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Abstract 

Campylobacter is a leading cause of human gastroenteritis, with poultry serving as the primary 

reservoir host. Effective preharvest control strategies are crucial for preventing or reducing 

Campylobacter contamination on meat surfaces. As concerns grow regarding the use of antimicrobials 

in animal agriculture, the importance of non-antimicrobial preharvest strategies in poultry 

production has become increasingly significant. This comprehensive review focuses on the biology 

of Campylobacter, its impact on public health, and current and emerging preharvest strategies with a 

special emphasis on vaccination. Preharvest strategies are broadly classified into biosecurity 

measures, gut microbiota modifications using prebiotics, probiotics, postbiotics, feed additives, and 

vaccination. While many live, attenuated, and subunit vaccines have proven effective in research 

settings, there are currently no commercial vaccines available. Because no single strategy can 

effectively combat Campylobacter, integrating multiple approaches, such as improved biosecurity 

measures, immunization, and dietary modifications, may provide a solution for reducing 

Campylobacter loads in poultry. Embracing a “One Health” approach, gaining a deeper understanding 

of Campylobacter pathophysiology, making advancements in vaccine technology, and implementing 

holistic farm management practices will be essential for sustainable control of Campylobacter and 

for reducing the risk of human campylobacteriosis.  

Keywords: Campylobacter; chicken; foodborne infection; gastroenteritis; poultry; preharvest control 
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1. Introduction 

Campylobacter is one of the major causes of bacterial gastroenteritis in the United States [1,2]. 

Each year, an estimated 1.5 million people in the United States contract Campylobacter infections [3]. 

The primary source of these infections is raw or undercooked chicken meat containing high loads of 

Campylobacter originating from the chicken’s digestive tract [4–6].  The two major species responsible 

for human infections are Campylobacter jejuni and Campylobacter coli [7]. Apart from causing 

gastroenteritis, C. jejuni is linked to about one-third of Guillain-Barré Syndrome (GBS) cases in 

humans [8–10]. GBS is an immune-mediated peripheral nerve disease characterized by symmetrical 

ascending weakness that can progress to paralysis accompanied by hyporeflexia and areflexia [11,12]. 

Thermophilic Campylobacter species, mainly C.  jejuni and C. coli, are commonly found in wild birds 

and domestic poultry [13–16]. Some farms worldwide have reported Campylobacter prevalence rates 

as high as 100%, particularly among birds that have reached marketable age. Both C. jejuni and C. coli 

have adapted to the avian gastrointestinal tract. Despite widespread intestinal colonization (up to 109 
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colony-forming units/g of cecal content), Campylobacter are often regarded as commensals in birds, 

causing little to no overt illness [4,17–19]. However, recent studies have shown that Campylobacter 

spp. can lead to significant infections and immune responses [20–23]. Following intestinal infection 

by Campylobacter in chickens, cytokine responses that drive humoral, adaptive, and Th17 responses 

have been observed [21,24,25]. Additionally, the newly emerged species, Campylobacter hepaticus, 

causes spotty liver disease (SLD) in layer hens, which is most prevalent during peak production 

stages [26,27]. 

Fluoroquinolones and macrolides have been widely used in the past in animals for growth 

promotion and infection control purposes. They have also been prescribed as supportive treatments 

for human Campylobacter infections. However, this widespread use in food animals is believed to 

have significantly contributed to the development of antimicrobial resistance (AMR) against these 

antibiotics [28–30]. The emergence of AMR has significantly restricted effective antibiotic treatment 

options for Campylobacter infections [30–32]. Consequently, growing concerns regarding AMR and 

food safety have led to bans on the use of medically important antimicrobials in food production 

systems for nontherapeutic purposes, driving the urgent search for alternative strategies that focus 

on Campylobacter control and prevention at the poultry farm level [32–36]. Achieving Campylobacter 

prevention in farm settings is quite challenging due to following reasons, i) the ubiquitous nature of 

Campylobacter, ii) multiple transmission routes, iii) a low infection dose required for human illness, 

and iv) the delayed detection of Campylobacter colonization or spread in birds [37–40]. Despite these 

challenges, quantitative microbial risk assessment studies showed a 1–2 log reduction in the level of 

Campylobacter in broiler chicken intestines can significantly impact relative risk reduction, achieving 

a decrease of 44%-95% [41]. The incidence of Campylobacteriosis through chicken meat can be reduced 

30 times by introducing a 2-log reduction in the number of Campylobacter spp.in chicken carcasses 

[42]. Therefore, control of human Campylobacter infections is feasible through the consistent 

application of safe practices from farm to fork.  

Campylobacter control strategies can be broadly divided into two main categories: preharvest and 

postharvest strategies [43,44]. Preharvest strategies are measures and interventions to control 

Campylobacter at the farm level. These strategies mainly focus on reducing Campylobacter colonization 

and preventing its introduction and spread in the environment [34,45,46]. Preharvest strategies can 

be further divided into three categories: i) reduction of environmental exposure through biosecurity 

measures, ii) reducing Campylobacter colonization in the bird intestines by improving host resistance 

via competitive exclusion, vaccination, and host genetic selection, and iii) using alternatives to 

antibiotics to mitigate Campylobacter colonization in birds [47]. Post-harvest interventions include 

carcass decontamination, antimicrobial treatment for poultry processing, cold chain management, 

and consumer education [48–54]. However, most of these interventions are ineffective when used 

alone and are not commercially available. While vaccines have shown promising results in the 

prevention of various poultry diseases, and many studies have tested numerous vaccine candidates, 

no commercial vaccines are currently available to prevent or reduce Campylobacter colonization in 

chickens. A multifaceted approach that combines two or three strategies, with a particular focus on 

vaccination, is essential for preventing and controlling Campylobacter colonization in poultry. This 

comprehensive review explores the current state of preharvest approaches to mitigate Campylobacter 

colonization in poultry, with a special emphasis on vaccination strategies against Campylobacter spp. 

2. Campylobacter in Broilers –Biology and Public Health Impact 

Campylobacter spp. are gram-negative, motile, slender, comma-shaped or spiral-shaped, non-

spore forming bacteria. They grow strictly under anaerobic to microaerophilic conditions and are 

nutritionally fastidious organisms. The bacterial length ranges from 0.5-5 µm and width of 0.2-0.9 µm 

[55,56]. There are more than 57 Campylobacter spp. under the genus Campylobacter 

(https://lpsn.dsmz.de/genus/Campylobacter). They colonize the intestines of warm-blooded hosts, 

including humans; however avian species are more favorable as commensal colonizers [57]. In 

humans, Campylobacter causes gastroenteritis, which can sometimes lead to complications such as 
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Guillain-Barré Syndrome (GBS), irritable bowel syndrome (IBS), and reactive arthritis [56]. In the 

United States, Campylobacter is one of the major causes of gastroenteritis with approximately 1.3 

million cases leading to economic costs ranging from $1.3 to $6.8 billion [58]. Generally, self-limited 

diarrheal illness lasts for about 5 to 7 days, but elderly people with immuno-compromised status are 

at a high risk for mortality, morbidity, and prolonged illness [7]. 

C. jejuni and C. coli are the major Campylobacter species associated with human illness. Humans 

acquire infections through fecal-oral transmission from infected animals and food products [59,60]. 

