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Abstract 

Meta-analysis is central to evidence-based medicine, yet much of the biomedical literature continues 
to rely on software with outdated statistical defaults. Legacy programs such as RevMan 5.4 and 
MetaDiSc 1.4 persist in practice despite their reliance on the DerSimonian–Laird estimator and the 
obsolete Moses–Littenberg model for diagnostic test accuracy. Their modern successors—RevMan 7 
and MetaDiSc 2.0—have incorporated robust methods including Restricted Maximum Likelihood 
estimation, Hartung–Knapp–Sidik–Jonkman intervals, prediction intervals, and hierarchical 
bivariate models. However, their dissemination has been limited, and both remain constrained in 
handling more advanced approaches such as Bayesian modelling or network meta-analysis. 
Comprehensive Meta-Analysis, although widely used, raises further concerns about transparency 
and reproducibility due to undisclosed algorithms and unclear defaults. Reliance on fragile defaults 
embeds preventable bias and exaggerated precision into the evidence base. By contrasting legacy 
practices with current methodological standards, this critique provides practical recommendations 
for researchers, reviewers, and editors to promote transparent, reproducible, and methodologically 
sound meta-analytic practice. 

Keywords: RevMan 5.4; Meta-DiSc1.4; comprehensive meta-analysis; REML; HSROC; bivariate; 
Moses-Littenberg; Wald-type intervals; Hartung–Knapp–Sidik–Jonkman adjustment 
 

Introduction 

Meta-analysis is now regarded as the highest tier of evidence, shaping guidelines, clinical 
decisions, and health policies worldwide. However, a paradox has emerged: while statistical 
methodology for evidence synthesis has advanced substantially [1,2]—progressing from simple 
DerSimonian–Laird (DL) estimators [3] to more robust random-effects approaches such as restricted 
maximum likelihood (REML) [4,5] or Paule-Mandel (PM) [6,7], from traditional Wald-type (WT) 
confidence intervals [3] to more conservative Hartung–Knapp–Sidik–Jonkman (HKSJ) adjustments 
[8–14], and from outdated diagnostic models like Moses–Littenberg [15] to the hierarchical bivariate 
model (Reitsma et al.) [16] and the hierarchical summary ROC (HSROC) model (Rutter and Gatsonis) 
[17,18]—the software actually used to generate most published meta-analyses has stagnated. 

The persistence of outdated software in meta-analysis reflects not methodological superiority, 
but accessibility and habit. Early programs gained widespread adoption because they were free, user-
friendly, or officially endorsed, while commercial alternatives were comparatively affordable and 
easy to use [19]. In contrast, modern solutions often require greater statistical literacy or costly 
licenses, creating barriers to adoption despite their clear methodological advantages. This mismatch 
has created a worrying disconnect. On the one hand, Cochrane and leading methodologists explicitly 
caution against outdated estimators and promote advanced, reproducible tools. On the other hand, 
much of the biomedical community continues to rely on legacy software that neither implements 
modern estimators nor ensures transparency. 

The deeper problem, however, goes beyond software versions. Meta-analysis is not a routine 
calculation but a sophisticated modeling exercise that requires methodological expertise, clinical 
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judgment, and interpretive caution. Simplified interfaces may lower the technical threshold, but they 
also foster the illusion that valid meta-analysis is merely a matter of loading data and reading 
outputs. By distributing free and accessible programs to a global research community, the field has 
unintentionally encouraged widespread use by individuals without the necessary training to 
evaluate models, assumptions, or limitations critically. The result is a proliferation of analyses that 
are statistically convenient but methodologically fragile. This phenomenon is further exacerbated by 
the ‘point-and-click’ paradigm itself: interfaces designed to minimize friction can paradoxically 
discourage critical engagement with underlying assumptions, fostering a culture of uncritical 
acceptance of defaults. While accessibility is important, over-reliance on automated menus and 
opaque outputs can transform meta-analysis from a modeling exercise requiring judgment into a 
mechanical task of clicking buttons and reporting results. Such convenience, when coupled with 
hidden defaults, creates a dangerous dependence that undermines methodological rigor. This inertia, 
however, cannot be reduced to individual habit alone. It reflects a broader ecosystem failure: medical 
and public health curricula often normalize outdated tools, institutional IT and licensing barriers 
discourage transitions, and peer review rarely enforces methodological standards. The persistence of 
legacy software is thus not merely a matter of users clicking the wrong buttons, but the outcome of 
structural forces in education, institutional policy, and academic publishing that sustain these fragile 
defaults 

