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Abstract: This paper introduces a novel bioelectromechanical device converting the electrochemical
potential energy of excitable cells into mechanical work by coupling the Hodgkin-Huxley (HH)
neuronal model response to a mechanical resonator. Addressing key challenges in
bioelectromechanical systems, including biocompatibility, miniaturization, and efficient energy
conversion, the device leverages the membrane potentials of biological cells to drive mechanical
oscillations within microelectromechanical systems (MEMS). Through a combination of numerical
simulations and theoretical analyses, it is demonstrated that the coupled HH-resonator system
achieves stable limit cycles and significant mechanical displacements via parametric amplification.
This amplification arises from the nonlinear capacitive coupling, which leads to Mathieu-like
equations governing the system’s dynamics, thereby enabling large oscillations from relatively small
voltage inputs. Such parametric resonance is critical for the device's ability to sustain oscillatory
motion, making it highly suitable for integration into compact and implantable MEMS applications.
Potential applications include implantable sensors and actuators for real-time physiological
monitoring, and advanced micro-scale systems that benefit from biologically sourced energy. The
findings underscore the promise of bioelectromechanical systems in advancing biomedical and
microengineering technologies, paving the way for innovative solutions in personalized medicine,
bio-robotics, and beyond.

Keywords: bioelectromechanical systems; Hodgkin-Huxley model; parametric resonance;
microelectromechanical systems (MEMS); nonlinear capacitive coupling; electrostatic actuation;
action potential; energy conversion; biocompatible actuators; bio-hybrid microsystems

1. Introduction

The development of bioelectromechanical devices capable of converting electrochemical
potential energy from biological cells into mechanical energy represents a significant advancement
in the field of bioengineering. This research aims to address the challenges associated with the
miniaturization and optimization of such devices, focusing on their potential applications in
medicine, bioengineering, and microelectromechanical systems (MEMS).

MEMS have emerged as a pivotal technology in biomedical applications, offering the potential
to revolutionize medical diagnostics, therapeutics, and monitoring [1]. These systems integrate
mechanical elements, sensors, actuators, and electronics on a common silicon substrate, enabling the
creation of devices with high functionality and small size. Advancements in MEMS have led to the
development of implantable devices such as micropumps, biosensors, and micro-robots, which are
designed to offer better diagnostic and therapeutic methods [2,6,7].

A comprehensive review [3] highlights the significant advancements in MEMS for biomedical
applications, emphasizing their role in diagnostics, therapeutics, and monitoring. The authors discuss
the integration of MEMS with biological systems, noting that such integration has led to the
development of devices capable of precise and early detection of medical conditions, as well as
therapeutic interventions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Despite these advancements, several challenges persist in the miniaturization and optimization
of bioelectromechanical devices. One major obstacle is the development of flexible and biocompatible
materials that can withstand the physiological environment without causing adverse reactions.
Efforts have been made to address this by focusing on polymer processing to develop flexible
implantable devices with high biocompatibility [4,5].

Another significant challenge is the efficient conversion of electrochemical energy from
biological cells into mechanical energy [8]. Traditional methods often face limitations due to the
complexity of biological systems and the need for precise control over energy conversion processes.
The intricate nature of biological systems introduces challenges in accurately controlling energy
conversion processes. For instance, the storage of energy in ATP was first detected in anaerobic
energy-yielding reactions but soon was also found in respiratory and photosynthetic energy
production. However, the mechanism by which energy derived from metabolites was converted into
phosphate-bond energy in these processes appeared to be complex and not fully understood [9].

Furthermore, the Second Law of thermodynamics implies that no thermodynamic system with
a single heat source at constant temperature can convert heat into mechanical work in a recurrent
manner [10].

Recent research has explored various approaches to overcome these limitations, including the
development of microresonators coupled to excitable cells to induce periodic oscillations, thereby
converting electrochemical energy into mechanical energy [11].

These complexities highlight the need for innovative approaches to achieve efficient and
controlled energy conversion in biological systems.

The proposed bioelectromechanical device aims to address the challenges identified in the
current state of the art by utilizing the membrane potential and action potential activation of excitable
cells to drive an electromechanical circuit. This approach offers several advantages:

o  Efficient Energy Conversion: By directly harnessing the electrochemical potential of biological
cells, the device achieves more efficient energy conversion compared to traditional methods.

e  Biocompatibility and Miniaturization: Utilizing biological cells as the energy source ensures
compatibility with the human body, reducing the risk of adverse reactions. Additionally, the
device's design allows for significant miniaturization, making it suitable for applications where
space and invasiveness are critical concerns.

e  Flexible Architectural Design: The mechanical oscillator, realized through electrostatic
actuation, can be easily scaled and adapted to multiple configurations. Increasing the number
of capacitor plates or excitable cells proportionally boosts the actuation force and available
power. This modularity supports diverse applications such as micropumps, micropropellers
for drug delivery, and other micromechanical subsystems.

