
Article

Not peer-reviewed version

Modeling of (n, m) Type Minkowski

Pythagorean Hodograph Curves with

Hopf Map and Applications

Aziz Yazla 

*

 and Muhammed Talat Sarıaydın

Posted Date: 3 January 2023

doi: 10.20944/preprints202301.0032.v1

Keywords: Minkowski Pythagorean Hodograph Curve; Rational Rotation Minimizing Frame; Euler-Rodrigues

Frame; Split Quaternion Polynomial; Minkowski-Hopf Map; Type (n, m) Curve

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2685691
https://sciprofiles.com/profile/578869


Article

Modeling of (n,m) Type MPH Curves with Hopf Map 
and Applications MODELING OF (n,m) TYPE 
MINKOWSKI PYTHAGOREAN HODOGRAPH 
CURVES WITH HOPF MAP AND APPLICATIONS

Muhammed T. SARIAYDIN 1,* and Aziz YAZLA 2

1 Selcuk University, Faculty of Sceince, Department of Mathematics, 42130, Konya, TÜRKİYE, ORCID:
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Abstract: In present paper, spatial Minkowski Pythagorean Hodograph (MPH) curves are
characterized with Rational Rotation Minimizing Frames (RRMFs). We define Euler-Rodrigues
Frame (ERF) for MPH curves and by means of this concept, we reach the definition of MPH curves of
type (n, m). Expressing the conditions provided by these curves in the form of Minkowski-Hopf map
that we define, it is aimed to establish a connection with the Lorentz force which occurs during the
process of Computer Numerical Control (CNC) type sinker Electronic Discharge Machines (EDMs).
This approach is reinforced by split quaternion polynomials. Finally, we give conditons satisfied by
MPH curves of low degree to be type (n, m) and construct illustrative examples.
2020 Mathematics Subject Classification. Primary 65D17, 65D18.
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1. Introduction

Polynomials are symbolic objects that are frequently used, especially in computer science and
computational algebra. Consisting of polynomial components, polynomial curves are one of the
curves studied extensively in computational geometry. Pythagorean hodograph curves, simply PH
curves, are polynomial curves which provide the equality called the Pythagorean condition. This
condition is satisfied by the hodograph of these curves and a distinguishing property for them among
the polynomial curves. PH curves were defined by Farouki and Sakkalis (1990). Euler-Rodrigues
frame (ERF) on spatial PH curves is defined by Choi and Han (2002). Han (2008) gave the necessary
and sufficient condition for a spatial PH curve to have a rational rotation minimizing frame (RRMF).
Using this, PH curves of type (n, m) is defined by Dospra (2015). For further information on PH curves
and applications, see (Farouki, 2008), (Sariaydin, 2019), (Erken et al., 2020). The Pythagorean condition
was expressed according to the Minkowski metric and Minkowski Pythagorean hodograph curves,
simply MPH curves, were defined by Moon (1999). Also planar MPH curves are characterized in this
study. Spatial MPH curves are represented by Choi et al. (2002), using Clifford algebra methods. The
characterization of planar MPH curves with hyperbolic polynomials and spatial MPH curves with
split quaternion polynomials are given by Ramis (2013).

One of the important application areas of PH curves is on computer numerical control (CNC)
machines. The purpose of the real-time interpolator in a CNC machine is to transform tool path and
feedrate information into reference points for each interval of the system. Not only linear interpolations
are provided by Modern CNC machines, but also parametric interpolations are offered by them.
Reduction of errors and shortening machining time of parametric interpolations in comparison with
linear interpolations have shown by researchers, (Tsai et al., 2008). For calculating parameter values of
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successive reference points, the general rational B-spline curves rely on Taylor series expansions. By
omission of higher-order terms, such schemes inevitably incur truncation errors, (Farouki and Sakkalis,
1994). Describing the tool path in terms of the PH curves overcomes this problem, (Farouki and
Sakkalis, 1990). A closed-form reduction of the interpolation integral is easily done due to the algebraic
structure of PH curves. This yields real-time computer numerical control interpolator algorithms
for constant or variable feedrates which are notably accurate, (Tsai et al., 2001). There are also CNC
type electronic discharge machines (EDMs) which are computer-controlled machine tools that shape
metal using electrical discharges or sparks. A sinker EDM applies electrical discharges through an
insulating liquid (oil or dielectric fluid). The evolution of Lorentz forces due to the external magnetic
field along with this plasma pressure acts as value addition in EDM by restricting its expansion. At
high spark energy, erosion efficiency improves due to the development of Lorentz force, which results
in an increase of the positive erosion volume from the melt pool on the workpiece surface. These
machine tools are capable of cutting hard metals to any specified design, which is not achievable with
other types of conventional cutting tools. They are capable of shaping exceedingly hard metals in ways
that many other cutting tools and equipment cannot. As a consequence of the tool’s crucial cutting
capabilities, the final product is a metal item with an excellent surface polish, (Singh et al., 2018). One
of the aims of this study is to use the magnetic fields generated by MPH curves with RRMFs in the
EDM processes mentioned above.

In this paper, our main goal is to characterize spatial MPH curves with RRMFs and to express the
conditions provided by such curves using split quaternion polynomials and the Minkowski-Hopf map
that we define. With this approach, by using these characterization methods, we open up an avenue
for applications of MPH curves on CNC machines. We use symbolic computation methods for the
definition and computational geometry of MPH curves of type (n, m).