This has generated a silent epidemic of methodological fragility: thousands of meta-analyses 
published annually are built on outdated statistical engines, embedding preventable biases and a 
false sense of precision into the evidence base at its highest level. At the heart of this epidemic lie 
hidden defaults—automatic estimators, continuity corrections, and study exclusions applied without 
user awareness—that silently distort results. The purpose of this article is to critically examine the 
limitations of legacy meta-analysis software, trace the historical and practical reasons for their 
persistence, and outline feasible solutions for a transition toward robust and transparent tools 

From Legacy Defaults to Modern Standards: The Evolution of User-Friendly 
Meta-Analysis Software 

Review Manager (RevMan): A Tale of Two Versions 

RevMan, the flagship software of Cochrane, exemplifies the challenge of methodological 
transition. For decades, its desktop version, RevMan 5.4, was the most widely used tool for systematic 
reviews, largely due to its accessibility and official endorsement. However, its statistical engine is 
now profoundly outdated.   

• For intervention reviews, RevMan 5.4 [20] defaults to the DL estimator for random-effects 
models—a paradigmatic hidden default. The dominance of the DL estimator did not arise 
arbitrarily: its computational simplicity and early endorsement facilitated widespread adoption. 
In scenarios with a large number of studies and low heterogeneity, its performance is often 
comparable to more advanced estimators. The main limitation, as consistently shown in 
simulation studies, is its poor performance in meta-analyses with few studies and/or substantial 
heterogeneity, where τ2 is systematically underestimated and confidence intervals become 
misleadingly narrow. More robust alternatives such as REML or PM are absent in RevMan 5.4, 
as are HKSJ adjustments that correct the well-documented deficiencies of Wald-type intervals. 
Prediction intervals—now considered essential for interpreting clinical heterogeneity—are also 
not provided. Even the graphical outputs are problematic: forest plots often apply a confusing 
label, “M-H, Random,” which is inherently contradictory. The Mantel-Haenszel (MH) method 
is a fixed-effect approach by definition, yet the software applies the DL random-effects 
estimator, creating a significant source of confusion for users. 

• In diagnostic test accuracy (DTA) reviews, the limitations are even more severe. RevMan allows 
manual entry of bivariate HSROC parameters but does not estimate them directly from the data. 
Sensitivity and specificity are modeled separately rather than within a proper hierarchical 
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bivariate framework, undermining the joint estimation of test accuracy. In practice, the software 
continues to generate Moses–Littenberg summary ROC curves—a model abandoned more than 
a decade ago—without providing hierarchical estimates that reflect between-study variability. 
This approach, by forcing a symmetric SROC and treating the regression slope as a threshold 
effect, systematically overstates accuracy compared with hierarchical models [18]. 

Beyond these domain-specific flaws, RevMan lacks the flexibility to fit meta-regression models 
with modern estimators, to conduct advanced sensitivity analyses, or to generate outputs compatible 
with transparent reproducibility. More sophisticated approaches, such as Bayesian modeling, 
network meta-analysis, or hierarchical frameworks for complex data structures, are entirely 
unavailable. 

Perhaps most concerning is the symbolic dissonance: while Cochrane methodologists 
increasingly recommend moving beyond DL and toward hierarchical, robust, and reproducible 
frameworks, many Cochrane reviews themselves continue to be published using RevMan 5.4. This 
gap between official methodological guidance and actual practice not only perpetuates outdated 
analyses but also legitimizes their use by researchers outside Cochrane, reinforcing a cycle of inertia 
in evidence synthesis. 

In a major and timely update, Cochrane has overhauled the statistical framework in its current 
platform, RevMan Web (version 7), effectively resolving most of the critical limitations of its 
predecessor [21]. 

