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Abstract: The generation of forensic DNA profiles consisting of single nucleotide polymorphisms (SNPs) is
now being facilitated by wider adoption of next-generation sequencing (NGS) methods in casework
laboratories. At the same time, and in part because of this advance, there is an intense focus on the generation
of SNP profiles from evidentiary specimens for so-called forensic or investigative genetic genealogy (FGG or
IGG) applications. However, FGG methods are constrained by the algorithms for genealogical database
searches, which were designed for use with single-source profiles, and the fact that many forensic samples are
mixtures. To enable the use of two-person mixtures for FGG, we developed a workflow, MixDeR, for the
deconvolution of mixed SNP profiles. MixDeR, a flexible and easy to use R package and Shiny app, processes
ForenSeq Kintelligence® (QIAGEN, Inc.) SNP genotyping results and directs deconvolution of the profiles in
EuroForMix (EFM). MixDeR then filters the EFM outputs to produce inferred single-source genotypes in
reports formatted for use with GEDmatch® PRO. An optional MixDeR output includes metrics that assist with
testing and validation of the workflow. As the Shiny app provides a graphical user interface and the software
is designed to be run offline, MixDeR should be suitable for use by any laboratory developing FGG capabilities,
no matter their bioinformatic resources or expertise.

Keywords: mixtures; SNPs; forensic genetic genealogy (FGG); investigative genetic genealogy (IGG);
Kintelligence; software

1. Introduction

It has long been recognized that there are some general advantages to the use of panels of single
nucleotide polymorphisms (SNPs) for human forensic genetic applications, including their relative
abundance in the genome, their lower susceptibility to genotyping failures resulting from DNA
degradation, and the absence of common PCR artifacts encountered in short tandem repeat (STR)
typing such as stutter [1-4]. Since the mid-2000s, SNP genotyping has been used in the forensic
context to generate identity-informative data, inform biogeographic ancestry estimations, and predict
externally visible characteristics [5-16], and is now widely accepted as a viable DNA-based approach
[17,18]. Yet, prior to the last decade, the methodologies used for forensic SNP genotyping generally
limited the number of markers that could be simultaneously typed to a few dozen or less [19].

In recent years, some forensic laboratories have implemented or have begun validating next-
generation sequencing (NGS) technologies due to their technological and/or power of discrimination
advantages for multiple marker types, including STRs, mitochondrial DNA, and microhaplotypes
[20-28]. Compared to older forensic assays that often relied upon capillary electrophoresis, the use
of NGS platforms has also significantly expanded the number of informative SNP loci that can be
genotyped concurrently, whether by targeted methods such PCR-based assays or by whole genome
sequencing. Though microarrays have been used for many years to genotype SNPs, and at present
remain the most cost-effective and high-throughput approach for genotyping dense SNP panels
when high quantities of pristine DNA are available, array-based systems are not well-suited for many
evidentiary samples [29-31]. NGS, however, can be used to simultaneously genotype hundreds to
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millions of SNPs from even very low DNA input quantities and poor-quality templates, using the
same instrumentation that forensic laboratories are already implementing for other marker types.

A new approach to generating investigative leads in criminal and missing persons casework,
termed forensic genetic genealogy or investigative genetic genealogy (FGG or IGG), utilizes DNA
profiles comprised of many thousands of SNPs [32-34]. The process entails developing a large-scale
SNP profile from a forensic specimen, a search of the profile against one or more public DNA
databases, and traditional genealogical research and investigative work to evaluate the database
search results. The databases contain information derived from direct-to-consumer (DTC) SNP
testing kits and were built to facilitate DNA-based identification of biological relatives in personal
genealogy research. However, as some of the databases can be used to perform the same type of
kinship analysis using a SNP profile generated from an evidentiary sample, the approach has now
been used to assist in several hundred forensic cases [35,36].

The ForenSeq® Kintelligence Kit (QIAGEN, Inc.), a PCR-based assay that targets 10,230 SNPs,
was the first commercial forensic kit designed specifically for FGG applications. In practice, SNP
profiles generated using the Kintelligence kit and the associated ForenSeq® Universal Analysis
Software (UAS; QIAGEN, Inc.) are searched against a portion of the publicly accessible GEDmatch®
database, using the law enforcement-specific GEDmatch® PRO portal [37,38].

