
Article

Thaw-Season InSAR Surface Displacements and Frost
Susceptibility Mapping to Support Community-Scale Planning
in Ilulissat, West-Greenland
Johanna Scheer1,∗ , Rafael Caduff2, Penelope How3,4 , Marco Marcer1 , Tazio Strozzi2 , Annett Bartsch5 and
Thomas Ingeman-Nielsen1

1 Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby,
Denmark; joasc@dtu.dk or johanna.scheer73@gmail.com; marcma@dtu.dk; thin@dtu.dk

2 Gamma Remote Sensing, Gümligen (BE), Switzerland; caduff@gamma-rs.ch; strozzi@gamma-rs.ch
3 Asiaq Greenland Survey, Nuuk, Greenland
4 Department of Glaciology and Climate, Geological Survey of Denmark and Greenland (GEUS), Copenhagen,

Denmark; pho@geus.dk
5 b.geos GmbH, Industriestrasse 1,2100, Korneuburg, Austria; annett.bartsch@bgeos.com
* Correspondence: joasc@dtu.dk

Abstract: In permafrost regions, ground surface deformations induced by freezing and thawing 1

threaten the integrity of the built environment. Mapping the frost susceptibility of the ground at a high 2

spatial resolution is of practical importance for the construction and planning sectors. We processed 3

Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data from thawing seasons 2015 to 2019, 4

acquired over the area of Ilulissat, West Greenland. We used a least-squares inversion scheme to 5

retrieve the average seasonal displacement (S) and long-term deformation rate (R). We secondly 6

investigated two different methods to extrapolate active layer thickness (ALT) measurements, based 7

on their statistical relationship with remotely-sensed surface characteristics. A Generalized Linear 8

Model (GLM) was first implemented, but the model was not able to fit the data and represent the 9

ALT spatial variability over the entire study domain. ALT were alternatively averaged per vegetation 10

class, using a land cover map derived by supervised classification of Sentinel-2 images. We finally 11

estimated the active layer ice content and used it as a proxy to map the frost susceptibility of the 12

ground at the community scale. Fine-grained sedimentary basins in Ilulissat were typically frost 13

susceptible and subject to average seasonal downward displacements of 3 to 8 cm. Areas following 14

a subsiding trend of up to 2.6 cm/yr were likely affected by permafrost degradation and melting 15

of ground ice below the permafrost table. Our approach enabled us to identify frost-susceptible 16

areas subject to severe seasonal deformations, and/or long-term subsidence induced by degrading 17

permafrost. Used in combination with traditional site investigations, InSAR maps provide valuable 18

information for risk management and community planning in the Arctic. 19

Keywords: InSAR; permafrost; active layer; Arctic infrastructure; ice content 20

1. Introduction 21

Building on frozen ground entails many geotechnical implications related to the prop- 22

erties and thermal regime of the ground [1]. Ground heave and subsidence induced by 23

seasonal freezing and thawing of the active layer (AL) generate stresses on infrastructures 24

that can lead to damage and failures. In permafrost terrain, climate change, in conjunction 25

with anthropogenic disturbances, has furthermore caused an increase in ground temper- 26

ature and deepening of the active layer [2,3]. As a result, loss of bearing capacity [4–7], 27

seasonal and long-term ground subsidence [e.g. 8–10] have been observed across the Arctic 28

due to melting of the ground ice and soil consolidation. These changes severely threaten the 29

integrity of the built environment and increasingly expose Arctic communities to hazards 30

[11,12]. It is therefore paramount to adapt construction designs and mitigation solutions 31
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to frost conditions and thermal regime changes. In this context, the monitoring of ground 32

surface deformations can serve as a powerful tool to manage permafrost-induced risks and 33

support community planning. 34

The occurrence and magnitude of surface deformations is primarily controlled by the 35

frost susceptibility of the ground, defined as the proneness of the ground (soil or rock) to form 36

segregated ice (causing frost heave) under the required conditions of moisture supply and temper- 37

ature [13]. Frost susceptibility, soil particle size and ground ice content thereby strongly 38

interrelate. Yet, assessing the spatial distribution of frost susceptible soils remains very 39

complex. Determining ground properties and quantifying ground ice content typically 40

require drilling and retrieving soil material for analyses. Such geotechnical investigations 41

are costly, labor intensive, and logistically challenging in Arctic environments. Furthermore, 42

sample extraction only provides punctual information in space and time, and hence is lim- 43

ited in portraying the complex spatial heterogeneity and temporal evolution of subsurface 44

properties under climate change [14]. 45

Remote sensing techniques provide continuous spatial information in areas where the 46

acquisition of in-situ data remains challenging. In this context, the potential of Interfero- 47

metric Synthetic Aperture Radar (InSAR) has been extensively explored in the past years to 48

monitor surface deformations in permafrost environments with a high spatial resolution 49

[15]. Prior research has primarily been dedicated to develop InSAR techniques for the 50

comprehension of freezing/thawing dynamics of the AL and identification of driving 51

factors explaining the magnitude of ground movements [9,16–23]. It is worth mentioning 52

the approach proposed by Liu et al. [16] and Schaefer et al. [24] who developed an active 53

layer thickness (ALT) retrieval algorithm, based on the relationship between the thaw 54

depth and InSAR derived surface displacement. By using Synthetic Aperture Radar (SAR) 55

scenes covering several thawing seasons, the authors were able to identify a seasonal and a 56

long-term component in the remotely-sensed displacement signal. Seasonal subsidence 57

was attributed to thaw settlement, caused by phase and volume changes occurring in the 58

AL upon thawing, while long-term subsidence was explained by permafrost degradation 59

and melting of the ice at the top of permafrost. Under the assumption that the seasonal 60

subsidence can be related to the volume of melted ice in the AL, they finally estimated 61

ALT from the InSAR measurements by modeling the vertical distribution of the pore water 62

within the AL. 63

Despite these advances, little work has been undertaken to map subsurface properties 64

- such as the frost susceptibility or ground ice content - that are of practical interest to 65

actors from the construction and planning sectors. In their paper, Zwieback and Meyer [14] 66

notably explained the difficulty of deriving permafrost ground ice from remote sensing 67

data and stressed the limitations of traditional mapping techniques, currently relying on 68

expert knowledge and surface indicators of excess ice [25]. In an attempt to overcome 69

these challenges, the authors assessed the suitability of late-season subsidence derived 70

from InSAR, to identify the presence of ice-rich materials at the top of permafrost [14]. 71

They hypothesized that ice melting under the permafrost table occurs when the thaw front 72

penetrates frozen material towards the end of a warm summer season. Consequently, the 73

thawing of ice-rich top-of-permafrost would induce a peculiar acceleration of the InSAR 74

late-season subsidence. Their methodology proved to be most successful in the case of 75

exceptionally warm and wet summers, but the separability of late-season subsidence signals 76

from ice-rich versus ice-poor areas, was reduced under cooler conditions. Those findings 77

agree with Bartsch et al. [20] which documented higher than average subsidence in an 78

exceptionally warm summer in regions known for presence of tabular ground ice at the 79

base of the active layer. Differences between landcover types (representing differences in 80

soil properties) were, however, found. 81

Overall, InSAR techniques have rarely been used in an engineering context to prevent 82

the occurrence of infrastructure failures [10,26] and to help governmental and planning 83

entities make informed decisions. Arctic communities could benefit from multi-disciplinary 84
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approaches combining remote sensing and geotechnical data, at a time when adaptation 85

strategies are urgently needed in response to climate change [27,28]. 86

Many Greenland settlements are facing the challenges previously mentioned. Due to 87

limited resources and logistical constraints, detailed site investigations are rarely performed 88

prior to construction projects. Available geotechnical information is hence scarce or not 89

easily accessible, and construction designs are not sufficiently adapted to local sub-surface 90

conditions [27]. As a result, stability issues frequently affect existing infrastructure, and 91

particularly roads crossing ice-rich sedimentary basins. Like in other regions of the Arctic, 92

stakeholders have expressed their interest in reliable decision support tools, to guide urban 93

planning on sensitive permafrost terrain and identify suitable mitigation solutions. 94

In order to address Greenlandic stakeholders’ needs, we revisited the methodology 95

of Liu et al. [16] and used InSAR data to map surface deformation trends in Ilulissat, West 96

Greenland. Previous tests for Illulisat indicated applicability for seasonal, as well as long- 97

term change monitoring applications [6,15]. We combine the InSAR results with local 98

information to prepare a frost susceptibility index (FSI) map of the region. 99

2. Study area 100

Our study area is the settlement of Ilulissat (Figure 1a), which is centrally located 101

on the west coast of Greenland (69.2198° N, 51.0986° W) and is the seat of the Avannaata 102

municipality. Ilulissat is the third largest town in Greenland and an attractive tourist 103

destination due to its proximity to the UNESCO World Heritage Site Ilulissat Icefjord. For 104

these reasons and due to the current construction of an international airport, an extensive 105

expansion strategy has been planned for the town [29]. Reliable and lasting facilities will 106

therefore be needed in the coming years to sustain the development of economic activities 107

and possible demographic growth. 108

Over the past 20 years, mean annual air temperatures (MAAT) have increased by 109

4-5°C, reaching -1.8°C in the particularly warm year of 2019 [30]. The area of Ilulissat 110

is underlain by continuous and relatively warm permafrost, characterized by average 111

ground temperatures around -3°C [31,32]. ALTs are highly variable spatially, ranging 112

from 30 cm to more than 2 m, and follow an increasing trend (Figure 1c). During the 113

Holocene deglaciation, fine-grained marine sediments were deposited as a result of marine 114

transgression. The sedimentary deposits gradually became subaerial and exposed to 115

precipitation and percolation due to isostatic uplift. Very ice-rich material (Figure 1b), 116

depleted of salts, is typically found at the permafrost table today. The ground ice content 117

decreases with depth as the pore water salinity increases [32], and for these reasons, 118

permafrost is highly sensitive to climatic changes and surface disturbances. 119
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Figure 1. Study area and local permafrost conditions. a) Map of Ilulissat (69.2198° N, 51.0986° W) town area.
The orthophoto and infrastructure spatial dataset used for mapping are available online from Asiaq Greenland
Survey [33]. b) Permafrost core retrieved in the main sedimentary basin, showing ice-rich fine-grained sediments.
c) Evolution in average active layer thicknesses (ALT), measured at the Ilulissat Circumpolar Active Layer
Monitoring (CALM) grid.

