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Article 

A Micro Resonating Motor Based on Neuron  

Action Potential 
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* Correspondence: nicola.roveri@uniroma1.it; Tel.: (+39)-06 4458-5215 

Abstract: This paper introduces a novel bioelectromechanical device converting the electrochemical 

potential energy of excitable cells into mechanical work by coupling the Hodgkin–Huxley (HH) 

neuronal model response to a mechanical resonator. Addressing key challenges in 

bioelectromechanical systems, including biocompatibility, miniaturization, and efficient energy 

conversion, the device leverages the membrane potentials of biological cells to drive mechanical 

oscillations within microelectromechanical systems (MEMS). Through a combination of numerical 

simulations and theoretical analyses, it is demonstrated that the coupled HH–resonator system 

achieves stable limit cycles and significant mechanical displacements via parametric amplification. 

This amplification arises from the nonlinear capacitive coupling, which leads to Mathieu-like 

equations governing the system’s dynamics, thereby enabling large oscillations from relatively small 

voltage inputs. Such parametric resonance is critical for the device's ability to sustain oscillatory 

motion, making it highly suitable for integration into compact and implantable MEMS applications. 

Potential applications include implantable sensors and actuators for real-time physiological 

monitoring, and advanced micro-scale systems that benefit from biologically sourced energy. The 

findings underscore the promise of bioelectromechanical systems in advancing biomedical and 

microengineering technologies, paving the way for innovative solutions in personalized medicine, 

bio-robotics, and beyond. 

Keywords: bioelectromechanical systems; Hodgkin–Huxley model; parametric resonance; 

microelectromechanical systems (MEMS); nonlinear capacitive coupling; electrostatic actuation; 

action potential; energy conversion; biocompatible actuators; bio-hybrid microsystems 

 

1. Introduction 

The development of bioelectromechanical devices capable of converting electrochemical 

potential energy from biological cells into mechanical energy represents a significant advancement 

in the field of bioengineering. This research aims to address the challenges associated with the 

miniaturization and optimization of such devices, focusing on their potential applications in 

medicine, bioengineering, and microelectromechanical systems (MEMS). 

MEMS have emerged as a pivotal technology in biomedical applications, offering the potential 

to revolutionize medical diagnostics, therapeutics, and monitoring [1]. These systems integrate 

mechanical elements, sensors, actuators, and electronics on a common silicon substrate, enabling the 

creation of devices with high functionality and small size. Advancements in MEMS have led to the 

development of implantable devices such as micropumps, biosensors, and micro-robots, which are 

designed to offer better diagnostic and therapeutic methods [2,6,7].  

A comprehensive review [3] highlights the significant advancements in MEMS for biomedical 

applications, emphasizing their role in diagnostics, therapeutics, and monitoring. The authors discuss 

the integration of MEMS with biological systems, noting that such integration has led to the 

development of devices capable of precise and early detection of medical conditions, as well as 

therapeutic interventions.  
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Despite these advancements, several challenges persist in the miniaturization and optimization 

of bioelectromechanical devices. One major obstacle is the development of flexible and biocompatible 

materials that can withstand the physiological environment without causing adverse reactions. 

Efforts have been made to address this by focusing on polymer processing to develop flexible 

implantable devices with high biocompatibility [4,5].  

Another significant challenge is the efficient conversion of electrochemical energy from 

biological cells into mechanical energy [8]. Traditional methods often face limitations due to the 

complexity of biological systems and the need for precise control over energy conversion processes. 

The intricate nature of biological systems introduces challenges in accurately controlling energy 

conversion processes. For instance, the storage of energy in ATP was first detected in anaerobic 

energy-yielding reactions but soon was also found in respiratory and photosynthetic energy 

production. However, the mechanism by which energy derived from metabolites was converted into 

phosphate-bond energy in these processes appeared to be complex and not fully understood [9]. 

Furthermore, the Second Law of thermodynamics implies that no thermodynamic system with 

a single heat source at constant temperature can convert heat into mechanical work in a recurrent 

manner [10].  

Recent research has explored various approaches to overcome these limitations, including the 

development of microresonators coupled to excitable cells to induce periodic oscillations, thereby 

converting electrochemical energy into mechanical energy [11]. 

These complexities highlight the need for innovative approaches to achieve efficient and 

controlled energy conversion in biological systems. 

The proposed bioelectromechanical device aims to address the challenges identified in the 

current state of the art by utilizing the membrane potential and action potential activation of excitable 

cells to drive an electromechanical circuit. This approach offers several advantages: 

• Efficient Energy Conversion: By directly harnessing the electrochemical potential of biological 

cells, the device achieves more efficient energy conversion compared to traditional methods. 

• Biocompatibility and Miniaturization: Utilizing biological cells as the energy source ensures 

compatibility with the human body, reducing the risk of adverse reactions. Additionally, the 

device's design allows for significant miniaturization, making it suitable for applications where 

space and invasiveness are critical concerns. 

• Flexible Architectural Design: The mechanical oscillator, realized through electrostatic 

actuation, can be easily scaled and adapted to multiple configurations. Increasing the number 

of capacitor plates or excitable cells proportionally boosts the actuation force and available 

power. This modularity supports diverse applications such as micropumps, micropropellers 

for drug delivery, and other micromechanical subsystems. 

Potential applications of this technology include: i) implantable sensors and actuators powered 

by the device could monitor and respond to physiological conditions in real-time, offering new 

avenues for personalized medicine. ii) the device could be integrated into prosthetics and assistive 

devices, providing a sustainable power source that adapts to the user's biological systems. iii) The 

device's compact size and efficient energy conversion make it ideal for integration into MEMS, 

enabling the development of advanced micro-scale systems with enhanced capabilities. 

In summary, this research seeks to advance the field of bioelectromechanical systems by 

developing a device that effectively converts electrochemical energy from biological cells into 

mechanical energy, addressing current challenges and opening new possibilities in medicine, 

bioengineering, and MEMS applications. 

2. Structural Design of the Proposed Bio-Electromechanical Device 

The primary goal of the proposed bio-electromechanical device is to utilize the membrane 

potential, specifically the action potential activation of at least one excitable cell, to power an 

electromechanical circuit. This circuit comprises at least one resistor, one capacitor, and a mechanical 

oscillator, where the oscillator is mechanically coupled to the mobile plate of the capacitor. 
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The device is designed to harness the electrochemical potential energy generated by the 

differential concentrations of ion species inside and outside the cellular membrane. This energy is 

then converted into mechanical energy through a system consisting of at least one excitable cell and 

an electromechanical microresonator. The microresonator cyclically excites the action potential of the 

cell, thereby inducing periodic oscillations. These oscillations form a self-sustaining system capable 

of generating mechanical energy for practical applications. 

As illustrated in Figure 1, the proposed device is characterized by its compact dimensions, 

ranging approximately from 10 to 200 microns, with an optimal operational range between 20 and 

100 microns. The electrical parameters include maximum voltages around 100 mV, currents in the 

nanoampere range, and associated power levels on the order of 10−10 W. Coupling between the 

electromechanical microresonator and the cell body is achieved through at least one resistor and, 

optionally, additional impedance components. The mechanical oscillator is integrally fixed to the 

mobile plate of the capacitor, while the opposing plate remains stationary, facilitating the desired 

energy conversion process. 

             

Figure 1. Schematic representation of the electromechanical diagram of the proposed device. 

The device is organized into two primary coupled circuits: the driving circuit and the 

electromechanical converting circuit, each serving distinct roles in the energy conversion process. 