Though DNA mixtures are common in forensic casework, the database search algorithms
utilized for FGG, including those implemented in GEDmatch® PRO, are meant for single-source SNP
profiles. To enable the use of mixtures for FGG applications, we developed and performed initial
testing of an approach for deconvolution of Kintelligence SNP profiles generated from mixed DNA
samples [39]. Here we describe an expanded and comprehensive workflow for SNP mixture
deconvolution implemented in a new open-source R package, MixDeR (Mixture Deconvolution in
R). The MixDeR workflow starts from Kintelligence SNP profiles, which are pre-processed before
deconvolution using the open-source probabilistic genotyping software EuroForMix (EFM; [40]).
Following MixDeR-directed mixture deconvolution from the EFM command line using automatically
formatted files, EFM allele probability outputs are filtered to maximize accuracy of the inferred
genotype(s), which are in turn formatted in the manner of GEDmatch® PRO reports. Finally, MixDeR
implements a user interface through a Shiny app, allowing even those with no coding experience to
easily and efficiently run the SNP mixture deconvolution workflow.

2. Materials and Methods

MixDeR is an R package that exists as both a Shiny app and a command line tool. Several R
packages must be installed prior to installing MixDeR, including dplyr, euroformix, glue, prompter,
readx], rlang, shiny, shinyFiles, shinyjs, tibble, and tidyr. EuroForMix version 4.0 or later is required.
It is highly recommended to use RStudio for MixDeR. MixDeR is open source and the source code is
available on GitHub (https://www.github.com/bioforensics/mixder).

The MixDeR workflow is summarized in Figure 1. The process begins from Kintelligence Sample
Reports exported directly from the UAS. Once input files containing the requisite information and/or
data are properly formatted, mixture deconvolution is performed using EFM. Following
deconvolution, either validation metrics are calculated or GEDmatch® PRO-formatted reports are
created. The following sections describe in greater detail the important components, features, and
modules of MixDeR.
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Figure 1. Overview of MixDeR workflow.

2.1. Input Files

MixDeR requires the use of a sample manifest, in which each row contains either a single sample
identifier (ID), or a single sample ID plus a replicate sample ID. The manifest enables the workflow
to be run on multiple mixture samples, one after another. This batch processing significantly reduces
hands-on time and guarantees consistency of analysis across samples in the same batch. Currently,
MixDeR'’s functionality is limited to processing two-person mixtures.

EFM requires specific formats for mixture (evidence) profiles and reference profiles [40]. MixDeR
provides the flexibility to input Kintelligence mixture data in either 1) CSV files pre-formatted for
EFM, or 2) Sample Reports exported directly from the UAS (version 2.5 or earlier). If UAS Sample
Reports are imported, MixDeR converts the data to the correct EFM format. For proper EFM
deconvolution, MixDeR removes the X and Y chromosome loci from the Kintelligence SNP set. Thus,
X and Y chromosome loci should also be removed from CSV files manually created for use with the
MixDeR workflow.

Given the large number of markers in the Kintelligence panel, there is significant inter-locus
variation in SNP read counts (see Figure S1 and [38]), presumably due to differences in amplification
efficiency. During initial development of the MixDeR workflow, this variation proved challenging at
the EFM deconvolution step. To account for the variation and improve deconvolution outcomes, a
method was developed to group SNPs of similar read counts into separate datasets (bins),
deconvolute the divided datasets through EFM separately, then combine the resulting genotypes
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after deconvolution [39]. MixDeR will perform these steps (division of SNPs into bins, independent
deconvolution of each SNP set in EFM, and compilation of the results into a single profile)
automatically using a user-defined value for the number of bins.

If performing a conditioned deconvolution or calculating validation metrics, reference
genotypes are required. The reference genotypes may be in the form of either individual Sample
Reports exported from the UAS or compiled into a single CSV file. In the Shiny app, the user specifies
a folder containing the reference genotypes. If a folder has been specified and “Conditioned Analysis”
is selected in the app, a dropdown menu will populate with the sample IDs of the provided
references; the user may then select one or more references on which to condition the deconvolution.
If more than one reference is selected, separate conditioned deconvolutions will be performed using
each reference.

2.2. Performing Mixture Deconvolution

EFM requires additional information to perform mixture deconvolution, including analytical
thresholds (ATs) and allele frequency data [40]. For Kintelligence data analysis in the UAS, the
minimum read depth is 10 reads, and a user-specified AT is subsequently applied as a percentage of
the total read count for a locus [41]. As a result, the effective AT applied during UAS analysis may
differ for each SNP. However, in EFM an AT must be specified as a single value (read count) per
locus. While working with smaller SNP panels would not be as cumbersome, manually generating
the effective AT used for each Kintelligence locus during UAS analysis and specifying these in a
config file for EFM is both error-prone and impractical. For this reason, MixDeR was programmed to
automatically calculate the effective AT per locus when static (single value read count) and dynamic
(percentage-based) ATs are specified by the user in MixDeR. For each locus, MixDeR will utilize the
higher of the two read count values produced by the static and dynamic ATs to create the effective
AT values table for EFM analysis.

