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Abstract

Meta-analysis is central to evidence-based medicine, yet much of the biomedical literature continues
to rely on software with outdated statistical defaults. Legacy programs such as RevMan 5.4 and
MetaDiSc 1.4 persist in practice despite their reliance on the DerSimonian-Laird estimator and the
obsolete Moses-Littenberg model for diagnostic test accuracy. Their modern successors —RevMan 7
and MetaDiSc 2.0 —have incorporated robust methods including Restricted Maximum Likelihood
estimation, Hartung-Knapp-Sidik-Jonkman intervals, prediction intervals, and hierarchical
bivariate models. However, their dissemination has been limited, and both remain constrained in
handling more advanced approaches such as Bayesian modelling or network meta-analysis.
Comprehensive Meta-Analysis, although widely used, raises further concerns about transparency
and reproducibility due to undisclosed algorithms and unclear defaults. Reliance on fragile defaults
embeds preventable bias and exaggerated precision into the evidence base. By contrasting legacy
practices with current methodological standards, this critique provides practical recommendations
for researchers, reviewers, and editors to promote transparent, reproducible, and methodologically
sound meta-analytic practice.

Keywords: RevMan 5.4; Meta-DiScl.4; comprehensive meta-analysis; REML; HSROC; bivariate;
Moses-Littenberg; Wald-type intervals; Hartung—Knapp-Sidik-Jonkman adjustment

Introduction

Meta-analysis is now regarded as the highest tier of evidence, shaping guidelines, clinical
decisions, and health policies worldwide. However, a paradox has emerged: while statistical
methodology for evidence synthesis has advanced substantially [1,2]—progressing from simple
DerSimonian-Laird (DL) estimators [3] to more robust random-effects approaches such as restricted
maximum likelihood (REML) [4,5] or Paule-Mandel (PM) [6,7], from traditional Wald-type (WT)
confidence intervals [3] to more conservative Hartung-Knapp-Sidik-Jonkman (HKS]J) adjustments
[8-14], and from outdated diagnostic models like Moses-Littenberg [15] to the hierarchical bivariate
model (Reitsma et al.) [16] and the hierarchical summary ROC (HSROC) model (Rutter and Gatsonis)
[17,18] —the software actually used to generate most published meta-analyses has stagnated.

The persistence of outdated software in meta-analysis reflects not methodological superiority,
but accessibility and habit. Early programs gained widespread adoption because they were free, user-
friendly, or officially endorsed, while commercial alternatives were comparatively affordable and
easy to use [19]. In contrast, modern solutions often require greater statistical literacy or costly
licenses, creating barriers to adoption despite their clear methodological advantages. This mismatch
has created a worrying disconnect. On the one hand, Cochrane and leading methodologists explicitly
caution against outdated estimators and promote advanced, reproducible tools. On the other hand,
much of the biomedical community continues to rely on legacy software that neither implements
modern estimators nor ensures transparency.

The deeper problem, however, goes beyond software versions. Meta-analysis is not a routine
calculation but a sophisticated modeling exercise that requires methodological expertise, clinical
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judgment, and interpretive caution. Simplified interfaces may lower the technical threshold, but they
also foster the illusion that valid meta-analysis is merely a matter of loading data and reading
outputs. By distributing free and accessible programs to a global research community, the field has
unintentionally encouraged widespread use by individuals without the necessary training to
evaluate models, assumptions, or limitations critically. The result is a proliferation of analyses that
are statistically convenient but methodologically fragile. This phenomenon is further exacerbated by
the ‘point-and-click’ paradigm itself: interfaces designed to minimize friction can paradoxically
discourage critical engagement with underlying assumptions, fostering a culture of uncritical
acceptance of defaults. While accessibility is important, over-reliance on automated menus and
opaque outputs can transform meta-analysis from a modeling exercise requiring judgment into a
mechanical task of clicking buttons and reporting results. Such convenience, when coupled with
hidden defaults, creates a dangerous dependence that undermines methodological rigor. This inertia,
however, cannot be reduced to individual habit alone. It reflects a broader ecosystem failure: medical
and public health curricula often normalize outdated tools, institutional IT and licensing barriers
discourage transitions, and peer review rarely enforces methodological standards. The persistence of
legacy software is thus not merely a matter of users clicking the wrong buttons, but the outcome of
structural forces in education, institutional policy, and academic publishing that sustain these fragile
defaults

This has generated a silent epidemic of methodological fragility: thousands of meta-analyses
published annually are built on outdated statistical engines, embedding preventable biases and a
false sense of precision into the evidence base at its highest level. At the heart of this epidemic lie
hidden defaults—automatic estimators, continuity corrections, and study exclusions applied without
user awareness—that silently distort results. The purpose of this article is to critically examine the
limitations of legacy meta-analysis software, trace the historical and practical reasons for their
persistence, and outline feasible solutions for a transition toward robust and transparent tools

From Legacy Defaults to Modern Standards: The Evolution of User-Friendly
Meta-Analysis Software