The driving circuit (labeled as Circuit 1 in Figure 1) includes at least one excitable cell, such as a 

neuron or similar biological cell capable of generating action potentials. The cell membrane acts as 

the central element, electrically connected through terminals 𝑇1 and 𝑇2 to both internal and external 

cellular regions. These terminals are coupled to a current generator 𝐼𝑒𝑥𝑡   and an impedance 𝑍𝑝. The 

current 𝐼𝑒𝑥𝑡  plays a critical role in modulating the membrane current to ensure efficient triggering of 

the action potential.  

The electromechanical converting circuit (labeled as Circuit 2 in Figure 1) is primarily passive 

and consists of two main parts: the electrical and mechanical subsystems. 

• Electrical Subsystem: The core electrical component is a capacitor (𝐶𝑎) with a capacitance 𝐶𝑎, 

connected in parallel to the current generator. An additional impedance 𝑍𝑠 may be incorporated 

to optimize performance in specific configurations. 

• Mechanical Subsystem: The mechanical component is represented by an elastic mechanical 

oscillator, which can be realized in various configurations. In the simplest model, the oscillator 

consists of a mass 𝑀, an elastic element with stiffness 𝐾, and a dissipative element characterized 
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by a damping coefficient 𝐷. The mobile plate of the capacitor is mechanically coupled to the 

oscillator, enabling the conversion of electrostatic forces into mechanical oscillations. 

The operation of the device hinges on the precise design of the external current , which must fall 

within an optimal range to maintain system functionality. If 𝐼𝑒𝑥𝑡  is too small, the membrane current 

is insufficient to trigger action potentials. Conversely, if 𝐼𝑒𝑥𝑡 is too large, the excessive current 

induces rapid refractory states in the cell, inhibiting periodic oscillations. 

When 𝐼𝑒𝑥𝑡 is within the optimal range, the driving circuit generates periodic current spikes. 

These spikes induce a cyclic potential difference across terminals 𝑇1 and 𝑇2, leading to the periodic 

charging and discharging of the capacitor 𝐶𝑎. The resulting electrostatic forces between the capacitor 

plates drive the oscillations of the mechanical oscillator, thereby producing the desired biomotor 

effect. 

The system's functionality is defined by its ability to convert the electrochemical energy of the 

excitable membrane into mechanical energy. This process activates a limit cycle within the bio-

electromechanical system, resulting in self-sustaining oscillations. The mechanical energy generated 

can be directly applied to power microdevices, offering a scalable and efficient solution for various 

applications. 

The key features of the proposed device are: i) the compact size, ranging from 10 to 200 microns, 

facilitating integration into microscale systems. ii) Efficient Energy Conversion, directly harnesses 

electrochemical potential from biological cells, enhancing conversion efficiency. Iii) Biocompatibility, 

utilizing biological cells as an energy source, ensuring compatibility with physiological 

environments. Iv) Scalable Design: Modular architecture allows for the addition of multiple capacitor 

plates or excitable cells, proportionally increasing actuation force and power output. Iv) Versatile 

Applications: Suitable for implantable sensors, actuators, prosthetics, and advanced MEMS-

integrated micro-scale systems. 

By addressing the challenges of miniaturization, biocompatibility, and efficient energy 

conversion, the proposed bio-electromechanical device represents a step forward in the development 

of bio-hybrid microsystems with diverse biomedical and engineering applications. 

3. Mathematical Modeling of the Bio-Electromechanical Device  

3.1. General Introduction to the Hodgkin-Huxley Model 

The electrical behavior of the excitable membrane is described using the HH model [12], which 

provides a robust quantitative foundation for understanding the membrane’s dynamic properties. 

This section details the mathematical representation of the system, emphasizing its nonlinear 

differential equations, the membrane's ionic dynamics, and their role in generating a periodic driving 

force for the electromechanical components.  

The power contributions in the Hodgkin-Huxley (HH) model can be categorized into distinct 

components that reflect the energy transformations occurring within the neuronal membrane. These 

components account for external stimulation, capacitive storage, ionic dissipation, and the influence 

of electromotive forces. Below is a detailed description of each term. 

The excitable membrane, represented in Figure 2, is modeled as a capacitor (𝐶𝑚) with a dielectric 

formed by the lipid bilayer. This bilayer is combined with selective ionic channels that regulate ion 

flow based on voltage differentials. For this study, the focus is on sodium (𝑁𝑎+) and potassium (𝐾+) 

ions, which play essential roles in generating and propagating action potentials; in this model the 

leakage channel is not considered. 
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Figure 2. Equivalent electrical diagram of an excitable membrane (3) in Figure 1. 

The sodium and potassium channels are characterized as variable resistors (𝑅Na and 𝑅K), each 

in series with constant voltage generators to reflect their voltage-dependent behavior. Hodgkin and 

Huxley demonstrated that the conductances of these channels (𝑔Na and 𝑔K) dynamically depend on 

the transmembrane potential (𝑉). During an action potential, the conductances increase significantly, 

reducing the channel resistances and facilitating ion flow. This decrease in resistance highlights the 

membrane's changing permeability in response to the electric field and provides clear evidence that 

the action potential is driven by variations in ionic fluxes across the membrane. The resistances are 

expressed as 𝑅Na = 1/𝑔Na  and 𝑅K = 1/𝑔K , where the conductances depend on both time and 

membrane potential. 

Unlike the ionic channels, which can be modeled as resistors and respond to a step current input 

with a corresponding step change in voltage, the neuronal membrane exhibits a continuous voltage 

response under similar conditions. This distinction arises because the membrane behaves as a 

capacitor, where altering the potential across it requires modifying the charge stored on its plates. In 

the neuronal membrane, this process is analogous to redistributing charge across its interfaces 

through ionic fluxes, which drive depolarization. 

The relationship between the voltage across a capacitor and the charge stored on its plates is 

given by: 𝑉 =
𝑄

𝐶
, where 𝑄  represents the charge, and 𝐶  is the capacitance, serving as the 

proportionality constant between 𝑉  and 𝑄. The change in charge, and consequently the voltage 

across the capacitor, is induced by current flow. Current is defined as the rate of charge transfer over 

time: 𝑖 =
𝑑𝑄

𝑑𝑡
. Substituting this into the capacitor equation yields: 𝑑𝑉 =

𝑖 𝑑𝑡

𝐶
. 

From this relationship, it becomes clear that the voltage change across the capacitor in response 

to a current pulse is directly proportional to the duration of the current. This continuous variation of 

membrane potential highlights the capacitor-like behavior of the neuronal membrane in contrast to 

the step responses of purely resistive ionic channels. 

In series with these resistors are ionic batteries (𝐸𝑁𝑎 and 𝐸𝐾), which represent the electromotive 

forces arising from ionic concentration gradients. 

In the HH model, ionic currents are modeled as flow through variable resistances in parallel 

with a capacitor that represents the membrane. For each ion considered (e.g., sodium and potassium), 

the current depends on the difference between the membrane potential and the ion's equilibrium 

potential, which is determined by the Nernst equation. The total current flowing through the 

membrane (𝐼total) is thus the sum of the capacitive current and the ionic currents. 

The capacitive current (𝐼cap) is related to the rate of change of the membrane potential (𝑉) over 

time. Since the membrane is represented as a capacitor, the capacitive current is given by: 𝐼cap =

𝐶𝑚
𝑑𝑉

𝑑𝑡
, where 𝐶𝑚 is the membrane capacitance per unit area. 

The ionic currents (𝐼ion) are driven by the conductances of the sodium and potassium channels 

(𝑔Na  and 𝑔K ), which depend on both time and the membrane potential, reflecting the voltage-

dependent nature of the channels. For sodium and potassium ions, the currents are expressed as: 
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𝐼Na = 𝑔Na(𝑉 − 𝐸Na), 𝐼K = 𝑔K(𝑉 − 𝐸K),  where 𝐸Na  and 𝐸K  are the equilibrium potentials, 

respectively. These potentials represent the voltages at which there is no net ionic flow for the 

corresponding ion species. 

