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Abstract: Let ({ fn}∞
n=1, {τn}∞

n=1) and ({gn}∞
n=1, {ωn}∞

n=1) be unbounded continuous p-Schauder frames (0 <

p < 1) for a disc Banach space X . Then for every x ∈ (D(θ f ) ∩ D(θg)) \ {0}, we show that ∥θ f x∥0∥θgx∥0 ≥
1 sup

n,m∈N
| fn(ωm)|

p sup
n,m∈N

|gm(τn)|
p (1), where θ f : D(θ f ) ∋ x 7→ θ f x := { fn(x)}∞

n=1 ∈ ℓp(N), θg : D(θg) ∋

x 7→ θgx := {gn(x)}∞
n=1 ∈ ℓp(N). Inequality (1) is unexpectedly different from both bounded uncertainty principle

[arXiv:2308.00312v1] and unbounded uncertainty principle [arXiv:2312.00366v1] for Banach spaces.
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1. Introduction

Given a finite collection {τj}n
j=1 in a finite dimensional Hilbert space H over K (R or C), define

θτ : H ∋ h 7→ θτh := (⟨h, τj⟩)n
j=1 ∈ Kn.

Recall that a collection {τj}n
j=1 in H is said to be a Parseval frame [1] for H if

∥h∥2 =
n

∑
j=1

|⟨h, τj⟩|2, ∀h ∈ H.

Most general form of discrete uncertainty principle for finite dimensional Hilbert spaces is the follow-
ing.

Theorem 1.1 (Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle [2–4]). Let
{τj}n

j=1, {ωj}n
j=1 be two Parseval frames for a finite dimensional Hilbert space H. Then

∥θτh∥2
0 + ∥θωh∥2

0
2

≥
(
∥θτh∥0 + ∥θωh∥0

2

)2

≥ ∥θτh∥0∥θωh∥0 ≥ 1
max

1≤j,k≤n
|⟨τj, ωk⟩|2

, ∀h ∈ H \ {0}.

Recently, Theorem 1.1 has been derived for Banach spaces using continuous p-Schauder frames.

Definition 1.2 ([5]). Let (Ω, µ) be a measure space. Let {τα}α∈Ω be a collection in a Banach space X and
{ fα}α∈Ω be a collection in X ∗. The pair ({ fα}α∈Ω, {τα}α∈Ω) is said to be a continuous p-Schauder frame
for X (1 ≤ p < ∞) if the following holds.

(i) For every x ∈ X , the map Ω ∋ α 7→ fα(x) ∈ K is measurable.
(ii) For every x ∈ X ,

∥x∥p =
∫
Ω

| fα(x)|p dµ(α) if 1 ≤ p < ∞,

∥x∥ = ess supα∈Ω | fα(x)| if p = ∞.
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(iii) For every x ∈ X , the map Ω ∋ α 7→ fα(x)τα ∈ X is weakly measurable.
(iv) For every x ∈ X ,

x =
∫
Ω

fα(x)τα dµ(α),

where the integral is weak integral.

Given a continuous p-Schauder frame ({ fα}α∈Ω, {τα}α∈Ω) for X , define

θ f : X ∋ x 7→ θ f x ∈ Lp(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K

Theorem 1.3 (Functional Continuous Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty
Principle [5–7]). Let (Ω, µ), (∆, ν) be measure spaces. Let ({ fα}α∈Ω, {τα}α∈Ω) and ({gβ}β∈∆, {ωβ}β∈∆)

be continuous p-Schauder frames for a Banach space X . Then

(i) for p > 1, we have

µ(supp(θ f x))
1
p ν(supp(θgx))

1
q ≥ 1

sup
α∈Ω,β∈∆

| fα(ωβ)|
, ∀x ∈ X \ {0};

ν(supp(θgx))
1
p µ(supp(θ f x))

1
q ≥ 1

sup
α∈Ω,β∈∆

|gβ(τα)|
, ∀x ∈ X \ {0}.

where q is the conjugate index of p.
(ii) for p = 1, we have

µ(supp(θ f x)) ≥ 1
sup

α∈Ω,β∈∆
| fα(ωβ)|

, ν(supp(θgx)) ≥ 1
sup

α∈Ω,β∈∆
|gβ(τα)|

, ∀x ∈ X \ {0}.