The landscape is characterized by the presence of these fine-grained marine deposits, 120

lying between gentle bedrock outcrops and interspersed with a system of lakes and small 121

drainage channels. Periglacial features are relatively homogeneous across the area and 122

primarily dominated by frost boils, which are indicative of the presence of frost susceptible 123

sediments [25]. Natural water drainage channels and micro-topographic depressions form 124

mire zones, becoming wet to inundated during the thawing season, and colonized by 125

graminoids, bryophytes, and low Salix shrubs. In contrast, frost boil patches are vegetated 126

by dwarf-shrub cryptogam tundra or remain mainly barren, being more exposed to winds. 127

In this scenery, bedrock outcrops often offer a stable substrate for construction. How- 128

ever, roads and other linear infrastructure extending through sedimentary basins tend 129

to be more heavily affected by seasonal frost/thaw surface deformations and permafrost 130

thaw-induced damages. 131

3. Materials and Methods 132

The methodology applied in this study included two main steps outlined in Figure 2. 133

The first step consisted of processing SAR scenes from 2015 to 2019 and modeling InSAR 134

thaw-season displacements to retrieve seasonal and long-term trends from the remotely- 135

sensed signal (left side of the flowchart in Figure 2). Secondly, we assumed the average 136

seasonal displacement measured by InSAR to be related to the ALT and amount of melted 137

ice in the AL. Statistical-empirical relationships between in-situ ALT measurements and 138

surface characteristics (land cover and topography) were investigated with the aim of 139

extrapolating ALT over the study area (methods A and B in Figure 2). The average seasonal 140
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displacement and up-scaled ALT were finally used as inputs in our model to estimate the 141

amount of ice present in the AL (right side of the flowchart in Figure 2), which serves as an 142

indicator of the frost susceptibility of the ground. 143

Figure 2. Workflow of the methodology used in this study. Raw data are represented by dashed boxes, inter-
mediary products by colored boxes and final products are highlighted in red. Step 1 consisted of the synthetic
aperture radar (SAR) scene processing, production of yearly thaw-season surface displacement (D) maps, and
retrieval of average seasonal displacements (S) and average displacement rates (R). In step 2, ground truth data,
satellite optical images, and a digital elevation model (DEM) were used for classification of the land cover, and for
computation of vegetation and topographic indices. These inputs were used to extrapolate ALT measurements
over the study area. Finally, a frost susceptibility index (FSI) was calculated from extrapolated ALT and S.

3.1. Surface displacement model 144

3.1.1. InSAR observations and generation of ground surface displacement maps 145

Ground surface displacement can be measured and mapped from two SAR images, 146

acquired at different times over the same area, by calculating interferograms of the phase dif- 147

ference between the radar signals. With the aim of mapping ground displacements over the 148

study area, available L1 Single Look Complex Data (SLC) scenes from the ESA/Copernicus 149

Sentinel-1 Constellation were acquired between May and September, spanning thawing 150

seasons from 2015 to 2019. Acquisitions were available following a 6 to 12-day revisit-cycle 151

schedule. Repeat pass interferometry was used on interferometric wide swath acquisition 152

mode (IW-Mode), which is optimized for interferometric processing. 153

GAMMA Software [34] was used to perform the interferometric processing chain 154

consisting of the co-registration of the images to a common master scene, generation of the 155

interferograms via multi-baseline InSAR [6] and geocoding to a final resolution set to 10x10 156

m. For the orbital correction, geocoding, and interferometric modeling, surface elevation 157

information from the ArcticDEM [35] was used. Short temporal intervals of 12 days in 2015 158

and 2016, and 6 days since 2017, were mostly picked for the creation of the interferograms 159
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in order to account for the significant spatial heterogeneity of AL surface deformations. In 160

the few cases of missing acquisitions, 24-day respectively 12-day temporal intervals were 161

considered. After removing the topographic, tropospheric and residual geometric phases 162

[6], the interferograms were unwrapped with a minimal cost-flow approach [36]. During 163

this process, a stable point located on bedrock was taken as reference. 164

Although ground thaw begins in early May in Ilulissat, parts of the area may still 165

be snow-covered. In order to avoid de-correlation and phase anomalies from the snow 166

cover, SAR scenes acquired from October to May were removed from the stacks. Gaps that 167

resulted from de-correlated scenes had to be filled by bridging interferometric pairs that 168

would form coherent interferograms again. This implies that the onset of thawing may 169

not be covered by the temporal InSAR stack and thus not included in the time series of 170

total cumulative displacement. As a result, the displacement is underestimated [20,23], and 171

corrections need to be applied. Offset correction based on Accumulative Degree Days of 172

Thawing (ADDT) has been suggested and demonstrated applicable [20]. 173

The temporal InSAR stacks of the unwrapped interferograms were finally used to cal- 174

culate time series of the total cumulative displacements on an annual basis (sign convention 175

positive up, meaning that subsidence is negatively valued). Raster maps of thaw-season 176

surface displacement amplitude were generated by taking the maximum cumulative dis- 177

placement (minimum negative value) observed in the time series at each pixel location. 178

Rasters of thaw-season surface displacements were finally converted from radar line-of- 179

sight (LOS) to vertical displacements, using a correction factor of 1.27, which accounts for 180

incidence and elevation angles. 181

3.1.2. Modeling approach 182

At the onset of the thaw season, the active layer is fully frozen. As the soil starts to 183

thaw (Figure 3), the AL progressively deepens (dH). Melting of the ice in the AL gives 184

rise to volume changes and associated subsidence (δ), until the AL has finally reached 185

its maximum thickness (referred to in our paper as the ALT or H). Assuming surface 186

deformations are caused exclusively by pore water phase changes in the soil column, and 187

that lateral exchanges of water do not occur, the total subsidence reached at the end of one 188

thaw-season (δmax) can be correlated to the amount of ice melted. The latter consists of ice 189

formed during the previous year’s winter freeze-up of the AL and possibly ice contained 190

in the transient layer at the top of permafrost, in the case of permafrost degradation. 191
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Figure 3. SAR scene processing and retrieval of a seasonal component, S, and a long-term component, R, from
the temporal InSAR stack. S is the average seasonal ground displacement, related to the frost susceptibility of the
ground in the active layer. R is average rate of increase in surface displacement amplitude, reflecting changes in
the permafrost table depth. The thaw-season subsidence δ can be related to the active layer thickness, H, and
active layer (AL) ice content at the end of the thawing season.

Liu et al. [16] formulated the following relationship based on the vertical distribution 192

of the pore water in the AL: 193

δ(t) =
∫ H(t)

0
ϕ · Sr ·

ρw − ρi
ρi

dH = ϕ · Sr ·
ρw − ρi

ρi
· H(t) , (1)

where δ(t) [m] is the subsidence at time t [s] (with t spanning from the onset of thawing to 194

the time of maximum ALT), H(t) [m] is the thaw depth at time t, dH [m] is the incremental 195

thickness of thawed soil column, ϕ [-] is the soil porosity, Sr [-] is the total soil water 196

saturation, ρw [g/cm3] is the density of pure water and ρi [g/cm3] is the density of ice. 197

The porosity and saturation could be variable with depth but are considered constant 198

in our analysis, i.e. the ice content is considered homogeneous throughout the AL. 199

As further evidenced by Liu et al. [16], when measuring surface deformations by 200

InSAR over several thaw-seasons, the total measured displacement can be modeled as the 201

combination of an average seasonal component, S, and a long-term displacement rate, R 202

(Figure 3). The seasonal component S is assumed to be representative of surface heave 203

and subsidence induced by freezing and thawing of the AL and the associated ice/water 204

phase and volume changes. The long-term rate is related to changes in the depth of 205

the permafrost table - shallowing or deepening in the case of permafrost aggradation or 206

degradation, respectively. The magnitude of the seasonal component S is consequently 207

strongly correlated with the ice content in the frozen AL, and therefore also to the frost 208

susceptibility of the soil material. On the other hand, the long-term change component R is 209

related to the ice content at the top of the permafrost (Figure 3). 210

3.1.3. Adjustment for partial temporal coverage 211

As previously mentioned, InSAR-measured thaw-season surface displacements may 212

not span the entire thawing seasons (Figure 4), and, therefore, may need adjustment for 213

any additional settlements occurring outside the time span of the temporal InSAR stacks 214

(cf. Section 3.1.1). 215

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2023                   doi:10.20944/preprints202305.1683.v1

https://doi.org/10.20944/preprints202305.1683.v1


8 of 38

Figure 4. Schematic representation of total thaw-season surface displacement versus partial temporal
coverage of the InSAR stack. The thaw-season displacement is initiated at the onset of thawing t1 and
reaches its maximum at time t2. The first scene in the InSAR dataset is acquired at time ta, after the
snow melt, and the last scene is acquired at time tb, corresponding to the time of maximum surface
deformation t2.