The total membrane current is given by: 𝐼total = 𝐼cap + 𝐼ion, which, for the case of two ion species, 

can be expanded as: equation: 

𝐼total = 𝐶𝑚
𝑑𝑉

𝑑𝑡
+ 𝑔Na(𝑉 − 𝐸Na) + 𝑔K(𝑉 − 𝐸K).  

This formulation captures the dynamic interplay between the capacitive and ionic components 

of the current, as well as their dependence on the time-varying membrane potential. It provides the 

foundation for analyzing how the membrane potential evolves during processes like the action 

potential, where rapid changes in ion channel conductances lead to characteristic voltage 

fluctuations. 

Hodgkin and Huxley developed equations to describe the time-dependent conductances of ion 

channels, ensuring they remained sufficiently simple for computing action potentials and refractory 

periods. A significant challenge in modeling these conductances lay in their distinct behaviors during 

depolarization and repolarization. Specifically, sodium (𝑔𝑁𝑎 ) and potassium (𝑔𝐾 ) conductances 

increase with a delay during depolarization and decrease rapidly during repolarization. 

Using experimental data obtained via the patch-clamp technique, Hodgkin and Huxley 

demonstrated that sodium conductance is proportional to the third power of an activation variable, 

𝑚 , governed by a first-order differential equation, with an additional term accounting for the 

progressive inactivation of sodium channels, ℎ. Similarly, potassium conductance is proportional to 

the fourth power of its activation variable, 𝑛, also governed by a first-order differential equation. 

These relationships are expressed as: 

𝑔𝑁𝑎 = 𝑔̅𝑁𝑎𝑚
3ℎ, 𝑔𝐾 = 𝑔̅𝐾𝑛

4, 

here, 𝑔̅𝑁𝑎  and 𝑔̅𝐾 represent the maximum attainable values of sodium and potassium 

conductances, respectively, while 𝑚 , ℎ , and 𝑛  are dimensionless gating variables that range 

between 0 and 1, that indicate the likelihood of the corresponding ion channel being open, allowing 

ions to move between the intracellular and extracellular fluids. Their values depend on both 

membrane voltage and time, reflecting the dynamic nature of channel gating. Their dynamics are 

governed by the following first-order differential equations: 

{
 
 

 
 
𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ)

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛

,   

The rate constants 𝛼  and 𝛽  are voltage-dependent and describe the transition rates of ion 

channels between open and closed states. Let 𝑧 denote a general gating variable, such as 𝑚, ℎ, or 𝑛. 

The dynamics of 𝑧 can be described by: 

𝑑𝑧

𝑑𝑡
= 𝛼(𝑉)(1 − 𝑧) − 𝛽(𝑉)𝑧  → 

𝑑𝑧

𝑑𝑡
= 𝛼 − 𝑧(𝛼 + 𝛽) → 

1

𝛼+𝛽

𝑑𝑧

𝑑𝑡
=

𝛼

𝛼+𝛽
− 𝑧  →

 𝜏
𝑑𝑧

𝑑𝑡
= 𝑧∞ − 𝑧, 

 

where 𝑧∞ =
𝛼

𝛼+𝛽
 is the equilibrium fraction of open channels, and 𝜏 =

1

𝛼+𝛽
 is the relaxation time. 

These equations highlight the following key points: 

1. Individual ion channel proteins transition stochastically between open and closed states. 

2. The fraction of open channels, 𝑧, relaxes exponentially toward 𝑧∞, the equilibrium value. 

3. The relaxation rate to equilibrium is determined by the time constant 𝜏. 

The voltage-dependence of 𝛼 and 𝛽, as determined by Hodgkin and Huxley's experiments, 

leads to exponential dependencies of reaction rates on membrane voltage (see Table 1). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2025 doi:10.20944/preprints202502.0250.v1

https://doi.org/10.20944/preprints202502.0250.v1


 7 of 20 

 

Table 1. Equations used to define the gating variables. 

 𝛼𝑖(𝑉) 𝛽𝑖(𝑉) 

h 0.007𝑒
𝑉𝑟𝑒𝑠𝑡−𝑉

20  
1

1+ 𝑒3−0.1(𝑉𝑟𝑒𝑠𝑡−𝑉)
 

m 2.5− 0.1(𝑉 − 𝑉𝑟𝑒𝑠𝑡)

𝑒2.5−0.1(𝑉𝑟𝑒𝑠𝑡−𝑉) − 1
 4𝑒

(𝑉𝑟𝑒𝑠𝑡−𝑉)
18  

n 0.1− 0.01(𝑉 − 𝑉𝑟𝑒𝑠𝑡)

𝑒1−0.1(𝑉−𝑉𝑟𝑒𝑠𝑡) − 1
 0.125𝑒

(𝑉𝑟𝑒𝑠𝑡−𝑉)
80  

Consequently, the equilibrium fraction 𝑧∞ and time constant 𝜏 exhibit sigmoidal dependencies 

on voltage, reflecting the nonlinear reaction kinetics of ion channel gating. This interplay between 

voltage and gating dynamics forms the foundation for understanding the behavior of excitable 

membranes and their role in action potential generation. 

Indicating with the index 𝑖 for 𝑁𝑎+ (sodium) or 𝐾+ (potassium), the Nernst potentials (𝐸𝑖) 

and maximum conductances (𝑔̅𝑖) are provided in the Table 2. The term 𝑉rest accounts for different 

resting potentials commonly adopted in various studies, which are typically either 0 mV  or 

−65 mV. In this work, Vrest is taken to be −65 mV. 

Table 2. The constant parameters of the Hodgkin-Huxley model. 

 𝐸𝑖 [mV] 𝑔̅𝑖 [𝑚𝑆/𝑐𝑚2] 

𝑁𝑎+ 115+𝑉𝑟𝑒𝑠𝑡 120 

𝐾+ -12+𝑉𝑟𝑒𝑠𝑡 36 

At equilibrium, the cell maintains a resting potential, primarily governed by the efflux of 𝐾+ 

ions through weakly active potassium channels. Sodium channels are largely inactive at this state. 

Disturbances in the membrane potential, if sufficient in magnitude, initiate the activation of sodium 

channels, leading to a sequence of ionic exchanges that constitutes the action potential. 

The dynamics of the membrane are captured by the following system of nonlinear differential 

equations, derived from the HH model: 

{
  
 

  
 

𝐶𝑚𝑉̇ = 𝑔̅𝑁𝑎𝑚
3ℎ(𝐸𝑁𝑎 − 𝑉) + 𝑔̅𝐾𝑛

4(𝐸𝐾 − 𝑉) + 𝐼𝑒𝑥𝑡 ,
𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉)−𝑛

𝜏𝑛(𝑉)
,

𝑑𝑚

𝑑𝑡
=

𝑚∞(𝑉)−𝑚

𝜏𝑚(𝑉)
,

𝑑ℎ

𝑑𝑡
=

ℎ∞(𝑉)−ℎ

𝜏ℎ(𝑉)
.

, (1) 

Here: 

• 𝐶𝑚: Membrane capacitance [𝜇F/cm2]. 

• 𝑉: Transmembrane potential [𝑚𝑉]. 

• 𝑔̅𝑁𝑎 , 𝑔̅𝐾: Maximum conductances of sodium and potassium channels [mS/cm2]. 

• 𝐸𝑁𝑎, 𝐸𝐾: Nernst potentials [ 𝑚𝑉] for sodium and potassium, respectively. 

• 𝑚, ℎ represent the activation and inactivation variables for sodium channels, respectively, while 

n represents the activation variable for potassium channels.  