Allele frequency data are also required for mixture deconvolution in EFM. MixDeR provides the
user the option to select from two pre-loaded allele frequency datasets: (1) allele frequencies of all
populations from the 1000 Genomes phase 3 dataset [42] and (2) allele frequencies of all populations
from the gnomAD version 4 dataset [43]. In addition, MixDeR can also utilize custom allele frequency
data. However, EFM requires allele frequencies to be in a specific format: each column contains a
single SNP locus, while the rows contain the corresponding frequencies for each allele. Given the
large number of SNPs in the Kintelligence panel, creating this file manually is cumbersome. While
MixDeR will accept an EFM-formatted allele frequency file, it can also accept a CSV file with each
row containing frequency information for one locus (i.e., reference and alternate alleles with their
corresponding frequencies) and will properly format the frequencies for use in EFM.

EFM permits combined analysis of replicate samples to improve mixture deconvolution results
[40]. Accordingly, MixDeR was programmed to permit analysis of up to two samples at once. When
a replicate sample is specified in the sample manifest, MixDeR creates the SNP sets for the first
sample, then ensures the same SNPs are contained in each set for the corresponding replicate.
Further, the effective AT values table accounts for the variation in ATs by sample by using the highest
AT applied for each SNP (as required for proper analysis in EFM). While using replicates for mixture
deconvolution can be extremely useful, creating the appropriate data for the EFM analysis can be
unmanageable for large SNP datasets. MixDeR is able to easily accomplish the required efforts in a
fast, automated, and consistent manner.

2.3. Inferring SNP Genotypes from EFM Results

EFM outputs potential genotypes for each unknown contributor, along with associated posterior
probabilities [40]. While there are multiple options included in the EFM deconvolution output,
MixDeR utilizes the allele probabilities (from the EFM “All Marginal (A)” table) to infer the SNP
genotypes for each unknown contributor.

To generate the inferred genotypes, MixDeR applies probability thresholds separately to each
allele, such that 1) any SNP with an allele 1 probability below the allele 1 probability threshold is
removed from the final dataset, 2) any SNP with an allele 2 probability below the allele 2 probability
threshold is reported as homozygous for allele 1 (analogous to dropping the allele 2 call), and 3) any
SNP with allele 1 and allele 2 probabilities at or above the thresholds is reported as heterozygous.

d0i:10.20944/preprints202407.1705.v1
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Examples are displayed in Figure 2. In the Shiny app, the user specifies either a single probability
threshold each for allele 1 and allele 2 (for GEDmatch® PRO-formatted report creation, section 2.4),
or a range of probability thresholds for each allele (for calculation of validation metrics, section 2.5).
The thresholds can range between 0 and 1 in increments of 0.01.
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Figure 2. MixDeR inference of genotypes using allele probability thresholds. Starting from allele
probabilities in the EFM All Marginal (A) table, loci and alleles are included in or excluded from an
inferred genotype based on user-specified allele 1 (A1) and allele 2 (A2) probability thresholds.

Additionally, MixDeR includes an option to specify a minimum number of SNPs in the inferred
genotypes. When the application of the user-specific probability thresholds does not result in the
minimum number of SNPs, a genotype is instead inferred using the minimum number of SNPs with
the highest allele 1 probabilities, and the specified allele 2 probability threshold(s) are used to
determine whether each locus is homozygous or heterozygous.

2.4. Creating GEDmatch® PRO-Formatted Reports

MixDeR uses the three settings specified in section 2.3 (allele 1 probability threshold, allele 2
probability threshold, and minimum number of SNPs) to infer the single-source SNP genotypes from
the EFM output. Using GRCh37 coordinates, the inferred genotypes are then formatted to match the
GEDmatch® PRO Reports typically exported directly from the UAS when the “GEDmatch PRO
Report” option is selected in MixDeR.