• Robust Default Estimator: The default estimator for τ2 is now REML, with DL remaining as a 
user-selectable option.   

• HKSJ Confidence Intervals: The HKSJ adjustment is now available for calculating CIs for the 
summary effect, providing better coverage properties than traditional Wald-type intervals.   

• Prediction Intervals: The software now calculates and displays prediction intervals on forest 
plots, enhancing the interpretation of heterogeneity by showing the expected range of effects in 
future studies.   

This overhaul represents an important course correction. The problem, however, is no longer 
the availability of modern methods within the Cochrane ecosystem, but the institutional and user 
inertia that sustains the use of RevMan 5.4. The resulting gap between Cochrane’s methodological 
standards and the practices of many researchers continues to generate preventable bias. At the same 
time, RevMan Web—despite these substantial improvements—remains less versatile than script-
based platforms such as R or Stata, as it does not support user-defined meta-regression, network 
meta-analysis, or Bayesian extensions, thereby limiting its value for advanced evidence synthesis. 
Lastly, regarding DTA models, RevMan 7 does not internally fit hierarchical models (bivariate or 
HSROC). However, it allows importing externally estimated parameters (e.g., from R or Stata) to 
generate SROC plots and display confidence and prediction regions. This partial functionality 
underscores the limited versatility of RevMan 7 compared with script-based platforms. 

MetaDiSc: From Obsolete Modelling to a Limited Yet Solid Modern Standard 

MetaDiSc 1.4 was a pioneering free tool for DTA meta-analysis [22], which explains its historical 
persistence. However, its methodology is now considered obsolete. The software pools sensitivity 
and specificity as separate, uncorrelated metrics and uses the Moses-Littenberg model to generate a 
summary ROC curve. 

In 2022, a web-based successor, MetaDiSc 2.0 [23], was released, representing a complete 
departure from the flawed methods of its predecessor. The new version correctly implements the 
current gold standard for DTA synthesis:   

• Bivariate Hierarchical Model: MetaDiSc 2.0 uses a hierarchical random-effects model as its core 
engine, modelling sensitivity and specificity as a correlated pair, correctly acknowledging that a 
test’s performance characteristics are not independent and vary across different study 
populations and settings.   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2025 doi:10.20944/preprints202508.1362.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1362.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 13 

 

• Confidence and Prediction Regions: The software generates both a 95% confidence region for 
the summary point (quantifying uncertainty in the mean estimate) and a 95% prediction region 
(illustrating the expected range of true accuracy in a future study).   

This update makes MetaDiSc 2.0 a methodologically sound tool for standard DTA meta-
analyses. While it may lack the advanced meta-regression capabilities and flexibility of script-based 
platforms like R (mada) or Stata (metadta), its adoption of the correct hierarchical model marks a 
crucial step forward, rendering the continued use of version 1.4 indefensible. 

Although version 2 is available, the reality is that most researchers still use MetaDiSc 1.4, largely 
because it is the version historically cited in methodological literature and more easily accessible 
online. This persistence is problematic because MetaDiSc 1.4 is built on outdated models that no 
longer align with current methodological standards. It analyzes sensitivity and specificity separately, 
ignoring their correlation, and relies on the obsolete Moses–Littenberg approach for summary ROC 
curves. Consequently, the software cannot produce true hierarchical bivariate or HSROC summaries, 
nor does it provide confidence regions or prediction intervals that appropriately capture between-
study variability. 