The Stefan equation [37] is an analytical solution originally developed to describe sea 216

ice formation, later applied to the freezing of soils by Berggren [38], and to the estimation 217

of thaw depths by e.g. Hinkel and Nicholas [39]. Widely used as a first approximation, the 218

thaw depth at time t, H(t), may be estimated using the Stefan equation as follows: 219

H(t) = α ·
√

ADDT(t) , (2)

where α is a quasi-constant, depending on the thermal properties of the thawed soil, and 220

ADDT is the Accumulated Degree Days of Thawing [°C · day]. The ADDT is a time- 221

temperature integral calculated in practice by summing average daily temperatures [40]: 222

ADDT(t) =
t

∑
i=t1

Ti · 1 day , t1 ≤ t ≤ t2 , (3)

where t is an integer representing the day of the year, t1 and t2 represent the start and end 223

of the thawing season (Figure 4), and Ti [°C] is the average temperature on day i. 224

Based on Equation 1 and assuming the relationship in Equation 2 is valid, the surface 225

deformation at any time t is proportional to the square root of ADDT(t). 226

δ(t) ∼
√

ADDT(t) . (4)

In our case, ADDT time series were computed from daily averages of air temperature 227

records [41] and normalized such that the maximum value is one at the end of the thawing 228

season: 229
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δ(t)
δ(t2)

=
H(t)
H(t2)

=

√
ADDT(t)
ADDT(t2)

=
√

NADDT(t) , (5)

resulting in hereinafter, 230

δ(t) = δ(t2) ·
√

NADDT(t) , t1 ≤ t ≤ t2 , (6)

where δ(t) [m] and H(t) [m] are respectively the surface deformation and thaw depth at 231

time t, δs(t2) [m] and H(t2) [m] are respectively the maximum surface deformation and 232

maximum thaw depth reached at time t2 (the end of the thawing season). NADDT(t) is 233

the Normalized Accumulated Degree Days of Thawing [-]. 234

Using Equation 6, we describe the partial thaw-season surface displacement obtained 235

from the temporal InSAR stack by: 236

∆δs = δs(tb)− δs(ta) = δ(t2) ·
(√

NADDT(tb)−
√

NADDT(ta)

)
, (7)

where ∆δs [m] is the partial thaw-season surface displacement observed between time 237

ta and tb (time of acquisition of the first and last SAR scene used in the temporal stack, 238

represented as integer day-of-year). Subscript s represents values obtained from the InSAR 239

analysis. δ(t2) [m] represents the actual maximum thaw-season displacement, which is 240

reached at the end of the thawing season (time t2), and NADDT(ta) [-] and NADDT(tb) 241

[-] are normalized ADDT at time ta and tb. 242

The corrected total thaw-season displacement, D [m], is finally derived as: 243

D = δ(t2) =
∆δs√

NADDT(tb)−
√

NADDT(ta)
. (8)

3.1.4. Inversion methodology 244

To model the thaw season surface displacement, we use the following relationship: 245

Di = (R · dYi + S) , (9)

where Di [m] is the total thaw season surface displacement in year i, S [m] is the average 246

seasonal displacement over the period of study (the seasonal component), and R is the 247

average rate of increase in surface displacement amplitude over the period of study. dYi is 248

the time span (in decimal years) from year i to the midpoint of the InSAR dataset, and is 249

calculated as: 250

dYi = yi −
y0 + yN

2
, (10)

where y0 and yN are respectively the first and last year in the InSAR dataset and yi repre- 251

sents the integer value of year i. 252

For multiple years of observations, this constitutes a set of linear equations expressed 253

as follows: 254

D1,1
...

DN,1
...

D1,P
...

DN,P


=



dY1 1 · · · 0 0
...

...
...

...
dYN 1 · · · 0 0

...
...

. . .
...

...
0 0 · · · dY1 1
...

...
...

...
0 0 · · · dYN 1


·


R1
S1
...

RP
SP

 , (11)
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where N is the number of seasons/years in the InSAR temporal stack, and P is the number 255

of pixels in the dataset. Finally, in matrix notation, the system of equations may be reduced 256

to: 257

D = M · RS , (12)

where D is the vector of yearly observed thaw-season displacement for every pixel (cor- 258

rected for partial coverage using Equation 8), M is the model matrix of time spans and 259

ones, and RS is the vector of R and S parameters per pixel. 260

We finally solved the Equation 9 for R and S using a constrained linear least squares 261

inversion. The seasonal component S was constrained to negative values only, using a 262

modified version of the non-negativity-constrained linear least squares algorithm by Bro 263

and De Jong [42]. The long-term rate R on the other hand, was allowed to take either 264

negative or positive values depending on the permafrost evolution trends of the area. 265

The available InSAR dataset was limited to five years, and relatively little data was 266

available to constrain the estimates of R and S for each pixel. To reduce noise, we chose 267

to include information from neighboring pixels in the inversion of R and S for each pixel, 268

effectively representing a spatial smoothing of the parameter estimates. This was done by 269

augmenting the system of linear equations with a set of constraining equations as follows: 270[
D
O

]
=

[
M
K

]
· RS , (13)

where K is a matrix of constraints, with each row representing the constraint of the R or S 271

parameter of one pixel to the R or S parameter of another pixel. O is a vertical vector of 272

zeros with the same number of elements as there are rows in K. 273

In practice, a 7x7 pixel moving window was used, and each pixel was constrained to 274

the 48 surrounding pixels. After inversion, only the parameters derived for the center pixel 275

were stored, and the window was moved to the center on the next pixel. A land cover mask 276

(cf. Section 3.2.2) was used to exclude non-vegetated pixels from the moving window, in 277

order to limit the inversion to sedimentary deposits. 278

3.1.5. Ice content estimation and frost susceptibility index 279

Compared to geotechnical investigations, ALT measurements are cost and time effec- 280

tive, especially when conducted in the close surroundings of Arctic settlements. For this 281

reason, by taking the reverse approach to that of Liu et al. [16] and Schaefer et al. [24], we 282

estimated the AL ice content at the end of one thawing season, by using ALT measurements 283

and the average seasonal displacement (S). Our model therefore assumes homogeneous soil 284

properties and ice content within the AL and at the top of permafrost. Based on Equation 1, 285

we estimated the average AL ice content at each pixel location over the period of study as 286

follows: 287

ϕ · Sr =
ρi

ρw − ρi
· | S |

H
, (14)

where ϕ [-] is the soil porosity, Sr [-] is the total soil water saturation, ρi [g/cm3] is the 288

density of ice, ρw [g/cm3] is the density of liquid water. On a pixel by pixel basis, S [m] is 289

the average seasonal displacement measured by InSAR over the period of study 2015-2019, 290

and H [m] is the active layer thickness. Based on prior site investigations conducted in 291

the area, fully saturated soil conditions can generally be assumed (Sr ≈ 1) at the onset of 292

winter freezing [32], and we assume this to be true throughout the winter until the onset of 293

thawing. The term ϕ · Sr thus reflect the average AL ice content estimated from the surface 294

deformation caused by the thawing of the AL, assuming no lateral water exchange. 295

Finally, since the frost susceptibility of a soil is related to its proneness to build up 296

segregated ice, we used the AL ice content as a proxy to map the frost susceptibility of 297
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the ground at the community scale. The derived frost susceptibility index, FSI, therefore 298

corresponds to the value of the product: 299

FSI = ϕ · Sr . (15)

3.2. Data collection and processing 300

Several studies [e.g. 43–48] demonstrated the influence of topography and environ- 301

mental factors (hydrology, vegetation cover, landforms, snow cover) on ALT. Vegetation 302

first strongly influences the surface energy balance, snow cover, soil moisture, and organic 303

content [48]. Vegetation composition and canopy height may consequently provide valu- 304

able information on permafrost properties and ALT [43]. In addition, biophysical and 305

physiological properties of plants confer singular spectral reflectance signatures to distinct 306

vegetation units [49]. Topography and microtopography secondly influence vegetation 307

distribution and snow accumulation. As demonstrated in previous studies [44,46,50,51], 308

terrain attributes can therefore be used as an alternative or complement to land cover maps 309

to extrapolate ALT. 310

Both optical and radar satellite data have been tested for statistical and empirical 311

relationships [15]. They were notably used to model ALT based on correlations with surface 312

characteristics [e.g. 44–46,48,52]. We, therefore, investigated the spatial distribution of 313

ALT and its relationship with vegetation and topographic variables derived from remote 314

sensing. Based on established correlations, ALT measurements conducted over the study 315

domain were extrapolated and finally used as inputs in Equation 14 to estimate the AL ice 316

content and derive FSI values. We finally validated the InSAR displacement and FSI maps 317

with geotechnical data collected during the study period. 318

3.2.1. Ground truth data 319

Active layer thicknesses 320

Active layer probing was undertaken every year from 2015 to 2021 (except 2017) at 321

Ilulissat’s Circumpolar Active Layer Monitoring (CALM) site. The CALM site is a 50x50 m 322

grid of 111 points located in a homogeneous zone of frost boils dominated by cryptogams 323

and dwarf shrubs. ALT was additionally measured in 2020 and 2021 at 36 locations spread 324

across the study area. In order to better understand the influence of surface characteristics 325

on the ALT distribution, six transects crossing different landforms and vegetation units 326

were probed in 2020 and 2021. AL probing was always conducted at the end of thawing 327

seasons (when the AL had reached its maximum) with a 110 cm graduated metal rod (ALT 328

probe). The measurement was generally repeated from two to five times at each location 329

and values were averaged. The accuracy of the measurements is on the order of 1 cm. 330

In order to preserve the greatest number of observations, ALT locations that had been 331

exclusively measured in 2021 were recalculated for 2020. To this end, a linear regression 332

was fitted on measurements undertaken both in 2020 and 2021 (Figure 5). In the rest of the 333

paper, we refer to this dataset as ALT20/21. 334

Finally, points located at the transition between distinct vegetation units were dis- 335

carded from the analysis to reduce ambiguity. A resulting dataset of 335 points was used in 336

the further analysis. 337
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Figure 5. Bivariate linear regression plot of ALT measured in 2020 and 2021 at the same locations.