Avian species, especially chickens, account for 50% -70% of Campylobacter infections in humans [61]. 

When chickens carry Campylobacter in their intestines, chicken meat may become contaminated 

during slaughter and processing [62]. As few as 500 to 800 CFU of C. jejuni are sufficient to cause 

infection implying that bacteria do not need to multiply to cause disease [63,64].  

Campylobacter can colonize the mucus of the small intestine and ceca of chickens sometimes at 

very low densities such as 40 CFU [65]. Once colonization occurs, bacteria rapidly reaches a high 

number in cecal contents [66–68]. Chicken are coprophagic meaning that they consume feces, which 

allows contaminated feces to spread Campylobacter rapidly throughout the flock. Once 

Campylobacter colonization is detected in a flock, most birds in the flock typically become colonized 

within days [69–72]. There is a direct correlation between Campylobacter prevalence in chickens and 

the likelihood of human Campylobacter infections. Therefore, reducing the prevalence of 

Campylobacter in chicken flocks has the potential to significantly decrease human infections [73]. 

This approach has been quite successful in countries such as Denmark and Iceland [74,75]. 

3. Overview of Preharvest Control Strategies 

Various non-antibiotic interventions have been tested to reduce Campylobacter colonization of 

poultry during the preharvest phase (Figure 1). These include biosecurity measures, prebiotics, 

probiotics, postbiotics, feed additives, bacteriophage therapy, vaccination, and genetic selection for 

resistant chicken strains. 
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Figure 1. Preharvest intervention strategies to control Campylobacter in poultry (Created in BioRender). 

3.1. Biosecurity Measures 

Biosecurity is crucial for keeping Campylobacter out of animal flocks, as it acts as the primary 

defense against this pathogen [46,76]. In poultry, the transmission route of Campylobacter is horizontal 

(Figure 2). There are no known reports on vertical transmission of Campylobacter spp. There are 

currently no known reports on vertical transmission of Campylobacter spp. Potential sources of 

Campylobacter into a farm include, domestic and wild animals, farm equipment, contaminated litter, 

feed and water as well as potential transmission form infected birds [77–81]. The poultry house 

interior environment showed a lower prevalence of Campylobacter in air/ventilation samples (6%), 

pests (5%), litter (3%), water samples (2%), and feed (rarely), in the descending order of Campylobacter 

prevalence rates. The external environment of the poultry house showed 14% prevalence, with 67% 

and 14% prevalence in domestic animals and their excreta, respectively. The transport equipment 

used for live haul, including trucks (44%) and crates (22%), showed different prevalence rates of 

Campylobacter [78]. Although implementing strict biosecurity measures can be challenging, they are 

fundamental in preventing initial colonization. Many interventions primarily focus on reducing 

Campylobacter levels after it is already present, but biosecurity protocols help prevent it from entering 

the farm in the first place. The effectiveness of biosecurity is greatly enhanced when combined with 

other successful strategies [82,83]. 
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Figure 2. On farm transmission cycle of Campylobacter in poultry production (Created in BioRender). 

3.1.1. Managing Human Entry and Hygiene to Prevent Contamination 

Campylobacter bacteria are frequently found in agricultural workers, farm managers, and truck 

drivers. To reduce the number of Campylobacter-positive flocks, it is recommended to limit human 

traffic by restricting unnecessary movements of people and minimizing visitors to farms and animal 

housing. The following practices can help reduce the entry of Campylobacter through humans: (i) 

Enforce the use of personal protective equipment (PPE): PPE should be mandatory for anyone 

making essential visits to the farm. (ii) Maintain dedicated hygiene measures: Regularly cleaned and 

disinfected footwear and clothing specifically should be designated for each poultry house. This 

practice helps create a stronger hygiene barrier. (iii) Promote hand hygiene: Handwashing stations 

should be accessible at all entry points to the poultry houses. Everyone must be instructed to 

thoroughly sanitize their hands for 15-20 seconds both before entering and after leaving animal 

housing. (iv) Avoid high-risk activities: To significantly reduce contamination risks, it is important 

to avoid unnecessary movements of people, particularly during high-risk activities such as thinning 

[46,84]. Despite having clear guidelines, biosecurity protocols are often not followed meticulously. 

To achieve a greater impact, comprehensive training, education, and consistent monitoring are 

essential to ensure adherence to best practices [83,85]. 

3.1.2. Equipment and Vehicle Sanitation 

The movement of vehicles and equipment between houses or between farms poses a significant 

risk of Campylobacter transmission. It is not advisable to transfer the equipment unless it is properly 

cleaned. Campylobacter can survive longer periods on equipment surfaces, staying in a viable but non-

culturable state (VBNC), making it more challenging to eliminate from the environment and allowing 

it to survive under various stress conditions [86,87]. Residual organic matter still harbors 

Campylobacter, protecting the standard washing process [37]. It is necessary to employ effective 

sanitation and disinfection methods to prevent the spread of Campylobacter. This process involves 

more than just washing; it requires a multistep approach that includes dry cleaning, wet cleaning, 

disinfection and drying [82].  

3.1.3. Pest and Wildlife Control 
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Animals, including cattle and poultry, are known reservoirs of Campylobacter, which has been 

isolated from the intestinal tracts of various animals and birds [88–91]. Wildlife serves as an 

amplifying host, exhibiting a high pathogen shedding capacity and playing an important role in 

transmission  [77]. Wild birds are particularly important because they can spread Campylobacter from 

different geographical areas because of their ability to fly over large distances [92,93]. In addition to 

domestic and wild animals, birds, rodents and insects have all been shown to transmit Campylobacter 

[94–98]. To control its spread, robust vector-control programs should be implemented targeting wild 

animals, rodents, and insects. Comprehensive integrated pest management programs can help 

eliminate pest attractants and breeding sites from the surrounding environment. Effective strategies 

include rodent-proofing measures, targeted larvicides for improved litter management to exclude 

and control flies, and bird-proof sealing to deter wild birds [46,99]. 

3.2. Probiotics, Prebiotics and Postbiotics 

In the post-antibiotic era, there is a growing interest in probiotics, prebiotics, and postbiotics as 

effective dietary interventions [100,101]. Probiotics are non-pathogenic live organisms that confer 

health benefits to the host when consumed in adequate amounts [102]. Common probiotic 

microorganisms belong to the genera Lactobacillus, Bifidobacterium, Saccharomyces, Bacillus, 

Streptococcus, and Enterococcus [103–106]. They positively influence the host through various 

mechanisms, such as improved intestinal barrier function, immunomodulation, and production of 

neurotransmitters [107]. Probiotic supplementation in chicken diets helps maintain intestinal 

homeostasis, eliminate pathogenic bacteria through competitive exclusion, and stimulates the 

secretion of important digestive enzymes such as phytases, amylases and proteases, thereby 

improving feed utilization efficiency [108–114]. Chickens are monogastric animals, that have a single-

chamber stomach divided into the gizzard, small intestine, and large intestine [115]. The entire GIT 

interacts symbiotically with microbiota to aid in digestion and absorption and plays crucial roles in 

health and production by regulating physiological processes [116–118]. The chicken gut microbiota 

is highly complex and is dominated by bacteria, with over 600 different bacterial species identified 

[119]. While bacterial diversity varies throughout the GIT, the cecum is the most densely colonized 

region. The cecum plays a key role pathogens colonization [120,121]. Under uncertain conditions, an 

imbalance in the normal gut microbiota can promote the growth of opportunistic and pathogenic 

bacteria, thereby disrupting gut health. Probiotics can help in this situation by restoring the beneficial 

gut microflora and preserving gut integrity [120,122–124].  