2. Preliminaries

In this section, we present some basic definitons and theorems for MPH curves, their
representations, hyperbolic numbers and split quaternions. We begin with the definition of the
Minkowski metric and 3-dimensional Minkowski space. The symmetric bilinear form 〈, 〉L defined by

〈, 〉L : R3 ×R
3 → R, 〈x, y〉L = x1y1 + x2y2 − x3y3

is called Lorentz metric or Minkowski metric, where R3 is the real vector space and x = (x1, x2, x3), y =

(y1, y2, y3) ∈ R3. In this case, (R3, 〈, 〉L) is called 3-dimensional Minkowski space and is denoted by
R3

1. Lorentz norm of x is defined as ‖x‖L =
√
|〈x, x〉L|, (O’Neill, 1983).

Let α : I ⊂ R → R3
1 be a differentiable curve, where I is an interval. If 〈α′(t), α′(t)〉L = 0 and

α′(t) 6= 0 for all t ∈ I, then α is said to be a null curve. If 〈α′(t), α′(t)〉L > 0 or α′(t) = 0 for all t ∈ I,
then α is said to be a spacelike curve. If 〈α′(t), α′(t)〉L < 0 and for all t ∈ I, then α is said to be a
timelike curve. If α′(t) 6= 0 for all t ∈ I, then α is said to be a regular curve, (O’Neill, 1983).

Definition 1. An orthonormal frame {f1, f2, f3} on a space curve α in R3
1 is an orthonormal basis defined at

each curve point, where f1 coincides with the curve tangent T = α′
‖α′‖L

and f2, f3 span the normal plane, such

that f1 ×L f2 = f3. The angular velocity of this frame is defined by

ω = ω1f1 + ω2f2 + ω3f3,

and the following relations are satisfied

f′1 = σω ×L f1, f′2 = σω×Lf2, f′3 = σω×Lf3,

where σ = ‖α′‖L is the parametric speed of α. {f1, f2, f3} is a rotation minimizing frame (RMF) of α if and only

if its angular velocity satisfies 〈ω, f 1〉L = 0, i.e., ω has no component along f1. If {f1, f2, f3} is an RMF of α
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and vector fields f1, f2, f3 are rational according to the curve parameter, then {f1, f2, f3} is said to be a rational

rotation minimizing frame (RRMF) of α, (O’Neill, 1983).

Definition 2. Let α(t) = (x(t), y(t), z(t)) be a polynomial curve in R3
1 whose hodograph α′(t) satisfies

[
x′(t)

]2
+

[
y′(t)

]2 −
[
z′(t)

]2
= σ2(t) (1)

for polynomial σ(t), then α(t) is said to be a spatial Minkowski Pythagorean hodograph curve, simply a spatial

MPH curve. Condition (1) is called the Minkowski Pythagorean condition, (Moon, 1999).

Note that, all null curves in R3
1 are MPH curves and there is no timelike MPH curve in R3

1, (Moon,
1999). In our study, we consider regular spacelike spatial MPH curves. One of the characterization
methods for MPH curves is using hyperbolic polynomials. Therefore, we present the definition and
basic properties of hyperbolic numbers. Let H be a set which consists of ordered pair of real numbers
defined as

H =
{

z = x + ey : x, y ∈ R, e2 = 1, e /∈ R

}
.

The elements of this 2-dimensional commutative real algebra H are said to be hyperbolic numbers
or split complex numbers, (Catoni et al., 2011). For the algebraic properties of hyperbolic numbers, see
(Catoni et al., 2011).

The curve α(t) = (x(t), y(t), z(t)) is a MPH curve if and only if there exist polynomials
u1(t), u2(t), u3(t), u4(t) with

x′(t) = u2
1(t)− u2

2(t) + u2
3(t)− u2

4(t),

y′(t) = 2 [u1(t)u4(t)− u2(t)u3(t)] , (2)

z′(t) = 2[u1(t)u3(t)− u2(t)u4(t)],

σ(t) = ±[u2
1(t)− u2

2(t)− u2
3(t) + u2

4(t)],

(Moon, 1999).
In order to characterize MPH curves with split quaternion polynomials, we present the definition

of split quaternions. The ring

H̃ =
{

ǫ = ǫ0 + ǫ1i + ǫ2j + ǫ3k : ǫ0, ǫ1, ǫ2, ǫ3 ∈ R, i2 = j2 = 1, k2 = −1, ijk =1
}

which is defined in (−,+,+,−) signed R4
2 semi-Euclidean space is called the ring of split quaternions.

Norm of ǫ is defined as ‖ǫ‖ =
√
|ǫǫ∗| and modulus of ǫ is defined as |ǫ| = ǫǫ∗, (Inoguchi, 1998). For

the algebraic properties of split quaternions, see (Cockle, 1849).
We present the classification of split quaternions according to their semi-Euclidean scalar product

with themselves in R4
2. Let ǫ = ǫ0 + ǫ1i + ǫ2j + ǫ3k ∈ H̃, then 〈ǫ, ǫ〉

R4
2
= −ǫ2

0 + ǫ2
1 + ǫ2

2 − ǫ2
3. If this

value is positive, negative or zero, then ǫ is called spacelike, timelike or lightlike split quaternion,
respectively, (Inoguchi, 1998).