Floristic surveys and surface characteristics 338

As a way to map local vegetation, floristic surveys were conducted at distributed 339

locations and concurrently along ALT transects. Due to time constraints, the floristic com- 340

position (species identification) and Braun-Blanquet (BB) indices of abundance-dominance 341

[53,54] were assessed only once per surveyed homogeneous vegetation unit. At each 342

location, the vegetation was photographed and sampled within a 20 by 20 cm quadrat 343

(September 2020), or 50 by 50 cm quadrat (September 2021). BB indices were converted 344

to percent cover for each of the main plant functional types (PFT) [55], categorized as: 345

non-vegetated (NV), shrubs (S), graminoids (G) including the subcategories grasses (GG), 346

tussock-sedges (GTS), non-tussock sedges (GS) and rushes (GR), forbs (F), bryophytes (B), 347

lichens (L) and pteridophytes (P) (Figure A2, Appendix A.2). Periglacial and geomorpho- 348

logical features were described at each survey location, and surface drainage conditions 349

were qualitatively assessed with a scale ranging from Very dry to Partly inundated. 350

Agglomerative Hierarchical Clustering (AHC) using Ward’s method [56,57] was ap- 351

plied to regroup survey locations based on their similarities in PFT percent cover. Clustered 352

data were depicted with a dendogram and plotted in a 2D space using the Non-metric 353

Multidimentional Scaling (NMDS) ordination method [58,59] (Figure A1, Appendix A.1). 354

Ten main geomorphological and vegetation units, illustrated in Figure 6 and described 355

in Table 1, were identified based on the clustering results and knowledge of the area. 356
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Figure 6. Main vegetation units (described in Table 1) identified from the Agglomerative Hierarchical Clustering
(AHC) and regrouped by dominant plant functional type (PFT).

Geotechnical data 357

Site investigations were conducted in Ilulissat at 24 locations from 2016 to 2021. 358

Drilling operations, retrieval of soil material, and installation of thermistor strings were 359

notably undertaken in August 2016 and 2018, and in April 2021. 360

Ground temperatures (GT) were recorded at seven borehole locations established in 361

2016. As part of the SAR scene processing, GT time series were used to determine the 362

onsets and ends of the thawing seasons. In-situ observations showed that the AL typically 363

starts to thaw in May and that the maximum thaw depth (ALT) is reached before or at 364
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Table 1. Vegetation class descriptions.

Vegetation class abbreviation Description

SLST Salix-dominated low shrub tundra
EBDST Empetrum and Betula-dominated dwarf shrub tundra
BSBFB Betula shrub-dominated, partially bare frost boils
BSVFB Betula shrub-dominated vegetated frost boils
BSFB Betula shrub-dominated frost boils
SGCBFB Shrub, graminoid and cryptogam-dominated, partially bare

frost boils
SGCVFB Shrub, graminoid and cryptogam-dominated vegetated frost

boils
SGCFB Shrub, graminoid and cryptogam-dominated frost boils
LBFB Lichen-dominated, partially bare frost boils
LVFB Lichen-dominated vegetated frost boils
TSGT Tussock sedge-dominated graminoid tundra
BRSGT Bryophyte, rush and sedge-dominated graminoid tundra
GGT Grass-dominated graminoid tundra
SGBT Shrub, graminoid and bryophyte-dominated tundra

the onset of freezing (mid-August). Based on this information, the InSAR time series of 365

total cumulative displacements could be adjusted to the actual evolution of the thaw front. 366

The timing of maximum AL development and maximum thaw-season displacement were 367

thereby well aligned. GT records were secondarily used to assess the performance of the 368

surface displacement model (based on the Stefan equation), in reproducing the progression 369

of the thaw front depth. 370

Soil classification experiments and laboratory analyses were conducted on AL sam- 371

ples and permafrost cores in order to validate S, R, and FSI maps [60]. As described in 372

Chamberlain [13], the most common criteria used to evaluate the frost susceptibility of 373

soils rest upon the characterization of particle size. The frost susceptibility classification 374

system developed by Berg and Johnson [61] consists of i) the determination of the soil type 375

according to the Unified Soil Classification System (USCS) [62], ii) percentage of particles 376

finer than 0.02 mm, iii) and laboratory frost heave testing. The ice content, porosity, grain 377

size distribution, and Atterbergs plasticity limits were therefore determined on samples 378

collected within the first three meters below the ground surface (AL and top of permafrost). 379

Using the grain size distributions and Atterberg plasticity limits, the samples were then 380

classified based on the USCS [62]. Frost heave experiments were not conducted as part 381

of this study. The frost groups of the samples were finally derived from determined soil 382

properties based on the frost susceptibility classification system mentioned hereinabove 383

[61]. 384

3.2.2. Geospatial dataset and environmental predictors 385

Vegetation 386

In our study, spectral information was derived from pre-processed multi-temporal 387

Sentinel-2 bands, acquired during the summers of 2016 and 2017 and resampled to 10 388

m spatial resolution (Table 2). The spatial resolution differs between the bands. Super- 389

resolution processing (DSen2, [63]) has been applied to obtain 10 m for all bands. Further 390

pre-processing steps encompassed sen2cor atmospheric correction, cloud, shadows, snow 391

masking as well as fusion of different image acquisitions [as detailed in 64]. In order to 392

investigate the correlation between spectral data and in-situ ALT measurements, several 393

vegetation indices (i.e. Normalized Difference Vegetation Index, Enhanced Vegetation 394

Index, etc.), as summarized in Table A1, Appendix B, were firstly derived from the set of 395

ten optical bands. 396
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Table 2. Sentinel-2 optical image specifications.

Optical images Available bands Acquisition dates Spatial resolution

Sentinel-2 B02 - BLUE 13-08-2016 10 m
S2A_MSIL2A B03 - GREEN 08-08-2017 10m

B04 - RED 15-08-2017 10m
B05 - RED1 20m
B06 - RED2 20m
B07 - RED3 20m
B08 - NIR 10m
B08A - NIR2 20m
B11 - SWIR1 20m
B12 - SWIR2 20m

A Principal Component Analysis (PCA) [65] was performed to remove possibly redun- 397

dant spectral information in the Sentinel-2 imagery. Concurrently, a K-means unsupervised 398

classification [66] was applied to the bands to pre-determine the best number of spectral 399

classes to use for the classification process. 400

Training and validation samples were secondly prepared by extracting representative 401

pixels of non-vegetated and vegetated units within each image band. On average, 80 to 402

100 pixels were picked for each class of the training dataset, while 40 to 60 were picked for 403

each class of the validation dataset. The previously defined vegetation classes were used 404

to inform the selection process. Spectral distances and signatures of the training samples 405

were computed to ensure sufficient spectral separability between the classes. Classes with 406

low separability were merged, resulting in seven final classes (described in Tables 3 and 1). 407

Table 3. In the left column, vegetation classes originally identified from ground truth data (described
in Table 1). To the right, ground-truth classes regrouped based on their spectral separability and
forming the final classes used for the classification of the remote-sensing (r-s) data. Cross symbols
indicate classes that could not be spectrally distinguished and that were discarded from the classifica-
tion procedure.

Vegetation classes Vegetation classes
(ground-truth) (r-s land cover classification)

GGT GGT

TSGT TSGT

BRSGT BRSGT

SGBT X

SLST X

EBDST EBDST

BLDST BLDST

BSBFB BSFBBSVFB

SGCBFB

SGCFBSGCVFB
LBFB
LVFB

Different supervised classifiers were finally trained on the training samples and respec- 408

tively applied to: i) the three principal components (PC) derived from the PCA, ii) the set of 409

ten Sentinel-2 image bands and, iii) to the Sentinel-2 bands combined with the PC (13 bands 410

in total). The classification results were individually assessed with the validation dataset, 411

by computing the overall accuracy, Kappa coefficient and confusion matrix. The best scores 412
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were achieved by using a Random Forest Classifier (RFC) [10,67] on the ten Sentinel-2 413

bands. Misclassified pixels were reduced by using ancillary data such as elevation and 414

slope rasters presented in the following paragraph. Finally, all non-vegetated classes were 415

merged into one class, representing areas that are not sedimentary deposits in the study 416

area. 417

Topography 418

A subset of the ArcticDEM [35], characterized by a spatial resolution of 2 m, was used 419

in this study to derive terrain parameters. Terrain and hydrological variables derived from 420

elevation data were computed in QGIS [68] with SAGA-GIS tools [69] and are summarized 421

in Table A1, Appendix B. 422

3.2.3. ALT extrapolation techniques 423

Two different methods were tested to extrapolate ALT measurements over the study 424

domain: A) a statistical model based on relevant predictor variables from among the 425

remotely-sensed vegetation and topographic indices; and B) ALT measurements averaged 426

per vegetation unit and redistributed over the area using the land cover classification raster. 427

The most successful approach was selected to predict and map ALT. 428

Method A: Statistical modeling 429

Hypothesizing that the environmental predictors computed from remote sensing data 430

control the ALT across the study area, we used the ALT20/21 as the dependent variable, and 431

retrieved the corresponding set of predictor values for each ALT measurement location by 432

sampling the predictor rasters. Correlations between the dependent and predictor variables 433

were then investigated with bivariate regression plots. A reduced subset of predictors 434

appearing correlated with ALT, was selected and further investigated. 435

Due to the limited number of observations (N=335), we used a simple Generalized 436

Linear Model (GLM) to predict ALT. Compared to more complex statistical models that may 437

result in overfitting, the GLM is advantageous due to its transparency and interpretability 438