Comprehensive Meta-Analysis 3 & 4: The Enduring Black Box 

Comprehensive Meta-Analysis (CMA) is a widely used commercial program known for its user-
friendly graphical interface. While popular, it exemplifies the tension between ease of use and the 
scientific principles of transparency and reproducibility. Version 3 became the most widely used 
release [24,25], supported by extensive manuals, tutorials, and applied literature. Its relatively 
affordable license, intuitive interface, and broad marketing made it appealing to clinical researchers 
with limited statistical training, filling an important niche when open-source solutions were still 
immature. However, the program is fundamentally a closed, proprietary “black-box”: algorithms are 
undisclosed, no source code or variance formulas are available, and it remains unclear how certain 
models are internally defined. Methodologically, CMA3 remains anchored in outdated defaults: it 
appears to rely on DL estimators for random effects (as some meta-epidemiological studies have 
shown) [26], lacks REML or PM options, does not implement HKSJ adjustments, omits prediction 
intervals, and provides only limited and suboptimal facilities for meta-regression. Importantly, this 
attribution is based on findings from independent methodological reviews rather than official CMA 
documentation, since the program does not disclose its internal algorithms. Although CMA version 
4 was released in 2023 [27], the official website and manuals still predominantly reference version 3, 
creating uncertainty about what has truly been updated. Publicly available documentation provides 
little detail beyond interface refinements and report generation features, leaving it unclear whether 
core methodological limitations have been addressed. This lack of transparency perpetuates the same 
concerns: without open access to its algorithms or a clear account of new functionalities, CMA 
remains poorly aligned with modern standards of reproducibility and methodological rigor. Notably, 
the promotional materials for CMA version 4 remain silent on any fundamental methodological 
updates, further reinforcing concerns that its underlying statistical engine may remain obsolete. 

A comparative overview of the main software platforms, their accessibility, requirements, and 
current limitations is provided in Table 1. Figure 1 presents a chronological overview of software 
developments for meta-analysis, tracing the shift from early, limited programs to more recent 
platforms. The timeline highlights how successive releases have progressively expanded 
methodological options and transparency. 
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Figure 1. Chronological overview of key software advances for conducting meta-analyses, illustrating the 
transition from early limited programs to modern platforms with expanded functionality and transparency. 

Table 1. Characteristics, strengths, and limitations of major meta-analysis software. 

Software Domain focus 
Main strengths 

(historical) 
Major limitations 

Status / 
maintenance 

Adequacy 

RevMan 5.4 
Interventions, 

DTA 

Free, official 
Cochrane tool, 

intuitive 
interface 

DL only, WT CIs, 
no PIs, obsolete 
DTA models, no 

advanced 
regression or 

Bayesian/network 
options 

Obsolete, 
replaced by 
RevMan 7 


�� 

RevMan 7 
(Web) 

Interventions, 
DTA 

Successor to 
RevMan 5.4, 

updated 
interface, 

integration with 
Cochrane 
systems 

No full 
hierarchical DTA 
implementation 

Still limited 
compared to 

R/Stata in 
advanced 

modeling (e.g. 
lack of user-

adjustable meta-
regression or 

network meta-
analysis) 

Actively 
maintained, 
solves many 

problems of 5.4 


�� 

MetaDiSc 1.4 DTA First free tool for 
diagnostic meta-

Separate Se/Sp, 
Moses–Littenberg 

only, no 

Still widely 
used despite 
release of v2 


�� 
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analysis, simple 
interface 

hierarchical 
modeling, no 

CIs/PIs 

MetaDiSc 2 DTA 

Modernized 
interface, 

implementation 
of hierarchical 

models 

Lacks the 
advanced 

flexibility of 
script-based 

platforms (e.g., 
handling multiple 

covariates, non-
linear models, or 

advanced 
influence 

diagnostics). 
Limited 

reproducibility 
compared to code-

based solutions. 

Released but 
limited 

adoption; 
partially solves 

1.4 problems 


�� 

CMA 3 Interventions 

Affordable, easy 
GUI, widely 

adopted in early 
2000s 

Closed code, 
black-box outputs, 

default DL, no 
HKSJ, limited 
estimators, no 

transparency or 
reproducibility 

Commercial; 
not updated to 

current 
methods 


�� 

CMA 4 Interventions 

Affordable, easy 
GUI, 

implementation 
of PIs  

Core model 
settings (e.g. 
estimator, CI 

method) remain 
undisclosed and 

presumably 
unchanged; 
problems of 

transparency and 
reproducibility 

persist 

Commercial; 
not clarified if 

updated to 
current 

methods 


�� 

R (metafor, 
meta, mada) 