Review Manager (RevMan): A Tale of Two Versions

RevMan, the flagship software of Cochrane, exemplifies the challenge of methodological
transition. For decades, its desktop version, RevMan 5.4, was the most widely used tool for systematic
reviews, largely due to its accessibility and official endorsement. However, its statistical engine is
now profoundly outdated.

e For intervention reviews, RevMan 5.4 [20] defaults to the DL estimator for random-effects
models—a paradigmatic hidden default. The dominance of the DL estimator did not arise
arbitrarily: its computational simplicity and early endorsement facilitated widespread adoption.
In scenarios with a large number of studies and low heterogeneity, its performance is often
comparable to more advanced estimators. The main limitation, as consistently shown in
simulation studies, is its poor performance in meta-analyses with few studies and/or substantial
heterogeneity, where 12 is systematically underestimated and confidence intervals become
misleadingly narrow. More robust alternatives such as REML or PM are absent in RevMan 5.4,
as are HKSJ adjustments that correct the well-documented deficiencies of Wald-type intervals.
Prediction intervals—now considered essential for interpreting clinical heterogeneity —are also
not provided. Even the graphical outputs are problematic: forest plots often apply a confusing
label, “M-H, Random,” which is inherently contradictory. The Mantel-Haenszel (MH) method
is a fixed-effect approach by definition, yet the software applies the DL random-effects
estimator, creating a significant source of confusion for users.

¢ Indiagnostic test accuracy (DTA) reviews, the limitations are even more severe. RevMan allows
manual entry of bivariate HSROC parameters but does not estimate them directly from the data.
Sensitivity and specificity are modeled separately rather than within a proper hierarchical

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1362.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2025 d0i:10.20944/preprints202508.1362.v1

3 of 13

bivariate framework, undermining the joint estimation of test accuracy. In practice, the software
continues to generate Moses-Littenberg summary ROC curves—a model abandoned more than
a decade ago—without providing hierarchical estimates that reflect between-study variability.
This approach, by forcing a symmetric SROC and treating the regression slope as a threshold
effect, systematically overstates accuracy compared with hierarchical models [18].

Beyond these domain-specific flaws, RevMan lacks the flexibility to fit meta-regression models
with modern estimators, to conduct advanced sensitivity analyses, or to generate outputs compatible
with transparent reproducibility. More sophisticated approaches, such as Bayesian modeling,
network meta-analysis, or hierarchical frameworks for complex data structures, are entirely
unavailable.

Perhaps most concerning is the symbolic dissonance: while Cochrane methodologists
increasingly recommend moving beyond DL and toward hierarchical, robust, and reproducible
frameworks, many Cochrane reviews themselves continue to be published using RevMan 5.4. This
gap between official methodological guidance and actual practice not only perpetuates outdated
analyses but also legitimizes their use by researchers outside Cochrane, reinforcing a cycle of inertia
in evidence synthesis.

In a major and timely update, Cochrane has overhauled the statistical framework in its current
platform, RevMan Web (version 7), effectively resolving most of the critical limitations of its
predecessor [21].

e  Robust Default Estimator: The default estimator for 2 is now REML, with DL remaining as a
user-selectable option.

e  HKSJ Confidence Intervals: The HKS] adjustment is now available for calculating Cls for the
summary effect, providing better coverage properties than traditional Wald-type intervals.

e  Prediction Intervals: The software now calculates and displays prediction intervals on forest
plots, enhancing the interpretation of heterogeneity by showing the expected range of effects in
future studies.

This overhaul represents an important course correction. The problem, however, is no longer
the availability of modern methods within the Cochrane ecosystem, but the institutional and user
inertia that sustains the use of RevMan 5.4. The resulting gap between Cochrane’s methodological
standards and the practices of many researchers continues to generate preventable bias. At the same
time, RevMan Web—despite these substantial improvements—remains less versatile than script-
based platforms such as R or Stata, as it does not support user-defined meta-regression, network
meta-analysis, or Bayesian extensions, thereby limiting its value for advanced evidence synthesis.
Lastly, regarding DTA models, RevMan 7 does not internally fit hierarchical models (bivariate or
HSROC). However, it allows importing externally estimated parameters (e.g., from R or Stata) to
generate SROC plots and display confidence and prediction regions. This partial functionality
underscores the limited versatility of RevMan 7 compared with script-based platforms.

MetaDiSc: From Obsolete Modelling to a Limited Yet Solid Modern Standard

MetaDiSc 1.4 was a pioneering free tool for DTA meta-analysis [22], which explains its historical
persistence. However, its methodology is now considered obsolete. The software pools sensitivity
and specificity as separate, uncorrelated metrics and uses the Moses-Littenberg model to generate a
summary ROC curve.

In 2022, a web-based successor, MetaDiSc 2.0 [23], was released, representing a complete
departure from the flawed methods of its predecessor. The new version correctly implements the
current gold standard for DTA synthesis:

e  Bivariate Hierarchical Model: MetaDiSc 2.0 uses a hierarchical random-effects model as its core
engine, modelling sensitivity and specificity as a correlated pair, correctly acknowledging that a
test’'s performance characteristics are not independent and vary across different study
populations and settings.
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e  Confidence and Prediction Regions: The software generates both a 95% confidence region for
the summary point (quantifying uncertainty in the mean estimate) and a 95% prediction region
(illustrating the expected range of true accuracy in a future study).