[70,71]. The model, consisting of a multiple linear regression and using topographic and 439

vegetation predictors as inputs, is expressed as follows (Equation 16), and is fitted by 440

ordinary least squares. 441

y = β0 + β1X1 + β2X2 + ... + βnXn + ϵ , (16)

where y is the predicted ALT [m] (dependent variable) , Xi (i varying from 1 to n) are the 442

environmental predictors (independent variables), βi (i varying from 1 to n) are the regres- 443

sion coefficients associated to the independent variables, n is the number of independent 444

variables, and ϵ is the model’s error term. 445

In order to select the best environmental predictors from the subset, a stratified K-fold 446

cross-validation (ten folds) was implemented to assess the model’s predictive performance 447

on all possible combinations of predictors. The Akaike Information Criterion (AIC) and co- 448

efficient of determination (R2) were used as performance metrics. Stratified cross-validation 449

techniques enable to randomly split the model’s inputs into training and validation sets 450

while preserving the number of samples in a given class. Here, the land cover classifica- 451

tion (cf. Section 3.2.2) was used to ensure an equitable distribution of observations per 452

homogeneous terrain unit. 453

In our study, multiple environmental predictors were derived from the same data 454

sources (Sentinel-2 images and DEM); therefore, correlations may exist between them. Our 455

final selection was based, on one hand, on the results of the cross-validation (performance 456

metrics), and on the other hand, on bivariate regression plots of the predictors, ensuring a 457

low degree of correlation between the latter. The Green Normalized Difference Vegetation 458

Index (GNDVI), slope, and flow accumulation (computation detailed in Table A1, Appendix 459

B) were selected as predictors in the final model. 460
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Stratified K-fold cross-validation was lastly repeated (with 5 and 10 folds) to evaluate 461

the final model performance. The average performance of the model was calculated on 462

predictions from all cross-validation test sets. 463

Method B: Averaging per vegetation class 464

All ALT measurements from ALT20/21 dataset were averaged per vegetation class. In 465

order to assess the significance of the differences between the ALT averages, we performed 466

pairwise statistical t-tests. As the distribution of our observations was close to normal, 467

but the size and variance of the class samples were strongly variable, Welch’s t-tests were 468

specifically conducted [72]. Finally, averaged ALT values were spatially distributed over the 469

study domain using the land cover classification map. Due to the surface and subsurface 470

conditions, ALT measurements were relatively scarce or unreliable within some of the 471

vegetation units such as EBDST and TSGT (Table 1). In this case, borehole logs and ground 472

temperature records (cf. Section 3.2.1) were used as complementary information to estimate 473

an ALT value for these vegetation units. 474

4. Results 475

4.1. InSAR-derived surface displacement maps 476

4.1.1. Average seasonal displacement and long-term displacement rate 477

Maps 7a and 7b show the derived average seasonal thaw displacement (S) and long- 478

term displacement rate (R) for the study period (2015-2019). Negative values correspond to 479

downward displacement, or in other words, subsidence of the ground surface. Conversely, 480

positive values indicate surface heave. S has a minimum value of -7.5 cm/yr and is -2.7 ± 481

2.0 cm/yr (µ± 1σ) on average over the sedimentary areas. R is -0.6 ± 0.5 cm/yr, and shows 482

a general subsidence of the sedimentary basins. The maximum subsidence rate observed in 483

the area is -2.6 cm/yr. Our results indicate that permafrost is globally degrading over the 484

study domain, and the ground surface is subsiding due to ice melting near the permafrost 485

table. These observations are supported by AL probing at the CALM site (Figure 1c) which 486

show an increase of around 5 cm/year of the AL over the period of study. However, the 487

range of R values obtained (-1 cm/year in average) at the same location seems to indicate 488

that the long-term subsidence rate is likely underestimated by our model. 489

The coefficient of determination (R2) was calculated for each pixel (Figure 7c), based 490

on the same pixels included in the moving window inversion. The R2 was 0.15 ± 0.32 491

(µ ± 1σ) on average over sedimentary areas (non-vegetated areas excluded). 38.5 and 12.5 492

% of the R2 pixels were larger than 0.25 and 0.5 respectively. The lowest values often 493

occurred in the close vicinity of bedrock, wetlands, surface water, and densely vegetated 494

areas where the InSAR signal may be mixed. Removing pixels located within 50 m from 495

bedrock increased the average R2 value to 0.25 ± 0.28. 496

According to the S and R maps, sedimentary deposits in small depressions between 497

bedrock outcrops typically exhibit lower seasonal displacement and long-term subsidence 498

than those observed in larger sedimentary basins (Figure 7a and b). The former areas are 499

usually characterized by relatively dry surface conditions and by the presence of coarse 500

sediments such as sand and stones. In comparison, clays and silts are the most frost- 501

susceptible sediments and expectedly display high S and R values. Table 4 summarizes S 502

and R values observed at three borehole locations characterized by different soil types. 503

4.1.2. Assessment of surface displacement model performance 504

Our approach to correcting the InSAR derived subsidence amplitudes is based on a 505

model of AL development as function of air temperature. In order to assess the ability 506

of our model to reproduce the evolution of the thaw front, we used ground temperature 507

records from seven local boreholes (cf. Section 3.2.1) to calculate time series of the depth of 508

the zero-degree isotherm in 2018, and compared these to the AL evolution modeled with 509

the Stefan equation (Equation 2). Each time series is normalized to the maximum thaw 510

depth to reduce the dependency on local geological and microclimatic conditions, and 511
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Table 4. Comparison of S and R values at borehole locations characterized by different soil types.

Borehole name ILU2021-03 ILU16002T ILU16010T

Dominant AL soil type SILT CLAY SAND
USCS† soil type ML or MH CL SP or SW
S (m) -0.041 -0.031 -0.016
R (m/yr) -0.010 -0.008 -0.003
Ice content below the AL* (%) 80-90 30-40 10-15

† Unified Soil Classification System [62].
* The ice content was visually assessed on permafrost cores retrieved below the permafrost table, based on
the Standard Practice For Description Of Frozen Soils [73].

to mimic the approach taken in the InSAR correction. These time series are illustrated in 512

Figure 8, and show that the onset of thaw is modelled accurately, while the maximum thaw 513

occurs in late August, somewhat earlier than predicted by the model. During most of the 514

thawing season, the model slightly underestimates the normalized thaw depth (by up to 515

18 % in mid July). This means that the correction factor applied to the InSAR amplitudes 516

is typically underestimated, resulting in conservative estimates of the total thaw season 517

deformations. 518

Figure 8. Comparison of the thaw front depth evolution derived from ground temperatures (GT)
recorded at seven borehole locations (BH stands for borehole) in summer 2018, versus modelled with
the Stefan equation from air temperatures.

4.2. ALT spatial distribution and land cover 519

4.2.1. Spatial variability of measured ALT 520

The ALT database compiled as part of this study demonstrated the high spatial and 521

temporal variability of ALT over the study domain, e.g. ALT ranged from 0.30 m to more 522

than 2 m in 2020. 523

At the CALM site, where the vegetation and landforms are homogeneous, ALT mea- 524

surements conducted from 2015 to 2021 were characterized by standard deviations of 525

10 to 13 cm and coefficients of variation of 15 to 20 %. Yet, differences in thaw depths 526

could be identified between distinct vegetation and landform units. Figure 9 illustrates the 527

distribution of ALT along one of the transects probed in 2021 across different terrain units. 528
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Figure 9. Spatial variations in ALT across different vegetation and landform units (vegetation classes described
in Table 1). The orthophoto used for mapping is available online from Asiaq Greenland Survey [33]

Small mounds and terrain patches dominated by higher and denser Betula shrubs 529

(BLDST) were characterized by shallower ALT, in the order of 0.40 - 0.50 m. Vegetated and 530

partially bare frost boils, colonized by cryptogams (LBFB and LVFB), mixed plant functional 531

types (SGCBFB and SGCVFB), or shrubs (BSBFB and BSVFB), had average ALT between 532

0.60 and 0.80 m. Finally, the deepest ALT (often more than 1 m) were measured across 533

ponds and natural water drainage channels, which typically classify as tussock sedges and 534

bryophytes (BRSGT and TSGT). Manual probing and ground temperatures recorded in 535

vegetation units EBDST and TSGT showed that ALT values varied in the approximate range 536

from 1.0 to 2.5 m. These areas are often drier, partially bare or covered by dwarf shrubs 537

such as Betula nana and Empetrum hermaphroditum (EBDST). These results are generally 538

consistent with ALT measurements conducted in other regions of the Arctic. Rönkkö and 539

Seppälä [74] and Cao et al. [75] both found that a dense and high vegetation cover, notably 540

dominated by low Betula shrubs, may reduce heat losses due to more significant snow 541

accumulation. Rönkkö and Seppälä [74] also reported thicker ALT in the case of drier and 542

coarser soil conditions. 543

Overall, our observations supported the existence of interrelations between the thaw 544

depths, vegetation composition, soil moisture and landforms across the study area. 545

4.2.2. Supervised land cover classification results 546

The influence of the vegetation zonation on the spatial variability of ALT was evident 547

in Ilulissat. The map in Figure 13a represents the land cover classification produced by su- 548
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pervised learning from Sentinel-2 optical images. The overall accuracy of the classification 549

was 82.51 %, and the Kappa coefficient was 81.40 %. At the exception of wetland areas, 550

vegetation units were successfully separated from non-vegetated areas. As illustrated by 551

Figure 10, the spectral signatures of some of the classes were similar. Within non-vegetated 552

classes, many bedrock pixels were erroneously classified as wetlands. Built-up surfaces, 553

gravel, barren areas, and bedrock pixels were also often mistaken. Some of these pixels 554

could nonetheless be reclassified with the help of ancillary data such as topographic indices. 555

Figure 10. Spectral signatures of the training pixels extracted for each non-vegetated and vegetated
units (vegetation classes described in Tables 1 and 3).

