

Review

Not peer-reviewed version

Preharvest Control of *Campylobacter* Colonization in Chickens: Special Emphasis on Vaccination Strategies

[Chaitanya Gottapu](#) , [Lekshmi K Edison](#) , Gary D Butcher , [Subhashinie Kariyawasam](#) *

Posted Date: 13 August 2025

doi: [10.20944/preprints202508.0970.v1](https://doi.org/10.20944/preprints202508.0970.v1)

Keywords: *Campylobacter*; chicken; foodborne infection; gastroenteritis; poultry; preharvest control strategies; vaccination; gut microbiota; multifaceted approach; One-Health

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Preharvest Control of *Campylobacter* Colonization in Chickens: Special Emphasis on Vaccination Strategies

Chaitanya Gottapu ¹, Lekshmi K. Edison ¹, Gary D. Butcher ² and Subhashinie Kariyawasam ^{1,*}

¹ Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA

² Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA

* Correspondence: skariyawasam@ufl.edu

Abstract

Campylobacter is a leading cause of human gastroenteritis, with poultry serving as the primary reservoir host. Effective preharvest control strategies are crucial for preventing or reducing *Campylobacter* contamination on meat surfaces. As concerns grow regarding the use of antimicrobials in animal agriculture, the importance of non-antimicrobial preharvest strategies in poultry production has become increasingly significant. This comprehensive review focuses on the biology of *Campylobacter*, its impact on public health, and current and emerging preharvest strategies with a special emphasis on vaccination. Preharvest strategies are broadly classified into biosecurity measures, gut microbiota modifications using prebiotics, probiotics, postbiotics, feed additives, and vaccination. While many live, attenuated, and subunit vaccines have proven effective in research settings, there are currently no commercial vaccines available. Because no single strategy can effectively combat *Campylobacter*, integrating multiple approaches, such as improved biosecurity measures, immunization, and dietary modifications, may provide a solution for reducing *Campylobacter* loads in poultry. Embracing a "One Health" approach, gaining a deeper understanding of *Campylobacter* pathophysiology, making advancements in vaccine technology, and implementing holistic farm management practices will be essential for sustainable control of *Campylobacter* and for reducing the risk of human campylobacteriosis.

Keywords: *Campylobacter*; chicken; foodborne infection; gastroenteritis; poultry; preharvest control strategies; vaccination; gut microbiota; multifaceted approach; One-Health

1. Introduction

Campylobacter is one of the major causes of bacterial gastroenteritis in the United States [1,2]. Each year, an estimated 1.5 million people in the United States contract *Campylobacter* infections [3]. The primary source of these infections is raw or undercooked chicken meat containing high loads of *Campylobacter* originating from the chicken's digestive tract [4–6]. The two major species responsible for human infections are *Campylobacter jejuni* and *Campylobacter coli* [7]. Apart from causing gastroenteritis, *C. jejuni* is linked to about one-third of Guillain-Barré Syndrome (GBS) cases in humans [8–10]. GBS is an immune-mediated peripheral nerve disease characterized by symmetrical ascending weakness that can progress to paralysis accompanied by hyporeflexia and areflexia [11,12]. Thermophilic *Campylobacter* species, mainly *C. jejuni* and *C. coli*, are commonly found in wild birds and domestic poultry [13–16]. Some farms worldwide have reported *Campylobacter* prevalence rates as high as 100%, particularly among birds that have reached marketable age. Both *C. jejuni* and *C. coli* have adapted to the avian gastrointestinal tract. Despite widespread intestinal colonization (up to 10⁹

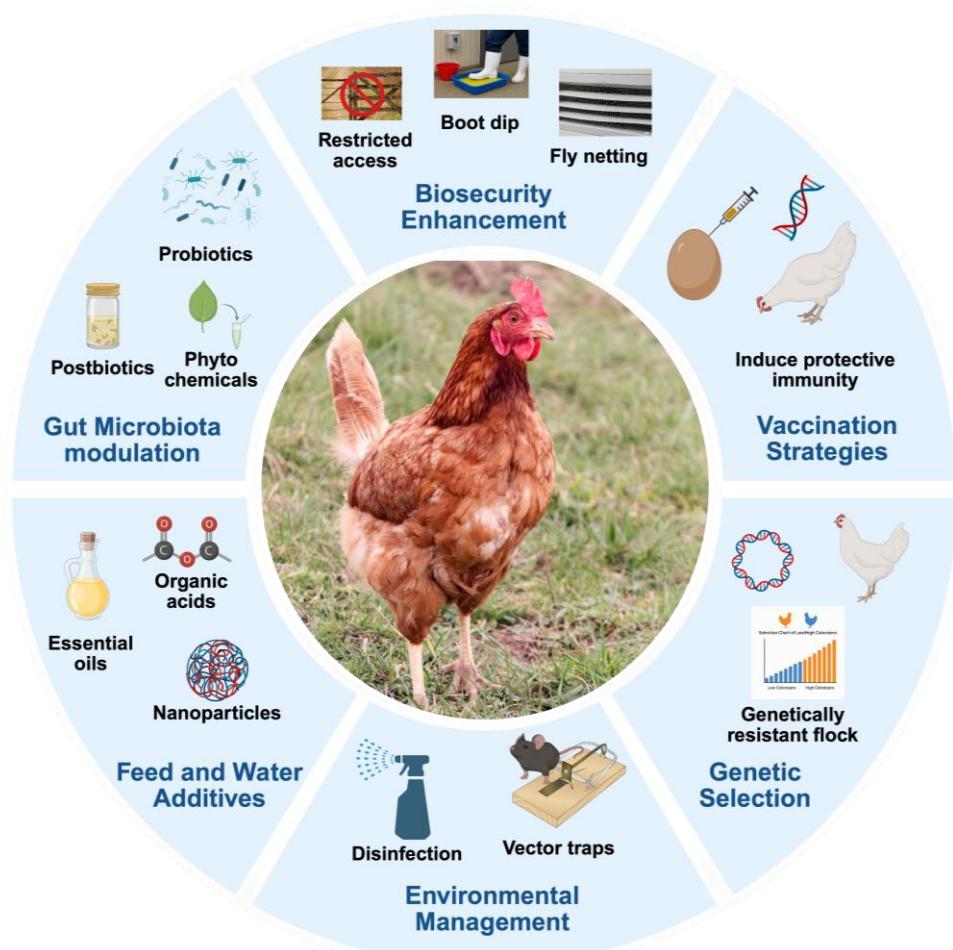
colony-forming units/g of cecal content), *Campylobacter* are often regarded as commensals in birds, causing little to no overt illness [4,17–19]. However, recent studies have shown that *Campylobacter* spp. can lead to significant infections and immune responses [20–23]. Following intestinal infection by *Campylobacter* in chickens, cytokine responses that drive humoral, adaptive, and Th17 responses have been observed [21,24,25]. Additionally, the newly emerged species, *Campylobacter hepaticus*, causes spotty liver disease (SLD) in layer hens, which is most prevalent during peak production stages [26,27].

Fluoroquinolones and macrolides have been widely used in the past in animals for growth promotion and infection control purposes. They have also been prescribed as supportive treatments for human *Campylobacter* infections. However, this widespread use in food animals is believed to have significantly contributed to the development of antimicrobial resistance (AMR) against these antibiotics [28–30]. The emergence of AMR has significantly restricted effective antibiotic treatment options for *Campylobacter* infections [30–32]. Consequently, growing concerns regarding AMR and food safety have led to bans on the use of medically important antimicrobials in food production systems for nontherapeutic purposes, driving the urgent search for alternative strategies that focus on *Campylobacter* control and prevention at the poultry farm level [32–36]. Achieving *Campylobacter* prevention in farm settings is quite challenging due to following reasons, i) the ubiquitous nature of *Campylobacter*, ii) multiple transmission routes, iii) a low infection dose required for human illness, and iv) the delayed detection of *Campylobacter* colonization or spread in birds [37–40]. Despite these challenges, quantitative microbial risk assessment studies showed a 1–2 log reduction in the level of *Campylobacter* in broiler chicken intestines can significantly impact relative risk reduction, achieving a decrease of 44%–95% [41]. The incidence of *Campylobacter* through chicken meat can be reduced 30 times by introducing a 2-log reduction in the number of *Campylobacter* spp. in chicken carcasses [42]. Therefore, control of human *Campylobacter* infections is feasible through the consistent application of safe practices from farm to fork.

Campylobacter control strategies can be broadly divided into two main categories: preharvest and postharvest strategies [43,44]. Preharvest strategies are measures and interventions to control *Campylobacter* at the farm level. These strategies mainly focus on reducing *Campylobacter* colonization and preventing its introduction and spread in the environment [34,45,46]. Preharvest strategies can be further divided into three categories: i) reduction of environmental exposure through biosecurity measures, ii) reducing *Campylobacter* colonization in the bird intestines by improving host resistance via competitive exclusion, vaccination, and host genetic selection, and iii) using alternatives to antibiotics to mitigate *Campylobacter* colonization in birds [47]. Post-harvest interventions include carcass decontamination, antimicrobial treatment for poultry processing, cold chain management, and consumer education [48–54]. However, most of these interventions are ineffective when used alone and are not commercially available. While vaccines have shown promising results in the prevention of various poultry diseases, and many studies have tested numerous vaccine candidates, no commercial vaccines are currently available to prevent or reduce *Campylobacter* colonization in chickens. A multifaceted approach that combines two or three strategies, with a particular focus on vaccination, is essential for preventing and controlling *Campylobacter* colonization in poultry. This comprehensive review explores the current state of preharvest approaches to mitigate *Campylobacter* colonization in poultry, with a special emphasis on vaccination strategies against *Campylobacter* spp.

2. *Campylobacter* in Broilers –Biology and Public Health Impact

Campylobacter spp. are gram-negative, motile, slender, comma-shaped or spiral-shaped, non-spore forming bacteria. They grow strictly under anaerobic to microaerophilic conditions and are nutritionally fastidious organisms. The bacterial length ranges from 0.5–5 μm and width of 0.2–0.9 μm [55,56]. There are more than 57 *Campylobacter* spp. under the genus *Campylobacter* (<https://lpsn.dsmz.de/genus/Campylobacter>). They colonize the intestines of warm-blooded hosts, including humans; however avian species are more favorable as commensal colonizers [57]. In humans, *Campylobacter* causes gastroenteritis, which can sometimes lead to complications such as


Guillain-Barré Syndrome (GBS), irritable bowel syndrome (IBS), and reactive arthritis [56]. In the United States, *Campylobacter* is one of the major causes of gastroenteritis with approximately 1.3 million cases leading to economic costs ranging from \$1.3 to \$6.8 billion [58]. Generally, self-limited diarrheal illness lasts for about 5 to 7 days, but elderly people with immuno-compromised status are at a high risk for mortality, morbidity, and prolonged illness [7].

C. jejuni and *C. coli* are the major *Campylobacter* species associated with human illness. Humans acquire infections through fecal-oral transmission from infected animals and food products [59,60]. Avian species, especially chickens, account for 50% -70% of *Campylobacter* infections in humans [61]. When chickens carry *Campylobacter* in their intestines, chicken meat may become contaminated during slaughter and processing [62]. As few as 500 to 800 CFU of *C. jejuni* are sufficient to cause infection implying that bacteria do not need to multiply to cause disease [63,64].

Campylobacter can colonize the mucus of the small intestine and ceca of chickens sometimes at very low densities such as 40 CFU [65]. Once colonization occurs, bacteria rapidly reaches a high number in cecal contents [66–68]. Chickens are coprophagic meaning that they consume feces, which allows contaminated feces to spread *Campylobacter* rapidly throughout the flock. Once *Campylobacter* colonization is detected in a flock, most birds in the flock typically become colonized within days [69–72]. There is a direct correlation between *Campylobacter* prevalence in chickens and the likelihood of human *Campylobacter* infections. Therefore, reducing the prevalence of *Campylobacter* in chicken flocks has the potential to significantly decrease human infections [73]. This approach has been quite successful in countries such as Denmark and Iceland [74,75].

3. Overview of Preharvest Control Strategies

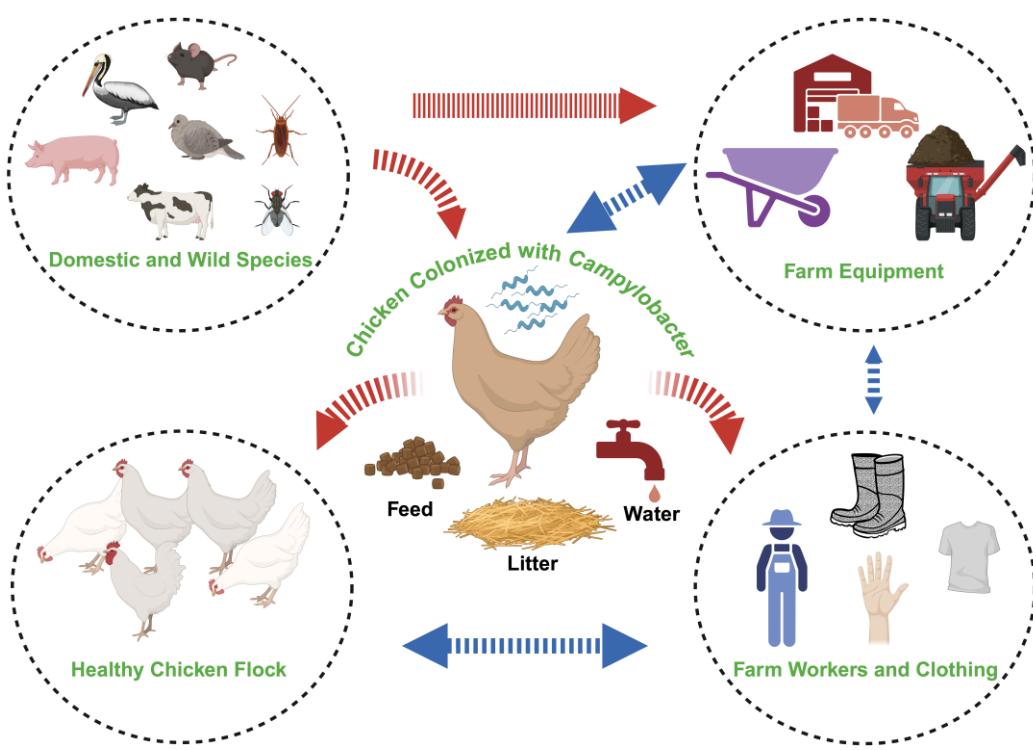

Various non-antibiotic interventions have been tested to reduce *Campylobacter* colonization of poultry during the preharvest phase (Figure 1). These include biosecurity measures, prebiotics, probiotics, postbiotics, feed additives, bacteriophage therapy, vaccination, and genetic selection for resistant chicken strains.

Figure 1. Preharvest intervention strategies to control *Campylobacter* in poultry (Created in BioRender).

3.1. Biosecurity Measures

Biosecurity is crucial for keeping *Campylobacter* out of animal flocks, as it acts as the primary defense against this pathogen [46,76]. In poultry, the transmission route of *Campylobacter* is horizontal (Figure 2). There are no known reports on vertical transmission of *Campylobacter* spp. There are currently no known reports on vertical transmission of *Campylobacter* spp. Potential sources of *Campylobacter* into a farm include, domestic and wild animals, farm equipment, contaminated litter, feed and water as well as potential transmission from infected birds [77–81]. The poultry house interior environment showed a lower prevalence of *Campylobacter* in air/ventilation samples (6%), pests (5%), litter (3%), water samples (2%), and feed (rarely), in the descending order of *Campylobacter* prevalence rates. The external environment of the poultry house showed 14% prevalence, with 67% and 14% prevalence in domestic animals and their excreta, respectively. The transport equipment used for live haul, including trucks (44%) and crates (22%), showed different prevalence rates of *Campylobacter* [78]. Although implementing strict biosecurity measures can be challenging, they are fundamental in preventing initial colonization. Many interventions primarily focus on reducing *Campylobacter* levels after it is already present, but biosecurity protocols help prevent it from entering the farm in the first place. The effectiveness of biosecurity is greatly enhanced when combined with other successful strategies [82,83].

Figure 2. On farm transmission cycle of *Campylobacter* in poultry production (Created in BioRender).

3.1.1. Managing Human Entry and Hygiene to Prevent Contamination

Campylobacter bacteria are frequently found in agricultural workers, farm managers, and truck drivers. To reduce the number of *Campylobacter*-positive flocks, it is recommended to limit human traffic by restricting unnecessary movements of people and minimizing visitors to farms and animal housing. The following practices can help reduce the entry of *Campylobacter* through humans: (i) Enforce the use of personal protective equipment (PPE): PPE should be mandatory for anyone making essential visits to the farm. (ii) Maintain dedicated hygiene measures: Regularly cleaned and disinfected footwear and clothing specifically should be designated for each poultry house. This practice helps create a stronger hygiene barrier. (iii) Promote hand hygiene: Handwashing stations should be accessible at all entry points to the poultry houses. Everyone must be instructed to thoroughly sanitize their hands for 15-20 seconds both before entering and after leaving animal housing. (iv) Avoid high-risk activities: To significantly reduce contamination risks, it is important to avoid unnecessary movements of people, particularly during high-risk activities such as thinning [46,84]. Despite having clear guidelines, biosecurity protocols are often not followed meticulously. To achieve a greater impact, comprehensive training, education, and consistent monitoring are essential to ensure adherence to best practices [83,85].