This update makes MetaDiSc 2.0 a methodologically sound tool for standard DTA meta-
analyses. While it may lack the advanced meta-regression capabilities and flexibility of script-based
platforms like R (mada) or Stata (metadta), its adoption of the correct hierarchical model marks a
crucial step forward, rendering the continued use of version 1.4 indefensible.

Although version 2 is available, the reality is that most researchers still use MetaDiSc 1.4, largely
because it is the version historically cited in methodological literature and more easily accessible
online. This persistence is problematic because MetaDiSc 1.4 is built on outdated models that no
longer align with current methodological standards. It analyzes sensitivity and specificity separately,
ignoring their correlation, and relies on the obsolete Moses-Littenberg approach for summary ROC
curves. Consequently, the software cannot produce true hierarchical bivariate or HSROC summaries,
nor does it provide confidence regions or prediction intervals that appropriately capture between-
study variability.

Comprehensive Meta-Analysis 3 & 4: The Enduring Black Box

Comprehensive Meta-Analysis (CMA) is a widely used commercial program known for its user-
friendly graphical interface. While popular, it exemplifies the tension between ease of use and the
scientific principles of transparency and reproducibility. Version 3 became the most widely used
release [24,25], supported by extensive manuals, tutorials, and applied literature. Its relatively
affordable license, intuitive interface, and broad marketing made it appealing to clinical researchers
with limited statistical training, filling an important niche when open-source solutions were still
immature. However, the program is fundamentally a closed, proprietary “black-box”: algorithms are
undisclosed, no source code or variance formulas are available, and it remains unclear how certain
models are internally defined. Methodologically, CMA3 remains anchored in outdated defaults: it
appears to rely on DL estimators for random effects (as some meta-epidemiological studies have
shown) [26], lacks REML or PM options, does not implement HKS] adjustments, omits prediction
intervals, and provides only limited and suboptimal facilities for meta-regression. Importantly, this
attribution is based on findings from independent methodological reviews rather than official CMA
documentation, since the program does not disclose its internal algorithms. Although CMA version
4 was released in 2023 [27], the official website and manuals still predominantly reference version 3,
creating uncertainty about what has truly been updated. Publicly available documentation provides
little detail beyond interface refinements and report generation features, leaving it unclear whether
core methodological limitations have been addressed. This lack of transparency perpetuates the same
concerns: without open access to its algorithms or a clear account of new functionalities, CMA
remains poorly aligned with modern standards of reproducibility and methodological rigor. Notably,
the promotional materials for CMA version 4 remain silent on any fundamental methodological
updates, further reinforcing concerns that its underlying statistical engine may remain obsolete.

A comparative overview of the main software platforms, their accessibility, requirements, and
current limitations is provided in Table 1. Figure 1 presents a chronological overview of software
developments for meta-analysis, tracing the shift from early, limited programs to more recent
platforms. The timeline highlights how successive releases have progressively expanded
methodological options and transparency.
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META-ANALYTICAL SOFTWARE
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Figure 1. Chronological overview of key software advances for conducting meta-analyses, illustrating the

transition from early limited programs to modern platforms with expanded functionality and transparency.

Table 1. Characteristics, strengths, and limitations of major meta-analysis software.

Mai h
Software Domain focus alr,l stre'zngt s Major limitations ?tatus / Adequacy
(historical) maintenance
DL only, WT CIs,
L no PIs, obsolete
Interventions, Cfc:)rcelfrla(i'tfgi)aoll DTA models, no Obsolete,
RevMan 5.4 § . ’ advanced replaced by )
DTA intuitive .
. regression or RevMan 7
interface .
Bayesian/network
options
No full
hierarchical DTA
implementation
Successor to Still limited
R 4
evMan 54, comparec.l to Actively
. updated R/Stata in L
RevMan 7 Interventions, . maintained,
interface, advanced O
(Web) DTA . . . . solves many
integration with modeling (e.g. roblems of 5.4
Cochrane lack of user- p ’
systems adjustable meta-
regression or
network meta-
analysis)
. Separate Se/Sp, Still widely
First £ 1 f
MetaDiSc 1.4 DTA I,ISt ree.too or Moses-Littenberg used despite )
diagnostic meta-
only, no release of v2
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analysis, simple hierarchical
interface modeling, no
ClIs/Pls
Lacks the
advanced
flexibility of
script-based
platforms (e.g.,
Modernized handling multiple Released but
interface, covariates, non- limited
MetaDiSc 2 DTA implementation linear models, or adoption; O
of hierarchical advanced partially solves
models influence 1.4 problems
diagnostics).
Limited
reproducibility
compared to code-
based solutions.
Closed code,
Affordable, easy black-box outputs, Commercial;
GUI, widel default DL, no not updated to
CMA 3 Interventions T y HKS]J, limited P ()
adopted in early estimators. no current
2000s ! methods
transparency or
reproducibility
Core model
settings (e.g.
estimator, CI
Affordable, easy met}.lod) remain Comme.zrlaal.;
GUL undisclosed and not clarified if
CMA 4 Interventions | . " presumably updated to ]
implementation
unchanged; current
of PIs
problems of methods
transparency and
reproducibility
persist
Full
implementation
. of robust . L Actively
Interventions, . Requires statistical L
R (metafor, estimators, . maintained,
DTA, literacy and . .
meta, mada) transparency, . . methodological
advanced B coding skills
reproducibility, gold standard
continuous
updates
Stata (meta, Rc?bust, Commercial .
. validated . . Actively
metadta, Interventions, license requlred, . .
. commands, L . maintained, @)
midas, DTA . . statistical literacy . .
. widely used in highly reliable
metandi) . needed
applied research