Regrouping vegetation classes according to Table 3 contributed to increasing their 556

spectral distances and separability. However, as expected, vegetation units with resembling 557

species composition and PFT percent cover remained difficult to dissociate. Pixel confusion 558

was considerable for areas covered by a relatively high percentage of shrubs (EBDST, 559

BLDST, BSFB and SGCFB). Similarly, pixels dominated by graminoids and bryophytes were 560

sometimes erroneously divided between the predefined graminoid classes (GGT, BRSGT 561

and TSGT). 562

4.3. ALT extrapolation 563

4.3.1. ALT extrapolation based on Method A: statistical modeling 564

Following the approach detailed in Section 3.2.3, we investigated the relationships 565

between the entire ALT20/21 dataset and the remotely-sensed environmental variables. As 566

a result, the correlations between the ALT and the predictors were found to be weak. The 567

GNDVI, NDVI, OSAVI, slope, mid-slope position, aspect and flow accumulation (Table A1, 568

Appendix B) were slightly correlated to the ALT and were thereby considered the most 569

relevant vegetation and topographic predictors. 570

A linear regression was first fitted onto the ALT20/21 and GNDVI data only (Figure 571

11), for which the highest R2 was obtained (0.10). 572
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Figure 11. Relationship between observed ALT20/21 and the Green Normalized Difference Vegetation
Index (GNDVI), sampled at the ALT measurement sites.

Secondly using the GNDVI, slope, and flow accumulation as inputs in our GLM, 573

was still not successful in improving the model performance. Fluctuating and poor cross- 574

validation accuracies (R2 and AIC) were obtained when testing the model on randomly 575

generated training and validation datasets. Even though the respective relationship be- 576

tween the ALT20/21 and the predictors was statistically significant (p<0.05), the model was 577

not able to fit the data, and thereby was not representative of the ALT spatial distribution 578

over the entire study domain. Moreover, the GNDVI, which seemed to be the strongest pre- 579

dictor, was inversely correlated to the ALT20/21 (Figure 11). This result was in contradiction 580

to ground-truth ALT measurements, notably observed over water channels (Figure 9). 581

The statistical extrapolation of ALT, using a combination of vegetation and topographic 582

indices derived from remote sensing, was not successful in our study area. This method 583

was therefore excluded from predicting ALT and mapping the frost susceptibility. 584

4.3.2. ALT extrapolation based on Method B: vegetation classes 585

Figure 12 presents the average ALT values that were allocated to each vegetation class 586

of the land cover classification raster. The extrapolation procedure resulted in the largest 587

errors for: i) vegetation classes characterized by an extensive range of ALT values and, 588

ii) misclassified pixels inherited from the supervised land cover classification (cf. Section 589

4.2.2). The map in Figure 13b presents the ALT20/21 extrapolated over the study domain 590

and used to compute the FSI. 591
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Figure 12. Box plots showing the average ALT and spread of the ALT measurements per vegetation
class (vegetation classes described in Tables 1 and 3). The height of each box represents the interquar-
tile range of the underlying data, and it extends from the 25th to the 75th percentile. The horizontal
bar within the box indicates the mean value, and the text above it, the number of observations (n) for
the given class. The whiskers extend to the maximum and minimum values recorded for the given
class, excluding outliers, which are indicated with dots.

Based on the results of the Welch’s pairwise t-tests, the ALT means of most of the 592

vegetation classes were found to be statistically different (p<0.05). P-values superior to 0.05 593

were obtained when respectively comparing the pairs BSFB-SGCFB, BLDST-GGT, SGCFB- 594

BRSGT and SGCFB-GGT (Table 1), indicating the lack of statistical difference between 595

these classes. The similarity in ALT means of BSFB and SGCFB is inherent to the actual 596

ALT of these frost boil units, although characterized by different floristic compositions. 597

The vegetation class BRSGT often occurs between frost boils or at the transition between 598

distinct land cover units. For this reason, ALT values were significantly variable within 599

this class, and the average ALT turned out to be similar to that of SGCFB. Similarly, few 600

measurements were available for the class GGT, which was also characterized by a wide 601

range in ALT. Finally, as mentioned in Section 3.2.3, an approximate ALT value of 1.5 m 602

was attributed to the pixels classified as EBDST. This approximation was used as a proxy to 603

discern areas with the thickest AL, which often correspond to coarse sedimentary deposits 604

(Table 4). 605

4.4. Frost susceptibility index mapping 606

Figure 13c shows the FSI derived from extrapolated ALT and S component. The FSI 607

ranges from 0 to 1.7 [unitless]. 608

As a first step towards validating the potential of the FSI, we used AL and permafrost 609

soil properties to assess the frost susceptibility of the ground at different borehole locations 610
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(cf. Section 3.2.1). Borehole sites were classified based on the dominant soil type present 611

in the AL or in the first 3 m below the ground surface. Coarse deposits, categorized as 612

sands (SW and SP in the USCS), gravels and gravel-sand mixtures (GW and GP in the 613

USCS), belong to Non-Frost Susceptible (NFS) to low frost susceptible soils (S2) according 614

to the U.S. Army Corps of Engineers Frost Design Soil Classification System (FDSCS) 615

described in Berg and Johnson [61]. These deposits, identified at five borehole locations, 616

were associated with average FSI values of 0.21 ± 0.10 (µ ± 1σ). The rest of the borehole 617

sites were characterized by clays and silts (CL and ML in the USCS). These sediments are 618

highly to very highly frost susceptible (F3 - F4) according to the FDSCS [61]. The FSI for 619

this group ranged from 0.14 to almost 0.96, with an average of 0.55 ± 0.25. Table 5 shows 620

typical FSI values encountered at borehole locations characterized by different soil types. 621

Table 5. Comparison of FSI values at borehole locations characterized by different soil types.

Borehole name ILU2021-03 ILU16002T ILU16010T

Dominant AL soil type SILT CLAY SAND
USCS

a
soil type ML or MH CL SP or SW

FSI (-) 0.63 0.48 0.11
Frost group

b
F4

c
F3

d
- F4 PFS

e
- F2

f

a Unified Soil Classification System [62].
b The frost groups were determined using the U.S. Army Corps of Engineers Frost Design Soil Classification
System described in Berg and Johnson [61] based on grain size distribution and Atterbergs limits of AL and
permafrost samples.
c F4 corresponds to very highly frost susceptible soil types.
d F3 corresponds to highly frost susceptible soil types.
e PFS corresponds to possibly frost susceptible soil types.
f F2 corresponds to moderately frost susceptible soil types.

As expected, FSI values are higher for fine-grained deposits, suggesting that our 622

approach successfully detected frost-susceptible areas. The degree of frost-susceptibility 623

of a given soil type can be relatively broad and controlled by parameters other than the 624

grain size [13]. In addition, the FSI inherited uncertainties and inaccuracies from the 625

processing of the InSAR signal and extrapolation of ALT from the landcover classification. 626

We notably demonstrated that sedimentary deposits surrounded by, or located in the close 627

vicinity of bedrock outcrops were subject to poorer inversion performances (Figure 7). 628

These arguments may explain the higher variability of the FSI within sedimentary deposits 629

described as fine-grained (clays and silts). 630

5. Discussion 631

5.1. InSAR surface displacement model and maps 632

In this study, we modified the algorithm of Liu et al. [8] and applied it to Sentinel-1 633

SAR scenes acquired between 2015 and 2019. Maps of average seasonal displacement (S) 634

and long-term displacement rate (R) were successfully produced for the community of 635

Ilulissat with a final spatial resolution of 10 m. The magnitude of the seasonal deformations 636

was found to be predominantly related to the soil type and moisture conditions. Compared 637

to fine-grained sedimentary deposits that exhibited severe surface displacements, less 638

subsidence was observed in coarser and drier areas. These observations, which were sub- 639

stantiated by soil properties measured at borehole locations [60], corroborate the findings 640

of Schaefer et al. [24]. The R map also highlighted zones of larger downward displacement 641

trends, that were interpreted as degrading permafrost areas. Our results generally con- 642

firmed the measured increase in AL over the study time frame but underestimated the 643

magnitude of the long-term subsidence. 644

Overall, our surface displacement model was able to explain up to 25 % of the InSAR 645

data variation over the sedimentary basins. The model performance was considerably 646

reduced over high shrubs, inundated areas, and in the close vicinity of bedrock. In their 647
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studies, Jia et al. [76], Strozzi et al. [6] and Zwieback and Meyer [14] experienced similar 648

errors characteristic of the use of InSAR over low-land permafrost, densely vegetated, 649

barren, and rocky areas. As discussed by the authors, changes in ionospheric, vegetation, 650

and soil moisture conditions exert an influence on radar penetration and may introduce 651

biases in the InSAR signal and measured surface displacement. This phenomenon partly 652

explains our inversion results, and the positive R values specifically observed at a few 653

locations and indicating a decreasing trend in ALT. These areas typically align with wet- 654

lands, where ponds and water accumulation may have affected the coherence of the InSAR 655

signal. Anthropogenic modifications may also have resulted in heave or mixed signals in 656

the derived S and R maps at specific locations. 657

The main contribution of our approach lied in the implementation of a moving- 658

windowed constrained linear least-squares inversion. In order to compensate for the 659

lack of points in the temporal InSAR dataset and assuming that spatial variations were 660

smooth, several pixel values were used in the inversion, providing more information from 661

neighboring areas and reducing the noise in the data. However, this technique may not 662

have been sufficient to entirely balance out the fact that only four years of InSAR images 663

could be processed. For this reason, the R component, which represented the long-term 664

trend in surface deformations, should still be considered cautiously. The robustness of the 665

inversion and retrieval of the R component could be improved if longer InSAR time series 666

of surface displacements were available or if the inversion was weighted depending on the 667

land cover classes. 668

Secondly, the generation of the displacement time series and variations in the tem- 669

poral coverage of the InSAR stacks (and, therefore, in the measured thaw-season vertical 670

displacement) may have also lessened the inversion capability of our algorithm. Our model 671

notably relied on the Stefan equation to reproduce the evolution of the thaw front. By 672

validating the evolution of the thawing front with ground temperature measurements, we 673

demonstrated that the Stefan approximation is well suited to model the onset of thawing 674

but that predicted thaw depths are somewhat underestimated. The correction factor ap- 675

plied to the InSAR amplitudes was therefore also underestimated, and the final S and R 676

products should thus be considered conservative estimates. In our dataset, the 2015 time 677

series notably started very late in the thawing season which may have contributed to a 678

larger variation in the observations, and a poorer regression fits. Such effects especially 679

impact relatively short stacks (study periods) such as ours. 680

In our model, we also assumed that vertical displacements of the ground surface 681

would only be caused by volume changes induced by the freezing and thawing of the AL. 682