2.5. Calculating Validation Metrics

To assist with the testing and validation of the workflow implemented in MixDeR, the software
can use the user-specified probability thresholds and minimum number of SNPs described in section
2.3 to calculate metrics helpful for evaluating inferred genotypes (“Calculate Metrics” option in
MixDeR). These metrics include the total number of SNPs in an inferred genotype, the accuracy of
the inferred genotype (i.e., the percentage of SNPs matching a provided known genotype), and the
percent heterozygosity of the inferred genotype. When the “Calculate Metrics” option is selected,
MixDeR creates two final output files: one file contains metrics for each combination of allele 1 and
allele 2 probability thresholds in the ranges specified by the user, and a second file contains metrics
for each allele 2 probability threshold in combination with the minimum number of SNPs. These
validation metrics are instrumental during workflow testing to determine the best threshold
combinations for maximizing genotype accuracy while at the same time including enough SNPs for
downstream genealogical database searches.

2.6. Verification of Software Functions and Generation of Example Results

To verify that the MixDeR workflow performs as expected, we used Kintelligence data from a
1:5 mixture previously developed and described in [44], along with reference profiles for each
contributor. In the 1:5 mixture, sample NA24143 (HG004; from source NIST RM 8392 (National
Institute of Standards and Technology, Gaithersburg, MD) as described in [44]) was the major
contributor and sample NA24631 (HG005; obtained from the NIGMS Human Genetic Cell Repository
at the Coriell Institute for Medical Research (Camden, NJ) as described in [44]) was the minor
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contributor. The mixture was amplified in duplicate using the ForenSeq® Kintelligence Kit with 1 ng
total DNA as the starting input, and a Kintelligence profile was generated using a 1.5% AT for UAS
analysis. The files used for the testing are provided with this paper as Supplementary Material.

Using MixDeR, data from the mixture Kintelligence Sample Reports were divided into either
one or 10 SNP sets, and EFM mixture deconvolution (using version 4.0.7) was performed using the
1000 Genomes general population allele frequency data. The mixture profiles were analyzed both
individually and as replicates using three different methods: 1) unconditioned, 2) conditioned on
HGO004, and 3) conditioned on HG005. Validation metrics were calculated using allele 1 probability
threshold ranges of 0 to 1, allele 2 probability threshold ranges of 0 to 1, and 6,000 as the minimum
number of SNPs. Finally, the GEDmatch® PRO reports were generated using the MixDeR default
settings, allowing for verification of the inferred genotypes and report format.

3. Results and Discussion

3.1. MixDeR Workflow

MixDeR was built around the use of EFM for the deconvolution of Kintelligence SNP mixtures.
A few prior studies have successfully utilized EFM to calculate likelihood ratios for known
contributors to SNP mixtures [45,46], and even to deconvolute mixtures profiles using either a
combination of both STRs and SNPs [47] or a small set of SNPs only [48]. To date, though, there have
been no papers describing the use of EFM for deconvolution of mixture profiles consisting of a large
number of SNPs into individual contributor genotypes, either for FGG applications or other
purposes. As a result, the use of EFM for the deconvolution of Kintelligence mixture profiles
comprised of more than 10,000 SNPs required extensive up-front work and testing to produce a viable
workflow. Key components of the workflow include 1) the use of EFM output allele probabilities
rather than genotype probabilities, 2) the separation of the large panel of Kintelligence SNPs into sets,
3) the use of independent allele 1 and allele 2 probability thresholds, and 4) the application of a
minimum number of SNPs.

3.1.1. Use of EFM Allele Probabilities Rather Than Genotype Probabilities

The EFM mixture deconvolution output includes four different tables of posterior probabilities;
three provide per-locus genotype probabilities, while the fourth includes per-locus probabilities for
each allele [40]. During initial testing with smaller SNP panels, use of the top genotype probabilities
was sufficient for inference of accurate genotypes in some circumstances. However, once testing was
extended to the significantly larger Kintelligence SNP set, accuracy of the inferred genotypes
decreased, and a genotype probability threshold could not be identified that maximized inferred
genotype accuracy across different mixtures. However, by switching to use of the allele probabilities
(the “All Marginal (A)” table output by EFM), accuracy of the inferred Kintelligence genotypes
improved, and the outcomes for different mixtures were more consistent [unpublished data]. Use of
the allele probabilities enables application of separate thresholds for allele 1 and allele 2, and
consequently more control over the inferred SNP genotypes. The use of the EFM-output allele
probabilities is a fixed feature in MixDeR.