Finally, we present the characterization of MPH curves with split quaternion polynomials. Let
α(t) = (x(t), y(t), z(t)) is a MPH curve whose hodograph is given by the equalities (2). Then α′(t)
is expressed with the split quaternion polynomial Q(t) = u1(t) + iu2(t) + ju3(t) + ku4(t) as α′(t) =
Q(t)iQ∗(t), where Q∗(t) is conjugate of Q(t). If gcd(u1(t), u2(t), u3(t), u4(t)) is constant, then Q(t) is
said to be a primitive split quaternion polynomial. Similarly, if h(t) = a1(t) + ea2(t) is a hyperbolic
polynomial such that gcd(a1(t), a2(t)) is constant, then h(t) is said to be a primitive hyperbolic
polynomial, (Ramis, 2013).
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3. Characterization of Spatial MPH Curves with RRMFs

In this section, we give a representation of spatial MPH curves in terms of hyperbolic polynomials
in Minkowski-Hopf map form. We define ERF for this kind of curves and we get the necessary and
sufficient condition for spatial MPH curves to have RRMFs. Then, we define type (n, m) curve for
spatial MPH curves. Thus, we aim to achieve results that will increase the efficiency and usefulness of
curves in CNC machine processes.

Theorem 1. Let α(t) be a spatial MPH curve represented by Q(t), where |Q(t)| 6= 0, then the set of vectors

{g1(t), g2(t), g3(t)} defined by

(g1(t), g2(t), g3(t)) =
(Q(t)iQ∗(t), Q(t)jQ∗(t), Q(t)kQ∗(t))

|Q(t)| ,

is a rational orthonormal frame for α(t).

Proof. We compute

Q(t)iQ∗(t) = (u2
1 − u2

2 + u2
3 − u2

4)i + 2(u1u4 − u2u3)j + 2(u1u3 − u2u4)k, (3)

Q(t)jQ∗(t) = −2(u1u4 + u2u3)i + (u2
1 + u2

2 − u2
3 − u2

4)j − 2(u1u2 + u3u4)k,

Q(t)kQ∗(t) = 2(u1u3 + u2u4)i + 2(u3u4 − u1u2)j + (u2
1 + u2

2 + u2
3 + u2

4)k

and
|Q(t)| = u2

1 − u2
2 − u2

3 + u2
4.

Since |Q(t)| 6= 0, it is obvious that {g1(t), g2(t), g3(t)} is a rational frame for α(t). On the other
hand, one can easily see that

〈g1(t), g2(t)〉L = 〈g1(t), g3(t)〉L = 〈g2(t), g3(t)〉L = 0

and
‖g1(t)‖L = ‖g2(t)‖L = ‖g3(t)‖L = 1.

Thus, these equalities show that {g1(t), g2(t), g3(t)} is orthonormal.

Definition 3. Let α(t) be a spatial MPH curve represented by Q(t), where |Q(t)| 6= 0, then the rational

orthonormal frame {g1(t), g2(t), g3(t)} defined by

(g1(t), g2(t), g3(t)) =
(Q(t)iQ∗(t), Q(t)jQ∗(t), Q(t)kQ∗(t))

|Q(t)| ,

is called Euler-Rodrigues frame, simply ERF for α(t).

Theorem 2. If {f1, f2, f3} is a rational orthonormal frame of a spatial MPH curve α(t) represented by Q(t),

then the following statements hold:

(1) f1(t) = g1(t),
(2) There exist polynomials a1(t), a2(t) such that

[
f2(t)

f3(t)

]
=

1
a2

1(t)− a2
2(t)

[
a2

1(t) + a2
2(t) 2a1(t)a2(t)

2a1(t)a2(t) a2
1(t) + a2

2(t)

] [
g2(t)

g3(t)

]
,

where gcd(a1(t), a2(t)) is constant.
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Proof. We can write

f1(t) = g1(t),

f2(t) = cosh(φ(t))g2(t) + sinh(φ(t))g3(t),

f3(t) = sinh(φ(t))g2(t) + cosh(φ(t))g3(t),

for some φ(t). Since fi(t) and gj(t) are all rational, the coefficients cosh(φ(t)) and sinh(φ(t)) are
rational. Therefore, we write

cosh(φ(t)) =
γ(t)

δ(t)
and sinh(φ(t)) =

β(t)

δ(t)
,

for polynomials γ(t), β(t), δ(t) with gcd(γ(t), β(t), δ(t)) is constant. Since cosh2(φ(t))− sinh2(φ(t)) =

1, the polynomials γ(t), β(t), δ(t) satisfy the Minkowski Pythagorean condition in R2
1, i.e., γ2(t)−

β2(t) = δ2(t), therefore gcd(γ(t), β(t)) is constant. Then, there exist polynomials a1(t), a2(t) of
gcd(a1(t), a2(t)) is constant, satisfying

γ(t) = a2
1(t) + a2

2(t), β(t) = 2a1(t)a2(t), δ(t) = a2
1(t)− a2

2(t).

Thus, one can get the result by making the necessary calculations.

Theorem 3. A spatial MPH curve α(t) represented by Q(t) has a RRMF if and only if the following statement

holds:

• There exist polynomials a1(t), a2(t) such that

u1u′
2 − u′

1u2 − u3u′
4 + u′

3u4

u2
1 − u2

2 − u2
3 + u2

4

=
a1a′2 − a′1a2

a2
1 − a2

2
. (4)

Proof. A rational orthonormal frame {f1, f2, f3} of α(t) is rotation minimizing if and only if either of
f′2(t) and f′3(t) is parallel to f1(t), (Bishop, 1975). Equivalently,

〈
f′2(t), f3(t)

〉
L
= 0 (5)

is the necessary and sufficient condition for {f1, f2, f3} to be rotation minimizing. By Theorem 2, there
exist polynomials a1(t), a2(t) with gcd(a1(t), a2(t)) is constant and

f1(t) = g1(t),

f2(t) =
a2

1(t) + a2
2(t)

a2
1(t)− a2

2(t)
g2(t) +

2a1(t)a2(t)

a2
1(t)− a2

2(t)
g3(t),

f3(t) =
2a1(t)a2(t)

a2
1(t)− a2

2(t)
g2(t) +

a2
1(t) + a2

2(t)

a2
1(t)− a2

2(t)
g3(t).