Legend: @ Robust and up to date (implements current recommended models and estimators); ) Restricted
capabilities despite modern modelling (offers partial or limited implementation of current methods); @
Outdated/problematic (relies on obsolete estimators or defaults). DTA: Diagnostic Test Accuracy; GUI: Graphical
User Interface; CMA: Comprehensive Meta-Analysis; HKSJ: Hartung—Knapp—-Sidik—Jonkman; CI: Confidence Intervals;
PI: Prediction Intervals; WT: Wald-Type; DL: DerSimonian—Laird; Se: Sensitivity; Sp: Specificity.

Current Methodological Standards for Meta-Analytic Modelling (Intervention
Reviews)
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Modeling (Estimator)

Randome-effects models should be fitted using robust estimators of between-study variance,
most commonly REML or PM [1]. These approaches provide more stable and less biased estimates of
2 than traditional methods of moments based on inverse-variance weighting, such as DL. Between
the two, REML is generally preferred because PM, while robust in many scenarios, may produce
positively biased estimates of 12 when study sample sizes vary greatly [6,7]. This nuance reinforces
REML as the default recommendation in most applications, with PM serving as a reasonable
alternative under more homogeneous conditions

Confidence Intervals

For confidence intervals, two complementary approaches are recommended. WT intervals are
widely used but tend to be anti-conservative, often producing confidence limits that are too narrow.
In contrast, the HKS] adjustment accounts for the uncertainty of 12 and generally provides better
coverage, but may be overly conservative (i.e., produce excessively wide confidence intervals) when
the number of studies is very small (e.g., k < 5) and heterogeneity is low. The modified Hartung—
Knapp adjustment (mHK) was specifically designed to address one of the main criticisms of the
original HKSJ: that when 12 is close to zero, the confidence interval can become excessively wide and
overly conservative. Also, methodological studies have shown that HKS] may result in false positive
findings when the heterogeneity is absent [28]. By stabilizing the interval in such cases, mHK ensures
more balanced coverage while preserving the methodological advantages of HKS]J.

For meta-analyses with more than two studies and 12 > 0, HKSJ-adjusted intervals are generally
preferred [1]. However, when only a few studies are available, it can be informative to present both
REML WT and REML HKS]J-adjusted intervals, thereby offering complementary perspectives on
precision [1]. In all cases, prediction intervals should also be reported to quantify the expected range
of effects in new or future studies, enhancing clinical interpretability.

Heterogeneity

Assessment of heterogeneity should extend beyond I2, which is sensitive to the number of
studies and does not quantify absolute variability. Reporting T2 alongside its confidence interval,
examining forest plots, and presenting prediction intervals are essential for contextualizing results
[1]. Sensitivity analyses exploring the influence of individual studies or methodological features
should also be incorporated, and where possible, sources of heterogeneity should be explored
through meta-regression using robust estimators [1].

Current Methodological Standards for Meta-Analytic Modelling (Diagnostic
Test Accuracy Reviews)

Modeling (Estimator)

Diagnostic test accuracy meta-analyses should be based on hierarchical models that jointly
model sensitivity and specificity rather than analyzing them separately [29-32]. The bivariate
random-effects model and the HSROC model are the recommended frameworks [2]. Both approaches
account for within- and between-study variability and incorporate the correlation between sensitivity
and specificity, a feature essential for realistic summaries. These models also allow explicit
parameterization of threshold effects, making it possible to account for differences in test positivity
criteria across studies—an issue that cannot be addressed by obsolete methods such as Moses—
Littenberg [2,15].

Intervals

In DTA synthesis, uncertainty should be expressed not only through point estimates but also via
confidence regions around the summary point and prediction regions that reflect expected variability
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across future or external populations. Reporting both enhances interpretability: confidence regions
quantify the precision of the pooled estimate, while prediction regions indicate how test performance
is likely to vary in practice. Together, these outputs provide a fuller and more clinically meaningful
representation of diagnostic accuracy [2].

