zonation revealed by ALT probing along transects. ALT measurement sites zas
were categorized based on their sampled floristic composition and averaged per spectral s
vegetation class ensuing from the supervised land cover classification map. This method 7so
was substantially more successful and representative of the ALT spatial distribution than s
the statistical model. Prediction errors were tied to vegetation misclassifications and class 7s2
intra-variability in ALT. Floristic surveys were conducted relatively late (September) com- 7s:
pared to the vegetation growing season peak (mid-July to mid-August). It is plausible that 7ss
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the species richness was not fully captured in our data, but species abundance and PFT  7ss
percent covers were expected to represent distinct vegetation types. The RFC-supervised al-  zse
gorithm produced satisfactory classification results (82.51 % overall accuracy). Nonetheless, sz
vegetation classes identified from ground truth data were not always spectrally separable, 7ss
resulting in pixel confusion and misclassifications. These errors may have led to the wrong  zse
allocation of ALT values in some locations. Lastly, t-tests revealed overlaps and statistical zeo
similarities in ALT averages computed for two pairs of vegetation classes. These results e
were coherent with the natural variability of thaw depths measured within these units. 7e:
Our study confirms the conclusions of Mishra and Riley [46] stating that using vegetation e
zonation as an indicator of ALT does involve uncertainties but is applicable when more e
complex statistical models can not be implemented. 765

The distribution of ALT is influenced by many factors, the relative importance of which 76
is scale-dependent. Previous studies have shown that air temperature is the primary control zer
of ALT over large scales [44]. Land cover types and topography also exert a strong influence zes
on ALT. At micro-scales, Gangodagamage et al. [44] and Anderson et al. [77] demonstrated e
that microtopography, vegetation, and soil moisture become predominant driving factors. 770
In our study areas, land cover units proved to be the best predictor of ALT. Due to the lack 772
of strong topographic gradients, the effects of terrain parameters investigated in this study 7z
could not be asserted. The significant spatial variability of ALT is still not fully understood. 77
The suitability of different extrapolation techniques and predictors remains considerably 77
site-dependent. More robust approaches that could be extended to different permafrost 7zs
environments must be developed. Additional monitoring, remote sensing, and modeling 776
efforts remain needed to bridge the gap between micro and regional scales. 777

5.3. Frost susceptibility mapping 778

Mapping ground ice traditionally relies on geomorphological expertise and the iden- 7o
tification of periglacial features [25]. Using remote sensing techniques would be highly s
advantageous in Arctic regions where drilling and soil sampling are logistically challenging  zex
and costly. Yet, to this day, the possibilities to derive ice content from remotely-sensed e
signals are limited [14]. Liu et al. [16] were able to link changes in surface subsidence to the e
thawing of the AL. Using a similar approach, we estimated the AL ice content from 2015- 7ss
2019 average seasonal displacements (S) and extrapolated field observations (ALTyy/51). 7es
Since thaw depths follow an increasing trend in Ilulissat, the ALTy,,1 dataset we applied 7s6
may be overestimating the ALT averaged over the study period 2015-2019. Referring to  ze
Equation 14, we can infer that the resulting AL ice content represents a conservative esti- 7ss
mate (underestimated). Furthermore, homogeneous porosity and saturation of the AL had  7se
to be assumed. These simplifications and errors intrinsic to the retrieval of the S component  7e0
and predicted ALTy,51, introduced additional uncertainty in our results. We named the 7o
final product a Frost Susceptibility Index (FSI) to underpin that it does not represent an  7e:
exact quantification. 703

Despite reaching an accurate quantification of the AL ice content, we qualitatively com- 7es
pared obtained FSI values to frost susceptibility classification of sediment samples based 705
on the FDSCS [61]. The frost susceptibility of AL and permafrost samples corroborated the 706
InSAR-derived FSI, thereby supporting the validity of our mapping approach. 707