Interventions, 
DTA, 

advanced 

Full 
implementation 

of robust 
estimators, 

transparency, 
reproducibility, 

continuous 
updates 

Requires statistical 
literacy and 
coding skills 

Actively 
maintained, 

methodological 
gold standard 


�� 

Stata (meta, 
metadta, 
midas, 

metandi) 

Interventions, 
DTA 

Robust, 
validated 

commands, 
widely used in 

applied research 

Commercial 
license required, 
statistical literacy 

needed 

Actively 
maintained, 

highly reliable 

�� 

Legend: 
�� Robust and up to date (implements current recommended models and estimators); 
�� Restricted 
capabilities despite modern modelling (offers partial or limited implementation of current methods); 
�� 
Outdated/problematic (relies on obsolete estimators or defaults). DTA: Diagnostic Test Accuracy; GUI: Graphical 
User Interface; CMA: Comprehensive Meta-Analysis; HKSJ: Hartung–Knapp–Sidik–Jonkman; CI: Confidence Intervals; 
PI: Prediction Intervals; WT: Wald-Type; DL: DerSimonian–Laird; Se: Sensitivity; Sp: Specificity. 

Current Methodological Standards for Meta-Analytic Modelling (Intervention 
Reviews) 
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Modeling (Estimator) 

Random-effects models should be fitted using robust estimators of between-study variance, 
most commonly REML or PM [1]. These approaches provide more stable and less biased estimates of 
τ2 than traditional methods of moments based on inverse-variance weighting, such as DL. Between 
the two, REML is generally preferred because PM, while robust in many scenarios, may produce 
positively biased estimates of τ2 when study sample sizes vary greatly [6,7]. This nuance reinforces 
REML as the default recommendation in most applications, with PM serving as a reasonable 
alternative under more homogeneous conditions 

Confidence Intervals 

For confidence intervals, two complementary approaches are recommended. WT intervals are 
widely used but tend to be anti-conservative, often producing confidence limits that are too narrow. 
In contrast, the HKSJ adjustment accounts for the uncertainty of τ2 and generally provides better 
coverage, but may be overly conservative (i.e., produce excessively wide confidence intervals) when 
the number of studies is very small (e.g., k < 5) and heterogeneity is low. The modified Hartung–
Knapp adjustment (mHK) was specifically designed to address one of the main criticisms of the 
original HKSJ: that when τ2 is close to zero, the confidence interval can become excessively wide and 
overly conservative. Also, methodological studies have shown that HKSJ may result in false positive 
findings when the heterogeneity is absent [28]. By stabilizing the interval in such cases, mHK ensures 
more balanced coverage while preserving the methodological advantages of HKSJ. 

For meta-analyses with more than two studies and τ2 > 0, HKSJ-adjusted intervals are generally 
preferred [1]. However, when only a few studies are available, it can be informative to present both 
REML WT and REML HKSJ-adjusted intervals, thereby offering complementary perspectives on 
precision [1]. In all cases, prediction intervals should also be reported to quantify the expected range 
of effects in new or future studies, enhancing clinical interpretability. 

Heterogeneity 

Assessment of heterogeneity should extend beyond I2, which is sensitive to the number of 
studies and does not quantify absolute variability. Reporting τ2 alongside its confidence interval, 
examining forest plots, and presenting prediction intervals are essential for contextualizing results 
[1]. Sensitivity analyses exploring the influence of individual studies or methodological features 
should also be incorporated, and where possible, sources of heterogeneity should be explored 
through meta-regression using robust estimators [1]. 

Current Methodological Standards for Meta-Analytic Modelling (Diagnostic 
Test Accuracy Reviews) 

Modeling (Estimator) 

Diagnostic test accuracy meta-analyses should be based on hierarchical models that jointly 
model sensitivity and specificity rather than analyzing them separately [29–32]. The bivariate 
random-effects model and the HSROC model are the recommended frameworks [2]. Both approaches 
account for within- and between-study variability and incorporate the correlation between sensitivity 
and specificity, a feature essential for realistic summaries. These models also allow explicit 
parameterization of threshold effects, making it possible to account for differences in test positivity 
criteria across studies—an issue that cannot be addressed by obsolete methods such as Moses–
Littenberg [2,15]. 