• 𝑚∞(𝑉), ℎ∞(𝑉), 𝑛∞(𝑉): Steady-state activation and inactivation functions (voltage-dependent). 

• 𝜏𝑚(𝑉), 𝜏ℎ(𝑉), 𝜏𝑛(𝑉): Voltage-dependent time constants. 

• 𝐼𝑒𝑥𝑡: External current per unit area applied across the membrane [𝜇A/cm2]. 

The first equation in system (1) represents the balance of currents across the cell membrane, as 

illustrated in Figure 2. This equation accounts for the combined contributions of ionic currents and 

external current inputs. The remaining three equations describe the dynamics of the ionic channels, 
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specifically the constitutive relationships governing the variable resistances depicted in the diagram 

in Figure 2. 

3.2. Power Balance in the Hodgkin-Huxley Model 

The power contributions in the HH model can be categorized into distinct components that 

reflect the energy transformations occurring within the neuronal membrane. These components 

account for external stimulation, capacitive storage, ionic dissipation, and the influence of 

electromotive forces. Below is a detailed description of each term. 

The external power is provided by the applied current and is responsible for driving the system. 

The instantaneous power supplied by 𝐼ext is given by: 

𝑃ext = 𝐼ext ⋅ 𝑉,  

The external power can drive changes in the capacitive charge, sustain ionic currents, or both. 

In Figure 5, 𝑃ext is represented in the third subplot from the top.  

The power associated with the membrane's capacitive charging or discharging is: 

𝑃cap = 𝐶𝑚𝑉
𝑑V

𝑑𝑡
,  

This term reflects the rate at which electrical energy is stored or released from the capacitive 

component of the membrane. In Figure 5, 𝑃cap is shown in the second subplot from the top and 

indicated with 𝑃Cm .   

The power dissipated by the ionic currents is given by: 

𝑃ion = 𝑃Na + 𝑃K, 

where 𝑃Na  and 𝑃K  are the power dissipation rates for sodium and potassium channels, 

respectively. For each ionic channel: 

𝑃Na = 𝑔Na𝑚
3ℎ(𝑉 − 𝐸Na)

2, 𝑃K = 𝑔K𝑛
4(𝑉 − 𝐸K)

2,  

These terms represent the resistive dissipation of energy due to ion flow through voltage-

dependent channels. In Figure 4, 𝑃Na and 𝑃K are displayed in the first subplot. 

The HH model includes voltage sources representing the Nernst potentials (𝐸Na and 𝐸K) for 

sodium and potassium ions, respectively. These potentials contribute additional power, defined as: 

𝑃fem,Na = 𝐼Na𝐸Na, 𝑃fem,K = 𝐼K𝐸K,  

where 𝐼Na and 𝐼K are the ionic currents through the sodium and potassium channels: 𝐼Na =

𝑔Na𝑚
3ℎ(𝑉 − 𝐸Na), 𝐼K = 𝑔K𝑛

4(𝑉 − 𝐸K). These terms quantify the work done by the ion-specific 

electromotive forces in driving ionic currents. Unlike 𝑃ion, these contributions do not result in heat 

dissipation but are essential for maintaining ionic gradients and facilitating proper neural function. 

In Figure 5, 𝑃FNa and 𝑃FK are also represented in the first subplot.   

 The power balance of the HH model is described by the following relationship: 

𝑃ext = 𝑃cap + 𝑃ion + 𝑃fem,  

indicating that the power supplied externally is distributed among three components: energy 

storage in the membrane capacitance, dissipative losses through ionic channels and energy exchange 

facilitated by the Nernst potentials.  

3.3. Numerical Simulations of the Hodgkin-Huxley Model 

Numerical simulations are performed with the values listed in Tables 1 and 2. Initial condition 

of Eq. 1 are 𝑉(0) = 𝑉𝑟𝑒𝑠𝑡 and 𝑛(𝑉 = 0) = 𝑛(𝑉𝑟𝑒𝑠𝑡),𝑚(𝑉𝑟𝑒𝑠𝑡), ℎ(𝑉𝑟𝑒𝑠𝑡).  The external current is used as 

regulation parameter. 

The way the HH model processes external current to generate action potentials is fundamental, 

as this conversion of synaptic input into action potentials forms the cornerstone of neuronal 
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communication and brain functionality. When a low-level external current is applied, ionic 

fluctuations occur until the system stabilizes at a new steady state characterized by slightly elevated 

membrane potentials. With moderate external current input, the membrane potential may briefly 

exceed the action potential threshold, producing a single spike before returning to a steady state. 

Biologically, this reflects ion redistribution in response to changes in electrostatic pressure. 

Figure 3 illustrates the neuronal response to 𝐼𝑒𝑥𝑡 = 3 𝜇A/cm2 , a steady stream of action 

potentials is generated. The HH model not only attributes action potential generation to ionic current 

changes but also faithfully captures the timing and voltage characteristics of these events, ensuring 

biologically accurate simulations. 

 

Figure 3. Starting from the row on top, cell membrane potential, gating variables, changes in conduction of K+ 

and Na+ with the action potential, plotted versus time and with 𝐼𝑇1𝑇2 = 3𝜇𝐴/𝑐𝑚
2. 

Figure 3 further demonstrates how ionic conductance changes correspond to the various phases 

of an action potential. At the onset of an action potential, the conductance of Na+ (𝑔𝑁𝑎) rapidly 

increases due to the activation of 𝑚-gates, enabling a substantial influx of Na+ ions. This inward 

current amplifies depolarization through a positive feedback loop, driving the rapid upstroke of the 

action potential. At the peak, however, 𝑔𝑁𝑎  begins to decrease due to the inactivation of Na+ 

channels via the ℎ-gates, thereby limiting further Na+ entry. Sodium ions subsequently leave the 

cell, driven by electrochemical gradients, as the channels close. 

In contrast, potassium conductance (𝑔𝐾) increases more gradually as 𝑛-gates slowly activate. 

This delayed efflux of K+ ions counteracts the depolarizing effects of Na+ influx and ultimately 

dominates during the repolarization phase. The delayed activation of 𝑛 -gates ensures a robust 

repolarization process, restoring the membrane potential toward its resting state. The persistence of 

elevated 𝑔𝐾  after repolarization results in an after-hyperpolarization, a transient state where the 

membrane potential becomes more negative than the resting level. This state is critical for resetting 

the neuronal membrane and ensuring unidirectional action potential propagation. 

The interplay between Na+ channel inactivation (ℎ-gates closing) and K+ channel activation (𝑛-

gates opening) creates a refractory period during which further action potential initiation is inhibited. 

This separation of successive spikes prevents excessive neuronal firing and ensures orderly signal 

transmission. 

The voltage- and time-dependent behavior of the gating variables 𝑚, ℎ, and 𝑛 allows the HH 

model to accurately capture the biophysical mechanisms underlying action potentials. The distinct 

time constants and voltage sensitivities of the gating variables contribute to the characteristic 

waveform of action potentials and their critical role in neural signaling. 
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Figure 4 illustrates the Fourier transformation of the signal, highlighting a dominant frequency 

slightly below 70 Hz. This result is consistent with the temporal periodicity observed in Figure 3, 

where the signal exhibits a period of approximately 0.015 seconds. 

With the aid of Figures 5 and 6 it is possible to understand the power fluxes within the 

membrane. Specifically, to facilitate the visualization of power exchanges, the first subplot of Figure 

6 displays the combined power contributions from the individual ionic channels (𝑃fem,Na + 𝑃Na and 

𝑃fem,K + 𝑃K) along with the capacitive power (𝑃cap). These components are related to the external 

power (𝑃ext), represented in the second subplot.  

 

Figure 4. FFT of the signal 𝑉(𝑡). 