3.1.2. Separation of SNPs into Sets

As described above (see section 2.1), the significant inter-locus variation in SNP read counts with
the Kintelligence assay led us to develop a method within MixDeR to group SNPs of similar read
counts into separate datasets for EFM deconvolution. Figure 3 demonstrates the significant
improvement in allele 1 probabilities when SNPs are ordered by read depth and then divided into 10
smaller sets (or ~1,006 SNPs per set). An analysis of a 1:5 mixture (described in section 2.6)
conditioned on the major contributor resulted in allele 1 probabilities for the minor contributor
ranging from 0.7561 to 1.0 with a median of 0.9976 when the SNPs were separated into 10 sets.
Though the range for the allele 1 probabilities was nearly identical when the SNPs were deconvoluted
in a single set (0.7567-1.0), the median was notably lower at 0.9143. The difference was more
pronounced when comparing the probabilities from an unconditioned analysis of the same mixture.
While the allele 1 probabilities had a wider range for 10 sets of SNPs than a single set of SNPs (0.5238-
1.0 and 0.7932-1.0, respectively), the median allele 1 probability for the 10 sets (0.9979) was
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substantially higher than the median probability resulting from deconvolution of the SNPs in a single
set (0.8685). Results obtained when using the default minimum number of SNPs are presented in
Figure S2.
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Figure 3. Density plots showing the distribution of allele 1 probabilities using two different binning
strategies. The allele 1 probabilities for the minor contributor of a 1:5 mixture were assessed after: (A)
a conditioned deconvolution analysis and (B) an unconditioned deconvolution analysis, when the
SNPs were divided into 10 bins (blue) and 1 bin (red). The dotted lines represent the median allele 1
probability for each dataset.

More importantly, binning the SNPs into 10 sets for deconvolution resulted in substantial
improvements in the accuracy of the inferred genotypes for unknown contributors, regardless of the
type of deconvolution performed (conditioned or unconditioned) and whether the unknown was a
major or minor contributor (Table 1). For example, when the default MixDeR settings (see section
3.1.3) were applied to the analysis described above, the accuracy of the inferred minor contributor
genotype was 62% for the unconditioned deconvolution and 73% for the conditioned deconvolution
when SNPs were grouped into a single set. However, when the SNPs were binned into 10 smaller
sets, the accuracy of the inferred minor contributor genotypes improved to 83% (unconditioned) and
84% (conditioned). An even more dramatic improvement in accuracy was observed for the major
contributor when the deconvolution was unconditioned. When the SNPs were combined in a single
bin, accuracy of the inferred genotype was just 62%; however binning the SNPs into 10 sets resulted
in an inferred genotype accuracy of nearly 99%.

Table 1. MixDeR results for a 1:5 mixture using two different binning strategies. Results were obtained
from analysis of a single 1:5 mixture using the default settings in MixDeR.

Deconvolution = Unknown Number of Number of SNPsin Inferred Genotype
Type Contributor SNP Sets Inferred Genotype Accuracy
-
-
Unconditioned 10 b o0 ssons
oot Mo g g

While MixDeR allows the user to specify the number of SNP sets and will divide the SNPs
equally among the sets, it will also detect files created by the user within the specified input folder,
assuming the files are named and formatted properly. This feature allows the user to manually create
the files for EFM deconvolution using any binning strategy.
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3.1.3. Use of Independent Allele 1 and Allele 2 Probability Thresholds

In the EFM “All Marginal (A)” table, the allele 1 probability is always the higher of the two
probabilities for a given SNP locus (unless the allele probabilities are equal or only one allele is
inferred, ie. called homozygous). The allele 1 probability threshold used to filter the EFM
deconvolution output in MixDeR is positively correlated with genotype accuracy: the higher the
allele 1 probability threshold is set, the more likely it is that the inferred genotype will be correct. This
can be observed in Figure 4, which displays results obtained for the same 1:5 mixture analysis
described previously and shows genotype accuracy improving as the allele 1 probability threshold
increases from 0.00 to 0.99. For this reason, the allele 1 probability threshold is used by MixDeR to
determine whether to include a locus in the final inferred genotype: any locus with an allele 1
probability below the user-specified threshold is excluded.

Allele 1 Probability Threshold
0.00 0.99

I

Allele 2 Probability Threshold

0.99 |

Figure 4. Genotype accuracy at different allele 1 and allele 2 probability threshold combinations. The
plot was created using the inferred genotype accuracy for a minor contributor from an unconditioned
deconvolution of a 1:5 mixture. Red colored cells represent the lowest genotype accuracy values, while
green colored cells indicate the highest genotype accuracy values. The general genotype accuracy
pattern indicated by the heatmap in the figure was consistent across a variety of mixture conditions
and deconvolution types (i.e. different mixture ratios, total DNA input, and conditioned and
unconditioned deconvolutions) tested during the development of MixDeR.

