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Abstract: We propose a novel moving median estimator specifically designed for online detection of threshold
crossings in multi-channel signals, such as extracellular neural recordings. This estimator offers two key advan-
tages: a reduced sensitivity to outliers and the elimination of memory requirements for storing arrival times.
Furthermore, its design facilitates parallel implementation on FPGAs, making it ideal for real-time processing of

multi-channel recordings.
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1. Introduction

Medjian filtering is a widely used technique to remove or detect infrequent events in signal and
image processing. Depending on what part of the raw signal is removed, the median filter can be
employed to eliminate or to capture impulse noise from signals and images [1], as in the case of
extracellular neuronal spikes or “pepper and salt” noise, respectively.

When those few frequent events are contaminated with Gaussian noise, as in the case of extra-
cellular neuron recordings, an optimal threshold can be calculated to separate spikes from noise [2].
Indeed, most of the state-of-the art neuronal decoding techniques starts with threshold-based spikes
detection, independently of what kind of analysis is done after this stage, i.e. multiunit or single unit
spike sorting isolation decoding [3-5].

While it is straightforward to compute the median-based threshold in offline spike detection anal-
ysis, limitations related to speed and memory appear in real time neuronal decoding of multichannel
recordings, mainly due to the huge amount of samples per seconds that arrive from the recording
equipment and the non-stationary characteristics of those signals. In consequence, to have a fast and
accurate real-time median-driven threshold estimator becomes critical.

In digital systems, sample median computations relies in sorting methods, which are a special
case of selection algorithms. In an ordered odd buffer, the buffer middle sample results in the median
of those samples. Thus, improving the efficiency of the sample ordering process impacts directly in the
estimation speed, N - log(N) [6].

In a moving (sliding window) median estimator, as soon as the window moves over a new sample,
two alternatives can be used in order to estimate the new buffer median value, a naive one that implies
to re-order the whole buffer as if it were a new and independent set of samples, or a more efficient
one that results from dropping out the oldest sample in the buffer and inserting the new one in such
a position that keep the buffer ordered. While the former affects the speed of median estimation,
the latter need to keep in memory the temporal order in which every sample arrived to the buffer,
requiring as many memory as positions in the buffer exist.

We present here an alternative method to compute the median in sliding windows and, in
consequence, the optimal moving threshold to detect impulse noise from Gaussian one. The method
avoids keeping in memory the order the sample arrival without re-ordering the whole buffer every
time a sample comes in. We demonstrate that the proposed method is unbiased and robust compared
to the traditional moving median, particularly when the underlying process is stationary. Furthermore,
it adapts to a new sample distribution in at most 1.5 times the time required by the traditional method
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during significant shifts in the signal baseline, such as those encountered in extracellular recordings
due to electrode movements.

2. Methods

Let X(t) be a continuous random process, with probability distribution density function fx(x),
which we will only assume it is uni-modal. The classical moving median estimator can be computed,
at time £, as

ur, = median{x,, xt, |, ..., xtni(kl)} 1)

when using a buffer of length L.

A naive implementation for estimating a moving median requires tracking both the order of
sample arrivals and sorting the entire buffer (window) each time a new sample is received, resulting in
an algorithmic complexity of O(N?). A more efficient approach involves maintaining a sorted copy of
the window data, allowing for the insertion of new samples into their correct positions while simultane-
ously deleting the oldest element in the buffer and appropriately shifting the remaining samples. With
this method, originating from an ordered buffer, the complexity diminishes to O(N log N) operations
on average. However, it demands maintaining the history of sample arrivals to the buffer, which
proves both memory and time-intensive. In real-time implementations, this poses a new challenge:
ensuring that the output keeps pace with the input data rate to prevent data loss.

We propose a novel real-time median estimator where the new incoming samples are inserted
into the buffer in an orderly fashion. In our algorithm, instead of discarding the oldest sample, we
suggest removing a sample at the extremity of the buffer that is farthest from the new sample.