 

Figure 5. The figure displays the power components of a single charge-discharge cycle organized into three 

subplots due to differing y-axis scales: (top) ionic power contributions (PNa, PK, PFNa, PFK); (middle) capacitive 

power (Pcap); (bottom) external power (Pext). 
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Figure 6. The first subplot shows the combined power contributions from the ionic channels (Pfem,Na + PNa and 

Pfem,K + PK) and the capacitive power (Pcap). The second subplot illustrates the external power (Pext). 

Figure 6 reveals the interdependent temporal evolution of 𝑃𝑒𝑥𝑡, 𝑃𝑐𝑎𝑝, and the combined ionic 

channel powers (𝑃𝑁𝑎 + 𝑃𝑓𝑒𝑚,𝑁𝑎) and (𝑃𝐾 + 𝑃𝑓𝑒𝑚,𝐾): 

1. Initial Phase. 𝑃𝑒𝑥𝑡  transitions from negative values to zero, reflecting a diminishing energy 

supply from the external current. It then peaks positively around 𝑡 = 2.5 ∙ 10−5 𝑚𝑠. Meanwhile, 

𝑃𝑐𝑎𝑝—the power in the membrane capacitance 𝐶𝑚—shows a complementary response: dropping 

to a negative extremum, then surging to a positive peak shortly thereafter. 

2. Sodium Channel Power. The combined sodium channel power (𝑃𝑁𝑎 + 𝑃𝑓𝑒𝑚,𝑁𝑎) closely mirrors 

𝑃𝑐𝑎𝑝  but with opposite polarity. It peaks positively at 𝑡 = 2.2 ∙ 10−5 𝑚𝑠—when 𝑃𝑐𝑎𝑝  is at its 

minimum—and then decreases to a local minimum at 𝑡 = 2.5 ∙ 10−5 𝑚𝑠. Shortly after the external 

power peak, it reaches an absolute minimum at 𝑡 = 2.8 ∙ 10−5 𝑚𝑠. 

3. Potassium Channel Power. The total potassium channel power (𝑃𝐾 + 𝑃𝑓𝑒𝑚,𝐾) lags behind the 

sodium channel, exhibiting an opposite trend. When (𝑃𝑁𝑎 + 𝑃𝑓𝑒𝑚,𝑁𝑎) rises, (𝑃𝐾 + 𝑃𝑓𝑒𝑚,𝐾) drops, 

and vice versa. Its positive peak emerges slightly delayed, in line with potassium’s role in 

repolarization. 

4. Convergence and Next Cycle. Notably, at 𝑡 = 3.5 ∙ 10−5 𝑚𝑠 , all internal power terms 

(𝑃𝑐𝑎𝑝, 𝑃𝑁𝑎 + 𝑃𝑓𝑒𝑚,𝑁𝑎, 𝑃𝐾 + 𝑃𝑓𝑒𝑚,𝐾) converge to zero, while 𝑃𝑒𝑥𝑡 remains positive and continues to 

decrease. Soon after, (𝑃𝑁𝑎 + 𝑃𝑓𝑒𝑚,𝑁𝑎)  becomes positive and (𝑃𝐾 + 𝑃𝑓𝑒𝑚,𝐾)  becomes negative, 

with both reaching extreme values at 𝑡 = 0.00612 𝑚𝑠. A subsequent relative maximum in 𝑃𝑐𝑎𝑝 

appears at 𝑡 = 4.7 ∙ 10−5𝑚𝑠. Finally, 𝑃𝑒𝑥𝑡 dips into negative territory, completing one cycle of 

power exchange and preparing the system for the next. 

This analysis underscores the cyclical energy flow within the HH framework. Depolarization 

involves strong coupling between capacitive charging and sodium ion flux, while repolarization is 

facilitated by potassium’s delayed conductance. After hyperpolarization, the system transitions to a 

state where the external current again becomes the primary energy source, allowing the cycle to 

repeat. 

These power exchanges emphasize both the electrical storage and dissipation mechanisms 

inherent in neuronal activity. The external energy supply sustains the rapid influx and efflux of ions 

through voltage-gated channels, restoring the membrane potential after each depolarization event. 

Through this lens, the Hodgkin–Huxley model not only captures the electrophysiological behavior 

of excitable cells but also provides a framework for analyzing the energetics and metabolic costs of 

neuronal signaling. 
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3.4. Integration of the Hodgkin-Huxley Model with a Elettro-Mechanical Oscillator 

The coupling of the HH neuronal model with a electro-mechanical oscillator introduces a novel 

bioelectromechanical system, enabling the direct conversion of membrane potentials into mechanical 

motion. This integration leverages the dynamic properties of the HH model and incorporates the 

capacitive behavior of the membrane into a resonating mechanical structure. The system’s equations 

are presented below in coherence with the notation used in this study.  

Focusing on the analysis of the driving circuit (1) with the electromechanical converting circuit 

(2), as illustrated in Figure 1, the complete system integrates the neuronal membrane described by 

the HH model with a mechanical resonator. This resonator comprises a mass (M), a spring with 

stiffness (K), and a damping element characterized by the coefficient (D). Additionally, the 

mechanical oscillator is equipped with a capacitor, whose capacitance varies with the displacement 

of the oscillator’s movable plate. 

To ensure the compatibility of the two systems, the HH model equations (1) —formulated in 

terms of specific quantities such as current per unit area—are scaled by the total membrane area 𝑆cell, 

in this case, a cell radius of 5000𝜇𝑐𝑚 was assumed. The membrane dynamics are governed by the 

following set of equations: 

{
 
 

 
 𝐶𝑚𝑆𝑐𝑒𝑙𝑙𝑉̇ = 𝑆𝑐𝑒𝑙𝑙(𝑔̅𝑁𝑎𝑚

3ℎ(𝐸𝑁𝑎 − 𝑉) + 𝑔̅𝐾𝑛
4(𝐸𝐾 − 𝑉) + 𝐼𝑒𝑥𝑡) + 𝐼𝐶 ,

𝑛̇ = 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛,

𝑛̇ = 𝛼𝑚(1 −𝑚) − 𝛽𝑚𝑚,

ℎ̇ = 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ

, (2) 

Here 𝐼𝐶 = −𝐶𝑎 𝑉̇ is the current in capacitor coupled to the elastic mechanical oscillator. 

The mechanical oscillator is described by the following second-order differential equation: 

𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝐷

𝑑𝑥

𝑑𝑡
+ 𝐾𝑥 =

𝐶𝑎
2𝑉2

2𝜖0𝑆
, 

where: 

• 𝑥 is the displacement of the movable plate of the capacitor, 

• 𝑆 is the surface area of the capacitor plates, 

• 𝐶𝑎 =
𝜖0𝑆

𝑑0−𝑥
 is the displacement-dependent capacitance of the capacitor, 𝜖0 is the permittivity of 

free space, 

• 𝑑0 represents the rest distance between the fixed and movable plates of the capacitor 

incorporated into the resonator, it ensures the capacitor has a finite capacitance in its rest state. 

The term on the right-hand side of the equation represents the electrostatic force exerted by the 

capacitor, which depends on the square of the transmembrane potential and the displacement-

dependent capacitance. 