Prebiotics are non-digestible food components, generally metabolized by specific bacteria and 

provide beneficial effects on the host [121,125]. They help increase the abundance of beneficial 

microorganisms such as bifidobacteria and lactobacilli and improve gut metabolic activity, resulting 

in the production of a series of metabolites that favor the maintenance of gut health [121,126]. 

Prebiotics consist of monomers derived from common sugars, including glucose, galactose, fructose, 

and xylose. Widely studied examples are insulin, fructooligosaccharides (FOS), isomalto-

oligosaccharides (IMO), and galactooligosaccharides (GOS). Postbiotics are functional bioactive 

molecules produced during the metabolic processes of probiotics, that which confer health benefits 

to the host [122,127]. Unlike live probiotics, postbiotics offer a safer and more stable alternative by 

mitigating key limitations that have impeded the broader application of probiotics in commercial 

settings, such as the risk of antimicrobial resistance, poor thermal stability, and potential for 

expressing virulence factors [128]. According to the International Scientific Association for Probiotics 

and Prebiotics (ISAPP, 2021), postbiotics are comprised of inactivated microbial cells, bacteriocins, 

cell-free supernatants, exopolysaccharides, and short-chain fatty acids [129,130]. A growing body of 

in vitro and in vivo evidence indicates that postbiotics enhance gastrointestinal health by promoting 

beneficial bacterial populations, modulating host immune responses, and supporting intestinal 

barrier integrity [131–134]. 

3.3. Bacteriophage Application in Campylobacter Control 
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The application of bacteriophages as a biocontrol strategy has been investigatedfor controlling 

food-borne pathogens (e.g., Listeria, Salmonella and E. coli O157:H7 [135]. Bacteriophages are viruses 

that infect bacterial cells and have demonstrated potential as therapeutic agents against bacteria. 

Bacteriophages used in these treatments are specific to bacteria. For instance, certain Salmonella 

bacteriophages (ST27, ST29, and ST35) are specific to the TolC receptors of Salmonella serovars. The 

binding specificity of bacteriophages to bacteria determines their host ranges. Upon entering a 

bacterial cellbacteriophages generally undergo either a lysogenic or a lytic cycle. Bacteriophages 

utilize the host machinery to produce progeny. Because of the low risk of phage transduction and 

rapid lysis activity, lytic phages are preferred as therapeutic targets over lysogenic phages. It is 

estimated that a 2 log CFU reduction in Campylobacter levels in poultry intestines is sufficient to 

reduce the occurrence of human campylobacteriosis associated with poultry by 30-fold [136]. 

Chinivasagam et al., used a cocktail of bacteriophages to control Campylobacter in a commercial broiler 

setting. One of the farms involved in the trial achieved a 1–3 log10 CFU/g significant reduction in 

Campylobacter loads in the ceca of 47-day-old broiler chickens compared to the control group. Another 

farm in the study showed a non-significant 1.7 log10 CFU/g reduction in Campylobacter [137]. Another 

recent study conducted with a cocktail of two bacteriophages showed a significant reduction of 2.4 

log10 CFU g-1 in Campylobacter two days of post-treatment compared to mock-treated controls [138]. 

3.4. Feed Additives  

In poultry production, organic acids such as acidifiers (e.g., formic, butyric), essential oils (EOs) 

(e.g., thymol, carvacrol), and diverse plant extracts (phytogenic) are increasingly utilized as 

alternatives to antibiotic growth promoters. These substances play an important role in enhancing 

intestinal health primarily by modulating gut microbiota [139,140]. Organic acids are naturally 

produced during the metabolism of various animal feeds. They help lower intestinal   pH, thereby 

inhibiting the proliferation of pH-sensitive enteric pathogens such as Salmonella and E. coli. This acidic 

environment allows the undissociated form of these acids to pass across bacterial cell membranes, 

leading to intracellular acidification, disruption of metabolic processes, and eventual bacterial lysis, 

while simultaneously fostering the growth of beneficial acid-tolerant bacteria such as Lactobacillus 

and Bifidobacterium [141–143]. Organic acids also aid in the absorption of vital micro- and macro-

minerals such as calcium, magnesium and zinc [141]. Eo’s are strong antioxidants and antibacterial 

agents [144]. They are rich in lipophilic phenolic compounds that can disrupt bacterial cell membrane 

integrity, increase permeability, and cause leakage of cytoplasmic contents, which contribute to their 

broad-spectrum antimicrobial effects against pathogens such as Clostridium perfringens and E. coli 

[145]. EOs can also neutralize free radicals and exhibit potential antioxidant properties [146,147]. 

Plant extracts are generally considered safe, and many can be consumed as food [148,149]. These 

extracts comprise of a complex array of bioactive compounds such as flavonoids, tannins, and 

alkaloids. They exhibit multifaceted mechanisms such as direct antimicrobial effects, anti-

inflammatory and immunomodulatory properties that strengthen the gut barrier, and the ability to 

stimulate digestive secretions, collectively shifting microbial communities towards a healthier and 

more diverse microbial profile that favors commensal bacteria and optimizes nutrient utilization 

[150–153]. For example, herbal compounds like tryptanthrin have been shown to significantly reduce 

Campylobacter colonization in vitro and in vivo [154]. 

3.5. Vaccination – A Targeted Approach 

Vaccination is a proven strategy for the prevention and control of bacterial and viral infections. 

Compared to other management strategies, it offers advantages in terms of public health impact and 

long-term sustainability [153,155]. Currently, no commercial vaccine is available to protect chickens 

from colonization [156–158]. Although vaccines are not 100% successful in preventing Campylobacter 

colonization in hens, they have been shown to be more effective than previously reported methods. 

Better protection could potentially be obtained by combining immunization with additional 

preharvest strategies [159–161]. Figure 3 illustrates the different vaccine strategies available for the 
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prevention and control of bacterial infections. These include killed/inactivated vaccines, subunit 

vaccines, live attenuated vaccines, DNA vaccines, and mRNA vaccines, each with their own 

advantages and disadvantages.  

 

Figure 3. Major types of vaccines used to control bacterial infections in poultry (Created in BioRender). 

3.5.1. Types of Poultry Campylobacter Vaccines 

3.5.1.1. Subunit Vaccines 

Subunit vaccines use bacterial components instead of complete bacteria, to trigger an immune 

response. They generally offer advantages over attenuated and killed vaccines in terms of lower risk 

of reverting to virulence, enhanced safety, targeted immunity, and better compatibility with 

adjuvants. Despite these advantages, developing effective subunit vaccines remains a challenge. One 

major difficulty is identifying suitable antigens capable of protecting different Campylobacter species 

or even serotypes and strains within the same species. Also, providing robust immunity to protect 

broiler chickens with a shorter lifespan requires an optimized delivery method. To date several 

antigens tested as subunit vaccines have shown modest to significant results [162–164].  