One can get
〈
g′

2(t), g3(t)
〉

L
= 2

u1u′
2 − u′

1u2 − u3u′
4 + u′

3u4

u2
1 − u2

2 − u2
3 + u2

4

.

Then, we obtain

〈
f′2(t), f3(t)

〉
L
= 2

a′1a2 − a1a′2
a2

1 − a2
2

+ 2
u1u′

2 − u′
1u2 − u3u′

4 + u′
3u4

u2
1 − u2

2 − u2
3 + u2

4

.

Thus, by the condition (5), the result is clear.
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In order to define type (n, m) curve for spatial MPH curves, when the spatial MPH curve α(t)

which is represented by Q(t) has a RRMF, we must show that the degrees of polynomials a1(t), a2(t)

which exist by Theorem 3 are uniquely determined. As in Farouki (2010), it is practical to use the
notations

[Q(t)] = [u1, u2, u3, u4] =
u1u′

2 − u′
1u2 − u3u′

4 + u′
3u4

u2
1 − u2

2 − u2
3 + u2

4

and [h(t)] = [a1, a2] =
a1a′2 − a′1a2

a2
1 − a2

2
,

where h(t) = a1(t) + ea2(t) is a hyperbolic polynomial.
The following theorem includes some features of these quotients which we need for the next

discussions and also it shows that the degrees of polynomials a1(t), a2(t) are uniquely determined.
Henceforth the split quaternion basis element i and the hyperbolic number unit e are considered
equivalent. Thus, we can multiply a split quaternion with a hyperbolic number considering a
hyperbolic number z = x + ey as a split quaternion z = x + iy + j0 + k0.

Lemma 1. Let a1(t),a2(t), a3(t), a4(t), u1(t),u2(t), u3(t), u4(t) be real polynomials, s ∈ H̃ and r = λ+ eµ ∈
H. Then following assertions hold.

(1) If we write sQ(t) in place of Q(t) for any s such that |s| 6= 0, condition (4) remains unchanged.
(2) [u1, u2, u3, u4] ± [a1, a2] = [U1, U2, U3, U4], where U1 + U2i + U3j + U4k = (u1 + u2i + u3j +

u4k)(a1 ± a2e). In particular, [a1, a2]± [a3, a4] = [A1, A2], where A1 + A2e = (a1 + a2e)(a3 ± a4e).

In addition, [(t − r)Q(t)] = µ

(t−λ)2−µ2
u2

1−u2
2+u2

3−u2
4

u2
1−u2

2−u2
3+u2

4
+ [u1, u2, u3, u4].

(3) If a3 + a4e = (t − r)m for m ∈ N, then [a3, a4] = mµ[(t − λ)2 − µ2]−1. Moreover, if [a1, a2] = 0, then

a1, a2 are linearly dependent over R.
(4) If a1 + a2e and a3 + a4e are primitive hyperbolic polynomials satisfying [a1, a2] = [a3, a4], then a1 +

a2e = z(a3 + a4e) for z ∈ H.

Proof. 1. Observe that u1u′
2 − u′

1u2 − u3u′
4 + u′

3u4 is the i component of −Q′∗(t)Q(t). If Q(t) is replaced
by sQ(t), then Q′∗(t)Q(t) becomes Q′∗(t)s∗sQ(t) = |s| Q′∗(t)Q(t) and |Q(t)| becomes |s| |Q(t)| . Thus,
condition (4) is clearly unaltered when we write sQ(t) in place of Q(t).

2. Let U1 + U2i + U3j + U4k = (u1 + u2i + u3j + u4k)(a1 + a2e). After the multiplication, we get
U1 = a1u1 + a2u2, U2 = a1u2 + a2u1, U3 = a1u3 + a2u4, U4 = a1u4 + a2u3. Thus, we obtain

[U1, U2, U3, U4] =
U1U′

2 − U′
1U2 − U3U′

4 + U′
3U4

U2
1 − U2

2 − U2
3 + U2

4

=
(u2

1 − u2
2 − u2

3 + u2
4)(a1a′2 − a′1a2) + (u1u′

2 − u′
1u2 − u3u′

4 + u′
3u4)(a2

1 − a2
2)

(u2
1 − u2

2 − u2
3 + u2

4)(a2
1 − a2

2)

=
a1a′2 − a′1a2

a2
1 − a2

2
+

u1u′
2 − u′

1u2 − u3u′
4 + u′

3u4

u2
1 − u2

2 − u2
3 + u2

4

= [a1, a2] + [u1, u2, u3, u4].

When U1 + U2i + U3j + U4k = (u1 + u2i + u3j + u4k)(a1 − a2e), similarly one can get
[U1, U2, U3, U4] = [u1, u2, u3, u4] − [a1, a2]. As a result, when A1 + A2e = (a1 + a2e)(a3 ± a4e) in
particular, [A1, A2] = [a1, a2]± [a3, a4] is obtained.
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Let (t − r)Q(t) = ((t − λ)u1 − µu2) + ((t − λ)u2 − µu1)i + ((t − λ)u3 + µu4)j + ((t − λ)u4 +

µu3)k =U1 + U2i + U3j + U4k. Then, we obtain

[(t − r)Q(t)] = [U1, U2, U3, U4]

=
U1U′

2 − U′
1U2 − U3U′

4 + U′
3U4

U2
1 − U2

2 − U2
3 + U2

4

=
µ(u2

1 − u2
2 + u2

3 − u2
4) + ((t − λ)2 − µ2)(u1u′

2 − u′
1u2 − u3u′

4 + u′
3u4)

((t − λ)2 − µ2)(u2
1 − u2

2 − u2
3 + u2

4)

=
µ

(t − λ)2 − µ2

u2
1 − u2

2 + u2
3 − u2

4

u2
1 − u2

2 − u2
3 + u2

4

+ [u1, u2, u3, u4].