Subsequently, MixDeR uses the allele 2 probability threshold to determine whether to keep the
EFM-output allele 2 for a locus (if above the threshold) or to drop it and infer a homozygous result
for the locus. For example, consider a scenario in which the EFM output includes a SNP locus with
potential alleles A (allele 1) and C (allele 2), with an allele 2 posterior probability of 0.6000. If an allele
2 probability threshold of 0.50 was applied in MixDeR, the inferred genotype for the locus would be
A,C; if instead a threshold of 0.80 was applied, the inferred genotype would be A,A. Further examples
are shown in Figure 2.

Given how MixDeR applies the thresholds for each allele, the relationship between allele 2
probability thresholds and inferred genotype accuracy is not the same as is observed for the allele 1
probability thresholds. As Figure 4 shows, accuracy of the inferred genotype is lowest when using
low or high allele 2 probability thresholds, and highest in the middle of the allele 2 probability
threshold range.
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Based on testing performed during the development of MixDeR, the default allele 1 and allele 2
probability thresholds in the software are 0.99 and 0.60, respectively. However, as previously
described, a user may set different allele 1 and allele 2 probability thresholds, or a range of thresholds
for each allele for testing and validation of the workflow.

3.1.4. Use of a Minimum Number of SNPs

As described above, the higher the allele 1 probability threshold used, the greater the accuracy
of the inferred genotype. However, as the allele 1 probability threshold increases, more loci are
eliminated, and thus fewer SNPs are present in the final inferred genotype. This is, in fact, the reason
that a default value of 0.99 was selected for the allele 1 probability threshold in MixDeR: using a value
of 1.00 results in the highest accuracy but eliminates too many (and depending on the mixture profile,
potentially all) SNPs, rendering the threshold essentially useless. Though a threshold of 0.99 proved
robust across a broad range of mixture types during the development of MixDeR, it is also the case
that for some mixtures and/or contributors, the number of SNPs retained will be low when the default
threshold is used.

As downstream analyses such as genealogical database searching may require a minimum
number of SNPs in the profile, or a specified number of SNPs may be deemed optimal (for
maximizing true positive and minimizing false positive matches to relatives, for instance), MixDeR
was programmed to permit users to set a minimum number of SNPs. When a minimum number of
SNPs, N, is set, MixDeR first uses the allele 1 and allele 2 probability thresholds in the normal manner
to produce the inferred genotype, and then considers the number of SNPs in the inferred genotype.
If the number of SNPs in the inferred genotype does not meet or exceed the value of N, MixDeR then
generates a new inferred genotype using the N SNPs with the highest allele 1 probabilities (using the
allele 2 probability threshold to determine whether each locus is homozygous or heterozygous as
normal). In the latter instance, the GEDmatch® PRO-formatted report will be generated using the
specified minimum number of SNPs. However, the two validation metrics files output by the
software will always consist of (1) all combinations of allele 1 and allele 2 probability thresholds
within the ranges specified by the user, and (2) the specified minimum number of SNPs combined
with all allele 2 probability thresholds specified by the user. Based on the upload criteria for
GEDmatch® PRO [38], the software defaults to a minimum of 6,000 SNPs.

3.2. MixDeR GUI

A central feature of MixDeR is the graphical user interface (GUI) provided via the Shiny app.
Although EFM is commonly run via a GUI, using the EFM GUI to perform the multiple
deconvolutions that may be required for analysis of large SNP panels and/or many samples is tedious
and requires significant hands-on time. Conversely, while the command line version of EFM allows
for less hands-on time and provides the option for batch processing, use of the command line
necessitates a nontrivial amount of experience with R coding. For these reasons, the MixDeR package
includes a user interface to perform batched mixture deconvolution using custom parameters for
each run (e.g., different loci and different AT values per locus) without requiring any R experience on
the part of the user.

The files required for EFM mixture deconvolution - including evidence and reference profiles,
configuration files that include the specific SNPs and locus-specific ATs utilized for analysis, and
allele frequency files - are challenging to manually curate for large panels of SNPs. Within the
MixDeR GUI, a user can direct automatic formatting of many of the EFM-required files. By
incorporating these formatting functions into MixDeR, the mixture deconvolution step of the
workflow is performed more efficiently and consistently, significantly reducing the possibility of user
error.