3.1.2. Equipment and Vehicle Sanitation

The movement of vehicles and equipment between houses or between farms poses a significant risk of *Campylobacter* transmission. It is not advisable to transfer the equipment unless it is properly cleaned. *Campylobacter* can survive longer periods on equipment surfaces, staying in a viable but non-culturable state (VBNC), making it more challenging to eliminate from the environment and allowing it to survive under various stress conditions [86,87]. Residual organic matter still harbors *Campylobacter*, protecting the standard washing process [37]. It is necessary to employ effective sanitation and disinfection methods to prevent the spread of *Campylobacter*. This process involves more than just washing; it requires a multistep approach that includes dry cleaning, wet cleaning, disinfection and drying [82].

3.1.3. Pest and Wildlife Control

Animals, including cattle and poultry, are known reservoirs of *Campylobacter*, which has been isolated from the intestinal tracts of various animals and birds [88–91]. Wildlife serves as an amplifying host, exhibiting a high pathogen shedding capacity and playing an important role in transmission [77]. Wild birds are particularly important because they can spread *Campylobacter* from different geographical areas because of their ability to fly over large distances [92,93]. In addition to domestic and wild animals, birds, rodents and insects have all been shown to transmit *Campylobacter* [94–98]. To control its spread, robust vector-control programs should be implemented targeting wild animals, rodents, and insects. Comprehensive integrated pest management programs can help eliminate pest attractants and breeding sites from the surrounding environment. Effective strategies include rodent-proofing measures, targeted larvicides for improved litter management to exclude and control flies, and bird-proof sealing to deter wild birds [46,99].

3.2. Probiotics, Prebiotics and Postbiotics

In the post-antibiotic era, there is a growing interest in probiotics, prebiotics, and postbiotics as effective dietary interventions [100,101]. Probiotics are non-pathogenic live organisms that confer health benefits to the host when consumed in adequate amounts [102]. Common probiotic microorganisms belong to the genera *Lactobacillus*, *Bifidobacterium*, *Saccharomyces*, *Bacillus*, *Streptococcus*, and *Enterococcus* [103–106]. They positively influence the host through various mechanisms, such as improved intestinal barrier function, immunomodulation, and production of neurotransmitters [107]. Probiotic supplementation in chicken diets helps maintain intestinal homeostasis, eliminate pathogenic bacteria through competitive exclusion, and stimulates the secretion of important digestive enzymes such as phytases, amylases and proteases, thereby improving feed utilization efficiency [108–114]. Chickens are monogastric animals, that have a single-chamber stomach divided into the gizzard, small intestine, and large intestine [115]. The entire GIT interacts symbiotically with microbiota to aid in digestion and absorption and plays crucial roles in health and production by regulating physiological processes [116–118]. The chicken gut microbiota is highly complex and is dominated by bacteria, with over 600 different bacterial species identified [119]. While bacterial diversity varies throughout the GIT, the cecum is the most densely colonized region. The cecum plays a key role pathogens colonization [120,121]. Under uncertain conditions, an imbalance in the normal gut microbiota can promote the growth of opportunistic and pathogenic bacteria, thereby disrupting gut health. Probiotics can help in this situation by restoring the beneficial gut microflora and preserving gut integrity [120,122–124].

Prebiotics are non-digestible food components, generally metabolized by specific bacteria and provide beneficial effects on the host [121,125]. They help increase the abundance of beneficial microorganisms such as bifidobacteria and lactobacilli and improve gut metabolic activity, resulting in the production of a series of metabolites that favor the maintenance of gut health [121,126]. Prebiotics consist of monomers derived from common sugars, including glucose, galactose, fructose, and xylose. Widely studied examples are insulin, fructooligosaccharides (FOS), isomaltoligosaccharides (IMO), and galactooligosaccharides (GOS). Postbiotics are functional bioactive molecules produced during the metabolic processes of probiotics, that which confer health benefits to the host [122,127]. Unlike live probiotics, postbiotics offer a safer and more stable alternative by mitigating key limitations that have impeded the broader application of probiotics in commercial settings, such as the risk of antimicrobial resistance, poor thermal stability, and potential for expressing virulence factors [128]. According to the International Scientific Association for Probiotics and Prebiotics (ISAPP, 2021), postbiotics are comprised of inactivated microbial cells, bacteriocins, cell-free supernatants, exopolysaccharides, and short-chain fatty acids [129,130]. A growing body of in vitro and in vivo evidence indicates that postbiotics enhance gastrointestinal health by promoting beneficial bacterial populations, modulating host immune responses, and supporting intestinal barrier integrity [131–134].

3.3. Bacteriophage Application in *Campylobacter* Control

The application of bacteriophages as a biocontrol strategy has been investigated for controlling food-borne pathogens (e.g., *Listeria*, *Salmonella* and *E. coli* O157:H7 [135]. Bacteriophages are viruses that infect bacterial cells and have demonstrated potential as therapeutic agents against bacteria. Bacteriophages used in these treatments are specific to bacteria. For instance, certain *Salmonella* bacteriophages (ST27, ST29, and ST35) are specific to the TolC receptors of *Salmonella* serovars. The binding specificity of bacteriophages to bacteria determines their host ranges. Upon entering a bacterial cell, bacteriophages generally undergo either a lysogenic or a lytic cycle. Bacteriophages utilize the host machinery to produce progeny. Because of the low risk of phage transduction and rapid lysis activity, lytic phages are preferred as therapeutic targets over lysogenic phages. It is estimated that a 2 log CFU reduction in *Campylobacter* levels in poultry intestines is sufficient to reduce the occurrence of human campylobacteriosis associated with poultry by 30-fold [136]. Chinivasagam *et al.*, used a cocktail of bacteriophages to control *Campylobacter* in a commercial broiler setting. One of the farms involved in the trial achieved a 1–3 log₁₀ CFU/g significant reduction in *Campylobacter* loads in the ceca of 47-day-old broiler chickens compared to the control group. Another farm in the study showed a non-significant 1.7 log₁₀ CFU/g reduction in *Campylobacter* [137]. Another recent study conducted with a cocktail of two bacteriophages showed a significant reduction of 2.4 log₁₀ CFU g⁻¹ in *Campylobacter* two days of post-treatment compared to mock-treated controls [138].

3.4. Feed Additives

In poultry production, organic acids such as acidifiers (e.g., formic, butyric), essential oils (EOs) (e.g., thymol, carvacrol), and diverse plant extracts (phytogenic) are increasingly utilized as alternatives to antibiotic growth promoters. These substances play an important role in enhancing intestinal health primarily by modulating gut microbiota [139,140]. Organic acids are naturally produced during the metabolism of various animal feeds. They help lower intestinal pH, thereby inhibiting the proliferation of pH-sensitive enteric pathogens such as *Salmonella* and *E. coli*. This acidic environment allows the undissociated form of these acids to pass across bacterial cell membranes, leading to intracellular acidification, disruption of metabolic processes, and eventual bacterial lysis, while simultaneously fostering the growth of beneficial acid-tolerant bacteria such as *Lactobacillus* and *Bifidobacterium* [141–143]. Organic acids also aid in the absorption of vital micro- and macro-minerals such as calcium, magnesium and zinc [141]. EO's are strong antioxidants and antibacterial agents [144]. They are rich in lipophilic phenolic compounds that can disrupt bacterial cell membrane integrity, increase permeability, and cause leakage of cytoplasmic contents, which contribute to their broad-spectrum antimicrobial effects against pathogens such as *Clostridium perfringens* and *E. coli* [145]. EO's can also neutralize free radicals and exhibit potential antioxidant properties [146,147]. Plant extracts are generally considered safe, and many can be consumed as food [148,149]. These extracts comprise of a complex array of bioactive compounds such as flavonoids, tannins, and alkaloids. They exhibit multifaceted mechanisms such as direct antimicrobial effects, anti-inflammatory and immunomodulatory properties that strengthen the gut barrier, and the ability to stimulate digestive secretions, collectively shifting microbial communities towards a healthier and more diverse microbial profile that favors commensal bacteria and optimizes nutrient utilization [150–153]. For example, herbal compounds like tryptanthrin have been shown to significantly reduce *Campylobacter* colonization in vitro and in vivo [154].

3.5. Vaccination – A Targeted Approach

Vaccination is a proven strategy for the prevention and control of bacterial and viral infections. Compared to other management strategies, it offers advantages in terms of public health impact and long-term sustainability [153,155]. Currently, no commercial vaccine is available to protect chickens from colonization [156–158]. Although vaccines are not 100% successful in preventing *Campylobacter* colonization in hens, they have been shown to be more effective than previously reported methods. Better protection could potentially be obtained by combining immunization with additional preharvest strategies [159–161]. Figure 3 illustrates the different vaccine strategies available for the

prevention and control of bacterial infections. These include killed/inactivated vaccines, subunit vaccines, live attenuated vaccines, DNA vaccines, and mRNA vaccines, each with their own advantages and disadvantages.

Vaccination strategy	Killed/Inactivated	Subunit/Protein	Live Attenuated	DNA/mRNA
Antigen source	Killed bacteria	Proteins/Outer membrane proteins	Live bacteria with mutations	Plasmid DNA or mRNA
Immunity	Weak Humoral	Humoral	Humoral and Mucosal	Cell mediated
Advantages	No live bacteria	Safer and target specific	Strong immunity	Easy scalability and No reversion of risk
Disadvantages	Weak immunity	Booster doses required	Risk of shedding	Cost and delivery optimization

Figure 3. Major types of vaccines used to control bacterial infections in poultry (Created in BioRender).

3.5.1. Types of Poultry *Campylobacter* Vaccines

3.5.1.1. Subunit Vaccines

Subunit vaccines use bacterial components instead of complete bacteria, to trigger an immune response. They generally offer advantages over attenuated and killed vaccines in terms of lower risk of reverting to virulence, enhanced safety, targeted immunity, and better compatibility with adjuvants. Despite these advantages, developing effective subunit vaccines remains a challenge. One major difficulty is identifying suitable antigens capable of protecting different *Campylobacter* species or even serotypes and strains within the same species. Also, providing robust immunity to protect broiler chickens with a shorter lifespan requires an optimized delivery method. To date several antigens tested as subunit vaccines have shown modest to significant results [162–164].

3.5.1.2. Live-Attenuated Vaccines

Live attenuated vaccines are live bacteria that result from reduced virulence/pathogenicity but are capable of generating adequate long-lasting immunogenicity while activating both adaptive and innate immune responses [157,165]. Live attenuated vaccines tested against *Campylobacter* include heterologous bacterial vectors that transport *Campylobacter* antigens and *Campylobacter* strains with mutated oxidative stress defense antigens [157,160]. Another approach to live attenuated vaccines is to use *E. coli* to deliver glycoconjugated antigens, thus improving the vaccine performance [166]. These vaccines offer more advantages than killed and subunit vaccines by providing long-lasting immune responses, including mucosal immunity. Despite these advantages, the risk of reverting to virulent forms and interference with maternal antibodies in young chickens are major concerns regarding subunit vaccines [167]. Environmental contamination through the shedding of vaccine strains is an additional concern, making it crucial to select a strain that guarantees both safety and immunogenicity without posing any environmental biohazard risks [167,168].

3.5.1.3. Inactivated/Killed Vaccines

The concept behind inactivated or killed vaccines is that, after undergoing physical or chemical treatments bacteria still retain protective antigens that can elicit an immune response [169]. However, few studies on inactivated or killed vaccines have had shown limited success [170–172]. A major challenge with poultry killed vaccines is identifying an effective adjuvant to boost the immune response [173]. Additionally, inactivated/killed vaccines do not generate the mucosal immune

response essential for reducing *Campylobacter* colonization. These vaccines must be administered via a parenteral route prohibiting mass administration and making them economically not feasible [167,174,175].

3.5.1.4. DNA and mRNA Vaccines

Genetic vaccines represent a significant advancement in the field of vaccinology [176–178]. These vaccines do not require live vector for delivery; they use host-cell mechanisms to produce antigens. Genetic vaccines primarily consist of DNA or mRNA, which is taken up by cells and translated into proteins [179]. Recently, various DNA vaccines, including flagellin-based, outer-membrane protein-based, and prime-boost DNA vaccines, have been investigated for *Campylobacter* control with promising results [180–182]. DNA and mRNA vaccines are generally safer to administer because they do not involve the risks associated with live pathogens [178,183]. They are capable of eliciting both humoral and cellular immune responses, even in the presence of maternal antibodies [184,185]. Although genetic vaccines show a high rate of success, optimizing delivery and ensuring efficient cellular uptake are critical to their overall effectiveness. The delivery of mRNA vaccines via lipid nanoparticles and their storage must be refined, as current methods are not cost-effective for mass immunization [186,187].

3.5.2. Challenges in *Campylobacter* Vaccine Development

3.5.2.1. *Campylobacter* Properties

Pan-genome analyses of *Campylobacter* revealed extensive genomic variability, highlighting its highly diverse nature at the genome level [188–191]. This significant genetic diversity indicates that a vaccine targeting only one or a few strains may not be effective against many circulating *Campylobacter* strains in the field. Adding to this challenge is the phase variation phenomenon, which allows bacteria to swiftly adapt to their new surroundings and effectively colonize and survive in the phase of host immune response [192–194]. Through phase variation, bacteria can generate new subpopulations with distinct phenotypes without undergoing overall changes in their genetic content [194–196]. In *Campylobacter*, more than 30 genes, including those encoding key cell surface components, such as lipooligosaccharides, capsular polysaccharides, and flagellin, are differentially regulated in response to the external environment. This phase variation leads to the expression of different versions of surface antigens, which can make vaccines ineffective since the immune response produced by the vaccine may no longer recognize the altered antigens. Consequently, polymorphism arising from phase variation presents a challenge for the development of a single vaccine that is effective against all relevant bacterial forms. Even the vaccines that initially provide protective immunity may eventually lose their effectiveness as the bacterial population dynamically changes its antigen profile [197,198].

3.5.2.2. Host Factors Influencing Vaccinal Immunity

One of the major hurdles in *Campylobacter* vaccine development is the poor understanding of *Campylobacter* infection immunobiology [159]. Typically, newly hatched chicks are *Campylobacter*-free, and maternal antibodies provide initial protection by delaying the start of colonization [199–202]. Vaccination of breeder hens with bacterin and subunit vaccines resulted in chicks possessing anti-*Campylobacter* antibodies in their blood and mucus, offering some protection, although this protection waned after approximately two weeks [203,204]. Notably, *Campylobacter* colonization usually begins at around three weeks of age, a timeframe that coincides with a decrease in maternal antibody levels [204–206]. In addition to this complexity, mucosal immune system of chicks does not fully mature until around seven weeks, which is after the typical six-week market age for broilers [24,25,207]. This delayed immune maturation is further supported by studies on antibody-associated clearance in bursectomized birds, which indicate that adaptive immune responses develop after

approximately six weeks, suggesting that achieving effective immune-based protection is more feasible in older, adult birds [199,208–211].

The mucous layers of the lower digestive tract are colonized by *Campylobacter* without provoking any notable immune response [212]. In contrast, effective vaccines elicit a strong intestinal mucosal immunity to combat *Campylobacter* colonization and infection (163, 209). Most injectable vaccines do not produce adequate immunity because *Campylobacter* remains in the intestinal lumen and does not trigger a serious infection to elicit mucosal immune responses. Also, the anatomical features of the chicken immune system present several obstacles. Unlike mammals, chickens lack lymph nodes, which play a key role in antigen presentation and initiation of adaptive immune responses. As a result, secondary lymphoid tissues contribute significantly to the immunity provided by vaccination [214,215]. The Bursa of Fabricius is a specialized lymphoid organ critical for the development of B cells and production of antibodies; however, it undergoes regression with age [216]. Therefore, effective vaccines targeting gut-associated lymphoid tissues (GLAT) and stimulating local mucosal immunity are required for *Campylobacter* control [217,218].

3.5.2.3. Administration and Management of Vaccines

Although small-scale laboratory experiments have shown success, *Campylobacter* vaccines do not yield the same effectiveness under field conditions. The diverse nature of poultry rearing systems, spanning from small-scale backyard operations to large-scale commercial enterprises, presents a significant challenge for the implementation of a standardized and universally effective vaccination protocol [67]. In controlled laboratory settings, each bird receives a precisely measured vaccination dose, which is impractical in the field settings. To enable practical and cost-effective scaling up for larger flocks, mass vaccine administration techniques such as in ovo, water, or spray application systems are employed. These techniques often result in irregular immune responses and varying rates of vaccine uptake [219].

3.5.3. Success Stories and Promising *Campylobacter* Vaccine Candidates

Despite the unavailability of a commercial *Campylobacter* vaccine for poultry, several studies have demonstrated significant reductions in *Campylobacter* colonization in the chicken intestines. These promising results offer hope for optimizing and developing scalable vaccination strategies in the future. Although, the main focus of this review is on vaccine studies that have reported substantial and statistically significant reductions in *Campylobacter* colonization, Table 1 presents an overview of all poultry *Campylobacter* vaccine studies to date.