Potential applications of this technology include: i) implantable sensors and actuators powered
by the device could monitor and respond to physiological conditions in real-time, offering new
avenues for personalized medicine. ii) the device could be integrated into prosthetics and assistive
devices, providing a sustainable power source that adapts to the user's biological systems. iii) The
device's compact size and efficient energy conversion make it ideal for integration into MEMS,
enabling the development of advanced micro-scale systems with enhanced capabilities.

In summary, this research seeks to advance the field of bioelectromechanical systems by
developing a device that effectively converts electrochemical energy from biological cells into
mechanical energy, addressing current challenges and opening new possibilities in medicine,
bioengineering, and MEMS applications.

2. Structural Design of the Proposed Bio-Electromechanical Device

The primary goal of the proposed bio-electromechanical device is to utilize the membrane
potential, specifically the action potential activation of at least one excitable cell, to power an
electromechanical circuit. This circuit comprises at least one resistor, one capacitor, and a mechanical
oscillator, where the oscillator is mechanically coupled to the mobile plate of the capacitor.
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The device is designed to harness the electrochemical potential energy generated by the
differential concentrations of ion species inside and outside the cellular membrane. This energy is
then converted into mechanical energy through a system consisting of at least one excitable cell and
an electromechanical microresonator. The microresonator cyclically excites the action potential of the
cell, thereby inducing periodic oscillations. These oscillations form a self-sustaining system capable
of generating mechanical energy for practical applications.

As illustrated in Figure 1, the proposed device is characterized by its compact dimensions,
ranging approximately from 10 to 200 microns, with an optimal operational range between 20 and
100 microns. The electrical parameters include maximum voltages around 100 mV, currents in the
nanoampere range, and associated power levels on the order of 101 W. Coupling between the
electromechanical microresonator and the cell body is achieved through at least one resistor and,
optionally, additional impedance components. The mechanical oscillator is integrally fixed to the
mobile plate of the capacitor, while the opposing plate remains stationary, facilitating the desired
energy conversion process.

T, Zp Zy

Figure 1. Schematic representation of the electromechanical diagram of the proposed device.

The device is organized into two primary coupled circuits: the driving circuit and the
electromechanical converting circuit, each serving distinct roles in the energy conversion process.

The driving circuit (labeled as Circuit 1 in Figure 1) includes at least one excitable cell, such as a
neuron or similar biological cell capable of generating action potentials. The cell membrane acts as
the central element, electrically connected through terminals T; and T, to both internal and external
cellular regions. These terminals are coupled to a current generator I, and an impedance Z,. The
current I, plays a critical role in modulating the membrane current to ensure efficient triggering of
the action potential.

The electromechanical converting circuit (labeled as Circuit 2 in Figure 1) is primarily passive
and consists of two main parts: the electrical and mechanical subsystems.

e Electrical Subsystem: The core electrical component is a capacitor (C,) with a capacitance C,,
connected in parallel to the current generator. An additional impedance Z; may be incorporated
to optimize performance in specific configurations.

e Mechanical Subsystem: The mechanical component is represented by an elastic mechanical
oscillator, which can be realized in various configurations. In the simplest model, the oscillator
consists of a mass M, an elastic element with stiffness K, and a dissipative element characterized
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by a damping coefficient D. The mobile plate of the capacitor is mechanically coupled to the
oscillator, enabling the conversion of electrostatic forces into mechanical oscillations.

The operation of the device hinges on the precise design of the external current, which must fall
within an optimal range to maintain system functionality. If I,,, istoo small, the membrane current
is insufficient to trigger action potentials. Conversely, if I, is too large, the excessive current
induces rapid refractory states in the cell, inhibiting periodic oscillations.

When I,,, is within the optimal range, the driving circuit generates periodic current spikes.
These spikes induce a cyclic potential difference across terminals T; and T,, leading to the periodic
charging and discharging of the capacitor C,. The resulting electrostatic forces between the capacitor
plates drive the oscillations of the mechanical oscillator, thereby producing the desired biomotor
effect.