Assuming no lateral water exchanges was appropriate for the area of Ilulissat where the 683

topography is flat. Nonetheless, as mentioned by Liu et al. [8,16], secondary driving mecha- 684

nisms such as erosion, clay contraction, inundation, and other changes in soil properties 685

may contribute to ground movements but were not accounted for in our model. 686

In comparison, sinusoidal models have been tested by Li et al. [17] and Jia et al. [76] 687

and generally proved performant. However, many physical processes influencing the 688

occurrence and magnitude of surface deformations do not follow sinusoidal trends [17,76]. 689

Further modeling efforts are required to improve the representation of ground movements 690

occurring in permafrost regions. 691

The S and R values retrieved from the inversion were assessed against AL and top-of- 692

permafrost soil properties determined at borehole locations. Even though our results were 693

coherent with subsurface conditions at these locations, measurements of the surface dis- 694

placements are still needed to quantitatively validate seasonal and long-term deformation 695

trends. To this aim, subsidence sticks could be deployed in the study area, as described in 696

Antonova et al. [9] and Bartsch et al. [20]. 697

5.2. ALT extrapolation techniques 698

We investigated the correlations between a set of remotely-sensed environmental 699

predictors and ALT probed in 2020 and 2021 (ALT20/21). Field measurements conducted 700
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in Ilulissat evidenced the strong spatial variability of ALT across the study domain. Our 701

observations are in line with previous studies that reported large variations in ALT within 702

study sites across the Arctic [e.g. 16,46,76]. 703

Weak linear correlations were found between ALT20/21 and a subset of predictors. 704

Therefore, we first attempted to extrapolate ALT20/21 with a GLM whose predictive capa- 705

bility was evaluated by cross-validation. The model performed poorly and was unstable 706

when fitted and validated on randomly generated samples. With this approach, we were 707

not able to reproduce the variability in ALT across the study domain. Other researchers 708

have experienced similar challenges when statistically predicting ALT from geospatial 709

datasets. Karjalainen et al. [12], who used an ensemble model at the pan-Arctic scale, 710

notably reported relatively large uncertainties associated with the predictions of present 711

and past ALT (adjusted R2 of respectively 0.37 and 0.57). The geographically weighted 712

regression approach implemented by Mishra and Riley [46] over the state of Alaska was 713

also characterized by a moderate predictive capability. 714

The poor performance of our model could be attributed to the combination of ALT 715

measurements, predictors, and algorithm selected for this study. Before 2020, ALT mea- 716

surements were scarce and relatively localized. Averaging ALT values over the study 717

period 2015-2019 (cf. Equation 14) was not possible in our case since the dataset would 718

not have been representative of the natural spatial variability of ALT. In order to maximize 719

the spatial distribution of our dataset and the robustness of the extrapolation procedure, 720

ALT measured in 2020 and 2021 were used instead. However, as field protocols changed 721

with our understanding of the area throughout the project, ALT probing was conducted 722

inconsistently across vegetation and landform units in 2020 and 2021. Final sample sizes 723

were therefore, larger among certain vegetation classes, while others remained underrepre- 724

sented. For the same reason, our dataset did not span entirely and evenly the spectrum 725

of values of the environmental predictor rasters, which were sampled at the ALT probing 726

locations only. We recommend that the density and distribution of ALT measurements 727

for validation purposes is carefully considered to appropriately represent different terrain 728

units in future studies. 729

Furthermore, the area of Ilulissat is characterized by a gentle relief and homogenous 730

periglacial features (frost boils). Floristic, hydrological, and geomorphological disparities 731

evidently exist, but their spatial gradients are relatively small. Within a homogeneous 732

terrain unit, intra-variations in vegetation composition, soil moisture, micro-topography, 733

and ALT additionally occur. However, the resolution of the remotely-sensed datasets 734

acquired for this study was likely insufficient to grasp such nuances. Statistical models 735

applied at smaller scales (hundreds of meters) and using high-resolution surface elevation 736

and multi-spectral data were generally successful in predicting ALT [44]. In this context, 737

Anderson et al. [77] showed that hyperspectral imaging can be more suitable in relation to 738

statistical extrapolations. Acquiring predictors with a higher resolution could contribute to 739

improving our ALT20/21 predictions. 740

Finally, a different statistical model could be tested on our datasets, provided that 741

more observations are collected. In our case, a GLM was chosen due to the reduced number 742

of measurements and ease of interpretability [70]. Relationships between the ALT and 743

surface characteristics may not all be linear. For this reason, generalized additive models 744

(GAM), which present the advantage of accounting for non-linear effects, could be a more 745

flexible alternative to the GLM. 746

To overcome these difficulties, we exploited the correlation between the thaw depths 747

and vegetation zonation revealed by ALT probing along transects. ALT measurement sites 748

were categorized based on their sampled floristic composition and averaged per spectral 749

vegetation class ensuing from the supervised land cover classification map. This method 750

was substantially more successful and representative of the ALT spatial distribution than 751

the statistical model. Prediction errors were tied to vegetation misclassifications and class 752

intra-variability in ALT. Floristic surveys were conducted relatively late (September) com- 753

pared to the vegetation growing season peak (mid-July to mid-August). It is plausible that 754
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the species richness was not fully captured in our data, but species abundance and PFT 755

percent covers were expected to represent distinct vegetation types. The RFC-supervised al- 756

gorithm produced satisfactory classification results (82.51 % overall accuracy). Nonetheless, 757

vegetation classes identified from ground truth data were not always spectrally separable, 758

resulting in pixel confusion and misclassifications. These errors may have led to the wrong 759

allocation of ALT values in some locations. Lastly, t-tests revealed overlaps and statistical 760

similarities in ALT averages computed for two pairs of vegetation classes. These results 761

were coherent with the natural variability of thaw depths measured within these units. 762

Our study confirms the conclusions of Mishra and Riley [46] stating that using vegetation 763

zonation as an indicator of ALT does involve uncertainties but is applicable when more 764

complex statistical models can not be implemented. 765

The distribution of ALT is influenced by many factors, the relative importance of which 766

is scale-dependent. Previous studies have shown that air temperature is the primary control 767

of ALT over large scales [44]. Land cover types and topography also exert a strong influence 768

on ALT. At micro-scales, Gangodagamage et al. [44] and Anderson et al. [77] demonstrated 769

that microtopography, vegetation, and soil moisture become predominant driving factors. 770

In our study areas, land cover units proved to be the best predictor of ALT. Due to the lack 771

of strong topographic gradients, the effects of terrain parameters investigated in this study 772

could not be asserted. The significant spatial variability of ALT is still not fully understood. 773

The suitability of different extrapolation techniques and predictors remains considerably 774

site-dependent. More robust approaches that could be extended to different permafrost 775

environments must be developed. Additional monitoring, remote sensing, and modeling 776

efforts remain needed to bridge the gap between micro and regional scales. 777

5.3. Frost susceptibility mapping 778

Mapping ground ice traditionally relies on geomorphological expertise and the iden- 779

tification of periglacial features [25]. Using remote sensing techniques would be highly 780

advantageous in Arctic regions where drilling and soil sampling are logistically challenging 781

and costly. Yet, to this day, the possibilities to derive ice content from remotely-sensed 782

signals are limited [14]. Liu et al. [16] were able to link changes in surface subsidence to the 783

thawing of the AL. Using a similar approach, we estimated the AL ice content from 2015- 784

2019 average seasonal displacements (S) and extrapolated field observations (ALT20/21). 785

Since thaw depths follow an increasing trend in Ilulissat, the ALT20/21 dataset we applied 786

may be overestimating the ALT averaged over the study period 2015-2019. Referring to 787

Equation 14, we can infer that the resulting AL ice content represents a conservative esti- 788

mate (underestimated). Furthermore, homogeneous porosity and saturation of the AL had 789

to be assumed. These simplifications and errors intrinsic to the retrieval of the S component 790

and predicted ALT20/21, introduced additional uncertainty in our results. We named the 791

final product a Frost Susceptibility Index (FSI) to underpin that it does not represent an 792

exact quantification. 793

Despite reaching an accurate quantification of the AL ice content, we qualitatively com- 794

pared obtained FSI values to frost susceptibility classification of sediment samples based 795

on the FDSCS [61]. The frost susceptibility of AL and permafrost samples corroborated the 796

InSAR-derived FSI, thereby supporting the validity of our mapping approach. 797

Our efforts are presented here as a first step toward developing remote sensing 798

techniques for ground ice retrieval. Further research could consist in investigating the 799

relevance of extreme year analyses [14,20] for our study area. Using late-season subsidence 800

signals to distinguish ice-rich from ice-poor areas proved effective under the following 801

conditions: i) exceptionally warm summers, ii) and initial melting of excess ice at the top 802

of permafrost. In the case of Ilulissat, the derived R map indicated locations that may be 803

subject to ongoing permafrost degradation. Secondly, 2019 was a particularly warm year 804

with mean annual air temperature reaching -2 °C and thawing degree days exceeding 1000. 805