3.5.3.1. Autogenous Vaccines

A whole-cell autogenous vaccine targeting *Campylobacter* genes essential for extraintestinal survival was created using a genomic tailoring approach. The progeny of broiler breeders that received the vaccine showed a nearly 50% decrease in *Campylobacter* isolates that colonized and carried extraintestinal survival genes, as well as a notable decrease in meat surface survival. A logistic regression model estimated that the vaccine could successfully target 65% of the population of clinically relevant *Campylobacter* strains. This vaccine strategy is an effective method for combating bacterial infections by targeting bacterial lineages linked to infection and transmission risk within a larger commensal population [220].

3.5.3.2. Subunit Vaccines

Subcutaneous administration of 125 µg of the outer membrane (OMP) fraction of *C. jejuni* resulted in significantly lower *Campylobacter* levels in the cecal contents compared to the oral route of administration. When these outer membrane components were delivered subcutaneously via nanoparticles, *Campylobacter* was undetectable. However, 13% of the chickens showed detectable levels of *Campylobacter* in the intestines when non-encapsulated outer membrane components were

administered subcutaneously. The serum IgA (IgG) and IgY responses appeared earlier and were higher in the groups that received the vaccine subcutaneously with nanoparticle encapsulated OMP vaccine showing higher IgY and IgA titers in cloacal feces than the other OMP vaccine types. These findings indicate that subcutaneous delivery of OMPs, both with and without nanoparticle encapsulation, effectively stimulated antibody production and significantly reduced *Campylobacter* colonization in the intestine [221]. Similarly, vaccination with chitosan/pCAGGS-*flaA* nanoparticles intranasally reduced the bacterial colonization by $2-3 \log_{10}$ [222]. Furthermore, vaccination with recombinant peptides derived from CadF, FlaA, and a combined CadF-FlaA-FlpA protein of *C. jejuni* significantly lowered *Campylobacter* loads in the ceca, with median \log_{10} reductions of 3.35 for CadF, 3.11 for FlaA, and 3.16 for the fusion protein [163].

3.5.3.3. Live Attenuated Vaccines

Vaccinating chickens with a modified *Salmonella* strain expressing the *cjaA* gene from *C. jejuni* stimulated the production of IgY and IgA antibodies against the outer surfaces of both *Salmonella* and *Campylobacter*. In contrast to the control group, in which all chickens were heavily colonized, only 15% of the vaccinated chickens had high levels of *Campylobacter* (above 10^3 CFU/g) in their ceca [223]. Similarly, a *Salmonella* strain carrying the *dps* gene of *C. jejuni* demonstrated a 2.5 log reduction in *Campylobacter* levels following experimental infection [224]. Oral delivery of an *E. coli* strain that produces *C. jejuni* N-glycan resulted in 65% protection against *Campylobacter* colonization, whereas all unvaccinated chickens became colonized. Combining the N-glycan vaccine with the probiotics *A. mobilis* or *L. reuteri* enhanced weight gain, IgY antibody production, and overall effectiveness of the vaccination [166].

3.5.3.4. DNA Vaccine

Four novel vaccine candidates discovered using reverse vaccination technology demonstrated a significant decrease in the cecal burden of *Campylobacter* in Ross broiler chickens. These findings indicated a notable drop in the *Campylobacter* load by $4.2 \log_{10}$ CFU/g, which could potentially reduce the risk of human campylobacteriosis by 76–100%. However, these findings proved challenging to reproduce consistently, necessitating further investigation to develop a reliable vaccine [42,225–227].

Table 1. Summary of the vaccine approaches investigated for poultry *Campylobacter*.

Vaccine	Chicken breed (chicken type)	Age at Vaccination	Vaccination regimen	Challenge		Reduction in levels (mean \log_{10} CFU/gram) of <i>Campylobacter</i>	Reference
				Age	Strain (dose)		
Live attenuated <i>Salmonella</i> vaccine expressing CfrA or CmeC proteins	Cornish x Rock (broiler)	Day 7	Oral administration of 200 μ l of <i>Salmonella</i> (1×10^9 CFU/ml) expressing CfrA or CmeC	Day 28	<i>C. jejuni</i> NCTC 11168 (2×10^3 CFU/bird)	No significant reduction	[160]
Nanoparticle-encapsulated OMPs of <i>C. jejuni</i> 81–176	Not specified	Day 7 and Day 21	Oral administration of 25 or 125 μ g of nanoparticle-encapsulated OMPs or OMPs alone	Day 35	<i>C. jejuni</i> 81–176 (2×10^7 CFU/bird)	No significant reduction	[221]
			Subcutaneous administration of 25 or 125 μ g of nanoparticle-encapsulated				

OMPs or OMPs alone						
Live <i>Salmonella</i> Typhimurium Δ aroA strain expressing CjaA of <i>C. jejuni</i>	Light Sussex (broiler)	Day 1 and Day 14	Oral gavage of 0.3 ml of stationary phase culture (1×10^8 CFU/ml)	Day 28	<i>C. jejuni</i> M1 (1×10^7 CFU/bird)	Significant $1.4 \log_{10}$ CFU/g reduction [211]
Purified recombinant CjaA	Light Sussex chickens (broiler)	Day 1 and Day 15, or Day 15 and Day 29	Subcutaneous administration of 14 μ g of rCjaA with TiterMax adjuvant	Day 29/D ay 44		No significant reduction
Autogenous poultry vaccine	Ross (broiler)	14 and 18 weeks of age	Intramuscular administration of 0.5 ml of oil-based autogenous vaccine	Not a challenge study	Measured natural colonization	No significant reduction [220]
FliD and FspA	White Leghorn (layer)	Day 1 and Day 14	Subcutaneous administration of 4.3×10^{10} moles of each recombinant protein, FliD and FspA, with TiterMax Gold adjuvant	Day 28	<i>C. jejuni</i> M1 (1×10^7 CFU/bird)	$2 \log_{10}$ CFU/g in reduction with FliD (statistically significant) [228]
<i>Eimeria tenella</i> -expressing CjaA	White Leghorn (layer)	Group 1: Day 1 Group 2: 1/3/7/0	Oral administration of 100, 500, 3000, and 5000 fourth-generation <i>CjaA</i> -transfected parasites	Day 28	<i>C. jejuni</i> 02M6380 (1×10^5 CFU/bird)	One order reduction (statistically significant) [229]
<i>FlpA</i> with ten N-heptasaccharide glycan Moieties	White Leghorn (layer)	Day 0 and Day 14	Subcutaneous administration of 100 μ g of FlpA with TiterMax Gold or the molar equivalent of FlpA-10 \times GT in 100 μ l	Day 28	<i>C. jejuni</i> NCTC111 68H (1×10^5 CFU/bird)	No significant reduction [230]
Ent-KLH conjugate vaccine	White Leghorn (layer)	Day 7, Day 21, and Day 35	Intramuscular administration of 100 μ g of Ent-KLH conjugate vaccine with Montanide adjuvant	Day 49	<i>C. jejuni</i> (1×10^4 CFU/bird)	3-4 \log_{10} unit reduction in the cecum (statistically significant) [231]
	White Leghorn (layer)	Day 7 and Day 21	Intramuscular administration of 100 μ g of Ent-KLH conjugate vaccine with Montanide adjuvant	Day 35	<i>C. jejuni</i> (1×10^4 CFU/bird)	3-4 \log_{10} unit reduction in the cecum (statistically significant)
Recombinant YP437 protein	Ross 308 (broiler)	Day 5 and Day 12	Intramuscular administration of 100 μ g of recombinant YP437 protein (YP437 I2, P I2, YP437 I4, and P I4) emulsified with adjuvant MONTANIDETM ISA 78 VG	Day 19	<i>C. jejuni</i> (1×10^4 CFU/bird)	No significant reduction [232]

Plasmid DNA prime/recombinant protein boost vaccination (YP437 and YP9817)	Ross 308 (broiler)	Day 12	Intramuscular administration of 100 µg of recombinant protein emulsified in MONTANIIDE™ ISA 78 VG	Day 19	<i>C. jejuni</i> C97Anses 640 (1×10 ⁴ CFU/bird)	No significant reduction	[181]
			Intramuscular administration of 50 µg of plasmid DNA				
<i>Lactococcus lactis</i> expressing JlpA	Vencobb (broiler)	Day 7	Oral gavage of 1×10 ⁹ CFU /100 µl of <i>Lactococcus lactis</i> expressing recombinant JlpA	Day 28	<i>C. jejuni</i> isolate BCH71 (1×10 ⁸ CFU/bird)	No significant reduction	[233]
			Subcutaneous administration of 50 µg of recombinant JlpA emulsified in incomplete Freund's adjuvant				
Bacterin vaccine (Mix of 13 <i>Campylobacter</i> suspensions)	Ross 308 (broiler)	28, 30, 32, and 34 weeks	Intramuscular administration of 8.1 log ₁₀ CFU inactivated <i>Campylobacter</i> (7 log ₁₀ CFU/ <i>Campylobacter</i> strain)	Day 7	<i>C. jejuni</i> strain KC40 (10 ^{2.5} and 10 ^{3.5} CFU/bird)	No significant reduction	[203]
			Intramuscular administration of 75 µg of protein with Freund's complete and incomplete adjuvant				
Diphtheria toxoid <i>C. jejuni</i> capsular polysaccharide- vaccine (CPSconj)	Ross 308 (broiler)	Day 7 and Day 21	Subcutaneous administration of 25 µg of CPSconj with 10 µg CpG or 100 µl Addavax adjuvant	Day 29	<i>C. jejuni</i> 81-176 (2×10 ⁷ CFU/bird)	0.64 log ₁₀ reduction (statistically significant)	[234]
Chitosan/pCAGGS-flaA nanoparticles	White Leghorn (layer)	Day 1, Day 15, and Day 29	Intranasal administration of 150 µg chitosan/pCAGGS-flaA nanoparticles	Day 42	<i>C. jejuni</i> ALM-80 (5×10 ⁷ CFU/bird)	2 log ₁₀ in the cecum (statistically significant)	[222]
LT-B/fla hybrid protein	Breed not specified (broiler)	Day 7 and Day 21	Oral administration of 250 µg, 500 µg, 750 µg, and 1mg of LT-B/fla hybrid protein; intramuscular administration of 250µg, and 1 mg of LT-B/Fla hybrid protein	Day 28	<i>C. jejuni</i> A74 (2×10 ⁸ CFU/bird)	Statistically significant reduction of the number of <i>Campylobacter</i> positive birds	[213]
CjaA, CjaD, and hybrid protein rCjaAD of <i>C. jejuni</i>	Hy-line (layer)	Day 1, Day 9, and Day 19	Oral or subcutaneous administration of 2.5×10 ⁹ CFU of <i>L. salivarius</i> GEM particles with	Day 30	<i>C. jejuni</i> 12/2 (1×10 ⁴ CFU/bird)	No significant reduction	[213]

CjaALysM and CjaDLysM						
Rosa 1 (broiler)	18-day-old embryo	In ovo administration of 0.1 ml of inoculum rCjaAD with GRMs particles or liposomes into the amniotic fluid	Day 14	<i>C. jejuni</i> 12/2 (1x10 ⁶ CFU/bird)	Statistically significant reduction of cecal loads of <i>Campylobacter</i>	
Live attenuated <i>Salmonella</i> Typhimurium strain expressing <i>C. jejuni</i> CjaA	Cobb 500 (broiler)	Day 1 and Day 14	Oral administration of ~10 ⁸ CFU of <i>S. Typhimurium</i> m strain χ9718 harboring pUWM1161 (Asd ⁺ vector carrying the <i>cjaA</i> gene)	Day 28	<i>C. jejuni</i> Wr1 (1x10 ⁵ CFU/bird)	No significant reduction [235]
Live attenuated <i>Salmonella</i> expressing linear peptides of <i>C. jejuni</i> (Cj0113, Cj0982c, and Cj0420)	Cobb-500 (broiler)	Day 1	Oral gavage of 10 ⁸ CFU/ml <i>Salmonella</i>	Day 21	<i>C. jejuni</i> PHLCJ1-J3 (2.5x10 ⁶ CFU/bird)	4.8-log reduction in the ileum with Cj0113 (statistically significant) [210]
Live attenuated <i>Salmonella</i> expressing linear peptides of <i>C. jejuni</i> (Cj0113)			Oral gavage of 10 ⁸ CFU/ml <i>Salmonella</i> 10 ⁸ CFU/ml			4-log reduction - undetectable level in the ileum with Cj0113 (statistically significant)
CmeC and CfrA	Cobb 500 (broiler)	18-day-old embryo	In ovo administration of 50 µg pCmeC-K or 50 µg pCfrA into the amniotic fluid	Day 14	<i>C. jejuni</i> NCTC 11168 (5x10 ⁷ CFU/bird)	No significant reduction [180]
pcDNA3-YP DNA vaccines YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1	Ross PM3 (broiler)	Day 5 and Day 12	Intramuscular administration of with 300 µg of pcDNA3-YP, supplemented with 50 µg of unmethylated CpG ODN2007 followed by intramuscular administration of 100 µg of recombinant proteins emulsified in MONTANIDE™ ISA70 VG	Day 19	<i>C. jejuni</i> C97Anses 640 (1x10 ⁵ CFU/bird)	2.03, 3.61, 4.27 and 2.08 log 10 reductions of P562, YP437, YP9817 and P9838 groups, respectively (statistically significant) [226]
			Intramuscular administration of with 300 µg of pcDNA3-YP9817, supplemented with 50 µg of			No significant reduction

			unmethylated CpG ODN2007 followed by intramuscular administration of 100 µg of recombinant proteins emulsified in MONTANIDE™ ISA70 VG			
	Breed not specified (broiler)	Day 7 and Day 21	Oral gavage with 50 or 200 µg of CmeC vaccine with or without with 10 µg of mLT	Day 35	<i>C. jejuni</i> NCTC 11168 (1×10 ⁶ CFU/bird)	No significant reduction
CmeC	White Leghorn chickens (layer)	Day 21 and Day 35	Oral and subcutaneous administration of 50 or 200 µg of CmeC vaccine with or without 70 µg of mLT	Day 49	<i>C. jejuni</i> NCTC 11168 (1×10 ⁵ CFU/bird)	No significant reduction
<i>Lactococcus lactis</i> NZ3900/pNZ8149 expressing cjaA	White leghorn (layer)	Day 5 to 11, and Day 19 to 25	Oral administration of 2×10 ¹⁰ CFU of <i>L. lactis</i> NZ3900-sCjaA-Ltb, NZ3900-sCjaA, NZ3900-pNZ8149s, and NZ3900-pNZ8149	Day 33	<i>C. jejuni</i> NCTC 11168 (1.5×10 ⁶ CFU/bird)	2.35 log ₁₀ and 2.05 log ₁₀ reduction with NZ3900-sCjaA vaccine group at post 5 DPI (statistically significant)
Glycoproteins of FlpA and SodB	White Leghorn (layer)	Day 6 and Day 16	Intramuscular administration of 240 µg of FlpA and G-FlpA or 138 µg of SodB and G-SodB.	Day 20	<i>C. jejuni</i> M1 (1×10 ⁷ CFU/bird) <i>C. jejuni</i> M1 (10 ² CFU/bird)	No significant reduction No significant reduction
Glycoprotein G-ExoA	White Leghorn (layer)	Day 6 and Day 16	Intramuscular administration of 95 µg protein of ExoA or G-ExoA with MontanideTM ISA 70 VG adjuvant	Day 20	<i>C. jejuni</i> M1 (1×10 ² CFU/bird) <i>C. jejuni</i> 11168H. <i>C. jejuni</i> M1 (1×10 ⁴ CFU/bird)	Reduction on Day 37 with ExoA- vaccinated group (statistically significant) Reduction on Day 37 with ExoA and G-ExoA- vaccinated groups (statistically significant)
Bacterin and subunit vaccine	Ross 308 (broiler)	18-day-old embryo	In ovo administration of 7.4 log ₁₀ CFU inactivated <i>Campylobacter</i> /bacterin dose of bacterin vaccine injected into the amniotic cavity	Day 19	<i>C. jejuni</i> KC4 (1×10 ⁷ CFU/bird)	No significant reduction
			In ovo administration of 28.5 µg of 6 immunodominant			[239]

			<i>Campylobacter</i> antigens with ESSAI IMS 1505101OVO1 adjuvant		
			Subcutaneous administration of 0.2 mg recombinant Dps protein with Freund's complete adjuvant	Day 34	No reduction
<i>C. jejuni</i> Dps	Cornish × Rock (broiler)	Day 10 and Day 24	<i>C. jejuni</i> NCTC111 68 (1×10 ⁵ CFU/bird)		[224]
		Day 3, Day 10, and Day 16	Oral gavage of <i>Salmonella</i> Typhimurium strain χ9088 expressing <i>C. jejuni</i> Dps in 0.5 ml	Day 26	2.92 log ₁₀ reduction (statistically significant)
	Breed is not specified (layer)		Oral administration of 5 µg or 50 µg of soluble CpG		1.23 and 1.32 log reduction at 8-day post infection with low and high dose, respectively (statistically significant)
	Breed is not specified (layer)		Oral administration of 5 µg E-CpG	Day 15	0.9, 1.9 and 1.89 log reduction at 8, 15 and 22 days of post- infection (statistically significant)
PLGA-encapsulated CpG ODN	Breed is not specified (layer)	Day 14	Oral administration with a high dose of E-CpG (25 µg)	<i>C. jejuni</i> (10 ⁷ CFU/bird)	1.46 log ₁₀ redu ction at day 22 post-infection (statistically significant)
	Breed is not specified (broiler)		Oral administration of a low dose of <i>C. jejuni</i> lysate (4.3 µg protein)		2.14 and 2.14 log ₁₀ at day 8 and day 22 post-infection, respectively (statistically significant)
	Breed is not specified (broiler)		Oral administration of combination of E- CpG ODN (25 µg) and <i>C. jejuni</i> lysate (4.3 µg protein)		2.42 log ₁₀ at day 22 post- infection (statistically significant)
<i>C. jejuni</i> Type VI secretion system (T6SS) protein Hcp	Vencobb (broiler)	Day 7, Day 14, and Day 21	Oral gavage of 50 µg rhcp loaded CS-TPP NPs (CS- TPP-Hcp) Subcutaneous administration of 50 µg of rhcp emulsified with	<i>C. jejuni</i> isolate BCH71 (1×10 ⁸ CFU/bird)	1 log reduction (statistically significant)
					0.5 log reduction (statistically significant)
					[241]