Additionally, the MixDeR GUI enables a user to set and automatically apply the desired allele
probability thresholds and minimum number of SNPs to the EFM mixture deconvolution output,
and to choose the MixDeR process type. For deconvolution of a Kintelligence evidence profile, a user
can select the option to generate a GEDmatch® PRO-formatted report. Importantly, though, for
testing and/or validation of the workflow, a user can select the option to generate metrics that
facilitate evaluation of deconvolution outcomes for Kintelligence mixture profiles developed from

d0i:10.20944/preprints202407.1705.v1
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known genotypes. The compiled tables produced via this MixDeR option enable the user to easily
compare results obtained:

e using different allele probability threshold combinations;

e using different minimum SNP numbers;

e from mixture profiles developed using differing DNA inputs;
e from mixtures with differing contributor ratios;

¢ from conditioned versus unconditioned deconvolutions; and
e from single versus replicate profiles.

As the EFM deconvolution step can be time consuming, MixDeR was programmed to allow
loading of deconvoluted data from previous EFM runs. This feature enables a user to skip the file
preparation and mixture deconvolution steps of the workflow, and instead specify only the allele
filtering options and MixDeR output file type (GEDmatch® PRO-formatted report or validation
metrics files). Of note, all files used by or generated by MixDeR are maintained in the folders specified
by the user, enabling traceability of the workflow steps and outcomes, and manual review of all files
if necessary.

3.3. Software Verification and Example Results

The software testing described in section 2.6 produced all expected outputs, including 1)
evidence and reference input files for EFM with SNPs grouped into one or 10 sets, 2) EFM allele
probability tables, 3) validation metrics files, and 4) files formatted in the manner of GEDmatch® PRO
reports. All output files are included with this paper as Supplementary Material.

Additionally, to verify the functionality of the MixDeR option to use deconvoluted data from a
previous EFM run, the option was used to generate a second set of validation metrics files and
GEDmatch® PRO reports from the EFM output files produced during the first round of software
testing. The two sets of MixDeR output files were identical when compared.

The software verification testing included using the default settings in MixDeR to process single
or replicate Kintelligence profiles developed from a 2-contributor mixed sample with a 1:5 mixture
ratio using 1 ng of total DNA for PCR. The deconvolutions were first conditioned on the major
contributor to infer the genotype of the minor contributor, then also conditioned on the minor
contributor to infer the genotype of the major contributor. Lastly, unconditioned deconvolutions
were performed, inferring the genotypes of both the major and minor contributors. Key metrics from
each deconvolution are summarized in Table 2.

Table 2. Metrics for an example 1:5 mixture processed using MixDeR.

Deconvolution Unknown Kintelligence Number of SNPS Inferred Genotype Heterozveosit
Type Contributor  Profile(s) Used in Inferred Genotypes Accuracy ygosty
i i 99.11% %
Conditioned Major Single 9,898 45.77%
Major Replicates 10,035 99.27% 46.44%
i i 84.19% 33.30%
Conditioned Minor Single 6,000
Minor Replicates 6,000 90.17% 32.90%
j i 98.91% 44.38%
Unconditioned Ma]. or Sergle 9,632
Major Replicates 10,036 99.05% 46.52%
i i 83.32% 32.50%
Unconditioned Minor Single 6,000 o o
Minor Replicates 6,000 90.45% 32.12%

Overall, the inferred genotypes for the major contributor had the highest accuracy and
heterozygosity while also including the most SNPs, regardless of the deconvolution type. Using
replicate profiles in the deconvolution was most beneficial for inference of the minor contributor
genotype, in both the conditioned (genotype accuracy improvement from 84% to 90%) and
unconditioned (improvement from 83% to 90%) scenarios. Given the already high accuracy of the
genotypes inferred for the major contributor using single profiles (>98%), the use of replicates
resulted in only minor improvements in genotype accuracy.


https://doi.org/10.20944/preprints202407.1705.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 d0i:10.20944/preprints202407.1705.v1

11

3.4. Challenges

A few issues were encountered while performing SNP mixture deconvolution in EFM that can
affect the inferred genotypes:

1. If a mixture ratio of exactly 1:1 is predicted by EFM, the alleles and allele probabilities for both
contributors in the EFM output will be the same. However, even when the EFM-predicted
mixture ratio was not exactly 1:1, we encountered instances in which the alleles and allele
probabilities for both contributors in the EFM output were identical.

2. In the EFM “All Marginal (A)” output, the contributor 1 allele probabilities should always be
higher than contributor 2 allele probabilities. However, we encountered instances in which the
opposite occurred (the contributor 2 allele probabilities were higher than the contributor 1 allele
probabilities).