3. For m = 1, it is clear that the equality is satisfied. With the help of the second part of the item
2, the first part is proved by induction on m. Now let [a1, a2] = 0. We get a1a′2 = a′1a2 and so the
Wronskian W(a1, a2) vanishes, which shows that a1, a2 are linearly dependent over R.

4. Suppose that a1 + a2e and a3 + a4e are monic. Hence, deg(a1) > deg(a2) and deg(a3) >

deg(a4). Since [a1, a2] = [a3, a4], (a1 + a2e)(a3 − a4e) = (a1a3 − a2a4) + (a2a3 − a1a4)e, item 2 implies
that [a1a3 − a2a4, a2a3 − a1a4] = 0, and therefore a1a3 − a2a4 and a2a3 − a1a4 are linearly dependent.
But deg(a1a3 − a2a4) > deg(a2a3 − a1a4), thus a2a3 − a1a4 = 0. This shows that a1 = a3, a2 = a4.
Now, let z1, z2 ∈ H be such that z1(a1 + a2e) and z2(a3 + a4e) are monic. Item 1 implies that [z1(a1 +

a2e)] = [z2(a3 + a4e)] and thus z1(a1 + a2e) =z2(a3 + a4e). Therefore, a1 + a2e = z−1
1 z2(a3 + a4e), as

required.

Definition 4. Let Q(t) be a primitive split quaternion polynomial of degree n and h(t) be a primitive hyperbolic

polynomial of degree m, satisfying (4). Then the MPH curve α(t) with the hodograph α′(t) = Q(t)iQ∗(t) is

called of type (n, m) curve.

Definition 5. For all z, w ∈ H, the map

ϕ : H × H → R
3
1

defined by

ϕ(z, w) = (|z| − |w| , 2Re(zw),−2Hyp(zw)),

is called Minkowski-Hopf map.

Let α(t) be a spatial MPH curve which is represented by Q(t) and h1(t) = u1(t) + eu2(t), h2(t) =

u4(t) + eu3(t) be hyperbolic polynomials. Then, it can be easily shown that the hodograph of α(t) can
be given in the Minkowski-Hopf map form as follows,

α′(t) = (|h1(t)| − |h2(t)| , 2 Re(h1(t)h2(t)),−2Hyp(h1(t)h2(t))) (6)

= ϕ(h1(t), h2(t)).

Using the Minkowski-Hopf map representation (6), one can easily see that the RRMF condition (4) is
equivalent to satisfaction of

Hyp(h1h′1 + h2h′2)
|h1|+ |h2|

=
Hyp(hh′)

|h| . (7)

Remark 1. When h(t) is real polynomial or constant, the angle θ(t) between the ERF and RRMF is constant.

This is equivalent to

Hyp(h1h′1 + h2h′2) = 0. (8)
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So, we may consider (8) as the condition for ERF to be rotation minimizing. Note that in view of (4)

condition (8) is equivalent to

scal(Q(t)iQ′∗(t)) = 0. (9)

Lemma 2. Let u1(t),u2(t), u3(t), u4(t) are polynomials of degree m ≥ 1. Then hyperbolic values µ, ν exist

such that under the map [
h1(t)

h2(t)

]
→

[
µ −ν

ν µ

] [
h1(t)

h2(t)

]
(10)

the transformed polynomials u2(t), u3(t), u4(t) are of degree m − 1 at most.

Proof. If we write h1(t) = cmtm + · · · + c1t + c0 and h2(t) = dmtm + · · · + d1t + d0, where ci =

u1i + eu2i and di = u4i + eu3i for i = 0, . . . , m, the coefficients transform according to

[
ci

di

]
→

[
µ −ν

ν µ

] [
ci

di

]

for i = 0, . . . , m. In particular, with the choices µ = cm
|cm |+|dm | and ν = − dm

|cm |+|dm | , we obtain (cm, dm) →
(1, 0).

Remark 2. By Lemma 2, we can take u1(t) = tm + · · ·+ u11t + u10 and u2(t), u3(t), u4(t) are of degree

m − 1 at most. (u1(t), u2(t), u3(t), u4(t)) polynomial quadruple in this form is called normal.

Lemma 3. If the RRMF condition (7) is satisfied by hyperbolic polynomials h1(t), h2(t) and h(t), also it is

satisfied when they are replaced by µh1(t)− νh2(t), νh1(t) + µh2(t) and ηh(t) for any hyperbolic numbers

(µ, ν) 6= (0, 0) and η 6= 0.

Proof. For hyperbolic numbers (µ, ν) 6= (0, 0), application of the transformation (10) to the
polynomials h1(t), h2(t) leads to

|h1|+ |h2| → (|µ|+ |ν|)(|h1|+ |h2|),
h1h′1 + h2h′2 → (|µ|+ |ν|)(h1h′1 + h2h′2),

and hence the left-hand side of (7) remains unchanged. Similarly, we have Hyp(hh′) → |η|Hyp(hh′)
and |h| → |η| |h| when h → ηh, and therefore the other side of (7) is unaltered.