(iii) for p = ∞, we have

ν(supp(θgx)) ≥ 1
sup

α∈Ω,β∈∆
| fα(ωβ)|

, µ(supp(θ f x)) ≥ 1
sup

α∈Ω,β∈∆
|gβ(τα)|

, ∀x ∈ X \ {0}.

An unbounded version of 1.3 has been recently derived for unbounded frames.

Definition 1.4 ([8]). Let (Ω, µ) be a measure space and 1 ≤ p ≤ ∞. Let {τα}α∈Ω be a collection in a
Banach space X and { fα}α∈Ω be a collection of linear functionals on X (which may not be bounded). The pair
({ fα}α∈Ω, {τα}α∈Ω) is called an unbounded continuous p-Schauder frame or continuous semi p-Schauder
frame for X if the following conditions holds.

(i) For every x ∈ X , the map Ω ∋ α 7→ fα(x) ∈ K is measurable.
(ii) The map

θ f : D(θ f ) ∋ x 7→ θ f x ∈ Lp(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K

is well-defined (need not be bounded).
(iii) For every x ∈ X , the map Ω ∋ α 7→ fα(x)τα ∈ X is weakly measurable.
(iv) For every x ∈ D(θ f ),

x =
∫
Ω

fα(x)τα dµ(α),
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where the integral is weak integral.

Theorem 1.5 (Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Princi-
ples [8]). Let (Ω, µ), (∆, ν) be measure spaces and p = 1 or p = ∞. Let ({ fα}α∈Ω, {τα}α∈Ω) and
({gβ}β∈∆, {ωβ}β∈∆) be unbounded continuous p-Schauder frames for a Banach space X . Then for every
x ∈ (D(θ f ) ∩D(θg)) \ {0}, we have

µ(supp(θ f x))ν(supp(θgx)) ≥ 1(
sup

α∈Ω,β∈∆
| fα(ωβ)|

)(
sup

α∈Ω,β∈∆
|gβ(τα)|

) .

Above results cover the important Lebesgue spaces for 1 ≤ p ≤ ∞. The next natural class of
spaces is the Lebesgue spaces for 0 < p < 1. Recall that for 0 < p < 1, we define

ℓp(N) := {{an}∞
n=1 : an ∈ K, ∀n ∈ N,

∞

∑
n=1

|an|p < ∞}

equipped with the inhomogeneous norm

∥{an}∞
n=1∥p :=

∞

∑
n=1

|an|p, ∀{an}∞
n=1 ∈ ℓp(N).

In this paper, we derive a surprising result which is counter intuitive to the feeling we gain from
Theorem 1.3. This is why we called the uncertainty principle we obtained as unexpected uncertainty
principle.

2. Unexpected Uncertainty Principle

We start by recalling the following definition.

Definition 2.1 ([9]). Let X be a vector space over K. We say that X is a disc Banach space if there exists a
map called as disc norm ∥ · ∥ : X → [0, ∞) satisfying the following conditions.

(i) If x ∈ X is such that ∥x∥ = 0, then x = 0.
(ii) ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X .

(iii) ∥λx∥ ≤ |λ|∥x∥ for all x ∈ X and for all λ ∈ K with |λ| ≥ 1.
(iv) ∥λx∥ ≥ |λ|∥x∥ for all x ∈ X and for all λ ∈ K with |λ| ≤ 1.
(v) X is complete w.r.t. the metric d(x, y) := ∥x − y∥ for all x, y ∈ X .

Banach space frame theory which is modeled on classical Lebesgue sequence spaces [10] and
the theory of unbounded frames for Hilbert and Banach spaces [11–17] naturally gives the following
definition.

Definition 2.2. Let X be a disc Banach space. Let {τn}∞
n=1 be a collection in X and { fn}∞

n=1 be a collection of
linear functionals on X (which may not be bounded). The pair ({ fn}∞

n=1, {τn}∞
n=1) is said to be a unbounded

p-Schauder frame (0 < p < 1) or semi p-Schauder frame for X if the following conditions holds.

(i) The map

θ f : D(θ f ) ∋ x 7→ θ f x := { fn(x)}∞
n=1 ∈ ℓp(N)

is well-defined (need not be bounded).
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(ii) For every x ∈ D(θ f ),

x =
∞

∑
n=1

fn(x)τn

We are going to use the following important result.