The system's functionality is defined by its ability to convert the electrochemical energy of the
excitable membrane into mechanical energy. This process activates a limit cycle within the bio-
electromechanical system, resulting in self-sustaining oscillations. The mechanical energy generated
can be directly applied to power microdevices, offering a scalable and efficient solution for various
applications.

The key features of the proposed device are: i) the compact size, ranging from 10 to 200 microns,
facilitating integration into microscale systems. ii) Efficient Energy Conversion, directly harnesses
electrochemical potential from biological cells, enhancing conversion efficiency. lii) Biocompatibility,
utilizing biological cells as an energy source, ensuring compatibility with physiological
environments. Iv) Scalable Design: Modular architecture allows for the addition of multiple capacitor
plates or excitable cells, proportionally increasing actuation force and power output. Iv) Versatile
Applications: Suitable for implantable sensors, actuators, prosthetics, and advanced MEMS-
integrated micro-scale systems.

By addressing the challenges of miniaturization, biocompatibility, and efficient energy
conversion, the proposed bio-electromechanical device represents a step forward in the development
of bio-hybrid microsystems with diverse biomedical and engineering applications.

3. Mathematical Modeling of the Bio-Electromechanical Device
3.1. General Introduction to the Hodgkin-Huxley Model

The electrical behavior of the excitable membrane is described using the HH model [12], which
provides a robust quantitative foundation for understanding the membrane’s dynamic properties.
This section details the mathematical representation of the system, emphasizing its nonlinear
differential equations, the membrane's ionic dynamics, and their role in generating a periodic driving
force for the electromechanical components.

The power contributions in the Hodgkin-Huxley (HH) model can be categorized into distinct
components that reflect the energy transformations occurring within the neuronal membrane. These
components account for external stimulation, capacitive storage, ionic dissipation, and the influence
of electromotive forces. Below is a detailed description of each term.

The excitable membrane, represented in Figure 2, is modeled as a capacitor (C,,) with a dielectric
formed by the lipid bilayer. This bilayer is combined with selective ionic channels that regulate ion
flow based on voltage differentials. For this study, the focus is on sodium (Na*) and potassium (K*)
ions, which play essential roles in generating and propagating action potentials; in this model the
leakage channel is not considered.
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Figure 2. Equivalent electrical diagram of an excitable membrane (3) in Figure 1.

The sodium and potassium channels are characterized as variable resistors (Ry, and Ry), each
in series with constant voltage generators to reflect their voltage-dependent behavior. Hodgkin and
Huxley demonstrated that the conductances of these channels (gn, and gg) dynamically depend on
the transmembrane potential (V). During an action potential, the conductances increase significantly,
reducing the channel resistances and facilitating ion flow. This decrease in resistance highlights the
membrane's changing permeability in response to the electric field and provides clear evidence that
the action potential is driven by variations in ionic fluxes across the membrane. The resistances are
expressed as Rn, = 1/gna and Rg = 1/gyx, where the conductances depend on both time and
membrane potential.

Unlike the ionic channels, which can be modeled as resistors and respond to a step current input
with a corresponding step change in voltage, the neuronal membrane exhibits a continuous voltage
response under similar conditions. This distinction arises because the membrane behaves as a
capacitor, where altering the potential across it requires modifying the charge stored on its plates. In
the neuronal membrane, this process is analogous to redistributing charge across its interfaces
through ionic fluxes, which drive depolarization.

The relationship between the voltage across a capacitor and the charge stored on its plates is
given by: V = %, where Q represents the charge, and C is the capacitance, serving as the

proportionality constant between V and Q. The change in charge, and consequently the voltage
across the capacitor, is induced by current flow. Current is defined as the rate of charge transfer over
time: [ = ‘;—Q. Substituting this into the capacitor equation yields: dV = i

¢ c

From this relationship, it becomes clear that the voltage change across the capacitor in response
to a current pulse is directly proportional to the duration of the current. This continuous variation of
membrane potential highlights the capacitor-like behavior of the neuronal membrane in contrast to
the step responses of purely resistive ionic channels.

In series with these resistors are ionic batteries (Ey, and Ey), which represent the electromotive
forces arising from ionic concentration gradients.

In the HH model, ionic currents are modeled as flow through variable resistances in parallel
with a capacitor that represents the membrane. For each ion considered (e.g., sodium and potassium),
the current depends on the difference between the membrane potential and the ion's equilibrium
potential, which is determined by the Nernst equation. The total current flowing through the
membrane (Ii,,) is thus the sum of the capacitive current and the ionic currents.