Given a buffer B with L positions ({ By, ..., B. }), being L odd and m = (L —1)/2 so B(m) is the
element in the middle of the buffer, the update rule for a new sample x is:

(a) if x < B(m) then,
if exists k / x > B(k) with k < m then,
B=[B(1), B(2), ..., B(k), x, B(k+1), ..., B(m), ..., B(L-1)]
else
B=[x, B(1), ..., B(m), ..., B(L-1)]
(b) else if x > B(m) then,
if exists k / x < B(k) with k>m then,
B=[B(2), ..., B(m), ..., B(k-1), %, B(k), ..., B(L)]
else
B=[B(2), ..., B(m), ..., B(L), x]
(c) else, (x==B(m))
B=[B(2), ..., B(m), x, ..., B(L)]
or
B=[B(1), ..., x, B(m), ..., B(L-1)]

When a new sample x arrives, it can be lower, higher or equal to the element in the center of the
buffer B(m). In the first case, two situations can arise: the new sample can be higher than a given
element of the buffer x > B(k) (and lower than B(k + 1) with k < m) in which case the new sample is
inserted between B(k) and B(k + 1), or lower than all the elements of the buffer in which case, the new
sample is inserted in the first position of the buffer. In both these cases, the last element of the buffer
B(L) is dropped. In case the new sample x is higher than B(m), equivalent to the previous situation,
the new sample will be inserted in the higher part of the buffer, and B(1) will be dropped. Finally, in
the case that the new sample is equal to the element in the center of the buffer (x = B(m)), either the
first element or the last element of the buffer is dropped.

It is important to remark that in this algorithm: a) the elements in the buffer B are consistently
sorted, b) the new sample x is always inserted in the buffer, c) There is no requirement for information
about the time of sample arrival.
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To determine the position where the new element should be inserted, we must either locate an
element of the same value in the buffer or conduct at least O(log(N)) comparisons using a binary
search algorithm.

3. Results

While median filtering finds applications in various domains, our focus will be on its application
in extracellular neuron spike detection. Electrodes in a multichannel extracellular recording setup can
detect abrupt electrical changes in their vicinity. However, they also capture the aggregate of numerous
electrical signals originating from distant neuron populations, alongside various electrical artifacts.

Regardless of the individual probability distributions of these punctual sources, the central limit
theorem dictates that their collective contribution approximates a normal distribution. Consequently,
the stronger the electrical field perturbation caused by a nearby neuron spike on an electrode, the
greater the likelihood of discerning it as a single-cell action potential. Thus, it is customary to define the
signal-to-noise ratio (SNR) between spikes and background noise as the ratio of the spike peak voltage
to the standard deviation of the background noise, denoted as 0;,5;s.. A SNR value of K indicates that
the spike peak voltage is K times the standard deviation of the background noise, denoted as 0;;pis.. In
the case of Gaussian noise N (0, o2 , a linear relationship exists between its standard deviation and

se)
noise
the median of the half-normal distribution y = |x|,

median{|x|} median{|x|}
Onoise = ~
\/ierffl(l/Z) 0.675

)

Thus, computing a threshold T to detect events surpassing T reduces the computation of 0;,,j¢, to
the median of y = |x|, with p(x) = N(0,02 ,.,).

In Figure 1, we present a schematic illustrating the step-by-step insertion of new samples into the
buffer and the subsequent discarding of samples according to the algorithm outlined in the Methods
section. Compared to the classical moving median estimator, the proposed method exhibits a smaller
variance when applied to real neuronal extracellular recordings. This reduction in variance translates to
fewer missed spikes and eliminates the erroneous detection of non-existent spikes, which is particularly

important for accurate spike detection thresholding.
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Figure 1. Median filtering of an extracellular recording. (a) The algorithm is illustrated during three

time steps. In the upper part, the ordered buffer is displayed with elements from 1 to 2m 4 1 at time k.
k+1

buffer and all values starting from x’zC are shifted to the right. Since the sample value is lower than x¥,,

the sample x’ém 41 at the rightmost position is discarded. In the next time step, a sample xk+2 arrives.