Note that to integrate this equation with the HH model, which utilizes time in milliseconds, we 

redefine the time variable 𝑡  as 𝜏  (ms): 𝜏 = 𝑡ms = 𝑡 × 10
−3 s. This substitution affects the time 

derivatives as follows: 
𝑑

𝑑𝑡
=

𝑑𝜏

𝑑𝑡

𝑑

𝑑𝜏
= 1000 

𝑑

𝑑𝜏
,
𝑑2

𝑑𝑡2
= (

𝑑

𝑑𝑡
)
2

= (1000)2  
𝑑2

𝑑𝜏2
= 106  

𝑑2

𝑑𝜏2
. Substituting these 

into the mechanical oscillator equation yields: 

106𝑀
𝑑2𝑥

𝑑𝜏2
+ 103𝐷

𝑑𝑥

𝑑𝜏
+ 𝐾𝑥 =

𝐶𝑎
2𝑉2

2𝜀0𝑆
, (3) 

where: 𝜏 is time in milliseconds (ms), 𝑥(𝜏) remains in meters (m), 𝑀, 𝐷, and 𝐾 retain their SI 

units (kg, N·s/m, and N/m respectively). This normalization ensures that the time scales of the 

mechanical oscillator are directly compatible with those of the HH neuronal model, facilitating 

coherent integration of the bioelectrical and mechanical dynamics. 

When the HH model is integrated with the mechanical oscillator, the membrane potential 

influences the resonator’s motion through the variable capacitor, and the displacement x in turn 

modifies the capacitance seen by the membrane. This two-way feedback links the bioelectrical and 

mechanical components and can produce complex dynamical behavior. Rewriting eq.s (2) and (3) in 

a normal form: 
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{
 
 
 

 
 
 𝑉̇ =

1

(𝐶𝑚+
𝜀0

𝑑0−𝑥

𝑆

𝑆𝑐𝑒𝑙𝑙
)
[𝑔̅𝑁𝑎𝑚

3ℎ(𝐸𝑁𝑎 − 𝑉) + 𝑔̅𝐾𝑛
4(𝐸𝐾 − 𝑉) + 𝐼𝑒𝑥𝑡] 

𝑛̇ =
𝑛∞(𝑉)−𝑛

𝜏𝑛(𝑉)
;  𝑚̇ =

𝑚∞(𝑉)−𝑚

𝜏𝑚(𝑉)
; ℎ̇ =

ℎ∞(𝑉)−ℎ

𝜏ℎ(𝑉)
;

𝑑𝑥

𝑑𝜏
= 𝑣𝑥

𝑑𝑣𝑥

𝑑𝜏
=

1

106𝑀
[
𝐶𝑎
2𝑉2

2𝜀0𝑆
− 103𝐷𝑣𝑥 − 𝐾𝑥]

, (4) 

  

the last equation can also be written as 
𝑑𝑣𝑥

𝑑𝜏
=

𝐶𝑎
2𝑉2

2 106𝑀𝜀0𝑆
−

2𝜔𝑛 𝜁

103
𝑣𝑥 −

𝜔𝑛
2

106
𝑥 where: 𝜔𝑛 = √

𝐾

𝑀
 and 

𝜁 =
𝐷

2𝜔𝑛𝑀
. 

Energy Considerations 

The powers associated with the electro-mechanical resonator in the coupled HH and resonator 

system are derived from the mechanical energy components and their interactions with the capacitor. 

The variable capacitor depends on the resonator’s displacement x(t), the instantaneous energy 

stored in this capacitor is: 𝐸𝐶𝑎 =
1

2
𝐶𝑎(𝑡)𝑉

2(𝑡). Consequently, the instantaneous power associated 

with Ca arises from the time derivative of this electrostatic energy: 𝑃𝐶𝑎 =
1

2

𝑑𝐶𝑎(𝑡)

𝑑𝑡
𝑉2(𝑡) +

𝐶𝑎(𝑡)𝑉(𝑡)
𝑑𝑉(𝑡)

𝑑𝑡
. After substitution with the actual value of 𝐶𝑎(𝑡), the formula produces: 

𝑃𝐶𝑎 =
1

2

𝜀0𝑆

(𝑑0−𝑥)
2 𝑣𝑥𝑉

2(𝑡) +
𝜀0𝑆

𝑑0−𝑥
𝑉(𝑡)

𝑑𝑉(𝑡)

𝑑𝑡
,  

The first term quantifies the power contribution due to the mechanical motion of the capacitor 

plate, while the second term, corresponds to the conventional power exchange from changes in the 

voltage across the capacitor at a given capacitance.  

Power due to the resonator's kinetic energy, to the spring force and dissipated by the resonator's 

damping are listed below: 

𝑃kin = 𝑀𝑣𝑥
𝑑𝑣𝑥

𝑑𝑡

𝑃elas = −𝐾𝑥𝑣𝑥
𝑃damp = −𝐷𝑣𝑥

2

,  

The total power balance for the resonator alone is: 

𝑃𝑟𝑒𝑠 = 𝑃Ca + 𝑃kin + 𝑃elas + 𝑃damp,  

When the resonator is coupled with the HH model, the complete power balance reads: 

𝑆𝑐𝑒𝑙𝑙𝑃ext = 𝑆𝑐𝑒𝑙𝑙(𝑃cap + 𝑃ion + 𝑃fem) + 𝑃𝑟𝑒𝑠,   

recalling that the previously calculated powers for the HH model, in section 3.2, were specific 

powers, they must be multiplied by the cell surface area 𝑆𝑐𝑒𝑙𝑙 to obtain the total power contributions.  

The energy exchanges in the coupled system can be categorized into: i) Electrochemical Energy, 

represented by the ionic currents and the capacitive charging/discharging of the membrane; ii) 

Mechanical Energy: comprising kinetic energy, potential energy, and dissipation; iii) Electrostatic 

Energy, stored in the capacitor of the mechanical oscillator. 

4. Numerical Simulations and Discussion 

Numerical simulations are performed with the values listed in Tables 1 and 2. Initial condition 

of Eq. 1 are 𝑉(0) = 𝑉𝑟𝑒𝑠𝑡  and 𝑛(𝑉 = 0) = 𝑛(𝑉𝑟𝑒𝑠𝑡),𝑚(𝑉𝑟𝑒𝑠𝑡), ℎ(𝑉𝑟𝑒𝑠𝑡); initial condition for the 

displacement and velocity of the oscillator are null. The external current is set 𝐼𝑒𝑥𝑡 = 9 𝜇A/cm2. For 

a spherical cell, 𝑆cell is calculated as: 𝑆cell = 4𝜋𝑟
2, where 𝑟 is the cell radius. Assuming 𝑟 = 50 𝜇𝑚, 

the cell surface area is: 𝑆cell = 4𝜋(50 × 10
−4)2 𝑐𝑚2 = 3.14 × 10−4 𝑐𝑚2. 
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The physical parameters of the oscillator are set as follows. Figure 3 and 4 indicate that the 

fundamental period of the ensuing oscillatory process is about 𝑇 = 15 ms. To achieve sufficiently 

large oscillation amplitude in the mechanical oscillator, its natural frequency should be tuned to 

match that of the driving circuit, namely: √
𝐾

𝑀
= 𝜔𝑛 =

2𝜋

15 ms
.  Thus, selecting: 𝐾 = 9.9 × 10−6  

N

m
 

follows 𝑀 =
𝐾

𝜔𝑛
2 = 5.6423 × 10

−11𝑘𝑔. In a similar fashion, let the viscous damping factor 𝜁 =
𝐷

2𝜔𝑛𝑀
=

0.025 , it follows 𝐷 = 1.182 × 10−9 N ⋅ s/m ; the other parameters are 𝑑0 = 4.5 𝜇m, 𝜀0 = 8.85 ×

10−12 F/m, 𝑆 = 4.3 × 10−9 m2. 

Figure 7 shows the membrane potential, along with the displacement and velocity of the 

mechanical oscillator, plotted versus time. While the time behaviour of the membrane potential 

remains nearly identical to that of the uncoupled scenario, the oscillator exhibits a characteristic 

oscillatory behaviour consisting of an initial transient phase followed by a steady-state regime. 

During the initial transient, a harmonic amplitude modulation emerges: its carrier frequency is 

approximately 𝜔𝑛, whereas the modulating frequency is considerably lower and roughly matches 

the difference between the driving frequency and the system’s natural frequency. 