		Incomplete Freund's adjuvant				
Recombinant NHC flagellin	Ross 308 (broiler)	18.5-day-old embryo	In ovo administration of 40 or 20 µg NHC flagellar protein with 10 mM Tris (pH 9.0), 20% glycerol, 5 mM sucrose	day 18	<i>C. jejuni</i> (1×10 ⁵ CFU/bird)	No significant reduction [242]
Recombinant <i>C. jejuni</i> peptides of CadF, FlaA, FlpA, CmeC, and CadF-FlaA-FlpA fusion protein	Cornish cross (broiler)	Day 6 and Day 16	Intramuscular administration of 240 µg of GST-tagged 90 mer peptides or equal mixture of CadF-His, FlaA-His, and FlpA-His (trifecta group) emulsified in Montanide ISA 70 VG	Day 20	<i>C. jejuni</i> (2×10 ⁸ CFU/bird)	3.1, 3.3, 3.1, and 1.7 log reductions observed with Trifecta, FlpA, FlaA and CadF, respectively (statistically significant) [163]

CfrA: ferric enterobactin receptor, CjaA: *C. jejuni* aminoacid binding protein, CjaD: peptidoglycan-binding protein, CmeC: an essential component of CmeABC multidrug efflux pump, CpG ODN: oligodeoxynucleotides containing unmethylated CpG motifs, CS-TPP NPs: Chitosan-Sodium tripolyphosphate nanoparticles, DPI: days post infection, Dps: DNA binding protein, Ent-KLH conjugate vaccine: Enterobactin conjugated to the carrier keyhole limpet hemocyanin, FlaA: Flagellin A, FliD: flagellum-capping protein, FlpA-10×GT : FlpA with 10 N-Heptasaccharide Glycan Moieties, FspA: flagellum-secreted protein, GEM particles: Gram-positive Enhancer Matrix particles, JlpA: *C. jejuni* lipoprotein A, LT-B: Binding subunit of the heat-labile enterotoxin, mLT: modified *E. coli* heat-labile enterotoxin, ODN: oligodeoxynucleotides, OMPs: outer membrane proteins, and SodB: superoxide dismutase.

4. Conclusion and Future Perspectives of *Campylobacter* Control:

As a food-borne pathogen, *Campylobacter* continues to pose a challenge to global public health, with poultry serving as the primary source of human infection. Growing concerns regarding antimicrobial resistance and the push for antibiotic-free poultry production have accelerated the urgency for sustainable and long-term control measures against *Campylobacter* in poultry. This comprehensive review focuses on the possible preharvest options to control *Campylobacter* colonization in chickens, with a special emphasis on vaccination. Because a single strategy cannot completely prevent *Campylobacter* colonization, our review highlights the importance of a multifaceted approach that integrates several on-farm interventions. Strict biosecurity measures play a fundamental role in preventing the introduction and spread of *Campylobacter*. Additionally, dietary interventions such as probiotics, prebiotics, postbiotics and feed additives offer promising avenues for modulating the gut microbiome and enhancing host resistance to *Campylobacter* colonization. Importantly, vaccination stands out as one of the most logical approaches for preventing and reducing *Campylobacter* colonization at the source level. Although there is currently no commercial vaccine available, ongoing research on multi-epitope and universal vaccine designs coupled with advancements in delivery systems and formulations, offers great promise in addressing the challenges presented by the genetic diversity of the pathogen and the unique immunological characteristics of poultry.

4.1. Future Prospects:

4.1.1. Biosecurity Enhancing Innovations

Biosecurity innovations provide a more efficient primary protective barrier against the entry of *Campylobacter* into poultry farms [244]. Improved fly control management through biological traps

and insecticide-impregnated netting has significantly reduced the prevalence of *Campylobacter* on farms. Furthermore, managing the poultry house environment using new technologies such as electrostatic air filtration, UV-based disinfection, automated cleaning system and water purification system offers promising tools for reducing environmental exposure to *Campylobacter*. More advanced features like **real-time monitoring systems** for detecting contamination hotspots on farms enable early action against *Campylobacter* and preventing its entry and spread [245]. However, effective implementation depends on human compliance, including proper training and stringent adherence to biosecurity protocols by farm staff [246,247].

4.1.2. Studies Targeting *Campylobacter* and Host Interactions

Inadequate knowledge of *Campylobacter* pathophysiology and host reactions is one of the main challenges in controlling these bacteria [57]. The primary goal of ongoing research is to identify virulent genes, including colonization factors, and metabolic adaptations necessary for developing rational mitigation strategies. Studying avian innate and adaptive immunity against *Campylobacter* and host resistance indicators that can prevent *Campylobacter* colonization is crucial for maintaining a balance where *Campylobacter* colonization occurs without causing invasive infection [248–250]. Advanced multi-omics research is expected to make these investigations conceivable [251–254].

4.1.3. Genetic Selection of *Campylobacter*-Resistant Breeds

A long-term approach to control *Campylobacter* involves genetic selection of breeds resistant to bacterial colonization. Research has demonstrated that the Quantitative Trait Loci (QTL), major histocompatibility complex (MHC), and immune response genes vary among birds with various levels of resistance to *Campylobacter* (240, 241). The selection of breeder stocks resistant to *Campylobacter* can help to control colonization at the primary production level.

4.1.4. Developing Effective Vaccination Strategies

One of the main challenges in developing an effective *Campylobacter* vaccine is the high antigenic diversity among strains, hindering cross-protection. This issue can be addressed by identifying the conserved and protective antigens shared between multiple strains [257]. Further research is needed to identify broad-spectrum vaccine targets (e.g., multi-epitope vaccines) through the use of in silico prediction tools. Reverse vaccine technology offers avenues to identify vaccine antigen candidates that offer protection against a wide range of *Campylobacter* strains [258,259]. Additionally, optimization of mucosal vaccine delivery systems can enhance vaccine efficacy against *Campylobacter* colonization [242,260].

4.1.5. Microbiota Targeting Interventions

A healthy gut microbiota can inhibit *Campylobacter* colonization through competitive exclusion and the production of antimicrobial metabolites (e.g., short-chain fatty acids) thereby improving mucosal immunity. These beneficial effects can be achieved through the use of prebiotics, probiotics and postbiotics, which help modulate the gut microbiota and support protective microbial communities [261,262]. Emerging technologies like fecal microbiota transplantation (FMT) and precision microbiome engineering are still in the early stages but represent promising future avenues for *Campylobacter* control [117,263].

4.1.6. Cross-Sectoral Collaboratory Efforts (One Health)

Effective preharvest control strategies require strong and sustained collaboration among researchers, poultry industry, and policymakers. Success depends on teamwork, planning in advance, and a combination of efforts across all three sectors. Future control depends on teamwork, proactive planning, and a coordinated effort across all the three sectors. The adoption of the One

Health approach, combined with the practical application of scientific innovations at the farm-level can significantly greatly reduce the global burden of *Campylobacter* [264–266].

Author contributions: Conceptualization and methodology, S.K., and C.G.; writing—original draft preparation, C.G.; writing—review, C.G., S.K., L.K.E., and G.D.B., editing, S.K., L.K.E. and G.D.B.; supervision, S.K.; project administration, S.K.; funding acquisition, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Agriculture and Food Research Initiative Competitive Grant no. 1031150 from the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) and the USDA NIFA Animal Health and Disease Grant no. 1023600.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data provided in the manuscript are from published studies, no new data were generated

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AMR	Antimicrobial resistance
CFU	Colony forming units
EOs	Essential oils
FMT	Fecal microbiota transplantation
FOS	Fructooligosaccharides
GBS	Guillain-Barré Syndrome
GIT	Gastrointestinal tract
GLAT	Gut-associated lymphoid tissue
GOS	Galactooligosaccharides
IBS	Irritable bowel syndrome
IMO	Isomalto-oligosaccharides
MHC	Major histocompatibility complex
PPE	Personal protective equipment
QTL	Quantitative Trait Loci
VBNC	Viable but non-culturable state

References

1. Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R. V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. *Emerg Infect Dis* 2011, 17, doi:10.3201/eid1701.P11101.
2. Pires, S.M.; Devleesschauwer, B. Estimates of Global Disease Burden Associated with Foodborne Pathogens. In *Foodborne Infections and Intoxications*; 2021.
3. Prevention, C. for D.C. and Antibiotic Resistance Threats in the United States 2019. Cdc 2019.
4. Hermans, D.; Pasman, F.; Heyndrickx, M.; Van Immerseel, F.; Martel, A.; Van Deun, K.; Haesebrouck, F. A Tolerogenic Mucosal Immune Response Leads to Persistent *Campylobacter Jejuni* Colonization in the Chicken Gut. *Crit Rev Microbiol* 2012, 38, 17–29, doi:10.3109/1040841X.2011.615298.
5. Zambrano, L.D.; Levy, K.; Menezes, N.P.; Freeman, M.C. Human Diarrhea Infections Associated with Domestic Animal Husbandry: A Systematic Review and Meta-Analysis. *Trans R Soc Trop Med Hyg* 2014, 108, 313–325, doi:10.1093/trstmh/tru056.
6. Lopes, G.V.; Ramires, T.; Kleinubing, N.R.; Scheik, L.K.; Fiorentini, Â.M.; Padilha da Silva, W. Virulence Factors of Foodborne Pathogen *Campylobacter Jejuni*. *Microb Pathog* 2021, 161.
7. Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of *Campylobacter* Infection. *Clin Microbiol Rev* 2015, 28, 687–720, doi:10.1128/CMR.00006-15.

8. Finsterer, J. Triggers of Guillain–Barré Syndrome: *Campylobacter Jejuni* Predominates. *Int J Mol Sci* 2022, 23.
9. Nyati, K.K.; Prasad, K.N.; Rizwan, A.; Verma, A.; Paliwal, V.K. TH1 and TH2 Response to *Campylobacter Jejuni* Antigen in Guillain–Barré Syndrome. *Arch Neurol* 2011, 68, doi:10.1001/archneurol.2011.51.
10. Sinha, S.; Prasad, K.N.; Jain, D.; Nyati, K.K.; Pradhan, S.; Agrawal, S. Immunoglobulin IgG Fc-Receptor Polymorphisms and HLA Class II Molecules in Guillain–Barré Syndrome. *Acta Neurol Scand* 2010, 122, doi:10.1111/j.1600-0404.2009.01229.x.
11. Madden, J.; Spadaro, A.; Koyfman, A.; Long, B. High Risk and Low Prevalence Diseases: Guillain–Barré Syndrome. *American Journal of Emergency Medicine* 2024, 75.
12. Goodfellow, J.A.; Willison, H.J. Guillain–Barré Syndrome: A Century of Progress. *Nat Rev Neurol* 2016, 12.
13. Götz, G.; Rosner, B.; Hofreuter, D.; Josenhans, C.; Kreienbrock, L.; Löwenstein, A.; Schielke, A.; Stark, K.; Suerbaum, S.; Wieler, L.H.; et al. Relevance of *Campylobacter* to Public Health—the Need for a One Health Approach. *International Journal of Medical Microbiology* 2014, 304, 817–823, doi:10.1016/j.ijmm.2014.08.015.
14. Sahin, O.; Morishita, T.Y.; Zhang, Q. *Campylobacter* Colonization in Poultry: Sources of Infection and Modes of Transmission. *Animal health research reviews / Conference of Research Workers in Animal Diseases* 2002, 3, 95–105, doi:10.1079/ahrr200244.
15. Shane, S.M. The Significance of *Campylobacter Jejuni* Infection in Poultry: A Review. *Avian Pathology* 1992, 21, 189–213, doi:10.1080/03079459208418836.
16. Stern, N.J.; Clavero, M.R.; Bailey, J.S.; Cox, N.A.; Robach, M.C. *Campylobacter* Spp. in Broilers on the Farm and after Transport. *Poult Sci* 1995, 74, doi:10.3382/ps.0740937.
17. Corry, J.E.; Atabay, H.I. Poultry as a Source of *Campylobacter* and Related Organisms. *Symp Ser Soc Appl Microbiol* 2001, 96S-114S, doi:10.1046/j.1365-2672.2001.01358.x.
18. Lee, M.D.; Newell, D.G. *Campylobacter* in Poultry: Filling an Ecological Niche. *Avian Dis* 2006, 50, 1–9, doi:10.1637/7474-111605R.1.
19. Wagenaar, J.A.; Van Bergen, M.A.P.; Mueller, M.A.; Wassenaar, T.M.; Carlton, R.M. Phage Therapy Reduces *Campylobacter Jejuni* Colonization in Broilers. *Vet Microbiol* 2005, 109, 275–283, doi:10.1016/j.vetmic.2005.06.002.
20. Humphrey, S.; Chaloner, G.; Kemmett, K.; Davidson, N.; Williams, N.; Kipar, A.; Humphrey, T.; Wigley, P. *Campylobacter Jejuni* Is Not Merely a Commensal in Commercial Broiler Chickens and Affects Bird Welfare. *mBio* 2014, 5, doi:10.1128/mBio.01364-14.
21. Smith, C.K.; AbuOun, M.; Cawthraw, S.A.; Humphrey, T.J.; Rothwell, L.; Kaiser, P.; Barrow, P.A.; Jones, M.A. *Campylobacter* Colonization of the Chicken Induces a Proinflammatory Response in Mucosal Tissues. *FEMS Immunol Med Microbiol* 2008, 54, doi:10.1111/j.1574-695X.2008.00458.x.
22. Meade, K.G.; Narciandi, F.; Cahalane, S.; Reiman, C.; Allan, B.; O'Farrelly, C. Comparative in Vivo Infection Models Yield Insights on Early Host Immune Response to *Campylobacter* in Chickens. *Immunogenetics* 2009, 61, doi:10.1007/s00251-008-0346-7.
23. De Zoete, M.R.; Keestra, A.M.; Roszczenko, P.; Van Putten, J.P.M. Activation of Human and Chicken Toll-like Receptors by *Campylobacter* Spp. *Infect Immun* 2010, 78, doi:10.1128/IAI.00897-09.
24. Awad, W.A.; Molnár, A.; Aschenbach, J.R.; Ghareeb, K.; Khayal, B.; Hess, C.; Liebhart, D.; Dublec, K.; Hess, M. *Campylobacter* Infection in Chickens Modulates the Intestinal Epithelial Barrier Function. *Innate Immun* 2015, 21, doi:10.1177/1753425914521648.
25. Reid, W.D.K.; Close, A.J.; Humphrey, S.; Chaloner, G.; Lacharme-Lora, L.; Rothwell, L.; Kaiser, P.; Williams, N.J.; Humphrey, T.J.; Wigley, P.; et al. Cytokine Responses in Birds Challenged with the Human Food-Borne Pathogen *Campylobacter Jejuni* Implies a Th17 Response. *R Soc Open Sci* 2016, 3, doi:10.1098/rsos.150541.
26. Crawshaw, T.R.; Chanter, J.I.; Young, S.C.L.; Cawthraw, S.; Whatmore, A.M.; Koylass, M.S.; Vidal, A.B.; Salguero, F.J.; Irvine, R.M. Isolation of a Novel Thermophilic *Campylobacter* from Cases of Spotty Liver Disease in Laying Hens and Experimental Reproduction of Infection and Microscopic Pathology. *Vet Microbiol* 2015, 179, 315–321, doi:10.1016/J.VETMIC.2015.06.008.

27. Van, T.T.H.; Elshagmani, E.; Gor, M.C.; Scott, P.C.; Moore, R.J. *Campylobacter Hepaticus* Sp. Nov., Isolated from Chickens with Spotty Liver Disease. *Int J Syst Evol Microbiol* 2016, 66, 4518–4524, doi:10.1099/ijsem.0.001383.

28. Gharbi, M.; Béjaoui, A.; Hamrouni, S.; Arfaoui, A.; Maaroufi, A. Persistence of *Campylobacter* Spp. in Poultry Flocks after Disinfection, Virulence, and Antimicrobial Resistance Traits of Recovered Isolates. *Antibiotics* 2023, 12, doi:10.3390/antibiotics12050890.

29. Gibreel, A.; Taylor, D.E. Macrolide Resistance in *Campylobacter Jejuni* and *Campylobacter Coli*. *J Antimicrob Chemother* 2006, 58, 243–255, doi:10.1093/jac/dkl210.

30. Alfredson, D.A.; Korolik, V. Antibiotic Resistance and Resistance Mechanisms in *Campylobacter Jejuni* and *Campylobacter Coli*. *FEMS Microbiol Lett* 2007, 277.