Our efforts are presented here as a first step toward developing remote sensing 7ss
techniques for ground ice retrieval. Further research could consist in investigating the 700
relevance of extreme year analyses [14,20] for our study area. Using late-season subsidence  soo
signals to distinguish ice-rich from ice-poor areas proved effective under the following o
conditions: i) exceptionally warm summers, ii) and initial melting of excess ice at the top o2
of permafrost. In the case of Ilulissat, the derived R map indicated locations that may be sos
subject to ongoing permafrost degradation. Secondly, 2019 was a particularly warm year sos
with mean annual air temperature reaching -2 °C and thawing degree days exceeding 1000. sos
Testing this method for this year, in particular, could provide complementary information sos
with respect to the localization of vulnerable ice-rich areas. 807
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5.4. Potential of InSAR-derived maps to support infrastructure maintenance and planning s08

In remote Arctic areas, geotechnical data are relatively rare and challenging to acquire. eos
Yet, site investigations remain essential to adapt construction practices to permafrost s
conditions and prevent failures. In this context, remote sensing techniques provide high- s
resolution and continuous spatial information that can be validated with relatively reduced e
ground-truth datasets. 813

InSAR measurements notably provide insightful information regarding AL dynamics e
and permafrost degradation where surface deformations severely or repeatedly affect the s
built environment. Used as a complement to site investigations and local knowledge, INSAR  &16
maps, therefore, have the potential to support the construction and planning sectors. Such  s7
tools are especially valuable in the context of risk management and Arctic urban sprawl. s
Possible causes of infrastructure deterioration can first be identified, and maintenance oper- 1o
ations be more judiciously prioritized. In this study, we implemented a multidisciplinary ezo
mapping framework with the aim to map the frost susceptibility of the ground at the sz
community scale. Our work contributed to identifying hazardous frost-susceptible areas 22
currently subject to large seasonal surface displacements and/or long-term subsidence. s2s
FSI maps derived from our approach may secondly be helpful in informing construction sz
planning in unbuilt areas with limited geotechnical data, such as in [lulissat (Figure 14). &2

Land cover

Water
Il Gravel-dirt
Bedrock

Existing infrastructure
Roads and buildings
Bl Airport

Expansion plan
" | — Future roads
[ Future construction plots
F [ Future residential, commercial
and industrial areas

Frost susceptibility index [-]

Figure 14. Ilulissat’s expansion strategy superimposed on InNSAR-derived FSI map. The infrastructure
spatial dataset used for mapping is available online from Asiaq Greenland Survey [33]. The expansion
plan spatial layers were provided by the Avannaata Municipality (pers. commun.).

6. Conclusions 826

We processed Sentinel-1 SAR scenes acquired between 2015 and 2019 to map ground  e2r
surface displacements over the community of Ilulissat, West-Greenland. Average seasonal ezs
displacements (S) and long-term subsidence rates (R) were derived from the interferogram eze
stack. Active layer thickness (ALT) measurements were extrapolated using remotely-sensed eso
surface characteristics to retrieve a frost susceptibility index. The resulting maps were s
validated against soil properties. Our main conclusions are listed hereinafter: 832

1.  InIlulissat, fine-grained sedimentary basins were subject to significant downward ess
seasonal deformations of the ground surface during the study period, in the order s
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of 3 to 8 cm. Several locations also seem to follow a subsiding trend in the long e
term, indicating permafrost degradation and possible meting of excess ice below the ss6
permafrost table. Coarse-grained and drier sedimentary deposits were found to be &3
more stable. The surface deformations’ severity generally seemed to be correlated to  ess
the soil type and moisture. 830
2. The surface displacement model applied in this study was able to explain up to 25 e
percent of the observed data variation over sedimentary basins. Densely vegetated, sa
rocky or inundated areas were subject to a higher degree of uncertainty, likely inher- sa:
ited from anomalies in the InSAR signal. Surface deformation models currently based  sas
on the Stefan equation or sinusoidal functions require further research. sas
3. Atthe micro and community scales, the distribution of ALT is very variable in Ilulissat, sss
ranging from 0.3 m to more than 2 m. Despite evident correlations with surface s
characteristics such as vegetation cover, the extrapolation of ALT measurements a7
was challenging. A statistical model (GLM), using remotely-sensed vegetation and  sas
topographic parameters as inputs, failed to reproduce the spatial variability of ALT s
over the entire study area. The density and distribution of ALT measurements, and the eso
spatial resolution of remotely-sensed predictors, likely need to be improved to obtain s
more reasonable predictions. Averaging ALT per vegetation unit and distributing es2
the values over the study domain, based on a supervised land cover classification of  ess
Sentinel-2 images, proved to be the most successful technique in our case. asa
4. Extrapolated ALT and average seasonal displacements were used as inputs to derive ess
an indicator of the frost susceptibility of the ground. Although uncertainties inherent sse
to assumptions and inherited errors in ALT and S were associated to the retrieval of the sz
frost susceptibility index (FSI), the latter was in good agreement with soil properties ese
determined from AL and permafrost samples. Locations classified for the presence sso
of fine-grained and coarse sedimentary deposits were respectively characterized by eso
average FSI values of 0.55 and 0.21. s61
5. Our approach enabled us to identify frost-susceptible and ice-rich areas, subject to  ssz
severe seasonal surface deformations and/or long-term subsidence from degrading ses
permafrost. We demonstrated the potential of INSAR-derived maps in combination ses
with geotechnical information, to support infrastructure maintenance and planning in  ses
permafrost environments. 866