 

Figure 7. Cell membrane potential, displacement and velocity of the resonator versus time. 

 

Figure 8. Normalized FFT of the membrane potential (in blue line) and of the displacement of the mechanical 

oscillator system (in red). Normalization is performed by dividing each time signal by its maximum amplitude. 
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The frequency content of these responses are illustrated in Figure 8, which displays the 

normalized Fourier transform, ensuring a consistent scale across all spectra. From Figure 8, one can 

observe that the oscillator’s displacement predominantly concentrates its energy at 𝜔𝑛, chosen to be 

close to the driving frequency. Additionally, there is a less energetic peak at lower frequency, roughly 

10 Hz, which accounts for the low-frequency oscillation associated with the amplitude-modulated 

(AM) wave. This low-frequency component decays after a characteristic time span. 

The typical timescale of the transient vibration is given by 
1

𝜔𝑛 𝜁
~100 𝐻𝑧, beyond three times this 

interval, the transient behaviour subsides, and the oscillator settles into stable vibrations around a 

mean displacement of slightly less than 10−6 m. The duration and prominence of the initial AM wave 

are governed by the damping factor ζ. Altering ζ leads to distinct changes in both the amplitude and 

frequency of the observed modulation, thereby influencing the overall transient dynamics of the 

coupled system. 

Figure 9 presents the energy contributions associated with both the neuronal membrane and the 

mechanical resonator. The first two subplots exhibit behavior closely resembling that of the 

uncoupled HH model, in Figure 5. Examination of the resonator reveals that, given the small 

displacements and velocities involved, the primary energetic contribution arises from the capacitor. 

This contribution can be separated into a mechanical term, stemming from the variation in 

capacitance, and an electrical term, resulting from the voltage changes across the capacitor over time. 

 

Figure 9. Power components during a single charge-discharge cycle, organized into three subplots with different 

y-axis scales: (top) ionic power contributions (PNa, PK, PFNa, PFK) and capacitive power (Pcap), (middle) external 

power (Pext), and (bottom) power associated with the mechanical oscillator. 

It has been noted that the external current can serve as a control parameter. Figure 10 illustrates 

the behavior of the coupled system when this external current is set to 3 μA. After a single cycle, the 

membrane potential settles into a stable value, effectively inhibiting further pulsatile behavior. 

Likewise, following the initial transient phase, the resonator’s displacement converges to a fixed 

position, and its velocity becomes zero, indicating that the mechanical subsystem also reaches a 

steady equilibrium. In conclusion, by exploiting this mechanism in a cyclic manner, it becomes 

possible to induce periodic action potential firing in the driving circuit, effectively establishing a limit 

cycle in the bioelectric system. An opposing regulatory mechanism counters the effect of the external 

current by returning the membrane potential toward equilibrium. Consequently, when the external 

current again drives the membrane away from this equilibrium, another spike is generated, 

producing a stable, repeating sequence of action potentials. Notably, this spiking behaviour—and 

thus the resulting limit cycle—only emerges for suitable values of 𝐼𝑒𝑥𝑡. 
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Figure 10. Cell membrane potential, Displacement and velocity of the resonator plotted versus time with 𝐼𝑒𝑥𝑡 =

3𝜇𝐴. 

In the proposed work, the mechanical oscillator uses a simple electrostatic actuator composed 

of a single capacitor with two facing plates. Where required by specific applications, multiple pairs 

of plates can be incorporated—common in electrostatic microactuator technology—to proportionally 

increase both the actuation force and the resulting displacement. The same principle applies to the 

number of neuronal cells included in the bio-motor: employing multiple excitable cells or cell bodies, 

for example in an electrically connected ensemble, proportionally augments the power delivered to 

the mechanical oscillator. 

Furthermore, the mechanical oscillator can serve as an actuator element in any micromechanical 

device, thus functioning as the principal motor. A promising application of this bio-electromechanical 

system is in micropump technology. In this setup, the mobile capacitor plate acts as the movable wall 

of a variable-volume chamber. Two one-way valves are typically installed in the chamber, ensuring 

that as the membrane oscillates, it generates a pulsatile fluid flow. This mechanism can be exploited 

to pump biological fluids or other liquids in a controlled, cyclic manner. 

5. Theoretical Analysis of Parametric Amplification in Coupled  

Hodgkin–Huxley and Mechanical Oscillator Systems   

This chapter illustrates how the nonlinear dependence of the capacitance on the resonator’s 

displacement can induce parametric resonance, ultimately amplifying the mechanical oscillations. By 

combining a first-order Taylor expansion of the position-dependent capacitance with a dominant 

harmonic representation of the driving voltage, the system’s governing equation takes a Mathieu-

like form [13], highlighting the conditions under which small oscillations grow significantly. 

Consider the dynamic equation of the mechanical oscillator coupled with HH model: 

𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝐷

𝑑𝑥

𝑑𝑡
+ 𝐾𝑥 = 𝐹𝑒𝑙𝑒𝑐(𝑥, 𝑡),  

where 𝐹𝑒𝑙𝑒𝑐(𝑥, 𝑡) =
𝐶𝑎
2(𝑥,𝑡)𝑉2(𝑥,𝑡)

2𝜖0𝑆
, 𝐶𝑎 =

𝜖0𝑆

𝑑0−𝑥
; 𝐹𝑒𝑙𝑒𝑐(𝑥, 𝑡) represents the electrostatic force generated 

by a capacitor 𝐶𝑎(𝑥) charged to a voltage 𝑉(𝑡).  

For small oscillations, expand 𝐶𝑎(𝑥) about 𝑥 = 0: 

𝐶𝑎(𝑥) ≈ 𝐶0 + 𝐶1 𝑥,  

where 

𝐶0 =
𝜀0 𝑆

𝑑0
, 𝐶1 =

𝑑

𝑑𝑥
( 

𝜀0 𝑆

𝑑0−𝑥
)|
𝑥=0

 =
𝜀0 𝑆

𝑑0
2 ,  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2025 doi:10.20944/preprints202502.0250.v1

https://doi.org/10.20944/preprints202502.0250.v1


 17 of 20 

 

Higher-order terms (e.g., 𝑥2) are omitted to keep the analysis tractable. Suppose the driving 

voltage is dominated by a single harmonic: 

𝑉(𝑡) ≈ 𝑉1cos(𝜔𝑡).   

In practice, additional DC or higher-frequency components may be incorporated; however, the 

principal mechanism of interest arises from the primary harmonic1.  

Substituting the Taylor-expanded 𝐶𝑎(𝑥) and the single-harmonic voltage gives: 

𝐹𝑒𝑙𝑒𝑐(𝑥, 𝑡) ≈
[𝐶0+𝐶1 𝑥]

2 [𝑉1cos(𝜔𝑡)]
2

 2 𝜀0 𝑆 
,  

Expanding and simplifying using the identity cos2𝜃 =
1

2
(1 + cos2𝜃): 

𝐹𝑒𝑙𝑒𝑐(𝑥, 𝑡) ≈
𝑉1
2

4 𝜀0 𝑆
(𝐶0

2 + 2 𝐶0 𝐶1 𝑥)[1 + cos(2𝜔𝑡)],  

Neglecting higher-order terms (𝑥2) for small oscillations, the force simplifies to: 

𝐹𝑒𝑙𝑒𝑐(𝑥, 𝑡) ≈
𝑉1
2 𝐶0 𝐶1

2 𝜀0 𝑆
𝑥 +

𝑉1
2 𝐶0 𝐶1

2 𝜀0 𝑆
𝑥cos(2𝜔𝑡),  

Substituting the expanded electrostatic force back into the oscillator’s equation of motion: 

𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝐷

𝑑𝑥

𝑑𝑡
+ 𝐾𝑥 =

𝑉1
2 𝐶0 𝐶1
2 𝜀0 𝑆

𝑥 +
𝑉1
2 𝐶0 𝐶1
2 𝜀0 𝑆

𝑥cos(2𝜔𝑡), 

rearranges to: 

𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝐷

𝑑𝑥

𝑑𝑡
+ (𝐾 −

𝑉1
2 𝐶0 𝐶1
2 𝜀0 𝑆

) 𝑥 =
𝑉1
2 𝐶0 𝐶1
2 𝜀0 𝑆

𝑥cos(2𝜔𝑡). 