In the middle part, a new sample x* " "new arrives and is inserted into the corresponding bin in the

Since this sample is larger than x%,, it is inserted into the corresponding position, and values from
K to x}2‘m71 are shifted to the left. Consequently, the leftmost sample xf is dropped. (b) The figure
shows a portion of a real extracellular recording from the prefrontal cortex of a rat [7]. The recording is
displayed in gray. Thresholds estimated from the classical moving median estimator and the proposed
estimator are shown in red and green, respectively. The dashed line shows the threshold computed
from the whole recording as 4 0,s.. (c) The value distribution for both the classical and the new
median estimators is illustrated. As can be observed, the classical median estimator has a longer tail
towards negative values due to its sensitivity to outlier values resulting from spikes.

The reduction in variance in the estimation is attributed to the fact that samples are discarded
from the buffer based on their position within it, rather than their arrival times. Specifically, in a buffer
initially populated with the first L samples in order, the classical moving median (CMM) estimator
discards the oldest sample in the buffer each time a new sample arrives, whereas our algorithm (NM)
discards a sample from the buffer’s extremity. Intuitively, this can be understood as a compressing
process of sample selection, ultimately resulting in a buffer populated with samples closer to the
median.

It is noteworthy that the classical algorithm maintains a true sampling distribution of the original
signal, while ours does not fully reflect this distribution. We reasoned that while this characteristic may
offer an advantage in a stationary process, it may result in a delay in reaching the new median value
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when a change in the median signal occurs. Furthermore, the delay in reaching the correct estimation
of the median and the length of the buffer are also related. Larger buffers indeed offer less dispersion
around the real median and provide more stability at the cost of slower responses to process changes.
To investigate this phenomenon, we conducted a series of simulations using signals constructed from
real recording noise and spikes, with spikes uniformly distributed among the basal noise. Therefore,
for a set of buffers with lengths 63, 511, and 1023, we introduced a controlled change in the signal
values at time 0 and examined the dynamic changes in the median estimation (see Figure 2).
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Figure 2. Time and spatial sensitivity to process changes. (a) A simulated extracellular recording (gray)
with a median change at t = 0. Changes in the median estimator for buffers with lengths 63, 511, and
1023 are plotted in green, red, blue, and yellow respectively. (b) Dispersion around the true median
value for different buffer lengths, including our algorithm (NM-63). (c) The compromise between
dispersion and the time to reach 95% of the new median value after a change. (d),(e) Sensitivity of
both algorithms using a 63-position buffer after a small change in the process. Solid lines in E depict
the entire distribution of estimations before and after the change. (f) ROC analysis for changes in the

median process ranging from 0 to 1.

Unlike the Classical Moving Median (CMM) estimator, where changes are reflected in the estima-
tion within a fixed time window L, our algorithm’s response time depends on the magnitude of the
change. For large changes with entirely new samples, our algorithm requires on average between L/2
and 3L /2 time steps to achieve the same. However, for small changes, the new samples are added
to the edges of the buffer and may take longer than L steps to fully influence the estimate due to the
discarding process.

To demonstrate the algorithm’s robustness against outliers, we analyzed the sample density
dynamics within the buffer over time. To directly compare NM with the CMM algorithm, we initially
filled both buffers with L pre-sorted samples. This ensures the NM estimator’s initial distribution
reflects the underlying data. However, unlike CMM where this distribution remains constant, the
NM estimator continuously compresses the buffer’s sample distribution towards the median value,

typically within a few buffer cycles.
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We ran the algorithm with a buffer length of L=1023 samples, feeding it data from a normal
distribution N(0,1). We then analyzed the sample density within the buffer at different points in
time, starting from when the buffer was initially filled. Figure 3a shows these sample density changes.
Particularly noteworthy, the initially Gaussian distribution becomes progressively more concentrated
around the data’s mean (or median for a normal distribution), approaching a uniform distribution
with significantly reduced variance.