The capacitive current (I,p) is related to the rate of change of the membrane potential (V) over
time. Since the membrane is represented as a capacitor, the capacitive current is given by: I, =
Cm %, where C,, is the membrane capacitance per unit area.

The ionic currents (/;,,) are driven by the conductances of the sodium and potassium channels
(gna and gy ), which depend on both time and the membrane potential, reflecting the voltage-
dependent nature of the channels. For sodium and potassium ions, the currents are expressed as:
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Ina = 9na(V — Eno), Ik = gx(V — Ex), where Ey, and Ex are the equilibrium potentials,
respectively. These potentials represent the voltages at which there is no net ionic flow for the
corresponding ion species.

The total membrane current is given by: liya1 = leap + Lion, Which, for the case of two ion species,

can be expanded as: equation:

av
Liotal = Cy T INa(V — Ena) + gk (V — Ex).

This formulation captures the dynamic interplay between the capacitive and ionic components
of the current, as well as their dependence on the time-varying membrane potential. It provides the
foundation for analyzing how the membrane potential evolves during processes like the action
potential, where rapid changes in ion channel conductances lead to characteristic voltage
fluctuations.

Hodgkin and Huxley developed equations to describe the time-dependent conductances of ion
channels, ensuring they remained sufficiently simple for computing action potentials and refractory
periods. A significant challenge in modeling these conductances lay in their distinct behaviors during
depolarization and repolarization. Specifically, sodium (gy,) and potassium (gyx) conductances
increase with a delay during depolarization and decrease rapidly during repolarization.

Using experimental data obtained via the patch-clamp technique, Hodgkin and Huxley
demonstrated that sodium conductance is proportional to the third power of an activation variable,
m, governed by a first-order differential equation, with an additional term accounting for the
progressive inactivation of sodium channels, h. Similarly, potassium conductance is proportional to
the fourth power of its activation variable, n, also governed by a first-order differential equation.
These relationships are expressed as:

INa = g_Nam3h, Ik = g_Kn4/
here, gy, and gk represent the maximum attainable values of sodium and potassium
conductances, respectively, while m, h, and n are dimensionless gating variables that range
between 0 and 1, that indicate the likelihood of the corresponding ion channel being open, allowing
ions to move between the intracellular and extracellular fluids. Their values depend on both

membrane voltage and time, reflecting the dynamic nature of channel gating. Their dynamics are
governed by the following first-order differential equations:

dm
(E = am(l - m) - Bmm
dh
E— ah(l—h) ’
dn
E =a,(1-n)—Byn

The rate constants @ and f are voltage-dependent and describe the transition rates of ion
channels between open and closed states. Let z denote a general gating variable, such as m, h, or n.
The dynamics of z can be described by:

dz dz 1 dz a
—=aWA-2-pV)z - —=a-z(@+h) - prvriaimv ik Sl
& -z
dt [ee] 7
where z, = —— is the equilibrium fraction of open channels, and 7 = —_ is the relaxation time.
a+f a+f

These equations highlight the following key points:
1. Individual ion channel proteins transition stochastically between open and closed states.
2. The fraction of open channels, z, relaxes exponentially toward z, the equilibrium value.
3. The relaxation rate to equilibrium is determined by the time constant 7.
The voltage-dependence of @ and S, as determined by Hodgkin and Huxley's experiments,
leads to exponential dependencies of reaction rates on membrane voltage (see Table 1).
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Table 1. Equations used to define the gating variables.

a; (]‘//) . Bi(V)
h 0.007¢20 !

1+ e3_0-1(vrest_V)

m 25 =01V = Vyest) 4e(Vrei§_V)
92-5—0-1(Vrest_V) -1

0.1 —0.01(V — Vypgr) Vo)
n rest
21=01(V—Vrest) — ] 0.125e¢ 80

Consequently, the equilibrium fraction z,, and time constant 7 exhibit sigmoidal dependencies
on voltage, reflecting the nonlinear reaction kinetics of ion channel gating. This interplay between
voltage and gating dynamics forms the foundation for understanding the behavior of excitable
membranes and their role in action potential generation.

Indicating with the index i for Na* (sodium) or K* (potassium), the Nernst potentials (E;)
and maximum conductances (g;) are provided in the Table 2. The term V,,; accounts for different
resting potentials commonly adopted in various studies, which are typically either 0mV or
—65mV. In this work, V. is taken to be —65mV.