Dividing through by 𝑀 and defining 𝜔0 = √𝐾/𝑀 and 𝜁 = 𝐷/(2√𝐾𝑀), the equation becomes: 

𝑑2𝑥

𝑑𝑡2
+ 2 𝜁 𝜔0  

𝑑𝑥

𝑑𝑡
+ (𝜔0

2 −
𝑉1
2 𝐶0 𝐶1
2 𝜀0 𝑆 𝑀

)𝑥 =
𝑉1
2 𝐶0 𝐶1
2 𝜀0 𝑆 𝑀

𝑥cos(2𝜔𝑡). 

This resembles the standard Mathieu equation: 

𝑑2𝑥

𝑑𝑡2
+ (𝜔̃0

2 − ℎcos(2𝜔𝑡))𝑥 = 0,  

where 𝜔̃0 = 𝜔0
2 −

𝑉1
2 𝐶0 𝐶1

2 𝜀0 𝑆 𝑀
 𝑎𝑛𝑑 ℎ  encapsulates the modulation strength proportional to 𝑉1

2 𝐶0 𝐶1/

(𝑀 𝜀0 𝑆), and the damping term has been disregarded.  

If the modulation frequency 𝜔 is near the system’s natural frequency 𝜔̃0 , small disturbances in 

𝑥(𝑡)  can be amplified substantially. The damping 𝐷  limits unbounded growth, but moderate 

damping still allows significantly larger amplitudes compared to ordinary (single-frequency) forced 

resonance. 

In summary, by modeling the capacitor’s displacement dependence to first order and 

approximating the voltage with its dominant harmonic, the system’s governing equation naturally 

 
1 In practice, the voltage V(t) within the HH model exhibits a periodic temporal behavior composed of multiple harmonics—

approximately five in Figure 4—spanning an order of magnitude in frequency. While these higher harmonics contribute to the 

overall waveform, the principal mechanism of parametric amplification arises from the primary harmonic. Consequently, the 

Mathieu equation remains a valid approximation for capturing the core dynamics of the system. However, the presence of 

additional harmonics may introduce minor perturbations, potentially requiring more sophisticated analytical techniques for 

a comprehensive description. For the purposes of this analysis, the single-harmonic approximation sufficiently captures the 

essential parametric amplification behavior observed numerically. 
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displays parametric resonance features. This leads to the well-known Mathieu-like behavior, where 

the mechanical oscillator’s amplitude can be substantially amplified at or near the resonant 

frequency. In the context of a coupled Hodgkin–Huxley and electro-mechanical oscillator framework, 

these results offer insights into how bioelectrical signals, once rectified and fed into a nonlinear 

electrostatic actuator, may yield significant mechanical outputs through parametric amplification. 

This simplified derivation underscores the power of nonlinear coupling in electromechanical 

systems, highlighting both the potential for large amplitude oscillations and the need to carefully 

consider damping, frequency tuning, and operating conditions to harness or mitigate parametric 

effects in practical devices. In MEMS or bioelectromechanical devices, this effect can be harnessed to 

obtain large displacements from relatively small voltage inputs, provided the operating frequency 

and damping are suitably tuned. 

6. Conclusions 

This work has introduced a bioelectromechanical system that couples the Hodgkin–Huxley 

(HH) neuronal model with a mechanical resonator, demonstrating how electrochemical potential 

energy can be harnessed to produce mechanical work. Numerical simulations reveal that, within 

specific parameter ranges, the membrane potential achieves a stable limit cycle characterized by 

periodic action potentials, subsequently driving small yet significant displacements in the resonator. 

The external current and mechanical parameters (e.g., damping, stiffness) emerge as decisive control 

variables for inducing or suppressing sustained oscillations. 

From a theoretical standpoint, modelling the capacitor’s displacement dependence to first order 

and approximating the voltage with its dominant harmonic naturally leads to parametric resonance. 

In such a framework, the system’s governing equation adopts Mathieu-like characteristics, where 

small perturbations can be substantially amplified at or near the resonant frequency. In the context 

of a coupled HH and mechanical oscillator system, these findings clarify how bioelectrical signals, 

once rectified and directed into a nonlinear electrostatic actuator, may yield significant mechanical 

outputs through parametric amplification. 

This simplified derivation underscores the power of nonlinear coupling in electromechanical 

devices, highlighting both the potential for large-amplitude oscillations and the necessity of carefully 

balancing damping, frequency tuning, and operating conditions. In micromechanical or 

bioelectromechanical technologies—such as micropumps or implantable actuators—this effect can be 

leveraged to achieve considerable displacements from relatively small voltage inputs. 

Future studies will focus on refining this theoretical insight by investigating higher-order 

nonlinearities, long-term stability, biocompatible materials, and broader ranges of biological cell 

networks, ultimately broadening the functionality and practical applications of such bio-hybrid 

systems. 

Author Contributions: Conceptualization, A. Carcaterra and N. Roveri; methodology, A. Carcaterra and N. 

Roveri; software, S. Milana and G. Pepe; validation, S. Milana and G. Pepe; formal analysis, A. Carcaterra and 

N. Roveri; data curation, A. Carcaterra and N. Roveri; writing —original draft preparation, N. Roveri.; 

writing—review and editing, N. Roveri and S. Milana; supervision, A. Carcaterra. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: No new data was created. 

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the 

author contribution or funding sections. This may include administrative and technical support, or donations 

in kind (e.g., materials used for experiments). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2025 doi:10.20944/preprints202502.0250.v1

https://doi.org/10.20944/preprints202502.0250.v1


 19 of 20 

 

Abbreviations 

The following abbreviations are used in this manuscript: 

• HH: Hodgkin–Huxley 

• MEMS: Microelectromechanical Systems 

• 𝐼𝑒𝑥𝑡: External current 

• 𝐶𝑚: Membrane capacitance 

• 𝐶𝑎: Variable capacitor (capacitor associated with the resonator) 

• 𝐼𝑁𝑎: Sodium ionic current 

• 𝐼𝐾: Potassium ionic current 

• 𝐸𝑁𝑎: Nernst potential for sodium 

• 𝐸𝐾: Nernst potential for potassium 

• 𝑃𝑐𝑎𝑝: Capacitive power (energy stored/released by the membrane capacitor) 

• 𝑃𝑖𝑜𝑛: Ionic dissipation power 

• 𝑃𝑓𝑒𝑚,𝑁𝑎 and 𝑃𝑓𝑒𝑚,𝐾: Electromotive power contributions (Nernst) for sodium and potassium, respectively 

• 𝑃𝑒𝑥𝑡: External power 

• 𝑍𝑝: Impedance in the driving circuit 

• 𝑍𝑠: Additional impedance in the electromechanical converting circuit 

• 𝐾: Elastic constant (stiffness) of the mechanical oscillator 

• 𝑀: Mass of the mechanical oscillator 

• 𝐷: Damping coefficient of the mechanical oscillator 

• 𝜔: Angular frequency of the input signal (voltage) 

• 𝜔0: Natural frequency of the mechanical oscillator 

• 𝜁: Damping ratio 
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