31. Oh, E.; Jeon, B. Contribution of Surface Polysaccharides to the Resistance of *Campylobacter Jejuni* to Antimicrobial Phenolic Compounds. *Journal of Antibiotics* 2015, 68, doi:10.1038/ja.2015.26.

32. Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. *Antibiotics* 2022, 11.

33. Wickramasuriya, S.S.; Ault, J.; Ritchie, S.; Gay, C.G.; Lillehoj, H.S. Alternatives to Antibiotic Growth Promoters for Poultry: A Bibliometric Analysis of the Research Journals. *Poult Sci* 2024, 103, 103987, doi:10.1016/j.psj.2024.103987.

34. Phongsisay, V.; Strachan, N.J.C.; Forbes, K.J.; Efsa; Nauta, M.N.J.; Johannessen, G.; Laureano Adame, L.; Williams, N.; Rosenquist, H.; Bertolo, L.; et al. *Campylobacter* Vaccination of Poultry: Clinical Trials, Quantitative Microbiological Methods and Decision Support Tools for the Control of *Campylobacter* in Poultry. *Int J Food Microbiol* 2015, 9.

35. Poudel, S.; Li, T.; Chen, S.; Zhang, X.; Cheng, W.-H.; Sukumaran, A.T.; Kiess, A.S.; Zhang, L. Prevalence, Antimicrobial Resistance, and Molecular Characterization of *Campylobacter* Isolated from Broilers and Broiler Meat Raised without Antibiotics. *Microbiol Spectr* 2022, 10, doi:10.1128/spectrum.00251-22.

36. Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.A.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-kott, A.F.; et al. Alternatives to Antibiotics for Organic Poultry Production: Types, Modes of Action and Impacts on Bird's Health and Production. *Poult Sci* 2022, 101.

37. Slader, J.; Domingue, G.; Jørgensen, F.; McAlpine, K.; Owen, R.J.; Bolton, F.J.; Humphrey, T.J. Impact of Transport Crate Reuse and of Catching and Processing on *Campylobacter* and *Salmonella* Contamination of Broiler Chickens. *Appl Environ Microbiol* 2002, 68, doi:10.1128/AEM.68.2.713-719.2002.

38. Bull, S.A.; Allen, V.M.; Domingue, G.; Jørgensen, F.; Frost, J.A.; Ure, R.; Whyte, R.; Tinker, D.; Corry, J.E.L.; Gillard-King, J.; et al. Sources of *Campylobacter* Spp. Colonizing Housed Broiler Flocks during Rearing. *Appl Environ Microbiol* 2006, 72, doi:10.1128/AEM.72.1.645-652.2006.

39. Wagenaar, J.A.; French, N.P.; Havelaar, A.H. Preventing *Campylobacter* at the Source: Why Is It so Difficult? *Clinical Infectious Diseases* 2013, 57, doi:10.1093/cid/cit555.

40. Hakeem, M.J.; Lu, X. Survival and Control of *Campylobacter* in Poultry Production Environment. *Front Cell Infect Microbiol* 2021, 10.

41. Nauta, M.; Johannessen, G.; Laureano Adame, L.; Williams, N.; Rosenquist, H. The Effect of Reducing Numbers of *Campylobacter* in Broiler Intestines on Human Health Risk. *Microb Risk Anal* 2016, 2–3, doi:10.1016/j.mran.2016.02.001.

42. Rosenquist, H.; Nielsen, N.L.; Sommer, H.M.; Nørrrung, B.; Christensen, B.B. Quantitative Risk Assessment of Human *Campylobacteriosis* Associated with Thermophilic *Campylobacter* Species in Chickens. *Int J Food Microbiol* 2003, 83, doi:10.1016/S0168-1605(02)00317-3.

43. Scientific Opinion on *Campylobacter* in Broiler Meat Production: Control Options and Performance Objectives and/or Targets at Different Stages of the Food Chain. *EFSA Journal* 2011, 9, doi:10.2903/j.efsa.2011.2105.

44. Soro, A.B.; Whyte, P.; Bolton, D.J.; Tiwari, B.K. Strategies and Novel Technologies to Control *Campylobacter* in the Poultry Chain: A Review. *Compr Rev Food Sci Food Saf* 2020, 19, doi:10.1111/1541-4337.12544.

45. Abbas, R.Z.; Alsayeqh, A.F.; Aqib, A.I. Role of Bacteriophages for Optimized Health and Production of Poultry. *Animals* 2022, 12.

46. Newell, D.G.; Elvers, K.T.; Dopfer, D.; Hansson, I.; Jones, P.; James, S.; Gittins, J.; Stern, N.J.; Davies, R.; Connerton, I.; et al. Biosecurity-Based Interventions and Strategies to Reduce *Campylobacter* Spp. on Poultry Farms. *Appl Environ Microbiol* 2011, 77, doi:10.1128/AEM.01090-10.

47. Lin, J. Novel Approaches for *Campylobacter* Control in Poultry. *Foodborne Pathog Dis* 2009, 6.

48. Solow, B.T.; Cloak, O.M.; Fratamico, P.M. Effect of Temperature on Viability of *Campylobacter* Jejuni and *Campylobacter* Coli on Raw Chicken or Pork Skin. *J Food Prot* 2003, 66, doi:10.4315/0362-028X-66.11.2023.

49. Soro, A.B.; Whyte, P.; Bolton, D.J.; Tiwari, B.K. Modelling the Effect of UV Light at Different Wavelengths and Treatment Combinations on the Inactivation of *Campylobacter* Jejuni. *Innovative Food Science and Emerging Technologies* 2021, 69, doi:10.1016/j.ifset.2021.102626.

50. Wagle, B.R.; Donoghue, A.M.; Jesudhasan, P.R. Select Phytochemicals Reduce *Campylobacter* Jejuni in Postharvest Poultry and Modulate the Virulence Attributes of *C. Jejuni*. *Front Microbiol* 2021, 12, doi:10.3389/fmicb.2021.725087.

51. Wideman, N.; Bailey, M.; Bilgili, S.F.; Thippareddi, H.; Wang, L.; Bratcher, C.; Sanchez-Plata, M.; Singh, M. Evaluating Best Practices for *Campylobacter* and *Salmonella* Reduction in Poultry Processing Plants. *Poult Sci* 2016, 95, doi:10.3382/ps/pev328.

52. Zakarienė, G.; Novoslavskij, A.; Meškinis, Š.; Vasiliauskas, A.; Tamulevičienė, A.; Tamulevičius, S.; Alter, T.; Malakauskas, M. Diamond like Carbon Ag Nanocomposites as a Control Measure against *Campylobacter* Jejuni and *Listeria* Monocytogenes on Food Preparation Surfaces. *Diam Relat Mater* 2018, 81, doi:10.1016/j.diamond.2017.12.007.

53. Zhao, T.; Ezeike, G.O.I.; Doyle, M.P.; Hung, Y.C.; Howell, R.S. Reduction of *Campylobacter* Jejuni on Poultry by Low-Temperature Treatment. *J Food Prot* 2003, 66, doi:10.4315/0362-028X-66.4.652.

54. Kim, J.-S.; Kim, T.-Y.; Lim, M.-C.; Khan, M.S.I. *Campylobacter* Control Strategies at Postharvest Level. *Food Sci Biotechnol* 2024, 33, 2919–2936, doi:10.1007/s10068-024-01644-7.

55. Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of *Campylobacter* Infection. *Clin Microbiol Rev* 2015, 28, 687–720, doi:10.1128/CMR.00006-15.

56. Facciola, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.; Laganà, P. *Campylobacter*: From Microbiology to Prevention. *J Prev Med Hyg* 2017, 58.

57. Hermans, D.; Van Deun, K.; Martel, A.; Van Immerseel, F.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Colonization Factors of *Campylobacter* Jejuni in the Chicken Gut. *Vet Res* 2011, 42.

58. Batz, M.B.; Hoffmann, S.; Morris, J.G. Ranking the Disease Burden of 14 Pathogens in Food Sources in the United States Using Attribution Data from Outbreak Investigations and Expert Elicitation. *J Food Prot* 2012, 75, doi:10.4315/0362-028X.JFP-11-418.

59. Veronese, P.; Dodi, I. *Campylobacter* Jejuni/Coli Infection: Is It Still a Concern? *Microorganisms* 2024, 12, 2669, doi:10.3390/microorganisms12122669.

60. dessouky, Y. El; Elsayed, S.W.; Abdelsalam, N.A.; Saif, N.A.; Álvarez-Ordóñez, A.; Elhadidy, M. Genomic Insights into Zoonotic Transmission and Antimicrobial Resistance in *Campylobacter* Jejuni from Farm to Fork: A One Health Perspective. *Gut Pathog* 2022, 14.

61. Korsak, D.; Maćkiw, E.; Rozynek, E.; Zyłowska, M. Prevalence of *Campylobacter* Spp. in Retail Chicken, Turkey, Pork, and Beef Meat in Poland between 2009 and 2013. *J Food Prot* 2015, 78, doi:10.4315/0362-028X.JFP-14-353.

62. Rasschaert, G.; De Zutter, L.; Herman, L.; Heyndrickx, M. *Campylobacter* Contamination of Broilers: The Role of Transport and Slaughterhouse. *Int J Food Microbiol* 2020, 322.

63. Robinson, D.A. Infective Dose of *Campylobacter* Jejuni in Milk. *Br Med J* 1981, 282, doi:10.1136/bmj.282.6276.1584.

64. Black, R.E.; Levine, M.M.; Clements, M. Lou; Hughes, T.P.; Blaser, M.J.; Black, R.E. Experimental *Campylobacter* Jejuni Infection in Humans. *Journal of Infectious Diseases* 1988, 157, doi:10.1093/infdis/157.3.472.

65. Cawthraw, S.A.; Wassenaar, T.M.; Ayling, R.; Newell, D.G. Increased Colonization Potential of *Campylobacter* Jejuni Strain 81116 after Passage through Chickens and Its Implication on the Rate of Transmission within Flocks. *Epidemiol Infect* 1996, 117, doi:10.1017/S0950268800001333.

66. Wassenaar, T.M.; Van der Zeijst, B.A.M.; Ayling, R.; Newell, D.G. Colonization of Chicks by Motility Mutants of *Campylobacter Jejuni* Demonstrates the Importance of Flagellin A Expression. *J Gen Microbiol* 1993, 139, doi:10.1099/00221287-139-6-1171.

67. Newell, D.G.; Fearnley, C. Sources of *Campylobacter* Colonization in Broiler Chickens. *Appl Environ Microbiol* 2003, 69.

68. Taha-Abdelaziz, K.; Singh, M.; Sharif, S.; Sharma, S.; Kulkarni, R.R.; Alizadeh, M.; Yitbarek, A.; Helmy, Y.A. Intervention Strategies to Control *Campylobacter* at Different Stages of the Food Chain. *Microorganisms* 2023, 11.

69. Sadek, S.A.S.; Shaapan, R.M.; Barakat, A.M.A. *Campylobacteriosis* in Poultry: A Review. *J Worlds Poult Res* 2023, 13.

70. Neves, M.I.; Malkawi, I.; Walker, M.; Alaboudi, A.; Abu-Basha, E.; Blake, D.P.; Guitian, J.; Crotta, M. The Transmission Dynamics of *Campylobacter Jejuni* among Broilers in Semi-Commercial Farms in Jordan. *Epidemiol Infect* 2019, 147, doi:10.1017/S0950268818003308.

71. Rawson, T.; Dawkins, M.S.; Bonsall, M.B. A Mathematical Model of *Campylobacter* Dynamics within a Broiler Flock. *Front Microbiol* 2019, 10, doi:10.3389/fmicb.2019.01940.

72. Zhang, X.; Yin, T.; Du, X.; Yang, W.; Huang, J.; Jiao, X. Occurrence and Genotypes of *Campylobacter* Species in Broilers during the Rearing Period. *Avian Pathology* 2017, 46, doi:10.1080/03079457.2016.1248374.

73. FAO/WHO Risk Assessment of *Campylobacter* Spp in Broiler Chickens: Technical Report; 2009; Vol. 180;

74. Rosenquist, H.; Boysen, L.; Galliano, C.; Nordentoft, S.; Ethelberg, S.; Borck, B. Danish Strategies to Control *Campylobacter* in Broilers and Broiler Meat: Facts and Effects. *Epidemiol Infect* 2009, 137, doi:10.1017/S0950268809002684.

75. Stern, N.J.; Hiett, K.L.; Alfredsson, G.A.; Kristinsson, K.G.; Reiersen, J.; Hardardottir, H.; Briem, H.; Gunnarsson, E.; Georgsson, F.; Lowman, R.; et al. *Campylobacter* Spp. in Icelandic Poultry Operations and Human Disease. *Epidemiol Infect* 2003, 130, doi:10.1017/S0950268802007914.

76. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2022–2023. *EFSA Journal* 2025, 23, doi:10.2903/j.efsa.2025.9237.

77. Olvera-Ramírez, A.M.; McEwan, N.R.; Stanley, K.; Nava-Díaz, R.; Aguilar-Tipacamú, G. A Systematic Review on the Role of Wildlife as Carriers and Spreaders of *Campylobacter* Spp. *Animals* 2023, 13.

78. Wang, J.; Vaddu, S.; Bhumanapalli, S.; Mishra, A.; Applegate, T.; Singh, M.; Thippareddi, H. A Systematic Review and Meta-Analysis of the Sources of *Campylobacter* in Poultry Production (Preharvest) and Their Relative Contributions to the Microbial Risk of Poultry Meat. *Poult Sci* 2023, 102, doi:10.1016/j.psj.2023.102905.

79. Gregory, E.; Barnhart, H.; Dreesen, D.W.; Stern, N.J.; Corn, J.L. Epidemiological Study of *Campylobacter* Spp. in Broilers: Source, Time of Colonization, and Prevalence. *Avian Dis* 1997, 41, doi:10.2307/1592343.

80. Hald, B.; Skovgård, H.; Bang, D.D.; Pedersen, K.; Dybdahl, J.; Jespersen, J.B.; Madsen, M. Flies and *Campylobacter* Infection of Broiler Flocks. *Emerg Infect Dis* 2004, 10, 1490–1492, doi:10.3201/eid1008.040129.

81. Newell, D.G. The Ecology of *Campylobacter Jejuni* in Avian and Human Hosts and in the Environment. *International Journal of Infectious Diseases* 2002, 6, S16–S21, doi:10.1016/S1201-9712(02)90179-7.

82. FSIS Compliance Guideline for Controlling *Salmonella* and *Campylobacter* in Poultry. Third Edition 2010.

83. Royden, A.; Christley, R.; Prendiville, A.; Williams, N.J. The Role of Biosecurity in the Control of *Campylobacter*: A Qualitative Study of the Attitudes and Perceptions of UK Broiler Farm Workers. *Front Vet Sci* 2021, 8, doi:10.3389/fvets.2021.751699.

84. Georgiev, M.; Beauvais, W.; Guitian, J. Effect of Enhanced Biosecurity and Selected On-Farm Factors on *Campylobacter* Colonization of Chicken Broilers. *Epidemiol Infect* 2017, 145, doi:10.1017/S095026881600251X.

85. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2021–2022. *EFSA Journal* 2024, 22, doi:10.2903/j.efsa.2024.8583.

86. Santos, L.S.; Rossi, D.A.; Braz, R.F.; Fonseca, B.B.; Guidotti-Takeuchi, M.; Alves, R.N.; Beletti, M.E.; Almeida-Souza, H.O.; Maia, L.P.; Santos, P. de S.; et al. Roles of Viable but Non-Culturable State in the Survival of *Campylobacter Jejuni*. *Front Cell Infect Microbiol* 2023, 13, doi:10.3389/fcimb.2023.1122450.

87. Chaisowwong, W.; Kusumoto, A.; Hashimoto, M.; Harada, T.; Maklon, K.; Kawamoto, K. Physiological Characterization of *Campylobacter Jejuni* under Cold Stresses Conditions: Its Potential for Public Threat. *Journal of Veterinary Medical Science* 2012, 74, doi:10.1292/jvms.11-0305.

88. Nemelka, K.W.; Brown, A.W.; Wallace, S.M.; Jones, E.; Asher, L. V.; Patarini, D.; Applebee, L.; Gilliland, T.C.; Guerry, P.; Baqar, S. Immune Response to and Histopathology of *Campylobacter Jejuni* Infection in Ferrets (*Mustela Putorius Furo*). *Comp Med* 2009, 59.

89. Marks, S.L.; Rankin, S.C.; Byrne, B.A.; Weese, J.S. Enteropathogenic Bacteria in Dogs and Cats: Diagnosis, Epidemiology, Treatment, and Control. *J Vet Intern Med* 2011, 25, doi:10.1111/j.1939-1676.2011.00821.x.

90. Macartney, L.; Al-Mashat, R.R.; Taylor, D.J.; McCandlish, I.A. Experimental Infection of Dogs with *Campylobacter Jejuni*. *Vet Rec* 1988, 122, doi:10.1136/vr.122.11.245.

91. Clemons, E.A.; Jean, S.M.; Machiah, D.K.; Breding, E.; Sharma, P. Extraintestinal *Campylobacteriosis* in Rhesus Macaques (*Macaca Mulatta*). *Comp Med* 2014, 64.