Intervals 

In DTA synthesis, uncertainty should be expressed not only through point estimates but also via 
confidence regions around the summary point and prediction regions that reflect expected variability 
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across future or external populations. Reporting both enhances interpretability: confidence regions 
quantify the precision of the pooled estimate, while prediction regions indicate how test performance 
is likely to vary in practice. Together, these outputs provide a fuller and more clinically meaningful 
representation of diagnostic accuracy [2]. 

Heterogeneity 

Exploring heterogeneity is critical in DTA synthesis, as variability often arises from differences 
in patient spectrum, thresholds, study design, and test interpretation. Hierarchical models address 
this by allowing random effects at both the sensitivity and specificity levels, and by explicitly 
incorporating threshold effects [2]. Despite this, it remains common for authors to report univariate 
heterogeneity metrics such as I2 or Cochran’s Q separately for sensitivity and specificity. This practice 
is inadequate, as it ignores the inherent correlation between the two measures and can produce 
misleading or inflated impressions of variability. The appropriate metrics are the estimated between-
study variances of sensitivity and specificity, together with the covariance or threshold effect (e.g., 
the Zhou bivariate measure) [33]. Beyond model-based variance components, heterogeneity should 
also be examined through subgroup analyses, covariate-adjusted meta-regression, and visual 
inspection of summary ROC plots. Whenever possible, prediction regions should be presented to 
illustrate the extent to which diagnostic performance is expected to vary in real-world settings. 

Figure 2 depicts the key milestones in the development of statistical methods for meta-analysis, 
from the earliest estimators of heterogeneity to the introduction of more robust hierarchical models. 
This timeline illustrates how methodological innovations progressively addressed previous 
limitations and consolidated more rigorous standards for quantitative synthesis. 

 

Figure 2. Timeline of major methodological milestones in the statistical development of meta-analysis, from early 
estimators of heterogeneity to advanced hierarchical models. 
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Consequences for Evidence Synthesis 

The widespread reliance on outdated meta-analysis software is not a benign artifact of history, 
but a methodological liability with direct consequences for the biomedical literature. When programs 
default to suboptimal estimators such as DL, fail to implement robust confidence intervals, and omit 
prediction intervals, they systematically underestimate uncertainty. 

These distortions are not merely statistical. Inflated certainty translates into misleading 
conclusions, which may subsequently shape clinical guidelines, inform regulatory decisions, and 
influence patient care. In diagnostic accuracy reviews, reliance on obsolete models such as Moses–
Littenberg leads to summary curves that ignore between-study variability and correlation between 
sensitivity and specificity, ultimately overstating the performance of diagnostic tests. The credibility 
of the evidence base is thus compromised at its foundation. Even robust random-effects models 
estimate a statistical average across heterogeneous studies, which may not reflect effects in real-world 
populations. As emphasized in the causal inference literature [34], pooling across disparate 
populations risks limited transportability. Thus, pooled estimates—even with REML or HKSJ—
should be interpreted cautiously in terms of their applicability. 

Equally concerning is the impact on reproducibility and transparency. Closed or rigid software 
environments foster a culture where meta-analyses are treated as mechanical outputs rather than 
modeling exercises requiring critical judgment. Without access to underlying code, results cannot be 
independently audited, replicated, or extended. This disconnect undermines confidence in published 
reviews and perpetuates the illusion that adherence to legacy tools is equivalent to methodological 
rigor, when in fact it represents the opposite. 

Specific methodological pitfalls attributable to legacy software, and the recommended 
alternatives, are outlined in Table 2. 

Table 2. Main modeling problems attributable to outdated or inadequate meta-analysis software, their 
methodological implications, and recommended solutions. 

Suboptimal modeling 
practice 

Software Why it is problematic 
Solution / 

Recommended 
alternative 

Random-effects with DL RevMan 5.4, CMA 

Underestimates 
between-study variance 

(τ²), produces overly 
narrow CIs 

Use REML or PM 
estimators 

WT CIs with k > 2 and τ² 
> 0  

RevMan 5.4, CMA 

Coverage too low, 
especially with few 

studies or high 
heterogeneity 

Apply HKSJ adjustment 
or present both CIs (WT 

and HKSJ). 

