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Abstract: Let ({fu}0> 1, {T}5 1) and ({gn}5 1, {wn}$ ) be unbounded continuous p-Schauder frames (0 <
p < 1) for a disc Banach space X'. Then for every x € (D(6r) ND(6g)) \ {0}, we show that [[0¢x]|o[[0gx(0 >
1 7 (1), where 6 : D(05) > x — 0px = {fu(x)}52; € LP(N), 6g:D(b) >

P
(sup Ifn(wm)l) (sup g (%)
n,meN n,meN

x = Ogx == {gn(x)}5; € £P(N). Inequality (1) is unexpectedly different from both bounded uncertainty principle
[arXiv:2308.00312v1] and unbounded uncertainty principle [arXiv:2312.00366v1] for Banach spaces.
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1. Introduction

Given a finite collection {Tj};-“:l in a finite dimensional Hilbert space H over K (R or C), define
9-[ : H =) h — efh = (<h,1}>);1:l S Kn.

Recall that a collection {17};7:1 in H is said to be a Parseval frame [1] for H if
2 2 2
[h])= = Z; [(h,T)[>, VheH.
]:

Most general form of discrete uncertainty principle for finite dimensional Hilbert spaces is the follow-
ing.
Theorem 1.1 (Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle [2—4]). Let

{Tj}?:l, {w]-};.;l be two Parseval frames for a finite dimensional Hilbert space H. Then

Vh e H\ {0}.

10<h[I3 + [|6whlIF (||97h||0+ 16ohlo

2
: 0N okl >

27
max Ti, W,
l<j,k<n|< I k>|

Recently, Theorem 1.1 has been derived for Banach spaces using continuous p-Schauder frames.

Definition 1.2 ([5]). Let (Q, i) be a measure space. Let {Ty }ocq be a collection in a Banach space X and
{fa}ueq bea collection in X*. The pair ({ fa }acq, {Ta tacq) is said to be a continuous p-Schauder frame
for X (1 < p < o0) if the following holds.

(i) Forevery x € X, themap Q > a — fo(x) € K is measurable.
(ii) Foreveryx € X,

Ixl? = [ Ifu(x) P due) if 1< p < oo,
Q

%[ = ess supyeq [ fu(x)| i p = co.
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(ili) Forevery x € X, the map Q > a — fo(x)7T, € X is weakly measurable.
(iv) Foreveryx € X,

v = [ ful@mdp(e)
Q

where the integral is weak integral.

Given a continuous p-Schauder frame ({ fu }xcq, {Ta }acq) for X, define

O : X2 x—=0mx € LP(Qu); Ox: Q3 am (0px)(a) = fu(x) €K

Theorem 1.3 (Functional Continuous Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty
Principle [5-7]). Let (Q,u), (A, v) be measure spaces. Let ({ fa}ac, {Tatacq) and ({8p}pea {wptpea)
be continuous p-Schauder frames for a Banach space X. Then

(i) for p > 1, we have

1 1 1
supp(0¢x))Pv(supp(fox))1 > ————, Vx e X\ {0};
H(supp(0px)) "v(supp(0gx))T = — o TACA] \ {0}
acQ),BeA
1 1 1
v(supp(Oex)) P u(supp(frx))s > ———, Vx e X\ {0}.
( PP( g )) ‘M( pp( f )) sup |gﬁ(7a)| \{ }
acQ),BeA
where q is the conjugate index of p.
(ii) for p =1, we have
(supp(67%)) > ——— y(supp(6ex)) > ———— vxe x\ {0}
PP = Zsup Thlwpl” TOFPRE S Tup Jgpm) |
xeQ),BeA xeQ),BeA
(iii) for p = oo, we have
(supp(6,x)) > ——— u(supp(6;x)) > ———— vxe x\ {0}
PRSI sup Thlwp)l” MR = Tup gl |
xeQ),BeA

aeQ),peA
An unbounded version of 1.3 has been recently derived for unbounded frames.

Definition 1.4 ([8]). Let (Q, u) be a measure space and 1 < p < oo. Let {1y }ycq be a collection in a
Banach space X and { fu }xcy be a collection of linear functionals on X (which may not be bounded). The pair
({fataca, {tatucq) is called an unbounded continuous p-Schauder frame or continuous semi p-Schauder

frame for X if the following conditions holds.
(i) Forevery x € X, themap Q) 2 a — fy(x) € Kis measurable.
(ii) The map
0 :D(0f) >x = 0px € LP(Qu); Opx: QD am (0px)(a) = fu(x) €K
is well-defined (need not be bounded).
(iii) Forevery x € X, the map Q) > a — fo(x)Ty € X is weakly measurable.
(iv) For every x € D(0y),

v = [ ful@mdp(e)
Q
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where the integral is weak integral.