Author Contributions: Conceptualization, ].S. and T.LN.; methodology, J.S., TIN, R.C., T.S. and  se7
M.M,; validation, J.S. and T.ILN.; formal analysis, ].S., TLN. and M.M.; investigation, .S, M-\M and  ses
T.IN.; resources, R.C., T.S., TI.N; data curation, R.C,, T.S., J.S., TI.N. and A.B.; writing—original draft ses
preparation, J.S.; writing—review and editing, J.S., R.C., PH., M.M,, T.S,, A.B. and T.I.LN.; visualization, s7o
J.S. and T.LN.; supervision, R.C. and T.ILN; project administration, R.C.; funding acquisition, R.C. and 71
T.IN. All authors have read and agreed to the published version of the manuscript. 872

Funding: This research was conducted as part of the AALM4INFRAM (Arctic Active Layer Monitor- s7s
ing for Infrastructure Management) project funded by an ESA EO For Society grant (grant number szs
4000128395/19/1-DT), and the Nunataryuk project funded by the European Union Horizon 2020 e7s

research and innovation programme under grant agreement No. 773421. 876
Institutional Review Board Statement: Not applicable. 877
Informed Consent Statement: Not applicable. 878

Data Availability Statement: The Sentinel-1 (Level-1 Single Look Complex) data and Sentinel-2  s7o
images used in this study are openly available from the European Space Agency Copernicus initiative  sso
at the following link: https:/ /scihub.copernicus.eu/dhus/#/home, last accessed on 28 April 2023.  se1
The climate data are openly available from the Danish Meteorological Institute (DMI) at https: ss2
//www.dmi.dk/publikationer/, last accessed on 11 May 2023. 883
Active layer measurements from the Ilulissat CALM site and ground temperature records will be  sss
made available on the Global Terrestrial Network for Permafrost (GNT-P) at the time of publication. sss
Additional active layer and floristic data, as well as the rasters produced in the paper, will be made  sse


https://scihub.copernicus.eu/dhus/#/home
https://www.dmi.dk/publikationer/
https://www.dmi.dk/publikationer/
https://www.dmi.dk/publikationer/
https://doi.org/10.20944/preprints202305.1683.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2023

d0i:10.20944/preprints202305.1683.v1

31 of 38

openly available on Pangea at the time of publication. 887
The soil properties used for validation are published in Scheer and Ingeman-Nielsen [60]. sss

Acknowledgments: Results are based on modified Copernicus data from 2016 and 2017 from sss
Sentinel-2 and 2015 to 2019 from Sentinel-1. The authors thank Georg Pointner from b.geos GmbH a9
for supporting the pre-processing of Copernicus Sentinel-2 data. The DEMs were provided by the so1

Polar Geospatial Center under NSF-OPP awards 1043681, 1559691, and 1542736.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

892

893

894

895

ADDT Accumulated degree days of thawing

AHC Agglomerative hierarchical clustering

AIC Akaike Information Criterion

AL Active layer

ALT Active layer thickness

BB Braun-Blanquet

CALM Circumpolar active layer monitoring

D Total thaw season surface displacement

DEM Digital elevation model

FDSCS U.S. Army Corps of Engineers Frost Design Soil Classification System
FSI Frost susceptibility index