3.5.1.2. Live-Attenuated Vaccines 

Live attenuated vaccines are live bacteria that result from reduced virulence/pathogenicity but 

are capable of generating adequate long-lasting immunogenicity while activating both adaptive and 

innate immune responses [157,165]. Live attenuated vaccines tested against Campylobacter include 

heterologous bacterial vectors that transport Campylobacter antigens and Campylobacter strains with 

mutated oxidative stress defense antigens [157,160]. Another approach to live attenuated vaccines is 

to use E. coli to deliver glycoconjugated antigens, thus improving the vaccine performance  [166] . 

These vaccines offer more advantages than killed and subunit vaccines by providing long-lasting 

immune responses, including mucosal immunity. Despite these advantages, the risk of reverting to 

virulent forms and interference with material antibodies in young chickens are major concerns 

regarding subunit vaccines [167]. Environmental contamination through the shedding of vaccine 

strains is an additional concern, making it crucial to select a strain that guarantees both safety and 

immunogenicity without posing any environmental biohazard risks [167,168]. 

3.5.1.3. Inactivated/Killed Vaccines 

The concept behind inactivated or killed vaccines is that, after undergoing physical or chemical 

treatments bacteria still retain protective antigens that can elicit an immune response [169]. However, 

few studies on inactivated or killed vaccines have had shown limited success [170–172]. A major 

challenge with poultry killed vaccines is identifying an effective adjuvant to boost the immune 

response [173]. Additionally, inactivated/killed vaccines do not generate the mucosal immune 
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response essential for reducing Campylobacter colonization. These vaccines must be administered via 

a parenteral route prohibiting mass administration and making them economically not feasible 

[167,174,175] 

3.5.1.4. DNA and mRNA Vaccines 

Genetic vaccines represent a significant advancement in the field of vaccinology [176–178]. These 

vaccines do not require live vector for delivery; they use host-cell mechanisms to produce antigens. 

Genetic vaccines primarily consist of DNA or mRNA, which is taken up by cells and translated into 

proteins [179]. Recently, various DNA vaccines, including flagellin-based, outer-membrane protein-

based, and prime-boost DNA vaccines, have been investigated for Campylobacter control with 

promising results [180–182]. DNA and mRNA vaccines are generally safer to administer because they 

do not involve the risks associated with live pathogens [178,183]. They are capable of eliciting both 

humoral and cellular immune responses, even in the presence of maternal antibodies [184,185]. 

Although genetic vaccines show a high rate of success, optimizing delivery and ensuring efficient 

cellular uptake are critical to their overall effectiveness. The delivery of mRNA vaccines via lipid 

nanoparticles and their storage must be refined, as current methods are not cost-effective for mass 

immunization [186,187].  

3.5.2. Challenges in Campylobacter Vaccine Development 

3.5.2.1. Campylobacter Properties  

Pan-genome analyses of Campylobacter revealed extensive genomic variability, highlighting its 

highly diverse nature at the genome level [188–191]. This significant genetic diversity indicates that 

a vaccine targeting only one or a few strains may not be effective against many circulating 

Campylobacter strains in the field. Adding to this challenge is the phase variation phenomenon, which 

allows bacteria to swiftly adapt to their new surroundings and effectively colonize and survive in the 

phase of host immune response [192–194]. Through phase variation, bacteria can generate new 

subpopulations with distinct phenotypes without undergoing overall changes in their genetic content 

[194–196]. In Campylobacter, more than 30 genes, including those encoding key cell surface 

components, such as lipooligosaccharides, capsular polysaccharides, and flagellin, are differentially 

regulated in response to the external environment. This phase variation leads to the expression of 

different versions of surface antigens, which can make vaccines ineffective since the immune 

response produced by the vaccine may no longer recognize the altered antigens. Consequently, 

polymorphism arising from phase variation presents a challenge for the development of a single 

vaccine that is effective against all relevant bacterial forms. Even the vaccines that initially provide 

protective immunity may eventually lose their effectiveness as the bacterial population dynamically 

changes its antigen profile [197,198]. 

3.5.2.2. Host Factors Influencing Vaccinal Immunity 

One of the major hurdles in Campylobacter vaccine development is the poor understanding of 

Campylobacter infection immunobiology [159]. Typically, newly hatched chicks are Campylobacter-

free, and maternal antibodies provide initial protection by delaying the start of colonization [199–

202]. Vaccination of breeder hens with bacterin and subunit vaccines resulted in chicks possessing 

anti-Campylobacter antibodies in their blood and mucus, offering some protection, although this 

protection waned after approximately two weeks [203,204]. Notably, Campylobacter colonization 

usually begins at around three weeks of age, a timeframe that coincides with a decrease in maternal 

antibody levels [204–206]. In addition to this complexity, mucosal immune system of chicks does not 

fully mature until around seven weeks, which is after the typical six-week market age for broilers 

[24,25,207]. This delayed immune maturation is further supported by studies on antibody-associated 

clearance in bursectomized birds, which indicate that adaptive immune responses develop after 
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approximately six weeks, suggesting that achieving effective immune-based protection is more 

feasible in older, adult birds [199,208–211]. 

The mucous layers of the lower digestive tract are colonized by Campylobacter without provoking 

any notable immune response [212]. In contrast, effective vaccines elicit a strong intestinal mucosal 

immunity to combat Campylobacter colonization and infection (163, 209). Most injectable vaccines do 

not produce adequate immunity because Campylobacter remains in the intestinal lumen and does not 

trigger a serious infection to elicit mucosal immune responses. Also, the anatomical features of the 

chicken immune system present several obstacles. Unlike mammals, chickens lack lymph nodes, 

which play a key role in antigen presentation and initiation of adaptive immune responses. As a 

result, secondary lymphoid tissues contribute significantly to the immunity provided by vaccination 

[214,215]. The Bursa of Fabricius is a specialized lymphoid organ critical for the development of B 

cells and production of antibodies; however, it undergoes regression with age [216]. Therefore, 

effective vaccines targeting gut-associated lymphoid tissues (GLAT) and stimulating local mucosal 

immunity are required for Campylobacter control [217,218].  

3.5.2.3. Administration and Management of Vaccines 

Although small-scale laboratory experiments have shown success, Campylobacter vaccines do not 

yield the same effectiveness under field conditions. The diverse nature of poultry rearing systems, 

spanning from small-scale backyard operations to large-scale commercial enterprises, presents a 

significant challenge for the implementation of a standardized and universally effective vaccination 

protocol [67]. In controlled laboratory settings, each bird receives a precisely measured vaccination 

dose, which is impractical in the field settings. To enable practical and cost-effective scaling up for 

larger flocks, mass vaccine administration techniques such as in ovo, water, or spray application 

systems are employed. These techniques often result in irregular immune responses and varying 

rates of vaccine uptake [219]. 

3.5.3. Success Stories and Promising Campylobacter Vaccine Candidates  

Despite the unavailability of a commercial Campylobacter vaccine for poultry, several studies 

have demonstrated significant reductions in Campylobacter colonization in the chicken intestines. 

These promising results offer hope for optimizing and developing scalable vaccination strategies in 

the future. Although, the main focus of this review is on vaccine studies that have reported 

substantial and statistically significant reductions in Campylobacter colonization, Table 1 presents an 

overview of all poultry Campylobacter vaccine studies to date.  