No PI RevMan 5.4, CMA 
Fails to quantify 

expected range of effects 
in new settings 

Implement prediction 
intervals in R or Stata 

Separate modeling of Se 
& Sp 

MetaDiSc 1.4 

Ignores correlation 
between Se & Sp → 

biased and incomplete 
inference 

Use hierarchical 
bivariate model 

(Reitsma) 

Moses–Littenberg SROC MetaDiSc 1.4 
Obsolete, produces 

biased summary curve, 
no proper CI or PI 

Use HSROC (Rutter & 
Gatsonis) or bivariate 

model 
No meta-regression with 

robust estimators, no 
multivariable meta-

regression 

RevMan 5.4, MetaDiSc 
1.4, CMA 

Limits exploration of 
heterogeneity 

Use meta-regression in 
R or Stata 

Black-box closed code CMA 
Opaque algorithms, no 
transparency, limited 

reproducibility 

Use script-based 
software (R or Stata) 
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Lack of advanced 
models (Bayesian, 

network, hierarchical) 
All three 

Cannot handle 
complexity of modern 

evidence synthesis 

Use R (netmeta, 
bayesmeta) or Bayesian 

frameworks (JAGS, 
Stan) 

Undeclared continuity 
correction (mHA) 

RevMan 5.4, CMA (NS) 
Artificially inflates effect 
estimates, especially in 

small or zero-cell studies 

Use models handling 
zero cells directly (e.g. 
beta-binomial or Peto 

for rare events; in DTA, 
use bivariate/HSROC); 
alternatively, declare 
correction explicitly. 

CMA: Comprehensive Meta-Analysis; CI: Confidence Interval; DL: DerSimonian–Laird; HSROC: Hierarchical 
Summary Receiver Operating Characteristic; HKSJ: Hartung–Knapp–Sidik–Jonkman; mHA: modified 
Haldane–Anscombe (0.5 continuity correction); NS: Not Specified; PI: Prediction Interval; PM: Paule–Mandel; 
REML: Restricted Maximum Likelihood; Se: Sensitivity; Sp: Specificity; SROC: Summary Receiver Operating 
Characteristic; WT: Wald-Type. 

The Danger of Defaults: Undeclared Corrections and Automatic Exclusions 

An important concern lies in the hidden default operations implemented by legacy software 
without disclosure to the user. Continuity corrections, automatic exclusions, and simplified variance 
structures are frequently applied with no indication in the output. In RevMan 5.4, for example, the 
default workflow applies a fixed zero-cell adjustment—essentially a modified Haldane–Anscombe 
(mHA) correction of 0.5—and excludes studies with zero events in both arms when ratio measures 
are used [35]. This correction is not merely a technical choice; it is a questionable practice that, at the 
very least, requires explicit declaration, as it can introduce bias in rare-event settings. Its persistence 
for years in an ‘official’ Cochrane-endorsed program illustrates how a flawed practice can become 
institutionalized and silently propagated across countless published reviews. The continuity 
correction therefore serves as a paradigmatic case study of the article’s central thesis: that hidden 
defaults in trusted “black-box” software can entrench bias in the evidence base through institutional 
inertia and uncritical reliance. 

These silent operations materially influence effect estimates in sparse-data contexts and may 
mislead readers who remain unaware of the modifications. Alternative approaches allow retention 
of zero–zero studies—for example, the Carter correction, which adds one event and two participants 
per arm—thus preserving estimability without automatic exclusion [36]. Although rare-event meta-
analysis remains inherently challenging, transparency is the essential safeguard. Undeclared 
defaults—whether continuity corrections, exclusions, or simplified variance structures—compromise 
reproducibility and erode confidence in published results. Ultimately, the problem is not the specific 
correction applied, but the hidden and undeclared manner in which it is imposed. 