Remark 3. Lemma 3 shows that the transformation (10) does not influence the RRMF property of a spatial

MPH curve.

Theorem 4. Let Q(t) be defined by the normal quadruple (u1(t), u2(t), u3(t), u4(t)) and α(t) be a MPH

curve with hodograph α′(t) = Q(t)iQ∗(t). Then,

(1) α(t) is planar, other than a straight line, if and only if

(u2
3 − u2

4)(u1u′
2 − u′

1u2) = (u2
1 − u2

2)(u3u′
4 − u′

3u4), (11)

with (u3(t), u4(t)) 6= (0, 0).
(2) α(t) is a straight line if and only if (u3(t), u4(t)) = (0, 0).

Proof. The necessary and sufficient condition for α(t) to be planar is linearly dependence of
x′(t), y′(t), z′(t). Since we consider the normal form, from (3), x′(t) is of degree 2m, while y′(t), z′(t)
are of degree 2m − 1 at most. Hence, α(t) is planar if and only if y′(t) and z′(t) are linearly dependent,
i.e., y′z′′ = y′′z′, which is equivalent to (11). On the other hand, when α(t) is a straight line, x′(t), y′(t)
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and x′(t), z′(t) are linearly dependent, respectively. Similarly, from the normal form, we derive
y′(t) = z′(t) = 0, which shows u3(t) = u4(t) = 0, because of u2

1(t) + u2
2(t) 6= 0. The converse is

trivial.

4. Type (n, m) Curves of Low Degree

Let α(t) be the MPH curve generated by the quadratic split quaternion polynomial Q(t) which is
in normal form. This section is devoted to derivation of the necessary and sufficient conditions for a
MPH curve α(t) to be of type (2, 1) and (2, 0), when Q(t) is expressed in a factorization form

Q(t) = (t − C1)(t − C2), (12)

with
C1 = γ0 + γ1i + γ2j + γ3k ∈H̃,

and
C2 = β0 + β1i + β2j + β3k ∈H̃.

Let
w = scal(Q(t)iQ′∗(t)) = w2t2 + w1t + w0, (13)

be the negative of the numerator on the left side in (4) and

σ = |Q(t)| = t4 + σ3t3 + σ2t2 + σ1t + σ0, (14)

be its denominator.
Since split quaternions are not division algebra and contain zero divisors, factorization as (12) is

not possible for every quadratic split quaternion polynomial. Now, we present two results which are
given in Scharler et al. (2020) and state conditions for the factorizability of quadratic split quaternion
polynomials. Let Q(t) = t2 + bt + c be a quadratic split quaternion polynomial where b = b0 + b1i +

b2j + b3k,c = c0 + c1i + c2j + c3k ∈H̃ and |Q(t)| 6= 0.

Theorem 5. If the coefficients {1, b, c} are linearly independent, then Q admits a factorization, (Scharler et al.,

2020).

Theorem 6. Let the coefficients {1, b, c} are linearly dependent.

(1) If b = 0 and c = c0 ∈ R, then Q admits infinitely many factorizations.
(2) If b = 0 and c ∈ H̃ \R, then Q admits a factorization if and only if vect(c)vect(c)∗ > 0 or cc∗ ≥ 0 and

c0 < 0.
(3) Let b ∈ H̃ \R, b0 = 0 and c = λ + µb where λ, µ ∈ R. Then,

• if bb∗ > 0, then Q admits a factorization.
• if bb∗ = 0, then Q admits a factorization if and only if λ + µ2 = 0 or λ < 0.
• if bb∗ < 0, then Q admits a factorization if and only if λ + µ2 = 0 or bb∗ + 4λ < 0 and bb∗ + 4λ ≤

4µ
√
−bb∗ ≤ −(bb∗ + 4λ), (Scharler et al., 2020).

We assume that Q satisfies the necessary factorizability conditions and admits a factorization as
(12).

4.1. MPH Curves of Type (2,1)

The quintic MPH curve α(t) is of type (2, 1) if and only if polynomials a1(t), a2(t) exist with
gcd(a1(t), a2(t)) is constant, a1(t) + ea2(t) is a linear hyperbolic polynomial and

−w

σ
=

a1(t)a′2(t)− a′1(t)a2(t)

a2
1(t)− a2

2(t)
.
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Since a1(t) or a2(t) is linear and they are relatively prime, by Lemmas 2 and 3, we can take
a1(t) = t − ξ, a2(t) = η for ξ, η ∈ R with η 6= 0. Expanding (14), we obtain

σ3 = −2(γ0 + β0), σ2 = |C1|+ |C2|+ 4γ0β0,

σ1 = −2(γ0 |C2|+ β0 |C1|), σ0 = |C1| |C2| .

Since

Q(t) = t2 − (C1 + C2)t + C1C2

= t2 − (γ0 + β0)t + γ0β0 + γ1β1 + γ2β2 − γ3β3

+i(−(γ1 + β1)t + γ0β1 + γ1β0 + γ2β3 − γ3β2)

+j(−(γ2 + β2)t + γ0β2 − γ1β3 + γ2β0 + γ3β1)

+k(− (γ3 + β3)t + γ0β3 − γ1β2 + γ2β1 + γ3β0)

and
Q′∗(t) = 2t − (γ0 + β0) + (γ1 + β1)i + (γ2 + β2)j + (γ3 + β3)k,

by substituting in (13), we have that w(t) has coefficients

w2 = −(γ1 + β1),

w1 = 2(γ0β1 + γ1β0 + γ2β3 − γ3β2),

w0 = (γ1 + β1)(γ0β0 + γ1β1 + γ2β2 − γ3β3)− (γ0 + β0)(γ0β1 + γ1β0 + γ2β3 − γ3β2)

−(γ3 + β3)(γ0β2 − γ1β3 + γ2β0 + γ3β1) + (γ2 + β2)(γ0β3 − γ1β2 + γ2β1 + γ3β0).