3.5.3.1. Autogenous Vaccines 

A whole-cell autogenous vaccine targeting Campylobacter genes essential for extraintestinal 

survival was created using a genomic tailoring approach. The progeny of broiler breeders that 

received the vaccine showed a nearly 50% decrease in Campylobacter isolates that colonized and 

carried extraintestinal survival genes, as well as a notable decrease in meat surface survival. A logistic 

regression model estimated that the vaccine could successfully target 65% of the population of 

clinically relevant Campylobacter strains. This vaccine strategy is an effective method for combating 

bacterial infections by targeting bacterial lineages linked to infection and transmission risk within a 

larger commensal population [220]. 

3.5.3.2. Subunit Vaccines 

Subcutaneous administration of 125 µg of the outer membrane (OMP) fraction of C. jejuni 

resulted in significantly lower Campylobacter levels in the cecal contents compared to the oral route of 

administration. When these outer membrane components were delivered subcutaneously via 

nanoparticles, Campylobacter was undetectable. However, 13% of the chickens showed detectable 

levels of Campylobacter in the intestines when non-encapsulated outer membrane components were 
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administered subcutaneously. The serum IgA (IgG) and IgY responses appeared earlier and were 

higher in the groups that received the vaccine subcutaneously with nanoparticle encapsulated OMP 

vaccine showing higher IgY and IgA titers in cloacal feces than the other OMP vaccine types. These 

findings indicate that subcutaneous delivery of OMPs, both with and without nanoparticle 

encapsulation, effectively stimulated antibody production and significantly reduced Campylobacter 

colonization in the intestine [221]. Similarly, vaccination with chitosan/pCAGGS-flaA nanoparticles 

intranasally reduced the bacterial colonization by 2-3 log10 [222]. Furthermore, vaccination with 

recombinant peptides derived from CadF, FlaA, and a combined CadF-FlaA-FlpA protein of C. jejuni 

significantly lowered Campylobacter loads in the ceca, with median log10 reductions of 3.35 for CadF, 

3.11 for FlaA, and 3.16 for the fusion protein [163].  

3.5.3.3. Live Attenuated Vaccines 

Vaccinating chickens with a modified Salmonella strain expressing the cjaA gene from C. jejuni 

stimulated the production of IgY and IgA antibodies against the outer surfaces of both Salmonella and 

Campylobacter. In contrast to the control group, in which all chickens were heavily colonized, only 

15% of the vaccinated chickens had high levels of Campylobacter (above 103 CFU/g) in their ceca [223]. 

Similarly, a Salmonella strain carrying the dps gene of C. jejuni demonstrated a 2.5 log reduction in 

Campylobacter levels following experimental infection [224]. Oral delivery of an E. coli strain that 

produces C. jejuni N-glycan resulted in 65% protection against Campylobacter colonization, whereas 

all unvaccinated chickens became colonized. Combining the N-glycan vaccine with the probiotics A. 

mobilis or L. reuteri enhanced weight gain, IgY antibody production, and overall effectiveness of the 

vaccination [166]. 

3.5.3.4. DNA Vaccine 

Four novel vaccine candidates discovered using reverse vaccination technology demonstrated a 

significant decrease in the cecal burden of Campylobacter in Ross broiler chickens. These findings 

indicated a notable drop in the Campylobacter load by 4.2 log10 CFU/g, which could potentially reduce 

the risk of human campylobacteriosis by 76–100%. However, these findings proved challenging to 

reproduce consistently, necessitating further investigation to develop a reliable vaccine [42,225–227]. 

Table 1. Summary of the vaccine approaches investigated for poultry Campylobacter. 

Vaccine 

Chicken 

breed 

(chicken 

type) 

Age at 

Vaccin

ation 

Vaccination 

regimen 

Challenge 

 

Reduction in 

levels (mean 

log10 

CFU/gram) of 

Campylobacter 

Refer

ence 
Age 

Strain 

(dose)  

Live attenuated 

Salmonella vaccine 

expressing CfrA or CmeC 

proteins 

Cornish x 

Rock 

(broiler) 

Day 7 

Oral 

administration of 

200 μl of 

Salmonella 

(1×109 CFU/ml) 

expressing CfrA or 

CmeC 

Day 

28 

C. jejuni 

NCTC 

11168 

(2×103 CF

U/bird) 

No significant 

reduction  
[160] 

Nanoparticle-

encapsulated OMPs of C. 

jejuni 81–176 

 

Not 

specified 

Day 7 

and 

Day 21 

 

Oral 

administration of 

25 or 125 µg of 

nanoparticle-

encapsulated 

OMPs or OMPs 

alone 

Day 

35 

 

C. jejuni 

81–176 

(2×107 

CFU/bird) 

No significant 

reduction  

 

[221] 

Subcutaneous 

administration of 

25 or 125 µg of 

nanoparticle-

encapsulated 
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OMPs or OMPs 

alone 

Live Salmonella 

Typhimurium 

ΔaroA strain expressing 

CjaA of C. jejuni  

Light 

Sussex 

(broiler)  

Day 1 

and 

Day 14 

Oral gavage of 0.3 

ml of stationary 

phase culture 

(1×108 CFU/ml) 

Day 

28 

C. jejuni 

M1 

(1×107 CF

U/bird) 

Significant 

1.4 log10 CFU/g

 reduction 

[211] 

Purified recombinant 

CjaA  

Light 

Sussex 

chickens (

broiler) 

Day 1 

and 

Day 15, 

or Day 

15 and 

Day 29 

Subcutaneous 

administration of 

14 μg of rCjaA 

with 

TiterMax adjuvant 

Day 

29/D

ay 44 

No significant 

reduction 

Autogenous poultry 

vaccine 

Ross 

(broiler) 

14 and 

18 

weeks 

of age 

Intramuscular 

administration of 

0.5 ml of oil-based 

autogenous 

vaccine  

Not a 

chall

enge 

study 

Measured 

natural 

colonizati

on 

No significant 

reduction  
[220] 

FliD and FspA  

White 

Leghorn 

(layer) 

Day 1 

and 

Day 14 

Subcutaneous 

administration of 

4.3×1010 moles of 

each recombinant 

protein, FliD and 

FspA, with 

TiterMax Gold 

adjuvant  

Day 

28 

C. jejuni 

M1 

(1×107 CF

U/bird) 

 

 

2 log10 CFU/g 

in reduction 

with FliD 

(statistically 

significant) 

[228] 

Eimeria tenella-expressing 

CjaA 

White 

Leghorn 

(layer) 

Group 

1: Day 

1 

Group 

2: 

1/3/7/2

0 

Oral 

administration of 

100, 500, 3000, and 

5000 fourth-

generation CjaA-

transfected 

parasites 

Day 

28 

C. jejuni 

02M6380 

(1×105 

CFU/bird) 

One order 

reduction 

(statistically 

significant) 

[229] 

FlpA with ten N-

heptasaccharide glycan 

Moieties 

White 

Leghorn 

(layer) 

Day 0 

and 

Day 14 

Subcutaneous 

administration of 

100 μg of FlpA 

with TiterMax 

Gold or the molar 

equivalent of 

FlpA-10×GT in 100 

µl 

Day 

28 

C. jejuni 

NCTC111

68H 

(1×105 CF

U/bird) 

No significant 

reduction 
[230] 

Ent–KLH conjugate 

vaccine  

White 

Leghorn 

(layer) 