Call to Action 

The continued use of outdated meta-analysis software is no longer defensible. RevMan 5.4, 
MetaDiSc 1.4, and CMA played a historical role in the dissemination of quantitative synthesis, but 
their limitations are now well documented and directly compromise the validity and reproducibility 
of results. Authors should transition to modern frameworks—whether RevMan 7 [21,37], MetaDiSc 
2, or preferably open and script-based platforms such as R and Stata—that implement robust 
estimators, hierarchical models, and transparent outputs. 

For journal editors: Authors should be required to specify, in the Methods section, which 
estimator of τ2 was used (e.g., DL, REML, PM) and to justify their choice, particularly when non-
robust methods are applied. This explicit reporting standard would close a major gap in transparency 
and prevent the silent perpetuation of obsolete defaults. 

For peer reviewers: Any meta-analysis that relies on the DerSimonian–Laird estimator—
especially with a small number of studies—should be systematically questioned. Reviewers should 
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request sensitivity analyses using robust alternatives such as REML or PM, and ensure that prediction 
intervals and HKSJ adjustments are considered where appropriate. 

For training programs and institutions: Curricula must be updated to reflect contemporary 
methodological standards. Training in meta-analysis should prioritize modern, script-based 
platforms (R, Stata) that enable reproducibility and transparency, while actively discouraging 
reliance on legacy or closed software environments for new research. 

Evidence synthesis underpins guidelines, policy, and patient care: tolerating preventable biases 
introduced by outdated software undermines the very foundation of evidence-based medicine. A 
cultural shift is urgently required, moving from convenience-driven analysis to rigorous, 
reproducible, and methodologically sound meta-analysis. 

Ultimately, reform must address both levels: replacing fragile defaults with robust models, and 
acknowledging that the very target of meta-analysis must evolve from an abstract pooled effect to 
contextually valid estimates for defined populations 

Conclusions 

Meta-analysis is a sophisticated modelling exercise that demands expertise, transparency, and 
judgment. Yet much of the literature still relies on legacy software with fragile defaults and obsolete 
estimators. This is not a benign artifact but an active threat to evidence integrity, embedding bias and 
eroding reproducibility in findings that shape guidelines and policy. Transition to robust estimators, 
hierarchical models, and transparent reporting is essential, with shared responsibility across analysts, 
journals, reviewers, and guideline developers. Updating software is not technical housekeeping but 
a prerequisite for trustworthy evidence-based medicine. 

Table 3. Practical recommendations for moving beyond legacy software. 

Do not use RevMan 5.4, MetaDiSc 1.4, or CMA for performing meta-analyses. 
For intervention reviews: adopt REML or PM estimators with HKSJ-adjusted CIs when 

indicated. Consider mHK as refinement of HKSJ when τ² is close to zero. 
For DTA reviews: use hierarchical bivariate (Reitsma) or HSROC (Rutter & Gatsonis) models. 

Never model Se & Sp separately. 
Always report PIs in random-effects models. 

Favor transparent and reproducible solutions (R: metafor, meta, mada; Stata: meta, metadta, midas). 
Report heterogeneity using the appropriate metrics (intervention: Q, I², τ²; DTA: τ²Se, τ²Sp, ρ), 

avoid univariate I² in DTA. 
Explore heterogeneity properly through meta-regression and subgroup analyses. 

When using methods that require continuity corrections for zero-cell studies (e.g., inverse-
variance with ratio measures), always declare which correction was applied (e.g., mHA, Carter). 

Prefer statistical models that directly handle zero cells, such as those based on the binomial 
likelihood (e.g., bivariate/HSROC models in DTA) 

CMA: Comprehensive Meta-Analysis; CI: Confidence Interval; HSROC: Hierarchical Summary Receiver 
Operating Characteristic; HKSJ: Hartung–Knapp–Sidik–Jonkman; mHK: modified Hartung–Knapp 
adjustment; mHA: modified Haldane–Anscombe (0.5 continuity correction); DTA: Diagnostic Test Accuracy; PI: 
Prediction Interval; PM: Paule–Mandel; REML: Restricted Maximum Likelihood; Se: Sensitivity; Sp: Specificity. 
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