GLM Generalized linear model

GT Ground temperature

InSAR (or SAR) Interferometric synthetic aperture radar 7
MAAT Mean annual air temperature

NADDT Normalized accumulated degree days of thawing
NMDS Non-metric multidimentional scaling

PCA Principal component analysis

PC Principal component

PFT Plant functional type

R Long-term ground surface displacement rate

R? Coefficient of determination

RFC Random forest classifier

S Average seasonal ground surface displacement
SLC Single look complex

USCS Unified soil classification system

Appendix A. Identification of the vegetation classes (ground-truth)

Appendix A.1. Results of the agglomerative hierarchical clustering

898

899

Agglomerative Hierarchical Clustering (AHC) and Non-metric Multi-dimentional  soo
Scaling (NMDS) methods were used to classify vegetation surveying sites based on their oo
similarities in floristic composition. The results of the clustering and ordination procedures ooz
(Figure A1) and determination of the vegetation units (Figures A1 and A2) are presented sos
hereinafter. 904
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Figure A1l. On the left, dendogram showing the results of AHC and similarities between floristic survey locations
based on their plant functional type (PFT) percent cover. On the right, NMDS ordination plot showing the
pairwise dissimilarity between the PFT percent cover of survey locations. The survey locations are clustered
according to the results of the hierarchical clustering. In the legend, clusters from 1 to 10 are interpreted in terms
of vegetation units, the naming of the units corresponding to the final classification nomenclature, as shown in
Figure 6 and Table 1.
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Appendix A.2. Typical plant functional type distribution of the identified vegetation classes
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Figure A2. Main vegetation units (described in Table 1) identified from the AHC, and illustrated by their percent
cover in predominant PFT. The bar charts illustrate the typical distribution of the PFT percent cover representative
of each vegetation class. For the dwarf-shrub graminoid and graminoid tundra classes, the percent cover of
grasses, rushes and sedges are detailed.
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Appendix B. List of environmental predictors

The environmental predictors tested to extrapolate the active layer thickness (ALT)

measurements are summarized as follows (Table A1). The topographic indices were derived
from the elevation raster, principally using the SAGA-GIS tools [69], while the vegetation
indices were computed from the set of Sentinel-2 bands introduced in Table 2.

Table Al. List of environmental predictors investigated to spatially extrapolate ALT.

Variable classes Abbreviations Computation tools or formulas

Topography

Elevation (m) DEM FSISe]Vahon values from the digital elevation model (DEM)

Slope (degree) Slope }

Aspect (degree) Aspect Tool Slope, Aspect, Curvature, SAGA-GIS [78]

Slope height Slope_height

Mid-slope position MSP Tool Relative Heights and Slope Positions, SAGA-GIS [79,80]

Valley depth Valley_depth

Topographic Position Index TPI Tool Topographic Position Index (TPI), SAGA-GIS [81-83]

Topographic Wetness Index TWI Tool Topographic Wetness Index’ (TWI), SAGA-GIS [78,79]

Accumulated flow FLOW_ DS Tool Flow Accumulation (Top-Down), deterministic 8 method
[78,84,85]

Vegetation

Clay minerals CLAY_INDEX_SWIR  SWIR1/SWIR2

Normalized Difference Vegetation Index NDVI (NIR — RED)/(NIR + RED)
Green Normalized Difference Vegetation In- GNDVI (NIR — GREEN)/(NIR + GREEN)
dex
Enhanced Vegetation Index EVI 25 x (NIR— RED)/(NIR+6 x RED —7.5 x BLUE +1)
Normalized Difference Water Index NDWI (GREEN — NIR)/(GREEN + NIR)
Normalized Difference 819/1600 Index NDII (NIR — SWIR1)/(NIR + SWIR1)

. —0.2848 x BLUE — 0.2435 x GREEN — 0.5436 x RED +
Tasseled Cap — Vegetation Tev 07243 x NIR +0.0840 x SWIR1 — 01800 x SWIR2

0.1509 x BLUE + 0.1973 x GREEN + 0.3279 x RED +

Tasseled Cap —Wetness Tew 0.3406 x NIR — 07112 x SWIRT — 04572 x SWIR2
Principal components pel, 2,3 Principal components from the Principal Component Anal-

ysis (PCA) conducted on the ten Sentinel-2 bands
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