Day 7, 

Day 21, 

and 

Day 35 

Intramuscular 

administration of 

100 μg of Ent–

KLH conjugate 

vaccine with 

Montanide 

adjuvant  

Day 

49 

C. jejuni 

(1×104 CF

U/bird)  

3-4 log10 unit 

reduction in 

the cecum 

(statistically 

significant) 

[231] 

White 

Leghorn 

(layer)  

Day 7 

and 

Day 21 

Intramuscular 

administration of 

100 μg of Ent–

KLH conjugate 

vaccine with 

Montanide 

adjuvant  

Day 

35 

C. jejuni 

(1×104 CF

U/bird) 

3-4 log10 unit 

reduction in 

the cecum 

(statistically 

significant) 

Recombinant YP437 

protein 

Ross 308 

(broiler) 

Day 5 

and 

Day 12  

Intramuscular 

administration of 

100 µg of 

recombinant 

YP437 protein 

(YP437 I2, P I2, 

YP437 I4, and P I4) 

emulsified with 

adjuvant 

MONTANIDETM 

ISA 78 VG  

Day 

19 

C. jejuni 

(1×104 CF

U/bird) 

No significant 

reduction  
[232] 
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Plasmid DNA 

prime/recombinant 

protein boost vaccination 

(YP437 and YP9817) 

Ross 308 

(broiler) 
Day 12 

Intramuscular 

administration of 

100 µg of 

recombinant 

protein emulsified 

in 

MONTANIDE™ 

ISA 78 VG 

Day 

19 

C. jejuni 

C97Anses

640 

(1×104 CF

U/bird) 

No significant 

reduction 
[181] 

Ross 308 

(broiler) 
Day 5 

Intramuscular 

administration of 

50 μg of plasmid 

DNA 

Lactococcus lactis 

expressing JlpA 

Vencobb 

(broiler) 

Day 7 

 

Oral gavage of 

1x109 CFU /100 µl 

of Lactococcus lactis 

expressing 

recombinant JlpA 

Day 

28 

C. jejuni 

isolate 

BCH71 

(1×108 

CFU/bird) 

No significant 

reduction 

 

[233] 
Subcutaneous 

administration of 

50 µg of 

recombinant JlpA 

emulsified in 

incomplete 

Freund's adjuvant 

Bacterin vaccine (Mix of 

13 Campylobacter 

suspensions) 

Ross 308 

(broiler) 

28, 

30, 32, 

and 34 

weeks 

Intramuscular 

administration of 

8.1 log10 CFU 

inactivated 

Campylobacter (7 

log10 CFU/Campylo

bacter strain) 

Day 7 

Day 

14 

Day 

21  

C. jejuni 

strain 

KC40 

(102.5 and 

103.5 

CFU/bird) 

 

No significant 

reduction 

 

[203] 

Subunit vaccine (6 

immunodominant Campy

lobacter antigens) 

Ross 308 

(broiler) 

Intramuscular 

administration of 

75 µg of protein 

with Freund's 

complete and 

incomplete 

adjuvant  

Diphtheria toxoid C. 

jejuni capsular 

polysaccharide- vaccine 

(CPSconj) 

Ross 308 

(broiler) 

Day 7 

and 

Day 21 

Subcutaneous 

administration of 

25 μg of CPSconj 

with 10 μg CpG or 

100 μl Addavax 

adjuvant  

Day 

29 

C. jejuni 

81-176 

(2×107 CF

U/bird) 

0.64 log10 

reduction 

(statistically 

significant) 

[234] 

Chitosan/pCAGGS-flaA 

nanoparticles 

White 

Leghorn 

(layer) 

Day 1, 

Day 15, 

and 

Day 29 

Intranasal 

administration of 

150 μg 

chitosan/pCAGGS

-flaA nanoparticles  

Day 

42 

C. jejuni 

ALM-80 

(5×107 CF

U/bird) 

2 log10 in the 

cecum 

(statistically 

significant) 

[222] 

LT-B/fla hybrid protein 

Breed not 

specified 

(broiler) 

Day 7 

and 

Day 21 

Oral 

administration of 

250 μg, 500 μg, 750 

μg, and 1mg of 

LT-B/fla hybrid 

protein; 

intramuscular 

administration of 

250µg, and 1 mg 

of LT-B/Fla hybrid 

protein 

Day 

28 

C. jejuni 

A74 

(2x108 

CFU/bird) 

Statistically 

significant 

reduction of 

the number of 

Campylobacter 

positive birds  

[213] 

CjaA, CjaD, and hybrid 

protein rCjaAD of C. 

jejuni 

 

Hy-line 

(layer)  

Day 1, 

Day 9, 

and 

Day 19 

Oral or 

subcutaneous 

administration of 

2.5×109 CFU of L. 

salivarius GEM 

particles with 

Day 

30 

C. jejuni 

12/2 

(1x104 CF

U/bird) 

No significant 

reduction 

 

 

 

[213] 
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CjaALysM and 

CjaDLysM  

Rosa 1 

(broiler) 

18-day-

old 

embry

o 

In ovo 

administration of 

0.1 ml of inoculum 

rCjaAD with GRM 

s particles or 

liposomes into the 

amniotic fluid 

Day 

14 

C. jejuni 

12/2 

(1x106 

CFU/bird) 

Statistically 

significant 

reduction of 

cecal loads of 

Campylobacter  

Live attenuated 

Salmonella Typhimurium 

strain expressing C. jejuni 

CjaA  

Cobb 500 

(broiler) 

Day 1 

and 

Day 14 

Oral 

administration of 

~108 CFU 

of S. Typhimuriu

m strain χ9718 

harboring 

pUWM1161 

(Asd+ vector 

carrying 

the cjaA gene) 

Day 

28 

C. jejuni 

Wr1 

(1x105 CF

U/bird) 

No significant 

reduction 

 

[235] 

Live attenuated 

Salmonella expressing 

linear peptides of C. 

jejuni (Cj0113, Cj0982c, 

and Cj0420)  Cobb-500 

(broiler) 

Day 1 

 

 

Oral gavage of 108 

CFU/ml Salmonella  

Day 

21 
C. jejuni 

PHLCJ1-

J3 (2.5×106 

CFU/bird) 

4.8-log 

reduction in 

the ileum with 

Cj0113 

(statistically 

significant) 

[210] 4-log reduction 

- undetectable 

level in the 

ileum with 

Cj0113 

(statistically 

significant) 

Live attenuated 

Salmonella expressing 

linear peptides of C. 

jejuni (Cj0113) 

Oral gavage of 108 

CFU/ml Salmonella 

108 CFU/ml  

 

CmeC and CfrA 

Cobb 

500 (broile

r) 

18-day-

old 

embry

o 

In ovo 

administration of 

50 µg pCmeC-K or 

50 µg pCfrA into 

the amniotic fluid 

Day 

14  
C. jejuni 

NCTC 

11168 

(5×107 

CFU/bird) 

No significant 

reduction 

[180] In ovo 

administration of 

DNA vaccines 

emulsified with 

incomplete 

Freund’s adjuvant 

Day 

21 

No significant 

reduction 

 

pcDNA3-YP DNA 

vaccines YP_001000437.1, 

YP_001000562.1, 

YP_999817.1, and 

YP_999838.1 

Ross PM3 

(broiler) 