Testing this method for this year, in particular, could provide complementary information 806

with respect to the localization of vulnerable ice-rich areas. 807

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2023                   doi:10.20944/preprints202305.1683.v1

https://doi.org/10.20944/preprints202305.1683.v1


29 of 38

5.4. Potential of InSAR-derived maps to support infrastructure maintenance and planning 808

In remote Arctic areas, geotechnical data are relatively rare and challenging to acquire. 809

Yet, site investigations remain essential to adapt construction practices to permafrost 810

conditions and prevent failures. In this context, remote sensing techniques provide high- 811

resolution and continuous spatial information that can be validated with relatively reduced 812

ground-truth datasets. 813

InSAR measurements notably provide insightful information regarding AL dynamics 814

and permafrost degradation where surface deformations severely or repeatedly affect the 815

built environment. Used as a complement to site investigations and local knowledge, InSAR 816

maps, therefore, have the potential to support the construction and planning sectors. Such 817

tools are especially valuable in the context of risk management and Arctic urban sprawl. 818

Possible causes of infrastructure deterioration can first be identified, and maintenance oper- 819

ations be more judiciously prioritized. In this study, we implemented a multidisciplinary 820

mapping framework with the aim to map the frost susceptibility of the ground at the 821

community scale. Our work contributed to identifying hazardous frost-susceptible areas 822

currently subject to large seasonal surface displacements and/or long-term subsidence. 823

FSI maps derived from our approach may secondly be helpful in informing construction 824

planning in unbuilt areas with limited geotechnical data, such as in Ilulissat (Figure 14). 825

Figure 14. Ilulissat’s expansion strategy superimposed on InSAR-derived FSI map. The infrastructure
spatial dataset used for mapping is available online from Asiaq Greenland Survey [33]. The expansion
plan spatial layers were provided by the Avannaata Municipality (pers. commun.).

6. Conclusions 826

We processed Sentinel-1 SAR scenes acquired between 2015 and 2019 to map ground 827

surface displacements over the community of Ilulissat, West-Greenland. Average seasonal 828

displacements (S) and long-term subsidence rates (R) were derived from the interferogram 829

stack. Active layer thickness (ALT) measurements were extrapolated using remotely-sensed 830

surface characteristics to retrieve a frost susceptibility index. The resulting maps were 831

validated against soil properties. Our main conclusions are listed hereinafter: 832

1. In Ilulissat, fine-grained sedimentary basins were subject to significant downward 833

seasonal deformations of the ground surface during the study period, in the order 834
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of 3 to 8 cm. Several locations also seem to follow a subsiding trend in the long 835

term, indicating permafrost degradation and possible meting of excess ice below the 836

permafrost table. Coarse-grained and drier sedimentary deposits were found to be 837

more stable. The surface deformations’ severity generally seemed to be correlated to 838

the soil type and moisture. 839

2. The surface displacement model applied in this study was able to explain up to 25 840

percent of the observed data variation over sedimentary basins. Densely vegetated, 841

rocky or inundated areas were subject to a higher degree of uncertainty, likely inher- 842

ited from anomalies in the InSAR signal. Surface deformation models currently based 843

on the Stefan equation or sinusoidal functions require further research. 844

3. At the micro and community scales, the distribution of ALT is very variable in Ilulissat, 845

ranging from 0.3 m to more than 2 m. Despite evident correlations with surface 846

characteristics such as vegetation cover, the extrapolation of ALT measurements 847

was challenging. A statistical model (GLM), using remotely-sensed vegetation and 848

topographic parameters as inputs, failed to reproduce the spatial variability of ALT 849

over the entire study area. The density and distribution of ALT measurements, and the 850

spatial resolution of remotely-sensed predictors, likely need to be improved to obtain 851

more reasonable predictions. Averaging ALT per vegetation unit and distributing 852

the values over the study domain, based on a supervised land cover classification of 853

Sentinel-2 images, proved to be the most successful technique in our case. 854

4. Extrapolated ALT and average seasonal displacements were used as inputs to derive 855

an indicator of the frost susceptibility of the ground. Although uncertainties inherent 856

to assumptions and inherited errors in ALT and S were associated to the retrieval of the 857

frost susceptibility index (FSI), the latter was in good agreement with soil properties 858

determined from AL and permafrost samples. Locations classified for the presence 859

of fine-grained and coarse sedimentary deposits were respectively characterized by 860

average FSI values of 0.55 and 0.21. 861

5. Our approach enabled us to identify frost-susceptible and ice-rich areas, subject to 862

severe seasonal surface deformations and/or long-term subsidence from degrading 863

permafrost. We demonstrated the potential of InSAR-derived maps in combination 864

with geotechnical information, to support infrastructure maintenance and planning in 865

permafrost environments. 866
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Abbreviations 894

The following abbreviations are used in this manuscript: 895

896

ADDT Accumulated degree days of thawing
AHC Agglomerative hierarchical clustering
AIC Akaike Information Criterion
AL Active layer
ALT Active layer thickness
BB Braun-Blanquet
CALM Circumpolar active layer monitoring
D Total thaw season surface displacement
DEM Digital elevation model
FDSCS U.S. Army Corps of Engineers Frost Design Soil Classification System
FSI Frost susceptibility index
GLM Generalized linear model
GT Ground temperature
InSAR (or SAR) Interferometric synthetic aperture radar
MAAT Mean annual air temperature
NADDT Normalized accumulated degree days of thawing
NMDS Non-metric multidimentional scaling
PCA Principal component analysis
PC Principal component
PFT Plant functional type
R Long-term ground surface displacement rate
R2 Coefficient of determination
RFC Random forest classifier
S Average seasonal ground surface displacement
SLC Single look complex
USCS Unified soil classification system

897

Appendix A. Identification of the vegetation classes (ground-truth) 898

Appendix A.1. Results of the agglomerative hierarchical clustering 899

Agglomerative Hierarchical Clustering (AHC) and Non-metric Multi-dimentional 900

Scaling (NMDS) methods were used to classify vegetation surveying sites based on their 901

similarities in floristic composition. The results of the clustering and ordination procedures 902

(Figure A1) and determination of the vegetation units (Figures A1 and A2) are presented 903

hereinafter. 904
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Figure A1. On the left, dendogram showing the results of AHC and similarities between floristic survey locations
based on their plant functional type (PFT) percent cover. On the right, NMDS ordination plot showing the
pairwise dissimilarity between the PFT percent cover of survey locations. The survey locations are clustered
according to the results of the hierarchical clustering. In the legend, clusters from 1 to 10 are interpreted in terms
of vegetation units, the naming of the units corresponding to the final classification nomenclature, as shown in
Figure 6 and Table 1.
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Appendix A.2. Typical plant functional type distribution of the identified vegetation classes 905

Figure A2. Main vegetation units (described in Table 1) identified from the AHC, and illustrated by their percent
cover in predominant PFT. The bar charts illustrate the typical distribution of the PFT percent cover representative
of each vegetation class. For the dwarf-shrub graminoid and graminoid tundra classes, the percent cover of
grasses, rushes and sedges are detailed.
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Appendix B. List of environmental predictors 906

The environmental predictors tested to extrapolate the active layer thickness (ALT) 907

measurements are summarized as follows (Table A1). The topographic indices were derived 908

from the elevation raster, principally using the SAGA-GIS tools [69], while the vegetation 909

indices were computed from the set of Sentinel-2 bands introduced in Table 2. 910

Table A1. List of environmental predictors investigated to spatially extrapolate ALT.

Variable classes Abbreviations Computation tools or formulas

Topography

Elevation (m) DEM Elevation values from the digital elevation model (DEM)
[35]

Slope (degree) Slope Tool Slope, Aspect, Curvature, SAGA-GIS [78]Aspect (degree) Aspect

Slope height Slope_height
Tool Relative Heights and Slope Positions, SAGA-GIS [79,80]Mid-slope position MSP

Valley depth Valley_depth

Topographic Position Index TPI Tool Topographic Position Index (TPI), SAGA-GIS [81–83]

Topographic Wetness Index TWI Tool Topographic Wetness Index’ (TWI), SAGA-GIS [78,79]

Accumulated flow FLOW_D8 Tool Flow Accumulation (Top-Down), deterministic 8 method
[78,84,85]

Vegetation

Clay minerals CLAY_INDEX_SWIR SWIR1/SWIR2

Normalized Difference Vegetation Index NDVI (NIR − RED)/(NIR + RED)

Green Normalized Difference Vegetation In-
dex

GNDVI (NIR − GREEN)/(NIR + GREEN)

Enhanced Vegetation Index EVI 2.5 × (NIR − RED)/(NIR + 6 × RED − 7.5 × BLUE + 1)

Normalized Difference Water Index NDWI (GREEN − NIR)/(GREEN + NIR)

Normalized Difference 819/1600 Index NDII (NIR − SWIR1)/(NIR + SWIR1)

Tasseled Cap – Vegetation TCV −0.2848 × BLUE − 0.2435 × GREEN − 0.5436 × RED +
0.7243 × NIR + 0.0840 × SWIR1 − 0.1800 × SWIR2

Tasseled Cap – Wetness TCW 0.1509 × BLUE + 0.1973 × GREEN + 0.3279 × RED +
0.3406 × NIR − 0.7112 × SWIR1 − 0.4572 × SWIR2

Principal components pc1, 2, 3 Principal components from the Principal Component Anal-
ysis (PCA) conducted on the ten Sentinel-2 bands
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