92. Kwon, Y.K.; Oh, J.Y.; Jeong, O.M.; Moon, O.K.; Kang, M.S.; Jung, B.Y.; An, B.K.; Youn, S.Y.; Kim, H.R.; Jang, I.; et al. Prevalence of *Campylobacter* Species in Wild Birds of South Korea. *Avian Pathology* 2017, 46, doi:10.1080/03079457.2017.1315048.

93. Wysok, B.; Sołtysiuk, M.; Stenzel, T. Wildlife Waterfowl as a Source of Pathogenic *Campylobacter* Strains. *Pathogens* 2022, 11, doi:10.3390/pathogens11020113.

94. Gill, C.; Bahrndorff, S.; Lowenberger, C. *Campylobacter Jejuni* in *Musca Domestica*: An Examination of Survival and Transmission Potential in Light of the Innate Immune Responses of the House Flies. *Insect Sci* 2017, 24, doi:10.1111/1744-7917.12353.

95. Hald, B.; Skovgård, H.; Pedersen, K.; Bunkenborg, H. Influxed Insects as Vectors for *Campylobacter Jejuni* and *Campylobacter Coli* in Danish Broiler Houses. *Poult Sci* 2008, 87, doi:10.3382/ps.2007-00301.

96. Kim, J.; Guk, J.H.; Mun, S.H.; An, J.U.; Kim, W.; Lee, S.; Song, H.; Seong, J.K.; Suh, J.G.; Cho, S. The Wild Mouse (*Micromys Minutus*): Reservoir of a Novel *Campylobacter Jejuni* Strain. *Front Microbiol* 2020, 10, doi:10.3389/fmicb.2019.03066.

97. Olkkola, S.; Rossi, M.; Jaakkonen, A.; Simola, M.; Tikkanen, J.; Hakkinen, M.; Tuominen, P.; Huitu, O.; Niemimaa, J.; Henttonen, H.; et al. Host-Dependent Clustering of *Campylobacter* Strains From Small Mammals in Finland. *Front Microbiol* 2021, 11, doi:10.3389/fmicb.2020.621490.

98. Meerburg, B.G.; Jacobs-Reitsma, W.F.; Wagenaar, J.A.; Kijlstra, A. Presence of *Salmonella* and *Campylobacter* Spp. in Wild Small Mammals on Organic Farms. *Appl Environ Microbiol* 2006, 72, doi:10.1128/AEM.72.1.960-962.2006.

99. on Biological Hazards (BIOHAZ), E.P. Scientific Opinion on *Campylobacter* in Broiler Meat Production: Control Options and Performance Objectives and/or Targets at Different Stages of the Food Chain. *EFSA Journal* 2011, 9, 2105, doi:10.2903/j.efsa.2011.2105.

100. Hansson, I.; Ederoth, M.; Andersson, L.; Vågsholm, I.; Engvall, E.O. Transmission of *Campylobacter* Spp. to Chickens during Transport to Slaughter. *J Appl Microbiol* 2005, 99, doi:10.1111/j.1365-2672.2005.02689.x.

101. Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Opinion: Towards a More Comprehensive Concept for Prebiotics. *Nat Rev Gastroenterol Hepatol* 2015, 12.

102. FAO/WHO Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Liver Lactic Acid Bacteria. Food and Agriculture Organization and World Health Organization Joint Report. *Prevention* 2001, 5.

103. Verschueren, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic Bacteria as Biological Control Agents in Aquaculture. *Microbiology and Molecular Biology Reviews* 2000, 64, doi:10.1128/mmbr.64.4.655-671.2000.

104. Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An Overview of Beneficial Effects. *Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology* 2002, 82, doi:10.1023/A:1020620607611.

105. Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. *Journal of Nutrition* 1995, 125.

106. Fontana, L.; Bermudez-Brito, M.; Plaza-Diaz, J.; Muñoz-Quezada, S.; Gil, A. Sources, Isolation, Characterisation and Evaluation of Probiotics. *British Journal of Nutrition* 2013, 109, doi:10.1017/S0007114512004011.

107. Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. *Ann Nutr Metab* 2012, 61.

108. Chaudhari, A.A.; Lee, Y.; Lillehoj, H.S. Beneficial Effects of Dietary Supplementation of *Bacillus* Strains on Growth Performance and Gut Health in Chickens with Mixed Coccidiosis Infection. *Vet Parasitol* 2020, 277, doi:10.1016/j.vetpar.2019.109009.

109. Shahbaz, F.; Muccee, F.; Shahab, A.; Safi, S.Z.; Alomar, S.Y.; Qadeer, A. Isolation and in Vitro Assessment of Chicken Gut Microbes for Probiotic Potential. *Front Microbiol* 2024, 15, doi:10.3389/fmicb.2024.1278439.

110. He, T.; Long, S.; Mahfuz, S.; Wu, D.; Wang, X.; Wei, X.; Piao, X. Effects of Probiotics as Antibiotics Substitutes on Growth Performance, Serum Biochemical Parameters, Intestinal Morphology, and Barrier Function of Broilers. *Animals* 2019, 9, doi:10.3390/ani9110985.

111. Biswas, A.; Junaid, N.; Kumawat, M.; Qureshi, S.; Mandal, A.B. Influence of Dietary Supplementation of Probiotics on Intestinal Histo-Morphometry, Blood Chemistry and Gut Health Status of Broiler Chickens. *S Afr J Anim Sci* 2019, 48, doi:10.4314/sajas.v48i5.17.

112. Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry Gut Health – Microbiome Functions, Environmental Impacts, Microbiome Engineering and Advancements in Characterization Technologies. *J Anim Sci Biotechnol* 2021, 12.

113. Bedford, M.R.; Apajalahti, J.H. The Role of Feed Enzymes in Maintaining Poultry Intestinal Health. *J Sci Food Agric* 2022, 102.

114. Rabatfika, H.N.; Razafindralambo, A.; Ebenso, B.; Razafindralambo, H.L. Probiotics as Antibiotic Alternatives for Human and Animal Applications. *Encyclopedia* 2023, 3, doi:10.3390/encyclopedia3020040.

115. Varastegani, A.; Dahlan, I. Influence of Dietary Fiber Levels on Feed Utilization and Growth Performance in Poultry. *J. Anim. Pro. Adv.* 2014, 4.

116. Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken Gut Microbiota: Importance and Detection Technology. *Front Vet Sci* 2018, 5.

117. Clavijo, V.; Flórez, M.J.V. The Gastrointestinal Microbiome and Its Association with the Control of Pathogens in Broiler Chicken Production: A Review. *Poult Sci* 2018, 97.

118. Carrasco, J.M.D.; Casanova, N.A.; Miyakawa, M.E.F. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? *Microorganisms* 2019, 7.

119. Torok, V.A.; Hughes, R.J.; Mikkelsen, L.L.; Perez-Maldonado, R.; Balding, K.; MacAlpine, R.; Percy, N.J.; Ophel-Keller, K. Identification and Characterization of Potential Performance-Related Gut Microbiotas in Broiler Chickens across Various Feeding Trials. *Appl Environ Microbiol* 2011, 77, doi:10.1128/AEM.00165-11.

120. Idowu, P.A.; Mpofu, T.J.; Magoro, A.M.; Modiba, M.C.; Nephawe, K.A.; Mteleni, B. Impact of Probiotics on Chicken Gut Microbiota, Immunity, Behavior, and Productive Performance—a Systematic Review. *Frontiers in Animal Science* 2025, 6, doi:10.3389/fanim.2025.1562527.

121. Pourabedin, M.; Zhao, X. Prebiotics and Gut Microbiota in Chickens. *FEMS Microbiol Lett* 2015, 362, doi:10.1093/femsle/fnv122.

122. Yue, T.; Lu, Y.; Ding, W.; Xu, B.; Zhang, C.; Li, L.; Jian, F.; Huang, S. The Role of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Livestock and Poultry Gut Health: A Review. *Metabolites* 2025, 15, 478, doi:10.3390/metabo15070478.

123. Naeem, M.; Bourassa, D. Probiotics in Poultry: Unlocking Productivity Through Microbiome Modulation and Gut Health. *Microorganisms* 2025, 13, 257, doi:10.3390/microorganisms13020257.

124. Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. *Animals* 2020, 10.

125. Gaggia, F.; Mattarelli, P.; Biavati, B. Probiotics and Prebiotics in Animal Feeding for Safe Food Production. *Int J Food Microbiol* 2010, 141.

126. Yue, T.; Lu, Y.; Ding, W.; Xu, B.; Zhang, C.; Li, L.; Jian, F.; Huang, S. The Role of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Livestock and Poultry Gut Health: A Review. *Metabolites* 2025, 15, 478, doi:10.3390/metabo15070478.

127. Tsilingiri, K.; Rescigno, M. Postbiotics: What Else? *Benef Microbes* 2013, 4, doi:10.3920/BM2012.0046.

128. Marcial-Coba, M.S.; Pjaca, A.S.; Andersen, C.J.; Knøchel, S.; Nielsen, D.S. Dried Date Paste as Carrier of the Proposed Probiotic *Bacillus Coagulans* BC4 and Viability Assessment during Storage and Simulated Gastric Passage. *LWT* 2019, 99, doi:10.1016/j.lwt.2018.09.052.

129. Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. *Nat Rev Gastroenterol Hepatol* 2021, 18.

130. Burcelin, R.; Serino, M.; Chabo, C.; Blasco-Baque, V.; Amar, J. Gut Microbiota and Diabetes: From Pathogenesis to Therapeutic Perspective. *Acta Diabetol* 2011, 48.

131. Thu, T.V.; Loh, T.C.; Foo, H.L.; Yaakub, H.; Bejo, M.H. Effects of Liquid Metabolite Combinations Produced by *Lactobacillus Plantarum* on Growth Performance, Faeces Characteristics, Intestinal Morphology and Diarrhoea Incidence in Postweaning Piglets. *Trop Anim Health Prod* 2011, 43, doi:10.1007/s11250-010-9655-6.

132. Zhang, Z.; Guo, Q.; Wang, J.; Tan, H.; Jin, X.; Fan, Y.; Liu, J.; Zhao, S.; Zheng, J.; Peng, N. Postbiotics from *Pichia Kudriavzevii* Promote Intestinal Health Performance through Regulation of *Limosilactobacillus Reuteri* in Weaned Piglets. *Food Funct* 2023, 14, doi:10.1039/d2fo03695a.

133. Wachi, S.; Kanmani, P.; Tomosada, Y.; Kobayashi, H.; Yuri, T.; Egusa, S.; Shimazu, T.; Suda, Y.; Aso, H.; Sugawara, M.; et al. *Lactobacillus Delbrueckii* TUA4408L and Its Extracellular Polysaccharides Attenuate Enterotoxigenic *Escherichia Coli*-Induced Inflammatory Response in Porcine Intestinal Epitheliocytes via Toll-like Receptor-2 and 4. *Mol Nutr Food Res* 2014, 58, doi:10.1002/mnfr.201400218.

134. Patil, S.; Sawant, S.; Hauff, K.; Hampp, G. Validated Postbiotic Screening Confirms Presence of Physiologically-Active Metabolites, Such as Short-Chain Fatty Acids, Amino Acids and Vitamins in Hylak® Forte. *Probiotics Antimicrob Proteins* 2019, 11, doi:10.1007/s12602-018-9497-5.

135. Goodridge, L.D.; Bisha, B. Phage-Based Biocontrol Strategies to Reduce Foodborne Pathogens in Foods. *Bacteriophage* 2011, 1, doi:10.4161/bact.1.3.17629.

136. Rosenquist, H.; Boysen, L.; Krogh, A.L.; Jensen, A.N.; Nauta, M. *Campylobacter* Contamination and the Relative Risk of Illness from Organic Broiler Meat in Comparison with Conventional Broiler Meat. *Int J Food Microbiol* 2013, 162, doi:10.1016/j.ijfoodmicro.2013.01.022.

137. Chinivasagam, H.N.; Estella, W.; Maddock, L.; Mayer, D.G.; Weyand, C.; Connerton, P.L.; Connerton, I.F. Bacteriophages to Control *Campylobacter* in Commercially Farmed Broiler Chickens, in Australia. *Front Microbiol* 2020, 11, doi:10.3389/fmicb.2020.00632.

138. Richards, P.J.; Connerton, P.L.; Connerton, I.F. Phage Biocontrol of *Campylobacter Jejuni* in Chickens Does Not Produce Collateral Effects on the Gut Microbiota. *Front Microbiol* 2019, 10, doi:10.3389/fmicb.2019.00476.

139. Waghmare, S.; Gupta, M.; Bahiram, K.B.; Korde, J.P.; Bhat, R.; Datar, Y.; Rajora, P.; Kadam, M.M.; Kaore, M.; Kurkure, N.V. Effects of Organic Acid Blends on the Growth Performance, Intestinal Morphology, Microbiota, and Serum Lipid Parameters of Broiler Chickens. *Poult Sci* 2025, 104, 104546, doi:10.1016/j.psj.2024.104546.

140. Yang, X.; Xin, H.; Yang, C.; Yang, X. Impact of Essential Oils and Organic Acids on the Growth Performance, Digestive Functions and Immunity of Broiler Chickens. *Animal Nutrition* 2018, 4, doi:10.1016/j.aninu.2018.04.005.

141. Khan, R.U.; Naz, S.; Raziq, F.; Qudratullah, Q.; Khan, N.A.; Laudadio, V.; Tufarelli, V.; Ragni, M. Prospects of Organic Acids as Safe Alternative to Antibiotics in Broiler Chickens Diet. *Environmental Science and Pollution Research* 2022, 29.

142. Mani-López, E.; García, H.S.; López-Malo, A. Organic Acids as Antimicrobials to Control *Salmonella* in Meat and Poultry Products. *Food Research International* 2012, 45, doi:10.1016/j.foodres.2011.04.043.

143. Dibner, J.J.; Buttin, P. Use of Organic Acids as a Model to Study the Impact of Gut Microflora on Nutrition and Metabolism. *Journal of Applied Poultry Research* 2002, 11, doi:10.1093/japr/11.4.453.

144. Movahedi, F.; Nirmal, N.; Wang, P.; Jin, H.; Grøndahl, L.; Li, L. Recent Advances in Essential Oils and Their Nanoformulations for Poultry Feed. *J Anim Sci Biotechnol* 2024, 15, 110, doi:10.1186/s40104-024-01067-8.

145. Rusdi, R.; Hasanuddin, A.; Arief, R. Evaluation of Eleutherine (Eleutherine Americana) Potential As Feed Additive for Poultry. *Jurnal Agrisains* 2016, 17.

146. Kamatou, G.P.P.; Viljoen, A.M. A Review of the Application and Pharmacological Properties of α -Bisabolol and α -Bisabolol-Rich Oils. *JAOCs, Journal of the American Oil Chemists' Society* 2010, 87.

147. Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. *Molecules* 2010, 15.

148. Navarro, M.; Stanley, R.; Cusack, A.; Yasmina, S. Combinations of Plant-Derived Compounds Against *Campylobacter* in Vitro. *Journal of Applied Poultry Research* 2015, 24, doi:10.3382/japr/pfv035.

149. Sar, T.; Akbas, M.Y. Antimicrobial Activities of Olive Oil Mill Wastewater Extracts against Selected Microorganisms. *Sustainability (Switzerland)* 2023, 15, doi:10.3390/su15108179.

150. Hashemi, S.R.; Davoodi, H. Herbal Plants and Their Derivatives as Growth and Health Promoters in Animal Nutrition. *Vet Res Commun* 2011, 35.

151. Giannenas, I.; Bonos, E.; Filliosis, G.; Stylianaki, I.; Kumar, P.; Lazari, D.; Christaki, E.; Florou-Paneri, P. Effect of a Polyherbal or an Arsenic-Containing Feed Additive on Growth Performance of Broiler Chickens, Intestinal Microbiota, Intestinal Morphology, and Lipid Oxidation of Breast and Thigh Meat. *Journal of Applied Poultry Research* 2019, 28, doi:10.3382/japr/pfy059.

152. Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods - A Review. *Int J Food Microbiol* 2004, 94.

153. Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of Phytogenic Products as Feed Additives for Swine and Poultry. *J Anim Sci* 2008, 86, doi:10.2527/jas.2007-0459.

154. Iwata, T.; Watanabe-Yanai, A.; Tamamura-Andoh, Y.; Arai, N.; Akiba, M.; Kusumoto, M. Tryptanthrin Reduces *Campylobacter Jejuni* Colonization in the Chicken Gut by a Bactericidal Mechanism. *Appl Environ Microbiol* 2023, 89, doi:10.1128/aem.01701-22.

155. World health organization WHO | WHO Department on Immunization, Vaccines and Biologicals. Who 2017.

156. Igwaran, A.; Okoh, A.I. Molecular Determination of Genetic Diversity among *Campylobacter Jejuni* and *Campylobacter Coli* Isolated from Milk, Water, and Meat Samples Using Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR). *Infect Ecol Epidemiol* 2020, 10, doi:10.1080/20008686.2020.1830701.

157. Jeon, B.; Saisom, T.; Sasipreeyajan, J.; Luangtongkum, T. Live-Attenuated Oral Vaccines to Reduce *Campylobacter* Colonization in Poultry. *Vaccines (Basel)* 2022, 10, doi:10.3390/vaccines10050685.

158. Castelo Taboada, A.C.; Pavic, A. Vaccinating Meat Chickens against *Campylobacter* and *Salmonella*: A Systematic Review and Meta-Analysis. *Vaccines (Basel)* 2022, 10.