Heterogeneity

Exploring heterogeneity is critical in DTA synthesis, as variability often arises from differences
in patient spectrum, thresholds, study design, and test interpretation. Hierarchical models address
this by allowing random effects at both the sensitivity and specificity levels, and by explicitly
incorporating threshold effects [2]. Despite this, it remains common for authors to report univariate
heterogeneity metrics such as I? or Cochran’s Q) separately for sensitivity and specificity. This practice
is inadequate, as it ignores the inherent correlation between the two measures and can produce
misleading or inflated impressions of variability. The appropriate metrics are the estimated between-
study variances of sensitivity and specificity, together with the covariance or threshold effect (e.g.,
the Zhou bivariate measure) [33]. Beyond model-based variance components, heterogeneity should
also be examined through subgroup analyses, covariate-adjusted meta-regression, and visual
inspection of summary ROC plots. Whenever possible, prediction regions should be presented to
illustrate the extent to which diagnostic performance is expected to vary in real-world settings.

Figure 2 depicts the key milestones in the development of statistical methods for meta-analysis,
from the earliest estimators of heterogeneity to the introduction of more robust hierarchical models.
This timeline illustrates how methodological innovations progressively addressed previous
limitations and consolidated more rigorous standards for quantitative synthesis.

META-ANALYTICAL MODELLING
MILESTONES

Restricted DerSimonian— Hartung t-based Hartung-Knapp- Bivariate Model Prediction

Maximum Laird Estimator adjustment Sidik-Jonkman PP interval

Likelihood (DL) I Adjustment . N drange for a
(REML) - R (HKSJ) sw study under RE

DerSi sampl

for REm

monian and

Patterson and Sidik and Jonkman
Thempson introduce w
REM undation for of-moments for
r variance meta-analysis
estimation

parameterizations)

197 1982 1986 1993 1999 2001 2002 2003 2005 2005 2009
Paule-Mandel Moses- Hierarchical 12 Sidik-Jonkman
Estimator (PM) Littenberg SROC SROC Model X 12 estimator

Model (HSROC) Qu:

preport Alternative method
Rutter and Gatsonis variance due to of-moments
heterogeneity heterogeneity
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hierarchical moc
method for SROC setting the
curves for DTA rr
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Figure 2. Timeline of major methodological milestones in the statistical development of meta-analysis, from early

estimators of heterogeneity to advanced hierarchical models.
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Consequences for Evidence Synthesis

The widespread reliance on outdated meta-analysis software is not a benign artifact of history,
but a methodological liability with direct consequences for the biomedical literature. When programs
default to suboptimal estimators such as DL, fail to implement robust confidence intervals, and omit
prediction intervals, they systematically underestimate uncertainty.

These distortions are not merely statistical. Inflated certainty translates into misleading
conclusions, which may subsequently shape clinical guidelines, inform regulatory decisions, and
influence patient care. In diagnostic accuracy reviews, reliance on obsolete models such as Moses—
Littenberg leads to summary curves that ignore between-study variability and correlation between
sensitivity and specificity, ultimately overstating the performance of diagnostic tests. The credibility
of the evidence base is thus compromised at its foundation. Even robust random-effects models
estimate a statistical average across heterogeneous studies, which may not reflect effects in real-world
populations. As emphasized in the causal inference literature [34], pooling across disparate
populations risks limited transportability. Thus, pooled estimates—even with REML or HKSJ—
should be interpreted cautiously in terms of their applicability.

Equally concerning is the impact on reproducibility and transparency. Closed or rigid software
environments foster a culture where meta-analyses are treated as mechanical outputs rather than
modeling exercises requiring critical judgment. Without access to underlying code, results cannot be
independently audited, replicated, or extended. This disconnect undermines confidence in published
reviews and perpetuates the illusion that adherence to legacy tools is equivalent to methodological
rigor, when in fact it represents the opposite.

Specific methodological pitfalls attributable to legacy software, and the recommended
alternatives, are outlined in Table 2.

Table 2. Main modeling problems attributable to outdated or inadequate meta-analysis software, their

methodological implications, and recommended solutions.

Suboptimal modelin Solution /
P . 8 Software Why it is problematic Recommended
practice !
alternative
Underestimates

between-study variance Use REML or PM

Random-effects with DL RevMan 5.4, CMA

(t?), produces overly estimators
narrow Cls
Coverage too low, .
. . . Apply HKSJ adjustment
2
WT Cls with k>2 and t RevMan 5.4, CMA espeC@lly Wlt},‘ few or present both CIs (WT
>0 studies or high
. and HKS]).
heterogeneity
Fails to quantify -
No PI RevMan 5.4, CMA expected range of effects Implement prediction

in new settings

intervals in R or Stata

Separate modeling of Se

MetaDiSc 1.4

Ignores correlation
between Se & Sp —

Use hierarchical
bivariate model

& Sp biased 'and incomplete (Reitsma)
inference
Obsolete, produces Use HSROC (Rutter &
Moses-Littenberg SROC MetaDiSc 1.4 biased summary curve, Gatsonis) or bivariate
no proper Cl or PI model

No meta-regression with

robust estimators, no RevMan 5.4, MetaDiSc Limits exploration of Use meta-regression in
multivariable meta- 1.4, CMA heterogeneity R or Stata
regression
Opaque algorithms, no .
u t-based
Black-box closed code CMA transparency, limited se seript-base

reproducibility

software (R or Stata)
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Use R (netmeta,

Lack of advanced Cannot handle bayesmeta) or Bayesian
models (Bayesian, All three complexity of modern Y y
. . h . frameworks (JAGS,
network, hierarchical) evidence synthesis
Stan)
Use models handling

zero cells directly (e.g.
Artificially inflates effect | beta-binomial or Peto
RevMan 5.4, CMA (NS) estimates, especially in for rare events; in DTA,
small or zero-cell studies | use bivariate/HSROC);
alternatively, declare
correction explicitly.