Table 2. The constant parameters of the Hodgkin-Huxley model.

E; [mV] gi [mS/cm2]
Na* 115+V,pgt 120
K+ 124V, 06t 36

At equilibrium, the cell maintains a resting potential, primarily governed by the efflux of K*
ions through weakly active potassium channels. Sodium channels are largely inactive at this state.
Disturbances in the membrane potential, if sufficient in magnitude, initiate the activation of sodium
channels, leading to a sequence of ionic exchanges that constitutes the action potential.

The dynamics of the membrane are captured by the following system of nonlinear differential
equations, derived from the HH model:

( CnV = gnymPh(Ey, — V) + gen*(Ex — V) + Loxe,

dn _ ne(V)-n

at - )
l dm _ me(V)-m s (1)
| dat )

dh _ he(V)=h
\ dat )

Here:
¢ (,: Membrane capacitance [uF/cm?].
e V:Transmembrane potential [mV].
*  Jn, gx: Maximum conductances of sodium and potassium channels [mS/ cm?].
e Eyg Ex: Nernst potentials [ mV] for sodium and potassium, respectively.
e m, h represent the activation and inactivation variables for sodium channels, respectively, while
n represents the activation variable for potassium channels.
o mMmu(V), ho(V), ne,(V): Steady-state activation and inactivation functions (voltage-dependent).
o 7,1, t,(V), t,(V): Voltage-dependent time constants.
e I, External current per unit area applied across the membrane [¢A/cm?].
The first equation in system (1) represents the balance of currents across the cell membrane, as
illustrated in Figure 2. This equation accounts for the combined contributions of ionic currents and
external current inputs. The remaining three equations describe the dynamics of the ionic channels,
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specifically the constitutive relationships governing the variable resistances depicted in the diagram
in Figure 2.

3.2. Power Balance in the Hodgkin-Huxley Model

The power contributions in the HH model can be categorized into distinct components that
reflect the energy transformations occurring within the neuronal membrane. These components
account for external stimulation, capacitive storage, ionic dissipation, and the influence of
electromotive forces. Below is a detailed description of each term.

The external power is provided by the applied current and is responsible for driving the system.
The instantaneous power supplied by I, is given by:

Pext = Iext : V/

The external power can drive changes in the capacitive charge, sustain ionic currents, or both.
In Figure 5, P,y is represented in the third subplot from the top.
The power associated with the membrane's capacitive charging or discharging is:

av
Pcap - CmVE/

This term reflects the rate at which electrical energy is stored or released from the capacitive
component of the membrane. In Figure 5, P, is shown in the second subplot from the top and
indicated with Pg,.

The power dissipated by the ionic currents is given by:

PionZPNa+PKr

where Py, and Py are the power dissipation rates for sodium and potassium channels,
respectively. For each ionic channel:

Pna = gnamh(V — En,)?, P = gxn*(V — Ex)?,

These terms represent the resistive dissipation of energy due to ion flow through voltage-
dependent channels. In Figure 4, Py, and Px are displayed in the first subplot.

The HH model includes voltage sources representing the Nernst potentials (En, and Ey) for
sodium and potassium ions, respectively. These potentials contribute additional power, defined as:

Pfem,Na = InaEnNas Pfem,K = IxEx,

where Iy, and Ix are the ionic currents through the sodium and potassium channels: Iy, =
InaM3h(V — Exn), Ik = gxn*(V — Ex). These terms quantify the work done by the ion-specific
electromotive forces in driving ionic currents. Unlike P,,,, these contributions do not result in heat
dissipation but are essential for maintaining ionic gradients and facilitating proper neural function.
In Figure 5, Ppn, and Pk are also represented in the first subplot.
The power balance of the HH model is described by the following relationship:

Pext = Pcap + Pion + Prem,s

indicating that the power supplied externally is distributed among three components: energy
storage in the membrane capacitance, dissipative losses through ionic channels and energy exchange
facilitated by the Nernst potentials.

3.3. Numerical Simulations of the Hodgkin-Huxley Model

Numerical simulations are performed with the values listed in Tables 1 and 2. Initial condition
of Eq. 1 are V(0) = Vyesr and n(V = 0) = n(Vyest), M(Vyese), A(Vyese). The external current is used as
regulation parameter.