159. Hermans, D.; Van Deun, K.; Messens, W.; Martel, A.; Van Immerseel, F.; Haesebrouck, F.; Rasschaert, G.; Heyndrickx, M.; Pasmans, F. *Campylobacter* Control in Poultry by Current Intervention Measures Ineffective: Urgent Need for Intensified Fundamental Research. *Vet Microbiol* 2011, 152.

160. Adams, L.J.; Zeng, X.; Lin, J. Development and Evaluation of Two Live *Salmonella*-Vectored Vaccines for *Campylobacter* Control in Broiler Chickens. *Foodborne Pathog Dis* 2019, 16, doi:10.1089/fpd.2018.2561.

161. Meunier, M.; Guyard-Nicodème, M.; Dory, D.; Chemaly, M. Control Strategies against *Campylobacter* at the Poultry Production Level: Biosecurity Measures, Feed Additives and Vaccination. *J Appl Microbiol* 2016, 120.

162. Wang, C.; Zhou, H.; Guo, F.; Yang, B.; Su, X.; Lin, J.; Xu, F. Oral Immunization of Chickens with *Lactococcus Lactis* Expressing CjaA Temporarily Reduces *Campylobacter Jejuni* Colonization. *Foodborne Pathog Dis* 2020, 17, doi:10.1089/fpd.2019.2727.

163. Neal-McKinney, J.M.; Samuelson, D.R.; Eucker, T.P.; Nissen, M.S.; Crespo, R.; Konkel, M.E. Reducing *Campylobacter Jejuni* Colonization of Poultry via Vaccination. *PLoS One* 2014, 9, doi:10.1371/journal.pone.0114254.

164. Wyszyńska, A.; Raczko, A.; Lis, M.; Jagusztyn-Krynicka, E.K. Oral Immunization of Chickens with Avirulent *Salmonella* Vaccine Strain Carrying *C. Jejuni* 72Dz/92 CjaA Gene Elicits Specific Humoral Immune Response Associated with Protection against Challenge with Wild-Type *Campylobacter*. *Vaccine* 2004, 22, doi:10.1016/j.vaccine.2003.11.001.

165. Carneiro, F.A.; Cortines, J. dos R.; Essus, V.A.; da Silva, I.B.N. Vaccine Engineering & Structural Vaccinology. In *System Vaccinology: The History, the Translational Challenges and the Future*; 2022.

166. Nothaft, H.; Perez-Muñoz, M.E.; Gouveia, G.J.; Duar, R.M.; Wanford, J.J.; Lango-Scholey, L.; Panagos, C.G.; Srithayakumar, V.; Plastow, G.S.; Coros, C.; et al. Coadministration of the *Campylobacter Jejuni* N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens. *Appl Environ Microbiol* 2017, 83, doi:10.1128/AEM.01523-17.

167. Pumtang-On, P.; Mahony, T.J.; Hill, R.A.; Vanniasinkam, T. A Systematic Review of *Campylobacter Jejuni* Vaccine Candidates for Chickens. *Microorganisms* 2021, 9.

168. Head, J.R.; Vos, A.; Blanton, J.; Müller, T.; Chipman, R.; Pieracci, E.G.; Cleaton, J.; Wallace, R. Environmental Distribution of Certain Modified Live-Virus Vaccines with a High Safety Profile Presents a Low-Risk, High-Reward to Control Zoonotic Diseases. *Sci Rep* 2019, 9, doi:10.1038/s41598-019-42714-9.

169. Cramer, J.P. Principles of Immunization. In *Travel Medicine*; 2018.

170. Naguib, M.; Sharma, S.; Schneider, A.; Wehmueller, S.; Abdelaziz, K. Comparative Effectiveness of Various Multi-Antigen Vaccines in Controlling *Campylobacter Jejuni* in Broiler Chickens. *Vaccines (Basel)* 2024, 12, 908, doi:10.3390/vaccines12080908.

171. Okamura, M.; Tominaga, A.; Ueda, M.; Ohshima, R.; Kobayashi, M.; Tsukada, M.; Yokoyama, E.; Takehara, K.; Deguchi, K.; Honda, T.; et al. Irrelevance between the Induction of Anti-*Campylobacter* Humoral Response by a Bacterin and the Lack of Protection against Homologous Challenge in Japanese Jidori Chickens. *Journal of Veterinary Medical Science* 2012, 74.

172. Konkel, M.E.; Joens, L.A. Adhesion to and Invasion of HEp-2 Cells by *Campylobacter* Spp. *Infect Immun* 1989, 57, doi:10.1128/iai.57.10.2984-2990.1989.

173. Burakova, Y.; Madera, R.; McVey, S.; Schlup, J.R.; Shi, J. Adjuvants for Animal Vaccines. *Viral Immunol* 2018, 31.

174. Ravikumar, R.; Chan, J.; Prabakaran, M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. *Viruses* 2022, 14.

175. Bodman-Harris, O.; Rollier, C.S.; Iqbal, M. Approaches to Enhance the Potency of Vaccines in Chickens. *Vaccines (Basel)* 2024, 12, 1337, doi:10.3390/vaccines12121337.

176. Whalen, R.G. DNA Vaccines, Cyberspace and Self-Help Programs. *Intervirology* 1996, 39, doi:10.1159/000150483.

177. Mor, G. Plasmid DNA: A New Era in Vaccinology. *Biochem Pharmacol* 1998, 55, doi:10.1016/S0006-2952(97)00529-7.

178. Leitner, W.W.; Ying, H.; Restifo, N.P. DNA and RNA-Based Vaccines: Principles, Progress and Prospects. *Vaccine* 1999, 18.

179. Wang, C.; Yuan, F. A Comprehensive Comparison of DNA and RNA Vaccines. *Adv Drug Deliv Rev* 2024, 210, 115340, doi:10.1016/j.addr.2024.115340.

180. Liu, X.; Adams, L.J.; Zeng, X.; Lin, J. Evaluation of in Ovo Vaccination of DNA Vaccines for *Campylobacter* Control in Broiler Chickens. *Vaccine* 2019, 37, doi:10.1016/j.vaccine.2019.05.082.

181. Gloanec, N.; Guyard-Nicodème, M.; Brunetti, R.; Quesne, S.; Keita, A.; Chemaly, M.; Dory, D. Plasmid DNA Prime/Protein Boost Vaccination against *Campylobacter Jejuni* in Broilers: Impact of Vaccine Candidates on Immune Responses and Gut Microbiota. *Pharmaceutics* 2023, 15, doi:10.3390/pharmaceutics15051397.

182. Meunier, M.; Guyard-Nicodème, M.; Vigouroux, E.; Poezevara, T.; Béven, V.; Quesne, S.; Amelot, M.; Parra, A.; Chemaly, M.; Dory, D. A DNA Prime/Protein Boost Vaccine Protocol Developed against *Campylobacter Jejuni* for Poultry. *Vaccine* 2018, 36, doi:10.1016/j.vaccine.2018.03.004.

183. Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A Comprehensive Review of mRNA Vaccines. *Int J Mol Sci* 2023, 24.

184. Capozzo, A.V.E.; Ramírez, K.; Polo, J.M.; Ulmer, J.; Barry, E.M.; Levine, M.M.; Pasetti, M.F. Neonatal Immunization with a Sindbis Virus-DNA Measles Vaccine Induces Adult-Like Neutralizing Antibodies and Cell-Mediated Immunity in the Presence of Maternal Antibodies. *The Journal of Immunology* 2006, 176, doi:10.4049/jimmunol.176.9.5671.

185. Manickan, E.; Yu, Z.; Rouse, B.T. DNA Immunization of Neonates Induces Immunity despite the Presence of Maternal Antibody. *Journal of Clinical Investigation* 1997, 100, doi:10.1172/JCI119777.

186. Giannotta, G.; Murrone, A.; Giannotta, N. COVID-19 mRNA Vaccines: The Molecular Basis of Some Adverse Events. *Vaccines (Basel)* 2023, 11.

187. Holm, M.R.; Poland, G.A. Critical Aspects of Packaging, Storage, Preparation, and Administration of mRNA and Adenovirus-Vectored COVID-19 Vaccines for Optimal Efficacy. *Vaccine* 2021, 39.

188. Lefébure, T.; Bitar, P.D.P.; Suzuki, H.; Stanhope, M.J. Evolutionary Dynamics of Complete *Campylobacter* Pan-Genomes and the Bacterial Species Concept. *Genome Biol Evol* 2010, 2, doi:10.1093/gbe/evq048.

189. Costa, D.; Lévesque, S.; Kumar, N.; Fresia, P.; Ferrés, I.; Lawley, T.D.; Iraola, G. Pangenome Analysis Reveals Genetic Isolation in *Campylobacter Hyoilectinalis* Subspecies Adapted to Different Mammalian Hosts. *Sci Rep* 2021, 11, doi:10.1038/s41598-021-82993-9.

190. Gemmell, M.R.; Berry, S.; Mukhopadhyay, I.; Hansen, R.; Nielsen, H.L.; Bajaj-Elliott, M.; Nielsen, H.; Hold, G.L. Comparative Genomics of *Campylobacter Concisus*: Analysis of Clinical Strains Reveals Genome Diversity and Pathogenic Potential. *Emerg Microbes Infect* 2018, 7, doi:10.1038/s41426-018-0118-x.

191. Zhong, C.; Qu, B.; Hu, G.; Ning, K. Pan-Genome Analysis of *Campylobacter*: Insights on the Genomic Diversity and Virulence Profile. *Microbiol Spectr* 2022, 10, doi:10.1128/spectrum.01029-22.

192. Cayrou, C.; Barratt, N.A.; Ketley, J.M.; Bayliss, C.D. Phase Variation During Host Colonization and Invasion by *Campylobacter Jejuni* and Other *Campylobacter* Species. *Front Microbiol* 2021, 12.

193. Fox, K.L.; Atack, J.M.; Srikhanta, Y.N.; Eckert, A.; Novotny, L.A.; Bakalatz, L.O.; Jennings, M.P. Selection for Phase Variation of Los Biosynthetic Genes Frequently Occurs in Progression of Non-Typeable *Haemophilus Influenzae* Infection from the Nasopharynx to the Middle Ear of Human Patients. *PLoS One* 2014, 9, doi:10.1371/journal.pone.0090505.

194. Van Der Woude, M.W.; Bäumler, A.J. Phase and Antigenic Variation in Bacteria. *Clin Microbiol Rev* 2004, 17.

195. Van Der Woude, M.W. Re-Examining the Role and Random Nature of Phase Variation. *FEMS Microbiol Lett* 2006, 254.

196. van der Woude, M.W. Phase Variation: How to Create and Coordinate Population Diversity. *Curr Opin Microbiol* 2011, 14.

197. Burnham, P.M.; Hendrixson, D.R. *Campylobacter Jejuni*: Collective Components Promoting a Successful Enteric Lifestyle. *Nat Rev Microbiol* 2018, 16.

198. Lu, T.; Marmion, M.; Ferone, M.; Wall, P.; Scannell, A.G.M. On Farm Interventions to Minimise *Campylobacter* Spp. Contamination in Chicken. *Br Poult Sci* 2021, 62.

199. Sahin, O.; Luo, N.; Huang, S.; Zhang, Q. Effect of *Campylobacter*-Specific Maternal Antibodies on *Campylobacter Jejuni* Colonization in Young Chickens. *Appl Environ Microbiol* 2003, 69, doi:10.1128/AEM.69.9.5372-5379.2003.

200. Shreeve, J.E.; Toszeghy, M.; Pattison, M.; Newell, D.G. Sequential Spread of *Campylobacter* Infection in a Multipen Broiler House. *Avian Dis* 2000, 44, doi:10.2307/1593076.

201. Jacobs-Reitsma, W.F.; Van de Giessen, A.W.; Bolder, N.M.; Mulder, R.W.A.W. Epidemiology of *Campylobacter* Spp. at Two Dutch Broiler Farms. *Epidemiol Infect* 1995, 114, doi:10.1017/S0950268800052122.

202. Evans, S.J.; Sayers, A.R. A Longitudinal Study of *Campylobacter* Infection of Broiler Flocks in Great Britain. *Prev Vet Med* 2000, 46, doi:10.1016/S0167-5877(00)00143-4.

203. Haems, K.; Van Rysselberghe, N.; Goossens, E.; Strubbe, D.; Rasschaert, G.; Martel, A.; Pasmans, F.; Garmyn, A. Reducing *Campylobacter* Colonization in Broilers by Active Immunization of Naive Broiler Breeders Using a Bacterin and Subunit Vaccine. *Poult Sci* 2023, 102, doi:10.1016/j.psj.2023.103075.

204. Haems, K.; Strubbe, D.; Van Rysselberghe, N.; Rasschaert, G.; Martel, A.; Pasmans, F.; Garmyn, A. Role of Maternal Antibodies in the Protection of Broiler Chicks against *Campylobacter* Colonization in the First Weeks of Life. *Animals* 2024, 14, 1291, doi:10.3390/ani14091291.

205. Eliasson, E.; Sun, L.; Cervin, G.; Pavia, H.; Tällberg, G.; Ellström, P.; Ivarsson, E. No Colonization Resistance to *Campylobacter* Jejuni in Broilers Fed Brown Algal Extract-Supplemented Diets. *Front Microbiol* 2024, 15, doi:10.3389/fmicb.2024.1396949.

206. Naguib, M.; Sharma, S.; Schneider, A.; Bragg, A.R.; Abdelaziz, K. A Multi-Antigen *Campylobacter* Vaccine Enhances Antibody Responses in Layer Breeders and Sustains Elevated Maternal Antibody Levels in Their Offspring. *Poult Sci* 2025, 104, 104898, doi:10.1016/j.psj.2025.104898.

207. Lacharme-Lora, L.; Chaloner, G.; Gilroy, R.; Humphrey, S.; Gibbs, K.; Jopson, S.; Wright, E.; Reid, W.; Ketley, J.; Humphrey, T.; et al. B Lymphocytes Play a Limited Role in Clearance of *Campylobacter* Jejuni from the Chicken Intestinal Tract. *Sci Rep* 2017, 7, doi:10.1038/srep45090.

208. Chintoan-Uta, C.; Cassady-Cain, R.L.; Al-Haideri, H.; Watson, E.; Kelly, D.J.; Smith, D.G.E.; Sparks, N.H.C.; Kaiser, P.; Stevens, M.P. Superoxide Dismutase SodB Is a Protective Antigen against *Campylobacter* Jejuni Colonisation in Chickens. *Vaccine* 2015, 33, doi:10.1016/j.vaccine.2015.09.100.

209. Barrow, P.A.; Huggins, M.B.; Lovell, M.A.; Simpson, J.M. Observations on the Pathogenesis of Experimental *Salmonella* Typhimurium Infection in Chickens. *Res Vet Sci* 1987, 42, doi:10.1016/s0034-5288(18)30685-4.

210. Layton, S.L.; Morgan, M.J.; Cole, K.; Kwon, Y.M.; Donoghue, D.J.; Hargis, B.M.; Pumford, N.R. Evaluation of *Salmonella*-Vectored *Campylobacter* Peptide Epitopes for Reduction of *Campylobacter* Jejuni in Broiler Chickens. *Clinical and Vaccine Immunology* 2011, 18, doi:10.1128/CVI.00379-10.

211. Buckley, A.M.; Wang, J.; Hudson, D.L.; Grant, A.J.; Jones, M.A.; Maskell, D.J.; Stevens, M.P. Evaluation of Live-Attenuated *Salmonella* Vaccines Expressing *Campylobacter* Antigens for Control of *C. Jejuni* in Poultry. *Vaccine* 2010, 28, doi:10.1016/j.vaccine.2009.10.018.

212. Gilroy, R.; Wedley, A.; Jopson, S.; Hall, J.; Wigley, P. The Immunobiology of Persistent Intestinal Infection by *Campylobacter* Jejuni in the Chicken 2024.

213. Kobierecka, P.A.; Wyszynska, A.K.; Gubernator, J.; Kuczkowski, M.; Wisniewski, O.; Maruszewska, M.; Wojtanja, A.; Derlatka, K.E.; Adamska, I.; Godlewska, R.; et al. Chicken Anti-*Campylobacter* Vaccine - Comparison of Various Carriers and Routes of Immunization. *Front Microbiol* 2016, 7, doi:10.3389/fmicb.2016.00740.

214. Ceccopieri, C.; Madej, J.P. Chicken Secondary Lymphoid Tissues—Structure and Relevance in Immunological Research. *Animals* 2024, 14, 2439, doi:10.3390/ani14162439.

215. Wu, Z.; Kaiser, P. Antigen Presenting Cells in a Non-Mammalian Model System, the Chicken. *Immunobiology* 2011, 216, doi:10.1016/j.imbio.2011.05.012.

216. de Matos, R.; Morrissey, J.K. Marek's Disease. In Comparative Veterinary Anatomy; Elsevier, 2022; pp. 1355–1363.

217. Muir, W.I.; Bryden, W.L.; Husband, A.J. Immunity, Vaccination and the Avian Intestinal Tract. *Dev Comp Immunol* 2000, 24, doi:10.1016/S0145-305X(99)00081-6.

218. Nuchi, T.; Jansen, C.A.; Toyomizu, M.; Eden, W. van The Well-Developed Mucosal Immune Systems of Birds and Mammals Allow for Similar Approaches of Mucosal Vaccination in Both Types of Animals. *Front Nutr* 2018, 5.