CMA: Comprehensive Meta-Analysis; CI: Confidence Interval;, DL: DerSimonian-Laird; HSROC: Hierarchical
Summary Receiver Operating Characteristicc HKSJ: Hartung-Knapp-Sidik-Jonkman; mHA: modified

Undeclared continuity
correction (mHA)

Haldane-Anscombe (0.5 continuity correction); NS: Not Specified; PI: Prediction Interval; PM: Paule-Mandel;
REML: Restricted Maximum Likelihood; Se: Sensitivity; Sp: Specificity; SROC: Summary Receiver Operating
Characteristic;, WT: Wald-Type.

The Danger of Defaults: Undeclared Corrections and Automatic Exclusions

An important concern lies in the hidden default operations implemented by legacy software
without disclosure to the user. Continuity corrections, automatic exclusions, and simplified variance
structures are frequently applied with no indication in the output. In RevMan 5.4, for example, the
default workflow applies a fixed zero-cell adjustment—essentially a modified Haldane-Anscombe
(mHA) correction of 0.5—and excludes studies with zero events in both arms when ratio measures
are used [35]. This correction is not merely a technical choice; it is a questionable practice that, at the
very least, requires explicit declaration, as it can introduce bias in rare-event settings. Its persistence
for years in an ‘official’ Cochrane-endorsed program illustrates how a flawed practice can become
institutionalized and silently propagated across countless published reviews. The continuity
correction therefore serves as a paradigmatic case study of the article’s central thesis: that hidden
defaults in trusted “black-box” software can entrench bias in the evidence base through institutional
inertia and uncritical reliance.

These silent operations materially influence effect estimates in sparse-data contexts and may
mislead readers who remain unaware of the modifications. Alternative approaches allow retention
of zero-zero studies—for example, the Carter correction, which adds one event and two participants
per arm—thus preserving estimability without automatic exclusion [36]. Although rare-event meta-
analysis remains inherently challenging, transparency is the essential safeguard. Undeclared
defaults —whether continuity corrections, exclusions, or simplified variance structures —compromise
reproducibility and erode confidence in published results. Ultimately, the problem is not the specific
correction applied, but the hidden and undeclared manner in which it is imposed.

Call to Action

The continued use of outdated meta-analysis software is no longer defensible. RevMan 5.4,
MetaDiSc 1.4, and CMA played a historical role in the dissemination of quantitative synthesis, but
their limitations are now well documented and directly compromise the validity and reproducibility
of results. Authors should transition to modern frameworks —whether RevMan 7 [21,37], MetaDiSc
2, or preferably open and script-based platforms such as R and Stata—that implement robust
estimators, hierarchical models, and transparent outputs.

For journal editors: Authors should be required to specify, in the Methods section, which
estimator of 12 was used (e.g.,, DL, REML, PM) and to justify their choice, particularly when non-
robust methods are applied. This explicit reporting standard would close a major gap in transparency
and prevent the silent perpetuation of obsolete defaults.

For peer reviewers: Any meta-analysis that relies on the DerSimonian-Laird estimator—
especially with a small number of studies—should be systematically questioned. Reviewers should
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request sensitivity analyses using robust alternatives such as REML or PM, and ensure that prediction
intervals and HKS]J adjustments are considered where appropriate.

For training programs and institutions: Curricula must be updated to reflect contemporary
methodological standards. Training in meta-analysis should prioritize modern, script-based
platforms (R, Stata) that enable reproducibility and transparency, while actively discouraging
reliance on legacy or closed software environments for new research.

Evidence synthesis underpins guidelines, policy, and patient care: tolerating preventable biases
introduced by outdated software undermines the very foundation of evidence-based medicine. A
cultural shift is urgently required, moving from convenience-driven analysis to rigorous,
reproducible, and methodologically sound meta-analysis.

Ultimately, reform must address both levels: replacing fragile defaults with robust models, and
acknowledging that the very target of meta-analysis must evolve from an abstract pooled effect to
contextually valid estimates for defined populations

Conclusions

Meta-analysis is a sophisticated modelling exercise that demands expertise, transparency, and
judgment. Yet much of the literature still relies on legacy software with fragile defaults and obsolete
estimators. This is not a benign artifact but an active threat to evidence integrity, embedding bias and
eroding reproducibility in findings that shape guidelines and policy. Transition to robust estimators,
hierarchical models, and transparent reporting is essential, with shared responsibility across analysts,
journals, reviewers, and guideline developers. Updating software is not technical housekeeping but
a prerequisite for trustworthy evidence-based medicine.