Thus, the equality

−w

σ
=

−η

t2 − 2ξt + ξ2 − η2

is equivalent to

η = w2,

ησ3 = w1 − 2ξw2,

ησ2 = w2(ξ
2 − η2) + w0 − 2w1ξ, (15)

ησ1 = w1(ξ
2 − η2)− 2w0ξ,

ησ0 = w0(ξ
2 − η2).

Since η = w2 6= 0, we get

ξ =
w1 − w2σ3

2w2
,

and hence we obtain that curve α(t) is of type (2, 1) if and only if

ξ =
w1 − w2σ3

2w2
and η = w2,

and these values must satisfy the last three equations of system (15). Thus, the following theorem is
proved.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 January 2023                   doi:10.20944/preprints202301.0032.v1

https://doi.org/10.20944/preprints202301.0032.v1


11 of 14

Theorem 7. Let Q(t) = (t−C1)(t−C2) with C1 = γ0 +γ1i+γ2j+γ3k,C2 = β0 + β1i+ β2j+ β3k ∈H̃.
Set w = scal(Q(t)iQ′∗(t)) = w2t2 + w1t + w0 and σ = |Q(t)| = t4 + σ3t3 + σ2t2 + σ1t + σ0. Then the

MPH curve generated by the split quaternion polynomial Q(t) is of type (2, 1) if and only if the system

ησ2 = w2(ξ
2 − η2) + w0 − 2w1ξ,

ησ1 = w1(ξ
2 − η2)− 2w0ξ,

ησ0 = w0(ξ
2 − η2)

has the solution

(ξ, η) = (
w1 − w2σ3

2w2
, w2).

Example 1. Let Q(t) = (t − 1 + j − k)(t − 1 − i − 2j + k) be a split quaternion polynomial which defines a

MPH quintic curve α(t). We can easily see that

w0 = 1, w1 = 0, w2 = −1,

σ0 = −3, σ1 = 4, σ2 = 2, σ3 = −4,

ξ = 2, η = −1

and the system of Theorem 7 is verified by the values of ξ, η. Thus, Q(t) defines a MPH curve of type (2, 1).
One can easily see that

Q(t) = (t2 − 2t)− it + j(−t + 2)− k,

so since u1(t) = t2 − 2t, u2(t) = −t, u3(t) = −t + 2, u4(t) = −1, according to condition (2) we find

α′(t) = (t4 − 4t3 + 4t2 − 4t + 3,−4t2 + 8t,−2t3 + 8t2 − 10t).

By integrating α′(t), we obtain the MPH curve α(t) of type (2, 1) with the initial condition α(0) = (0, 0, 0)
as follows,

α(t) = (
1
5

t5 − t4 +
4
3

t3 − 2t2 + 3t,−4
3

t3 + 4t2,−1
2

t4 +
8
3

t3 − 5t2).

Since σ = |Q(t)| = t4 − 4t3 + 2t2 + 4t − 3 6= 0, we have t ∈ R \ {−1, 1, 3}. Using Definition 3, one

can easily compute the ERF {g1(t), g2(t), g3(t)} of α(t) as follows,

g1(t) =
(t4 − 4t3 + 4t2 − 4t + 3,−4t2 + 8t,−2t3 + 8t2 − 10t)

t4 − 4t3 + 2t2 + 4t − 3
,

g2(t) =
(0, t4 − 4t3 + 4t2 + 4t − 5, 2t3 − 4t2 − 2t + 4)

t4 − 4t3 + 2t2 + 4t − 3
,

g3(t) =
(−2t3 + 8t2 − 6t, 2t3 − 4t2 + 2t − 4, t4 − 4t3 + 6t2 − 4t + 5)

t4 − 4t3 + 2t2 + 4t − 3
.

Since a1(t) = t − 2 and a2(t) = −1, from Theorem 2, a RRMF {f1(t), f2(t), f3(t)} of α(t) is obtained as

follows,

f1(t) = g1(t),

f2(t) =
t2 − 4t + 5
t2 − 4t + 3

g2(t) +
−2t + 4

t2 − 4t + 3
g3(t),

f3(t) =
−2t + 4

t2 − 4t + 3
g2(t) +

t2 − 4t + 5
t2 − 4t + 3

g3(t).
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4.2. MPH Curves of Type (2,0)

The MPH curve α(t) is of type (2, 0) i.e., has a rotation minimizing ERF if and only if w(t) = 0.
The last condition is equivalent to

γ1 + β1 = 0, γ0β1 + γ1β0 + γ2β3 − γ3β2 = 0,

(γ2 + β2)(γ0β3 − γ1β2 + γ2β1 + γ3β0) = (γ3 + β3)(γ0β2 − γ1β3 + γ2β0 + γ3β1).

One can easily see that if α(t) is a MPH curve of type (2, 0), then

u1u′
2 − u′

1u2 = 0 and u3u′
4 − u′

3u4 = 0,

where Q(t) = u1(t) + iu2(t) + ju3(t) + ku4(t) is the split quaternion polynomial which generates α(t).
Hence, condition (11) is satisfied, so we obtain that the only MPH quintics with rotation minimizing
ERFs are planar curves.