Day 5 

and 

Day 12 

Intramuscular 

administration of 

with 300 μg of 

pcDNA3-YP, 

supplemented 

with 50 μg of 

unmethylated 

CpG ODN2007 

followed by 

intramuscular 

administration of 

100 μg of 

recombinant 

proteins 

emulsified in 

MONTANIDE™ 

ISA70 VG 

Day 

19 

C. jejuni 

C97Anses

640 (1×105 

CFU/bird) 

2.03, 3.61, 4.27 

and 2.08 log 10 

reductions of 

P562, YP437, 

YP9817 and 

P9838 groups, 

respectively 

(statistically 

significant) 

[226] 

Intramuscular 

administration of 

with 300 μg of 

pcDNA3-YP9817, 

supplemented 

with 50 μg of 

No significant 

reduction 
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unmethylated 

CpG ODN2007 

followed by 

intramuscular 

administration of 

100 μg of 

recombinant 

proteins 

emulsified in 

MONTANIDE™ 

ISA70 VG 

CmeC 

Breed not 

specified 

(broiler) 

Day 7 

and 

Day 21 

Oral gavage with 

50 or 200 μg of 

CmeC vaccine 

with or without 

with 10 μg of mLT 

Day 

35 

 

 

C. jejuni 

NCTC 

11168 

(1×106 

CFU/bird) 

No significant 

reduction 

[236] 

White 

Leghorn 

chickens 

(layer) 

Day 21 

and 

Day 35 

 

Oral and 

subcutaneous 

administration of 

50 or 200 μg of 

CmeC vaccine 

with or without 70 

μg of mLT 

Day 

49 

C. jejuni 

NCTC 

11168 

(1×105 

CFU/bird) 

No significant 

reduction 

 

Lactococcus lactis 

NZ3900/pNZ8149 

expressing cjaA   

White 

leghorn 

(layer) 

Day 5 

to 11, 

and 

Day 19 

to 25 

 

Oral 

administration of 

2 × 1010 CFU of L. 

lactis NZ3900-

sCjaA-Ltb, 

NZ3900-sCjaA, 

NZ3900-

pNZ8149s, and 

NZ3900-pNZ8149  

Day 

33 

C. jejuni 

NCTC 

11168 

(1.5 × 106 

CFU/bird) 

2.35 log10 and 

2.05 log10 

reduction with 

NZ3900-sCjaA 

vaccine group 

at post 5 DPI 

(statistically 

significant) 

[162] 

Glycoproteins of FlpA 

and SodB  

White 

Leghorn 

(layer) 

Day 6 

and 

Day 16 

Intramuscular 

administration of 

240 µg of FlpA 

and G-FlpA or 138 

µg of SodB and G-

SodB.   

Day 

20 

C. jejuni 

M1 (1×107 

CFU/bird)  

No significant 

reduction 

[237] 
C. jejuni 

M1 (102 

CFU/bird) 

No significant 

reduction 

Glycoprotein G-ExoA 

White 

Leghorn 

(layer)  

Day 6 

and 

Day 16 

Intramuscular 

administration of 

95 µg protein of 

ExoA or G-ExoA 

with 

MontanideTM ISA 

70 VG adjuvant  

Day 

20 

C. jejuni 

M1 (1×102 

CFU/bird) 

Reduction on 

Day 37 with 

ExoA-

vaccinated 

group 

(statistically 

significant) 

[238] 

C. jejuni 

11168H. 

C. jejuni 

M1 (1×104 

CFU/bird) 

Reduction on 

Day 37 with 

ExoA and G-

ExoA-

vaccinated 

groups 

(statistically 

significant) 

Bacterin and subunit 

vaccine 

Ross 308 

(broiler) 

18-day-

old 

embry

o 

In ovo 

administration of 

7.4 log10 CFU 

inactivated 

Campylobacter/bact

erin dose of 

bacterin vaccine 

injected into the 

amniotic cavity 

Day 

19 

C. jejuni 

KC4 (1 × 

107 

CFU/bird)  

No significant 

reduction 
[239] 

In ovo 

administration of 

28.5 μg of 6 

immunodominant 
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Campylobacter 

antigens with 

ESSAI IMS 

1505101OVO1 

adjuvant 

C. jejuni Dps   

Cornish × 

Rock 

(broiler)   

Day 10 

and 

Day 24 

Subcutaneous 

administration of 

0.2 mg 

recombinant Dps 

protein with 

Freund's complete 

adjuvant 

Day 

34 

C. jejuni 

NCTC111

68 (1×105 

CFU/bird) 

No reduction 

[224] 

Day 3, 

Day 10, 

and 

Day 16 

Oral gavage of 

Salmonella 

Typhimurium 

strain χ9088 

expressing C. 

jejuni Dps in 0.5 ml  

Day 

26 

2.92 log10 

reduction 

(statistically 

significant) 

PLGA-encapsulated CpG 

ODN 

Breed is 

not 

specified 

(layer) 

Day 14 

Oral 

administration of 5 

µg or 50 µg of 

soluble CpG  

Day 

15 

C. jejuni 

(107 

CFU/bird)  

1.23 and 1.32 

log reduction 

at 8-day post 

infection with 

low and high 

dose, 

respectively 

(statistically 

significant) 

[240] 

Breed is 

not 

specified 

(layer) 

Oral 

administration of 5 

µg E-CpG  

0.9, 1.9 and 

1.89 log 

reduction at 8, 

15 and 22 days 

of post-

infection 

(statistically 

significant) 

Breed is 

not 

specified 

(layer) 

Oral 

administration 

with a high dose 

of E-CpG (25 µg) 

1.46 log10 redu

ction at day 22 

post-infection 

(statistically 

significant) 

Breed is 

not 

specified 

(broiler) 

Oral 

administration of a 

low dose of C. 

jejuni lysate (4.3 

µg protein) 

 

2.14 and 2.14 

log10 at day 8 

and day 22 

post-infection, 

respectively 

(statistically 

significant) 

Breed is 

not 

specified 

(broiler) 

Oral 

administration of 

combination of E-

CpG ODN (25 µg) 

and C. Oral 

administration of a 

combination of E-

CpG ODN (25 µg) 

and C. jejuni lysate 

(4.3 µg protein) 

2.42 log10 at 

day 22 post-

infection 

(statistically 

significant) 

C. jejuni Type VI 

secretion system (T6SS) 

protein Hcp 

Vencobb 

(broiler) 

Day 7, 

Day 14, 

and 

Day 21 

Oral gavage of 

50 μg rhcp loaded 

CS-TPP NPs (CS-

TPP-Hcp)  Day 

28  

C. jejuni 

isolate 

BCH71 

(1×108 

CFU/bird) 

1 log reduction 

(statistically 

significant) 

[241] 
Subcutaneous 

administration of 

50 μg of rhcp 

emulsified with 

0.5 log 

reduction 

(statistically 

significant) 
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Incomplete 

Freund’s adjuvant 

Recombinant NHC 

flagellin 

Ross 308 

(broiler) 

18.5-

day-

old 

embry

o 

In ovo 

administration of 

40 or 20 μg NHC 

flagellar protein 

with 10 mM Tris 

(pH 9.0), 20% 

glycerol, 5 mM 

sucrose 

day 

18 

C. jejuni 

(1×105 

CFU/bird)  

No significant 

reduction 

 

[242] 

Recombinant C. jejuni 

peptides of CadF, FlaA, 

FlpA, CmeC, and CadF-

FlaA-FlpA fusion protein 

Cornish 

cross 

(broiler) 