Table 3. Practical recommendations for moving beyond legacy software.

Do not use RevMan 5.4, MetaDiSc 1.4, or CMA for performing meta-analyses.
For intervention reviews: adopt REML or PM estimators with HKSJ-adjusted Cls when
indicated. Consider mHK as refinement of HKS] when 12 is close to zero.
For DTA reviews: use hierarchical bivariate (Reitsma) or HSROC (Rutter & Gatsonis) models.
Never model Se & Sp separately.

Always report PIs in random-effects models.

Favor transparent and reproducible solutions (R: metafor, meta, mada; Stata: meta, metadta, midas).

Report heterogeneity using the appropriate metrics (intervention: Q, I?, 12, DTA: t2Se, t2Sp, 0),
avoid univariate I in DTA.

Explore heterogeneity properly through meta-regression and subgroup analyses.

When using methods that require continuity corrections for zero-cell studies (e.g., inverse-
variance with ratio measures), always declare which correction was applied (e.g., mHA, Carter).
Prefer statistical models that directly handle zero cells, such as those based on the binomial
likelihood (e.g., bivariate/ HSROC models in DTA)

CMA: Comprehensive Meta-Analysis; CI: Confidence Interval;, HSROC: Hierarchical Summary Receiver

Operating Characteristicc HKSJ: Hartung-Knapp-Sidik-Jonkman; mHK: modified Hartung-Knapp
adjustment; mHA: modified Haldane—Anscombe (0.5 continuity correction); DTA: Diagnostic Test Accuracy; PI:
Prediction Interval; PM: Paule-Mandel; REML: Restricted Maximum Likelihood; Se: Sensitivity; Sp: Specificity.

Author Contributions: Javier Arredondo Montero (JAM): Conceptualization; Methodology; Validation;
Investigation; Writing — Original Draft; Writing — Review & Editing; Visualization; Supervision; Project

administration.

Institutional Review Board Statement: This study did not involve human subjects or animals. As only

simulated data were used, no ethical approval or informed consent was required.
Data Availability Statement: No new datasets were generated or analyzed for the purposes of this work.

Original Work: The manuscript’s author declares that it is an original contribution, not previously published.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1362.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2025 d0i:10.20944/preprints202508.1362.v1

12 of 13

Al Use Disclosure: Artificial intelligence (ChatGPT-4, OpenAl) was used to improve the clarity and style of the
language.

Conlflicts Of Interest: There is no conflict of interest or external funding to declare. The author does not have

anything to disclose.

References

1.  Higgins JPT, Thomas ], Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook
for Systematic Reviews of Interventions version 6.5 (updated August 2024). Cochrane, 2024. Available from
www.cochrane.org/handbook.

2. Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y (editors). Cochrane Handbook for Systematic Reviews
of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from
https://training.cochrane.org/handbook-diagnostic-test-accuracy/current.

3.  DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986 Sep;7(3):177-88. doi:
10.1016/0197-2456(86)90046-2. PMID: 3802833.

4.  Viechtbauer, W. (2005). Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects
Model. Journal of Educational and Behavioral Statistics, 30(3), 261-293.
https://doi.org/10.3102/10769986030003261 (Original work published 2005)

5. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden ], Knapp G, et al. Methods to estimate the
between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55-79.
doi:10.1002/jrsm.1164
Paule RC, Mandel J. Consensus values and weighting factors. ] Res Nat Bur Stand. 1982;87(5):377-385.
van Aert RCM, Jackson D. Multistep estimators of the between-study variance: The relationship with the
Paule-Mandel estimator. Stat Med. 2018 Jul 30;37(17):2616-2629. doi: 10.1002/sim.7665. Epub 2018 Apr 26.
PMID: 29700839; PMCID: PMC6055723.

Hartung J. An alternative method for meta-analysis. Biom J. 1999;41(8):901-916.
Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed
responses. Stat Med. 2001;20(12):1771-1782.

10. Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary
outcome. Stat Med. 2001;20(24):3875-3889.

11.  Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002;21(21):3153-3159.

12. IntHout, J., Ioannidis, J.P. & Borm, G.F. The Hartung-Knapp-Sidik-Jonkman method for random effects
meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method.
BMC Med Res Methodol 14, 25 (2014). https://doi.org/10.1186/1471-2288-14-25

13. Rover, C.,, Knapp, G. & Friede, T. Hartung-Knapp-Sidik-Jonkman approach and its modification for
random-effects meta-analysis with few studies. BMC Med Res Methodol 15, 99 (2015).
https://doi.org/10.1186/s12874-015-0091-1

14. Langan D, Higgins JPT, Jackson D, Bowden ], Veroniki AA, Kontopantelis E, Viechtbauer W, Simmonds
M. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res
Synth Methods. 2019 Mar;10(1):83-98. doi: 10.1002/jrsm.1316. Epub 2018 Sep 6. PMID: 30067315.

15. Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary
ROC curve: data-analytic approaches and some additional considerations. Stat Med 1993;12:1293-316.

16. Reitsma ]JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. Bivariate analysis of
sensitivity and specificity produces informative summary measures in diagnostic reviews. ] Clin Epidemiol
2005;58(10):982e90

17.  Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy
evaluations. Stat Med. 2001 Oct 15;20(19):2865-84. doi: 10.1002/sim.942. PMID: 11568945.

18. The Moses-Littenberg meta-analytical method generates systematic differences in test accuracy compared
to  hierarchical meta-analytical models. ] Clin Epidemiol. 2016 Dec;80:77-87. doi:
10.1016/j.jclinepi.2016.07.011. Epub 2016 Jul 30. PMID: 27485293; PMCID: PMC5176007.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1362.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2025 d0i:10.20944/preprints202508.1362.v1

13 of 13

19. Wang J, Leeflang M. Recommended software/packages for meta-analysis of diagnostic accuracy. ] Lab
Precis Med 2019;4:22.

20. Review Manager 5 (RevMan 5) [Computer program]. Version 5.4. Copenhagen: The Cochrane
Collaboration, 2020.

21. Review Manager (RevMan) [Computer program]. Version 7.2.0. The Cochrane Collaboration, 2024.
Available at revman.cochrane.org.

22. Zamora ], Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test
accuracy data. BMC Med Res Methodol. 2006 Jul 12;6:31. doi: 10.1186/1471-2288-6-31. PMID: 16836745;
PMCID: PMC1552081.

23. Plana, M.N., Arevalo-Rodriguez, 1., Fernandez-Garcia, S. et al. Meta-DiSc 2.0: a web application for meta-
analysis of diagnostic test accuracy data. BMC Med Res Methodol 22, 306 (2022).
https://doi.org/10.1186/s12874-022-01788-2

24. Briiggemann, P., Rajguru, K. Comprehensive Meta-Analysis (CMA) 3.0: a software review. ] Market Anal
10, 425429 (2022). https://doi.org/10.1057/s41270-022-00184-5

25. Borenstein, M. (2022). Chapter 27. Comprehensive meta-analysis software. In Systematic Reviews in Health
Research: Meta-analysis in Context (eds. M. Egger, J. P. T. Higgins & G. Davey Smith), pp. 535-548. Hoboken,
NJ: Wiley.

26. Mheissen S, Khan H, Normando D, Vaiid N, Flores-Mir C (2024) Do statistical heterogeneity methods
impact the results of meta- analyses? A meta epidemiological study. PLoS ONE 19(3): e0298526.
https://doi.org/10.1371/journal.pone.0298526.

27. Comprehensive Meta-Analysis Version 4. Borenstein M, Hedges L, Higgins J, Rothstein H. Biostat, Inc.

28. Mheissen S, Khan H, Normando D, Vaiid N, Flores-Mir C. Do statistical heterogeneity methods impact the
results of meta- analyses? A meta epidemiological study. PLoS One. 2024 Mar 19;19(3):e0298526. doi:
10.1371/journal.pone.0298526. PMID: 38502662; PMCID: PMC10950254.

29. Nyaga, V.N., Arbyn, M. Metadta: a Stata command for meta-analysis and meta-regression of diagnostic
test accuracy data — a tutorial. Arch Public Health 80, 95 (2022). https://doi.org/10.1186/s13690-021-00747-5

30. Roger M. Harbord & Penny Whiting, 2009. “metandi: Meta-analysis of diagnostic accuracy using
hierarchical logistic regression,” Stata Journal, StataCorp LP, vol. 9(2), pages 211-229, June.

31. Dwamena BA. MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies.
Statistical Software Components 5456880, Boston College Department of Economics, revised 13 Dec 2009.

32. Doebler P, Holling H. Meta-analysis of diagnostic accuracy with mada. Available online: https://cran.r-
project.org/web/packages/mada/vignettes/mada.pdf

33. ZhouY, Dendukuri N. Statistics for quantifying heterogeneity in univariate and bivariate meta-analyses of
binary data: the case of meta-analyses of diagnostic accuracy. Stat Med. 2014 Jul 20;33(16):2701-17. doi:
10.1002/sim.6115. Epub 2014 Feb 19. PMID: 24903142.

34. Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2020.

35.  Weber F, Knapp G, Ickstadt K, Kundt G, Glass A. Zero-cell corrections in random-effects meta-analyses.
Res Synth Methods. 2020 Nov;11(6):913-919. doi: 10.1002/jrsm.1460. Epub 2020 Oct 21. PMID: 32991790.

36. Wei, JJ., Lin, EX,, Shi, JD. et al. Meta-analysis with zero-event studies: a comparative study with application
to COVID-19 data. Military Med Res 8, 41 (2021). https://doi.org/10.1186/s40779-021-00331-6

37. Veroniki AA, McKenzie JE. Introduction to new random-effects methods in RevMan. Cochrane Methods
Group; 2024. Available at: https://training.cochrane.org

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1362.v1
http://creativecommons.org/licenses/by/4.0/