Suppose that the MPH curve α(t) is a straight line. By Theorem 4, u3(t) = u4(t) = 0. In view of
the above, the curve α(t) is a straight line of type (2, 0) if and only if

γ1 + β1 = 0, γ0β1 + γ1β0 + γ2β3 − γ3β2 = 0,

(γ2 + β2)(γ0β3 − γ1β2 + γ2β1 + γ3β0) = (γ3 + β3)(γ0β2 − γ1β3 + γ2β0 + γ3β1),

γ2 + β2 = 0, γ0β2 − γ1β3 + γ2β0 + γ3β1 = 0,

γ3 + β3 = 0, γ0β3 − γ1β2 + γ2β1 + γ3β0 = 0.

The last equalities lead to
γ0

β0
= −γ1

β1
= −γ2

β2
= −γ3

β3
,

i.e.,
C1 = λC∗

2 , λ ∈ R \ {0} .

Note that if λ = 1, Q(t) is a non-primitive polynomial which is not the case. Thus, the following
theorem is proved.

Theorem 8. Let Q(t) = (t−C1)(t−C2) with C1 = γ0 +γ1i+γ2j+γ3k,C2 = β0 + β1i+ β2j+ β3k ∈H̃.
Set w = scal(Q(t)iQ′∗(t)) = w2t2 + w1t + w0 and σ = |Q(t)| = t4 + σ3t3 + σ2t2 + σ1t + σ0. Then the

MPH curve generated by the split quaternion polynomial Q(t) is of type (2, 0) i.e., has a rotation minimizing

ERF if and only if the following equalities are satisfied,

γ1 + β1 = 0, γ0β1 + γ1β0 + γ2β3 − γ3β2 = 0,

(γ2 + β2)(γ0β3 − γ1β2 + γ2β1 + γ3β0) = (γ3 + β3)(γ0β2 − γ1β3 + γ2β0 + γ3β1). (16)

Moreover, this curve is a straight line if and only if

C1 = λC∗
2 , λ ∈ R \ {0} , λ 6= 1.

Example 2. Let Q(t) = (t − i − 3j + 3k)(t + i − 2j + 2k) be a split quaternion polynomial which defines a

MPH quintic curve α(t). We can easily see that

w0 = 0, w1 = 0, w2 = 0,

σ0 = 1, σ1 = 0, σ2 = −2, σ3 = 0
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and the equalities (16) of Theorem 8 are satisfied. Thus, Q(t) defines a MPH curve of type (2, 0). One can easily

see that

Q(t) = (t2 − 1) + 5j(1−t) + 5k(t − 1),

so since u1(t) = t2 − 1, u2(t) = 0, u3(t) = 5(1 − t), u4(t) = 5(t − 1), according to condition (2) we find

α′(t) = ((t2 − 1)2, 10(t2 − 1)(t − 1), 10(t2 − 1)(1 − t)).

By integrating α′(t), we obtain the MPH curve α(t) of type (2, 0) with the initial condition α(0) = (0, 0, 0)
as follows,

α(t) = (
1
5

t5 − 2
3

t3 + t,
5
2

t4 − 10
3

t3 − 5t2 + 10t,−5
2

t4 +
10
3

t3 + 5t2 − 10t).

Since σ = |Q(t)| = t4 − 2t2 + 1 = (t2 − 1)2 6= 0, we have t ∈ R \ {−1, 1}. Using Definition 3, one can

easily compute the ERF {g1(t), g2(t), g3(t)} of α(t) as follows,

g1(t) = (1,
10

t + 1
,− 10

t + 1
),

g2(t) = (− 10
t + 1

, 1 − 50
(t + 1)2 ,

50
(t + 1)2 ),

g3(t) = (− 10
t + 1

,− 50
(t + 1)2 , 1 +

50
(t + 1)2 ).

Since the MPH curve α(t) is of type (2, 0), its ERF is a RRMF.

5. Conclusions

Leaving null curves aside, we study regular spacelike spatial MPH curves and their
representations with symbolic computation methods. As an alternative to the split quaternion
representation, we give a new characterization of spatial MPH curves in terms of hyperbolic
polynomials using the Minkowski-Hopf map. We show that spatial MPH curves can be obtained from
a hyperbolic polynomial couple using the Minkowski-Hopf map. Then, we prove the necessary and
sufficient conditions for a MPH curve to be planar and to be a straight line.

It’s aimed to characterize spatial MPH curves with RRMFs. In order to obtain the necessary
and sufficient condition for a spatial MPH curve to have a RRMF, we define the ERF for this kind
of curves. Then, we prove that this condition is the existence of polynomials a1(t), a2(t) such that
gcd(a1(t), a2(t)) is constant and

u1u′
2 − u′

1u2 − u3u′
4 + u′

3u4

u2
1 − u2

2 − u2
3 + u2

4

=
a1a′2 − a′1a2

a2
1 − a2

2
,

when Q(t) = u1(t) + iu2(t) + ju3(t) + ku4(t) is the split quaternion polynomial which the spatial
MPH curve is represented. In order to define the concept of type (n, m) curve for spatial MPH curves,
we have to show that the degrees of these polynomials a1(t), a2(t) are uniquely determined. Therefore,
we prove a theorem which shows this uniqueness. Thus, we define the concept of type (n, m) curve for
spatial MPH curves. This concept is a useful tool to characterize spatial MPH curves. We present the
results obtained in Scharler et al. (2020) which state the conditions for the factorizability of quadratic
split quaternion polynomials. We characterize quintic spatial MPH curves of type (2, 1) and (2, 0),
when the quadratic split quaternion polynomial which generates the curve is in normal form and
admits a factorization. We give illustrative examples for these types of quintic spatial MPH curves.
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