We repeated the analysis for a folded normal distribution (the distribution of |x| when x ~ N(0,1).
Figure 3b shows the sample distribution within the buffer over time, starting from a buffer completely
filled with fresh samples drawn from the folded normal distribution, and continuing up to 50, 000 time
steps. This scenario, with a folded normal distribution, is more relevant to real extracellular recordings
where the median and mean typically differ. As can be readily observed, the buffer samples distribute
around the noise median in this case.

a 1000 - - -

500 A

-2.5 0 2.5 2.5 0 2.5 2.5 0 2.5 -2.5 0 2.5
b 1000 ] ] ]
500
t=0 . t=500 1 t=5000 1 t= 50000
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Figure 3. Dynamical changes in the buffer population (L = 1023). (a) Sample distribution across time
for x ~ N(0,1). (b) Sample distribution across time for |x|, when x ~ N(0, 1), the arrow shows the true
signal median. (c),(d) The sample distribution of the data across the buffer and over time is visualized
(10,000 repetitions average) of the experiment for x and |x|, when x ~ N(0, 1). Results were normalized
in order to observe the magnification effect around the true signal’s median value as time progresses.
Continuous arrow: true signal median. Dashed arrow: true signal mean
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Interestingly, repeating both experiments 10,000 times and averaging their sample distributions
across different time points reveals a consistent trend. The average sample distribution concentrates
around the median value of the initial distribution, essentially copying its shape. This behavior is
evident in Figure 3b for the normal distribution and Figure 3c for the folded normal distribution.
Consequently, filling the buffer with values increasingly closer to the true median with each iteration
enhances the method’s robustness against outlier perturbations.

By definition, the median m is the value that satisfy

[ pwx= [T por=3 ®

—o0 m

for any other value m, different to m we will have

A= /mx p(x)dx ; B= / Oop(x)dx 4)
—oo s
with A # B.

If the value at the center of the buffer m, is less than the true median m, there will be an imbalance.
The distribution function, F(x), tells us that there are more samples greater than m, than expected
F(m) — F(my) > 0. These additional high-value samples on the right side of the buffer tend to push
my towards the left. This creates an opportunity for values greater than m, to occupy the buffer center
position. The opposite happens when m, is larger than the true median.

This process can be likened to the diffusion of non-charged particles across a membrane, as
described by Fick’s Laws [8]:

o
J=-D ©)
where | is the net flux across the membrane, D is the diffusion coefficient (D = 1 here) and g—i is the
concentration difference across the membrane.

The process reaches equilibrium, indicated by a zero net flux of zero particles across the membrane,
when the concentration of particles on both sides becomes equal. In simpler terms, this occurs when
the same proportion of samples are found above and below the central value, A = B = 1/2, which
occurs when iy itself equals the true median m.

By exploiting this natural dynamic, our algorithm achieves an unbiased estimation of the signal’s
median under stationary conditions.

4. Discussion

There are two main categories of quantile estimators: those that calculate the statistics using the
entire dataset and those that rely on a subset of the data.

There is a significant amount of research on computing median estimators in data streams,
specifically to be applied to filtering techniques. These techniques often involve calculating the exact
median of a window containing L samples and then using this value to estimate an appropriate
threshold.

On the other hand, quantile estimation is a powerful technique for characterizing dataset proper-
ties. It enables the online estimation of various order statistics, including the minimum, maximum,
median, quartiles, and any other quantiles (q-quantile).

In streaming algorithms, finding the minimum and maximum values only requires O(1) op-
erations, while estimating the median requires at least O(logL) operations [9,10]. Efficient online
computation of quantile statistics are mainly based on the work of Greenwald and Khanna [11,12].
These algorithms are designed to maintain statistics of arbitrary quantiles. While they are efficient
in terms of memory usage and have optimal complexity performing order O(1) operations, these
operations are not suitable for implementation on field-programmable logic arrays (FPGAs). FPGAs
are often preferred for their low-power and high-performance capabilities in real-time applications,
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making them unsuitable for these specific algorithms. Consequently, the complexity and computa-
tional cost of implementing them outside of a traditional computer or embedded system are very
high.

Although the proposed method is limited to estimating the median, its implementation on FPGAs
for this specific task is remarkably straightforward. This efficiency stems from the fact that it only
requires basic operations like comparisons and shifting, which are highly optimized for FPGAs and
GPUs. Furthermore, it boasts a complexity of O(log L) when starting from an already sorted buffer.
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Abbreviations

The following abbreviations are used in this manuscript:

CMM  Classical Moving Median

FPGA Field Programmable Gates Arrays
GPU Graphics Processing Unit

NM New Median

SNR  Signal to Noise Ratio
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