MixDeR was programmed to detect these problematic scenarios when they appear in the EFM
results. When MixDeR finds that one of the issues has occurred, the software automatically re-runs
the EFM deconvolution step on the offending SNP set until either 1) the output from the
deconvolution appears as expected (i.e., the output for the two contributors is not identical, and the
contributor 1 allele probabilities are higher than the contributor 2 allele probabilities), or 2) the SNP
set has been run ten separate times. If the SNP set has been run ten times but still does not appear as
expected, MixDeR excludes the offending SNP set from the final inferred genotype.

3.5. Limitations

The MixDeR workflow for SNP mixture deconvolution has a few limitations. At present,
MixDeR can only analyze two-person mixtures, and only when the mixture ratio is not exactly 1:1.
While the effect of assuming a two-contributor mixture when the actual number of contributors is
higher has not been evaluated for SNP mixture deconvolution, underestimating the number of
contributors to SNP mixtures has been shown to result in significantly underestimated LRs for true
contributors [46]. We hypothesize that underestimating the number of contributors would also affect
deconvolution results, likely leading to lower posterior probabilities and reduced accuracy of the
inferred genotypes. The user is strongly encouraged to be highly confident in their assessment of the
number of contributors for the analyzed mixtures. Moving forward, new tools developed specifically
for use with SNPs, such as the recent Demixtify [49], may assist in the estimation of the number of
contributors to SNP mixtures.

As MixDeR was designed to process SNPs from the ForenSeq® Kintelligence Kit, at present most
files (e.g., allele frequency files, GEDmatch® PRO-formatted reports) pertain specifically to the
Kintelligence SNP set. Additionally, MixDeR utilizes a set method for dividing the SNPs into
individual datasets prior to mixture deconvolution; while the user specifies how many datasets to
create, the method behind the partitioning is fixed. Since MixDeR is open source, it could theoretically
be adapted by users to address some of these limitations (e.g., to process three-person mixtures or
perform mixture deconvolution on a different set of SNPs). Future development of MixDeR may
address one or more of these limitations as well.

The last step in the MixDeR workflow generates an inferred single-source SNP profile formatted
for upload to GEDmatch® PRO. However, GEDmatch® PRO requires a hash for direct upload to the
portal, ordinarily added to the report header during generation in the UAS (and presumably
intended to prevent users from uploading mocked Kintelligence profiles that were not generated
using the ForenSeq® Kintelligence Kit and the UAS). Given that MixDeR is not able to replicate this
hash, the MixDeR-generated report cannot be uploaded directly to GEDmatch® PRO. Thus, at
present, coordination with QIAGEN is required to upload a MixDeR-generated report to
GEDmatch® PRO.

3.6. Current and Future Work

A comprehensive evaluation of several aspects of the mixture deconvolution workflow,
performed using MixDeR, is currently underway. These include but are not limited to the SNP
binning strategy, use of different allele frequency datasets, and performance expectations for
different mixture types with regards to contributor ratios and DNA quantities. A significant
additional component of the study is the ability to detect genetic relatives of the inferred single source
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SNP profiles in the GEDmatch® database via GEDmatch® PRO queries. The authors invite users of
the Kintelligence assay to contact the corresponding author if they are interested in making
contributions to this study in the form of Kintelligence mixture data.

In the future, MixDeR will continue to be developed to meet new software and analysis needs,
including as updated versions of R, the required R packages, the UAS, or EFM are deployed that
affect the functional or performance aspects of MixDeR. Updated versions of MixDeR with
comprehensive documentation of changes will be made available at
https://www.github.com/bioforensics/mixder.

4. Conclusions

MixDeR provides forensic laboratories with a workflow for performing deconvolution of
Kintelligence SNP profiles developed from mixed DNA samples, along with a user-friendly GUI that
simplifies and automates the workflow steps. In addition to providing an inferred single-source
evidence file output designed for use with the GEDmatch® PRO portal, the software includes
features to assist users in testing and validating the workflow on their own laboratory-developed
Kintelligence mixture data. As MixDeR is an open-source, publicly available R package and Shiny
app that requires little coding expertise, it should have utility for any laboratory that is interested in
using the ForenSeq® Kintelligence Kit for FGG applications. Additionally, MixDeR is designed to be
used offline, making it suitable for use by laboratories that may prefer to avoid employing a web-
based application. Current and future versions of MixDeR can be downloaded from
https://www.github.com/bioforensics/mixder.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Figure S1: Inter-locus balance; Figure S2: Distribution of allele 1 probabilities
using a minimum number of SNPs; Supplementary Data.
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