219. Guérin, J.L.; Balloy, D.; Pinson, M.; Jbenyeni, A.; Delpont, M. Vaccination Technology in Poultry: Principles of Vaccine Administration. *Avian Dis* 2023, 67.

220. Calland, J.K.; Pesonen, M.E.; Mehat, J.; Pascoe, B.; Haydon, D.J.; Lourenco, J.; Lukasiewicz, B.; Mourkas, E.; Hitchings, M.D.; La Ragione, R.M.; et al. Genomic Tailoring of Autogenous Poultry Vaccines to Reduce *Campylobacter* from Farm to Fork. *NPJ Vaccines* 2024, 9, 105, doi:10.1038/s41541-024-00879-z.

221. Annamalai, T.; Pina-Mimbela, R.; Kumar, A.; Binjawadagi, B.; Liu, Z.; Renukaradhya, G.J.; Rajashekara, G. Evaluation of Nanoparticle-Encapsulated Outer Membrane Proteins for the Control of *Campylobacter* Jejuni Colonization in Chickens. *Poult Sci* 2013, 92, doi:10.3382/ps.2012-03004.

222. Jiao, X.A.; Huang, J.L.; Yin, Y.X.; Pan, Z.M.; Zhang, G.; Zhu, A.P.; Liu, X.F. Intranasal Immunization with Chitosan/PCAGGS-Fla A Nanoparticles Inhibits *Campylobacter Jejuni* in a White Leghorn Model. *J Biomed Biotechnol* 2010, 2010, doi:10.1155/2010/589476.

223. Wyszyńska, A.; Raczkowski, A.; Lis, M.; Jagusztyń-Krynicka, E.K. Oral Immunization of Chickens with Avirulent *Salmonella* Vaccine Strain Carrying *C. Jejuni* 72Dz/92 CjaA Gene Elicits Specific Humoral Immune Response Associated with Protection against Challenge with Wild-Type *Campylobacter*. *Vaccine* 2004, 22, 1379–1389, doi:10.1016/j.vaccine.2003.11.001.

224. Theoret, J.R.; Cooper, K.K.; Zekarias, B.; Roland, K.L.; Law, B.F.; Curtiss, R.; Joens, L.A. The *Campylobacter Jejuni* Dps Homologue Is Important for in Vitro Biofilm Formation and Cecal Colonization of Poultry and May Serve as a Protective Antigen for Vaccination. *Clinical and Vaccine Immunology* 2012, 19, doi:10.1128/CVI.00151-12.

225. Romero-Barrios, P.; Hempen, M.; Messens, W.; Stella, P.; Hugas, M. Quantitative Microbiological Risk Assessment (QMRA) of Food-Borne Zoonoses at the European Level. *Food Control* 2013, 29, doi:10.1016/j.foodcont.2012.05.043.

226. Meunier, M.; Guyard-Nicodème, M.; Vigouroux, E.; Poezevara, T.; Beven, V.; Quesne, S.; Bigault, L.; Amelot, M.; Dory, D.; Chemaly, M. Promising New Vaccine Candidates against *Campylobacter* in Broilers. *PLoS One* 2017, 12, doi:10.1371/journal.pone.0188472.

227. Meunier, M.; Guyard-Nicodème, M.; Hirchaud, E.; Parra, A.; Chemaly, M.; Dory, D. Identification of Novel Vaccine Candidates against *Campylobacter* through Reverse Vaccinology. *J Immunol Res* 2016, 2016, 1–9, doi:10.1155/2016/5715790.

228. Chintoan-Uta, C.; Cassady-Cain, R.L.; Stevens, M.P. Evaluation of Flagellum-Related Proteins FliD and FspA as Subunit Vaccines against *Campylobacter Jejuni* Colonisation in Chickens. *Vaccine* 2016, 34, doi:10.1016/j.vaccine.2016.02.052.

229. Clark, J.D.; Oakes, R.D.; Redhead, K.; Crouch, C.F.; Francis, M.J.; Tomley, F.M.; Blake, D.P. *Eimeria* Species Parasites as Novel Vaccine Delivery Vectors: Anti-*Campylobacter Jejuni* Protective Immunity Induced by *Eimeria Tenella*-Delivered CjaA. *Vaccine* 2012, 30, doi:10.1016/j.vaccine.2012.02.002.

230. Corona-Torres, R.; Vohra, P.; Chintoan-Uta, C.; Bremner, A.; Terra, V.S.; Mauri, M.; Cuccui, J.; Vervelde, L.; Wren, B.W.; Stevens, M.P. Evaluation of a FlpA Glycoconjugate Vaccine with Ten N-Heptasaccharide Glycan Moieties to Reduce *Campylobacter Jejuni* Colonisation in Chickens. *Vaccines (Basel)* 2024, 12, 395, doi:10.3390/vaccines12040395.

231. Cui, Y.; Guo, F.; Guo, J.; Cao, X.; Wang, H.; Yang, B.; Zhou, H.; Su, X.; Zeng, X.; Lin, J.; et al. Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced *Campylobacter Jejuni* Colonization in the Intestine. *Vaccines (Basel)* 2020, 8, doi:10.3390/vaccines8040747.

232. Gloanec, N.; Guyard-Nicodème, M.; Brunetti, R.; Quesne, S.; Keita, A.; Chemaly, M.; Dory, D. Evaluation of Two Recombinant Protein-Based Vaccine Regimens against *Campylobacter Jejuni*: Impact on Protection, Humoral Immune Responses and Gut Microbiota in Broilers. *Animals* 2023, 13, doi:10.3390/ani13243779.

233. Gorain, C.; Singh, A.; Bhattacharyya, S.; Kundu, A.; Lahiri, A.; Gupta, S.; Mallick, A.I. Mucosal Delivery of Live *Lactococcus Lactis* Expressing Functionally Active JlpA Antigen Induces Potent Local Immune Response and Prevent Enteric Colonization of *Campylobacter Jejuni* in Chickens. *Vaccine* 2020, 38, doi:10.1016/j.vaccine.2019.12.064.

234. Hodgins, D.C.; Barjesteh, N.; St. Paul, M.; Ma, Z.; Monteiro, M.A.; Sharif, S. Evaluation of a Polysaccharide Conjugate Vaccine to Reduce Colonization by *Campylobacter Jejuni* in Broiler Chickens. *BMC Res Notes* 2015, 8, doi:10.1186/s13104-015-1203-z.

235. Łaniewski, P.; Kuczkowski, M.; Chrzastek, K.; Woźniak, A.; Wyszyńska, A.; Wieliczko, A.; Jagusztyń-Krynicka, E.K. Evaluation of the Immunogenicity of *Campylobacter Jejuni* CjaA Protein Delivered by *Salmonella Enterica* Sv. *Typhimurium* Strain with Regulated Delayed Attenuation in Chickens. *World J Microbiol Biotechnol* 2014, 30, doi:10.1007/s11274-013-1447-5.

236. Zeng, X.; Xu, F.; Lin, J. Development and Evaluation of CmeC Subunit Vaccine against *Campylobacter Jejuni*. *J Vaccines Vaccin* 2010, 1, doi:10.4172/2157-7560.1000112.

237. Vohra, P.; Chintoan-uta, C.; Terra, V.S.; Bremner, A.; Cuccui, J.; Wren, B.W.; Vervelde, L.; Stevens, M.P. Evaluation of Glycosylated FLPA and SODB as Subunit Vaccines against *Campylobacter Jejuni* Colonisation in Chickens. *Vaccines (Basel)* 2020, 8, doi:10.3390/vaccines8030520.

238. Vohra, P.; Chintoan-Uta, C.; Bremner, A.; Mauri, M.; Terra, V.S.; Cuccui, J.; Wren, B.W.; Vervelde, L.; Stevens, M.P. Evaluation of a *Campylobacter Jejuni* N-Glycan-ExoA Glycoconjugate Vaccine to Reduce *C. Jejuni* Colonisation in Chickens. *Vaccine* 2021, 39, doi:10.1016/j.vaccine.2021.10.085.

239. Vandeputte, J.; Martel, A.; Van Rysselberghe, N.; Antonissen, G.; Verlinden, M.; De Zutter, L.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F.; Garmyn, A. In Ovo Vaccination of Broilers against *Campylobacter Jejuni* Using a Bacterin and Subunit Vaccine. *Poult Sci* 2019, 98, doi:10.3382/ps/pez402.

240. Taha-Abdelaziz, K.; Hodgins, D.C.; Alkie, T.N.; Quinteiro-Filho, W.; Yitbarek, A.; Astill, J.; Sharif, S. Oral Administration of PLGA-Encapsulated CpG ODN and *Campylobacter Jejuni* Lysate Reduces Cecal Colonization by *Campylobacter Jejuni* in Chickens. *Vaccine* 2018, 36, doi:10.1016/j.vaccine.2017.11.073.

241. Singh, A.; Nisaa, K.; Bhattacharyya, S.; Mallick, A.I. Immunogenicity and Protective Efficacy of Mucosal Delivery of Recombinant Hcp of *Campylobacter Jejuni* Type VI Secretion System (T6SS) in Chickens. *Mol Immunol* 2019, 111, doi:10.1016/j.molimm.2019.04.016.

242. Radomska, K.A.; Vaezrad, M.M.; Verstappen, K.M.; Wösten, M.M.S.M.; Wagenaar, J.A.; Van Putten, J.P.M. Chicken Immune Response after in Ovo Immunization with Chimeric TLR5 Activating Flagellin of *Campylobacter Jejuni*. *PLoS One* 2016, 11, doi:10.1371/journal.pone.0164837.

243. Sibanda, N.; McKenna, A.; Richmond, A.; Ricke, S.C.; Callaway, T.; Stratakis, A.C.; Gundogdu, O.; Corcionivoschi, N. A Review of the Effect of Management Practices on *Campylobacter* Prevalence in Poultry Farms. *Front Microbiol* 2018, 9.

244. Boodhoo, N.; Shoja Doost, J.; Sharif, S. Biosensors for Monitoring, Detecting, and Tracking Dissemination of Poultry-Borne Bacterial Pathogens Along the Poultry Value Chain: A Review. *Animals* 2024, 14, 3138, doi:10.3390/ani14213138.

245. Tilli, G.; Laconi, A.; Galuppo, F.; Mughini-Gras, L.; Piccirillo, A. Assessing Biosecurity Compliance in Poultry Farms: A Survey in a Densely Populated Poultry Area in North East Italy. *Animals* 2022, 12, 1409, doi:10.3390/ani12111409.

246. Gelaude, P.; Schlepers, M.; Verlinden, M.; Laanen, M.; Dewulf, J. Biocheck.UGent: A Quantitative Tool to Measure Biosecurity at Broiler Farms and the Relationship with Technical Performances and Antimicrobial Use. *Poult Sci* 2014, 93, doi:10.3382/ps.2014-04002.

247. Connell, S.; Meade, K.G.; Allan, B.; Lloyd, A.T.; Kenny, E.; Cormican, P.; Morris, D.W.; Bradley, D.G.; O'Farrelly, C. Avian Resistance to *Campylobacter Jejuni* Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing. *PLoS One* 2012, 7, doi:10.1371/journal.pone.0040409.

248. Smith, C.K.; Kaiser, P.; Rothwell, L.; Humphrey, T.; Barrow, P.A.; Jones, M.A. *Campylobacter Jejuni*-Induced Cytokine Responses in Avian Cells. *Infect Immun* 2005, 73, doi:10.1128/IAI.73.4.2094-2100.2005.

249. Shaughnessy, R.G.; Meade, K.G.; Cahalane, S.; Allan, B.; Reiman, C.; Callanan, J.J.; O'Farrelly, C. Innate Immune Gene Expression Differentiates the Early Avian Intestinal Response between *Salmonella* and *Campylobacter*. *Vet Immunol Immunopathol* 2009, 132, doi:10.1016/j.vetimm.2009.06.007.

250. Zhang, M.; Li, D.; Yang, X.; Wei, F.; Wen, Q.; Feng, Y.; Jin, X.; Liu, D.; Guo, Y.; Hu, Y. Integrated Multi-Omics Reveals the Roles of Cecal Microbiota and Its Derived Bacterial Consortium in Promoting Chicken Growth. *mSystems* 2023, 8, doi:10.1128/msystems.00844-23.

251. Man, L.; Soh, P.X.Y.; McEneaney, T.E.; Cain, J.A.; Dale, A.L.; Cordwell, S.J. Multi-Omics of *Campylobacter Jejuni* Growth in Chicken Exudate Reveals Molecular Remodelling Associated with Altered Virulence and Survival Phenotypes. *Microorganisms* 2024, 12, 860, doi:10.3390/microorganisms12050860.

252. Wagle, B.R.; Quach, A.; Yeo, S.; Assumpcao, A.L.F.V.; Arsi, K.; Donoghue, A.M.; Jesudhasan, P.R.R. A Multiomic Analysis of Chicken Serum Revealed the Modulation of Host Factors Due to *Campylobacter Jejuni* Colonization and In-Water Supplementation of Eugenol Nanoemulsion. *Animals* 2023, 13, doi:10.3390/ani13040559.

253. Cao, H.; Xu, H.; Ning, C.; Xiang, L.; Ren, Q.; Zhang, T.; Zhang, Y.; Gao, R. Multi-Omics Approach Reveals the Potential Core Vaccine Targets for the Emerging Foodborne Pathogen *Campylobacter Jejuni*. *Front Microbiol* 2021, 12, doi:10.3389/fmicb.2021.665858.

254. Psifidi, A.; Kranis, A.; Rothwell, L.M.; Bremner, A.; Russell, K.; Robledo, D.; Bush, S.J.; Fife, M.; Hocking, P.M.; Banos, G.; et al. Quantitative Trait Loci and Transcriptome Signatures Associated with Avian Heritable Resistance to *Campylobacter*. *Sci Rep* 2021, 11, doi:10.1038/s41598-020-79005-7.

255. Psifidi, A.; Fife, M.; Howell, J.; Matika, O.; van Diemen, P.M.; Kuo, R.; Smith, J.; Hocking, P.M.; Salmon, N.; Jones, M.A.; et al. The Genomic Architecture of Resistance to *Campylobacter Jejuni* Intestinal Colonisation in Chickens. *BMC Genomics* 2016, 17, doi:10.1186/s12864-016-2612-7.

256. Quintel, B.K.; Prongay, K.; Lewis, A.D.; Raué, H.-P.; Hendrickson, S.; Rhoades, N.S.; Messaoudi, I.; Gao, L.; Slifka, M.K.; Amanna, I.J. Vaccine-Mediated Protection against *Campylobacter*-Associated Enteric Disease. *Sci Adv* 2020, 6, doi:10.1126/sciadv.aba4511.

257. Meunier, M.; Guyard-Nicodème, M.; Hirchaud, E.; Parra, A.; Chemaly, M.; Dory, D. Identification of Novel Vaccine Candidates against *Campylobacter* through Reverse Vaccinology. *J Immunol Res* 2016, 2016, 1–9, doi:10.1155/2016/5715790.

258. Gupta, N.; Kumar, A. Designing an Efficient Multi-Epitope Vaccine against *Campylobacter Jejuni* Using Immunoinformatics and Reverse Vaccinology Approach. *Microb Pathog* 2020, 147, doi:10.1016/j.micpath.2020.104398.

259. Saggese, A.; Baccigalupi, L.; Donadio, G.; Ricca, E.; Istituto, R. The Bacterial Spore as a Mucosal Vaccine Delivery System. *Int J Mol Sci* 2023, 24.

260. Śmialek, M.; Kowalczyk, J.; Konicki, A. The Use of Probiotics in the Reduction of *Campylobacter* Spp. Prevalence in Poultry. *Animals* 2021, 11.

261. Pang, J.; Looft, T.; Zhang, Q.; Sahin, O. Deciphering the Association between *Campylobacter* Colonization and Microbiota Composition in the Intestine of Commercial Broilers. *Microorganisms* 2023, 11, doi:10.3390/microorganisms11071724.

262. Pang, J.; Beyi, A.F.; Looft, T.; Zhang, Q.; Sahin, O. Fecal Microbiota Transplantation Reduces *Campylobacter Jejuni* Colonization in Young Broiler Chickens Challenged by Oral Gavage but Not by Seeder Birds. *Antibiotics* 2023, 12, doi:10.3390/antibiotics12101503.

263. Gölz, G.; Rosner, B.; Hofreuter, D.; Josenhans, C.; Kreienbrock, L.; Löwenstein, A.; Schielke, A.; Stark, K.; Suerbaum, S.; Wieler, L.H.; et al. Relevance of *Campylobacter* to Public Health—the Need for a One Health Approach. *International Journal of Medical Microbiology* 2014, 304, 817–823, doi:10.1016/j.ijmm.2014.08.015.

264. Babo Martins, S.; Rushton, J.; Stärk, K.D.C. Economics of Zoonoses Surveillance in a “One Health” Context: An Assessment of *Campylobacter* Surveillance in Switzerland. *Epidemiol Infect* 2017, 145, doi:10.1017/S0950268816003320.

265. Sharafutdinov, I.; Linz, B.; Tegtmeyer, N.; Backert, S. Therapeutic and Protective Approaches to Combat *Campylobacter Jejuni* Infections. *Front Pharmacol* 2025, 16, doi:10.3389/fphar.2025.1572616.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.