Theorem 2.3 ([18,19]). For every 0 < p < 1,(
∞

∑
n=1

|an|
)p

≤
∞

∑
n=1

|an|p, ∀{an}∞
n=1 ∈ ℓp(N).

Following is the main result of the paper.

Theorem 2.4. Let ({ fn}∞
n=1, {τn}∞

n=1) and ({gn}∞
n=1, {ωn}∞

n=1) be unbounded p-Schauder frames for a disc
Banach space X . Then for every x ∈ (D(θ f ) ∩D(θg)) \ {0}, we have

∥θ f x∥0∥θgx∥0 ≥ 1(
sup

n,m∈N
| fn(ωm)|

)p(
sup

n,m∈N
|gm(τn)|

)p .

Proof. Let x ∈ D(θ f ) \ {0}. Then using Theorem 2.3,

∥θ f x∥ =
∞

∑
n=1

| fn(x)|p = ∑
n∈supp(θ f x)

| fn(x)|p = ∑
n∈supp(θ f x)

∣∣∣∣∣ fn

(
∞

∑
m=1

gm(x)ωm

)∣∣∣∣∣
p

= ∑
n∈supp(θ f x)

∣∣∣∣∣∣ ∑
m∈supp(θgx)

gm(x) fn(ωm)

∣∣∣∣∣∣
p

≤ ∑
n∈supp(θ f x)

 ∑
m∈supp(θgx)

|gm(x) fn(ωm)|

p

≤
(

sup
n,m∈N

| fn(ωm)|
)p

∑
n∈supp(θ f x)

 ∑
m∈supp(θgx)

|gm(x)|

p

=

(
sup

n,m∈N
| fn(ωm)|

)p

∥θ f x∥0

(
∞

∑
m=1

|gm(x)|
)p

≤
(

sup
n,m∈N

| fn(ωm)|
)p

∥θ f x∥0

(
∞

∑
m=1

|gm(x)|p
)

=

(
sup

n,m∈N
| fn(ωm)|

)p

∥θ f x∥0∥θgx∥.

Therefore

1(
sup

n,m∈N
| fn(ωm)|

)p ∥θ f x∥ ≤ ∥θ f x∥0∥θgx∥. (2)
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On the other hand, let x ∈ D(θg) \ {0}. Then again using Theorem 2.3,

∥θgx∥ =
∞

∑
m=1

|gm(x)|p = ∑
m∈supp(θgx)

|gm(x)|p = ∑
m∈supp(θ f x)

∣∣∣∣∣gm

(
∞

∑
n=1

fn(x)τn

)∣∣∣∣∣
p

= ∑
m∈supp(θgx)

∣∣∣∣∣∣ ∑
n∈supp(θ f x)

fn(x)gm(τn)

∣∣∣∣∣∣
p

≤ ∑
m∈supp(θgx)

 ∑
n∈supp(θ f x)

| fn(x)(x)gm(τn)|

p

≤
(

sup
n,m∈N

|gm(τn)|
)p

∑
m∈supp(θgx)

 ∑
n∈supp(θ f x)

| fn(x)|

p

=

(
sup

n,m∈N
|gm(τn)|

)p

∥θgx∥0

(
∞

∑
n=1

| fn(x)|
)p

≤
(

sup
n,m∈N

|gm(τn)|
)p

∥θgx∥0

(
∞

∑
n=1

| fn(x)|p
)

=

(
sup

n,m∈N
|gm(τn)|

)p

∥θgx∥0∥θ f x∥.

Therefore

1(
sup

n,m∈N
|gm(τn)|

)p ∥θgx∥ ≤ ∥θgx∥0∥θ f x∥. (3)

Multiplying Inequalities (2) and (3) we get

1(
sup

n,m∈N
| fn(ωm)|

)p(
sup

n,m∈N
|gm(τn)|

)p ∥θ f x∥∥θgx∥ ≤∥θ f x∥0∥θgx∥0∥θ f x∥∥θgx∥,

∀x ∈ (D(θ f ) ∩D(θg)) \ {0}.

A cancellation of ∥θ f x∥∥θgx∥ gives the inequality.

As continuous version of Theorem 2.3 fails (even for finite measure spaces) it seems that continu-
ous version of Theorem 2.4 fails.
In view of Tao’s uncertainty principle [20] we believe that Theorem 2.3 can be improved in prime
dimensions.
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