Theorem 1.5 (Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Princi-
ples [8]). Let (O, i), (A,v) be measure spaces and p = 1 or p = oo. Let ({fa}ueq, {Tatacq) and
({8} pen {wp}pen) be unbounded continuous p-Schauder frames for a Banach space X. Then for every
x € (D(8r) ND(0g)) \ {0}, we have

1

sup Ifa(w,z)|>< sup |8/3(T1x)|>

xeQ),BeEA xeQ),BeEA

p(supp(05x))v(supp(6gx)) > (

Above results cover the important Lebesgue spaces for 1 < p < co. The next natural class of
spaces is the Lebesgue spaces for 0 < p < 1. Recall that for 0 < p < 1, we define

P(N) = {{an}si :an € K,Vn €N, ) |ay|P < oo}
n=1

equipped with the inhomogeneous norm

o)

{an}iiillp = X lanl”, VH{au}iy € €7(N).
n=1
In this paper, we derive a surprising result which is counter intuitive to the feeling we gain from
Theorem 1.3. This is why we called the uncertainty principle we obtained as unexpected uncertainty
principle.

2. Unexpected Uncertainty Principle
We start by recalling the following definition.

Definition 2.1 ([9]). Let X be a vector space over K. We say that X is a disc Banach space if there exists a
map called as disc norm || - || : X — [0, 00) satisfying the following conditions.

(i) Ifx € X is such that ||x|| = 0, then x = 0.
i) [|x+yll < %] + Iyl forall %,y € X,
(iii) [|Ax|| < |Al||x]|| forall x € X and for all A € K with [A| > 1.
@iv) [|Ax|| > |A||x]| for all x € X and for all A € K with |A| < 1.
(v) X is complete w.r.t. the metric d(x,y) := ||[x —y|| forall x,y € X.

Banach space frame theory which is modeled on classical Lebesgue sequence spaces [10] and
the theory of unbounded frames for Hilbert and Banach spaces [11-17] naturally gives the following
definition.

Definition 2.2. Let X be a disc Banach space. Let {7}, be a collection in X and {f,}$_; be a collection of
linear functionals on X' (which may not be bounded). The pair ({fn}5 1, {Tn} ;) is said to be a unbounded
p-Schauder frame (0 < p < 1) or semi p-Schauder frame for X if the following conditions holds.

(i) The map
0 : D(0) > x — Opx = {fu(x) };4 € F(N)

is well-defined (need not be bounded).
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(ii) For every x € D(6y),
x=Y fulx)T
n=1

We are going to use the following important result.

Theorem 2.3 ([18,19]). For every 0 < p <1,

[e9) p [e9)
( Y lan |> < Y lanlP, VHan}iy € F(N),
n=1 n=1
Following is the main result of the paper.

Theorem 2.4. Let ({fu} 1, {Tn}5 ) and ({gn )21, {wn}ir) be unbounded p-Schauder frames for a disc
Banach space X. Then for every x € (D(8f) N D(0g)) \ {0}, we have

1

P P
(sup |fn(wm)|> (SUP Igm(rn)|>
n,meN n,meN

Proof. Let x € D(6y) \ {0}. Then using Theorem 2.3,

10¢xllol|0gxllo >

o0 I~ p
0xll = Y Ifa(@)lP = 3 Ifu@P= }  |fu < )3 gm(x)wm>
n=1 nesupp(0rx) nesupp(0rx) m=1
p p
= ). Y., gm(®)fulwm)| < ). ( ) |8m(x)fn(wm)|)
nesupp(f5x) |mesupp(6gx) nesupp(frx) \ mesupp(fgx)

p P
< <sup |fn(wm)|> Z Z |gm (x)]
n,meN nesupp(fyx) \ mesupp(fgx)

p 0 p P 1)
<Sup Ifn(wm)|> ||9fx||0< Igm(X)|> < (Sup Ifn(wm)|> |9fx”0< |gm(X)!”>
n,meN m=1 n,meN m=1

P
= (Sup |fn(wm)|> 10xollOgx[]-

nmeN

Therefore

1

7l
(nsr‘:gN |fn<wm)|>

0¢x]| < [[6¢x]lo]|Ogx]|- )
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On the other hand, let x € D(6) \ {0}. Then again using Theorem 2.3,

) 0o p
0gx] =} lgm()P =} g/ =} m(an(x)Tn>
m=1 mesupp(fgx) mesupp(5x) n=1
p p
= Z Z fn(xX)gm(Ta)| < E Z | (x) (%) &m ()|
mesupp(0gx) | nEsupp(fsx) méesupp(0gx) \ n€supp(fyrx)
P p
< (Sup gm(’fn)|> )3 Y fa(x)l
n,meN mesupp(fgx) \ n€supp(frx)
0o P P oo
= (Sup |§m (Tn) |> ||9gx||o<z Ifn(x)|> < (Sup Igm(Tn)|> ||9gx||o<z |fn(x)|P>
n,meN n=1 n,meN n=1
= (sup |gm (Tn |> ||9gx||0||9fx||'
n,meN
Therefore
1
7 10gx[| < [0 lol|Ox][- ®)
(sup !gm(fn)!>
n,meN

Multiplying Inequalities (2) and (3) we get

1

4
(sup |fn(wm)|> (511? |gm(7n)|>
n,meN nmeN

7 102 116gx]] <[|0xl0l|OgxlolOpx]I[|Ogx]l,

Vx € (D(0r) ND(g)) \ {0}.

A cancellation of [|07x||||6;x| gives the inequality. [

As continuous version of Theorem 2.3 fails (even for finite measure spaces) it seems that continu-
ous version of Theorem 2.4 fails.
In view of Tao’s uncertainty principle [20] we believe that Theorem 2.3 can be improved in prime
dimensions.
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