Day 6 

and 

Day 16 

Intramuscular 

administration of 

240 µg of GST-

tagged 90 mer 

peptides or equal 

mixure of CadF-

His, FlaA-His, and 

FlpA-His (trifecta 

group) emulsified 

in Montanide ISA 

70 VG 

Day 

20 

C. jejuni 

(2×108 

CFU/bird) 

3.1, 3.3, 3.1, 

and 1.7 log 

reductions 

observed with 

Trifecta, FlpA, 

FlaA and 

CadF, 

respectively 

(statistically 

significant) 

[163] 

CfrA: ferric enterobactin receptor), CjaA: C. jejuni aminoacid binding protein, CjaD: peptidoglycan-binding 

protein, CmeC: an essential component of CmeABC multidrug efflux pump, CpG ODN: oligodeoxynucleotides 

containing unmethylated CpG motifs, CS-TPP NPs: Chitosan-Sodium tripolyphosphate nanoparticles, DPI: days 

post infection, Dps: DNA binding protein, Ent–KLH conjugate vaccine: Enterobactin conjugated to the carrier 

keyhole limpet hemocyanin, FlaA: Flagellin A, FliD: flagellum-capping protein, FlpA-10×GT : FlpA with 10 N-

Heptasaccharide Glycan Moieties, FspA: flagellum-secreted protein, GEM particles: Gram-positive Enhancer 

Matrix particles, JlpA: C. jejuni lipoprotein A, LT-B: Binding subunit of the heat-labile enterotoxin, mLT: 

modified E. coli heat-labile enterotoxin, ODN: oligodeoxynucleotides, OMPs: outer membrane proteins, and 

SodB: superoxide dismutase. 

4. Conclusion and Future Perspectives of Campylobacter Control: 

As a food-borne pathogen, Campylobacter continues to pose a challenge to global public health, 

with poultry serving as the primary source of human infection. Growing concerns regarding 

antimicrobial resistance and the push for antibiotic-free poultry production have accelerated the 

urgency for sustainable and long-term control measures against Campylobacter in poultry. This 

comprehensive review focuses on the possible preharvest options to control Campylobacter 

colonization in chickens, with a special emphasis on vaccination. Because a single strategy cannot 

completely prevent Campylobacter colonization, our review highlights the importance of a 

multifaceted approach that integrates several on-farm interventions. Strict biosecurity measures play 

a fundamental role in preventing the introduction and spread of Campylobacter. Additionally, dietary 

interventions such as probiotics, prebiotics, postbiotics and feed additives offer promising avenues 

for modulating the gut microbiome and enhancing host resistance to Campylobacter colonization. 

Importantly, vaccination stands out as one of the most logical approaches for preventing and 

reducing Campylobacter colonization at the source level.  Although there is currently no commercial 

vaccine available, ongoing research on multi-epitope and universal vaccine designs coupled with 

advancements in delivery systems and formulations, offers great promise in addressing the 

challenges presented by the genetic diversity of the pathogen and the unique immunological 

characteristics of poultry. 

4.1. Future Prospects:  

4.1.1. Biosecurity Enhancing Innovations  

Biosecurity innovations provide a more efficient primary protective barrier against the entry of 

Campylobacter into poultry farms [244]. Improved fly control management through biological traps 
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and insecticide-impregnated netting has significantly reduced the prevalence of Campylobacter on 

farms. Furthermore, managing the poultry house environment using new technologies such as 

electrostatic air filtration, UV-based disinfection, automated cleaning system and water purification 

system offers promising tools for reducing environmental exposure to Campylobacter. More advanced 

features like real-time monitoring systems for detecting contamination hotspots on farms enable 

early action against Campylobacter and preventing its entry and spread [245]. However, effective 

implementation depends on human compliance, including proper training and stringent adherence 

to biosecurity protocols by farm staff [246,247]. 

4.1.2. Studies Targeting Campylobacter and Host Interactions 

Inadequate knowledge of Campylobacter pathophysiology and host reactions is one of the main 

challenges in controlling these bacteria [57]. The primary goal of ongoing research is to identify 

virulent genes, including colonization factors, and metabolic adaptations necessary for developing 

rational mitigation strategies. Studying avian innate and adaptive immunity against Campylobacter 

and host resistance indicators that can prevent Campylobacter colonization is crucial for maintaining 

a balance where Campylobacter colonization occurs without causing invasive infection [248–250]. 

Advanced multi-omics research is expected to make these investigations conceivable [251–254]. 

4.1.3. Genetic Selection of Campylobacter-Resistant Breeds 

A long-term approach to control Campylobacter involves genetic selection of breeds resistant to 

bacterial colonization. Research has demonstrated that the Quantitative Trait Loci (QTL), major 

histocompatibility complex (MHC), and immune response genes vary among birds with various 

levels of resistance to Campylobacter (240, 241). The selection of breeder stocks resistant to 

Campylobacter can help to control colonization at the primary production level. 

4.1.4. Developing Effective Vaccination Strategies 

One of the main challenges in developing an effective Campylobacter vaccine is the high antigenic 

diversity among strains, hindering cross-protection. This issue can be addressed by identifying the 

conserved and protective antigens shared between multiple strains [257]. Further research is needed 

to identify broad-spectrum vaccine targets (e.g., multi-epitope vaccines) through the use of in silico 

prediction tools. Reverse vaccine technology offers avenues to identify vaccine antigen candidates 

that offer protection against a wide range of Campylobacter strains [258,259].  Additionally, 

optimization of mucosal vaccine delivery systems can enhance vaccine efficacy against Campylobacter 

colonization [242,260]. 

4.1.5. Microbiota Targeting Interventions 

A healthy gut microbiota can inhibit Campylobacter colonization through competitive exclusion 

and the production of antimicrobial metabolites (e.g., short-chain fatty acids) thereby improving 

mucosal immunity. These beneficial effects can be achieved through the use of prebiotics, probiotics 

and postbiotics, which help modulate the gut microbiota and support protective microbial 

communities [261,262]. Emerging technologies like fecal microbiota transplantation (FMT) and 

precision microbiome engineering are still in the early stages but represent promising future avenues 

for Campylobacter control [117,263].  

4.1.6. Cross-Sectoral Collaboratory Efforts (One Health) 

Effective preharvest control strategies require strong and sustained collaboration among 

researchers, poultry industry, and policymakers. Success depends on teamwork, planning in 

advance, and a combination of efforts across all three sectors. Future control depends on teamwork, 

proactive planning, and a coordinated effort across all the three sectors. The adoption of the One 
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Health approach, combined with the practical application of scientific innovations at the farm-level 

can significantly greatly reduce the global burden of Campylobacter [264–266]. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AMR Antimicrobial resistance 

CFU Colony forming units 

EOs Essential oils 

FMT Fecal microbiota transplantation 

FOS Fructooligosaccharides 

GBS Guillain-Barré Syndrome 

GIT Gastrointestinal tract 

GLAT Gut-associated lymphoid tissue 

GOS Galactooligosaccharides 

IBS Irritable bowel syndrome 

IMO Isomalto-oligosaccharides 

MHC Major histocompatibility complex 

PPE Personal protective equipment 

QTL Quantitative Trait Loci 

VBNC Viable but non-culturable state 
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