The way the HH model processes external current to generate action potentials is fundamental,
as this conversion of synaptic input into action potentials forms the cornerstone of neuronal
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communication and brain functionality. When a low-level external current is applied, ionic
fluctuations occur until the system stabilizes at a new steady state characterized by slightly elevated
membrane potentials. With moderate external current input, the membrane potential may briefly
exceed the action potential threshold, producing a single spike before returning to a steady state.
Biologically, this reflects ion redistribution in response to changes in electrostatic pressure.

Figure 3 illustrates the neuronal response to I, = 3uA/cm?, a steady stream of action
potentials is generated. The HH model not only attributes action potential generation to ionic current
changes but also faithfully captures the timing and voltage characteristics of these events, ensuring
biologically accurate simulations.

Membrane Potential

—— Na+
K+

25 30 35 40 45 50
Time (ms)

Figure 3. Starting from the row on top, cell membrane potential, gating variables, changes in conduction of K+
and Na+ with the action potential, plotted versus time and with Iry, = 3u4/ cm?.

Figure 3 further demonstrates how ionic conductance changes correspond to the various phases
of an action potential. At the onset of an action potential, the conductance of Na* (gyq) rapidly
increases due to the activation of m-gates, enabling a substantial influx of Na* ions. This inward
current amplifies depolarization through a positive feedback loop, driving the rapid upstroke of the
action potential. At the peak, however, gy, begins to decrease due to the inactivation of Na*
channels via the h-gates, thereby limiting further Na* entry. Sodium ions subsequently leave the
cell, driven by electrochemical gradients, as the channels close.

In contrast, potassium conductance (gg) increases more gradually as n-gates slowly activate.
This delayed efflux of K* ions counteracts the depolarizing effects of Na* influx and ultimately
dominates during the repolarization phase. The delayed activation of n-gates ensures a robust
repolarization process, restoring the membrane potential toward its resting state. The persistence of
elevated gy after repolarization results in an after-hyperpolarization, a transient state where the
membrane potential becomes more negative than the resting level. This state is critical for resetting
the neuronal membrane and ensuring unidirectional action potential propagation.

The interplay between Na* channel inactivation (h-gates closing) and K* channel activation (n-
gates opening) creates a refractory period during which further action potential initiation is inhibited.
This separation of successive spikes prevents excessive neuronal firing and ensures orderly signal
transmission.

The voltage- and time-dependent behavior of the gating variables m, h, and n allows the HH
model to accurately capture the biophysical mechanisms underlying action potentials. The distinct
time constants and voltage sensitivities of the gating variables contribute to the characteristic
waveform of action potentials and their critical role in neural signaling.
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Figure 4 illustrates the Fourier transformation of the signal, highlighting a dominant frequency
slightly below 70 Hz. This result is consistent with the temporal periodicity observed in Figure 3,
where the signal exhibits a period of approximately 0.015 seconds.

With the aid of Figures 5 and 6 it is possible to understand the power fluxes within the
membrane. Specifically, to facilitate the visualization of power exchanges, the first subplot of Figure
6 displays the combined power contributions from the individual ionic channels (Psey, na + Pna and
Peemx + Px) along with the capacitive power (Fp). These components are related to the external

power (P.,;), represented in the second subplot.

Figure 4. FFT of the signal V(t).

x10
1

Wiem?

4
Time (ms) *107

Figure 5. The figure displays the power components of a single charge-discharge cycle organized into three
subplots due to differing y-axis scales: (top) ionic power contributions (Pya, Pk, Prnas Prk); (middle) capacitive
power (Pp); (bottom) external power (Pey).
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Figure 6. The first subplot shows the combined power contributions from the ionic channels (P Na + Pya and
Prem,x + Px) and the capacitive power (P.,p). The second subplot illustrates the external power (Pey)-

Figure 6 reveals the interdependent temporal evolution of Py, P.4p, and the combined ionic
channel powers (PNa + Pfem_Na) and (PK + Pfele):

1. Initial Phase. P,,; transitions from negative values to zero, reflecting a diminishing energy
supply from the external current. It then peaks positively around t = 2.5 - 107> ms. Meanwhile,
Pqp —the power in the membrane capacitance C,, —shows a complementary response: dropping
to a negative extremum, then surging to a positive peak shortly thereafter.

2. Sodium Channel Power. The combined sodium channel power (Pyq + Premya) closely mirrors
P.qp but with opposite polarity. It peaks positively at t = 2.2- 1075 ms —when P.,, is at its
minimum —and then decreases to a local minimum at ¢t = 2.5 - 10~ ms. Shortly after the external
power peak, it reaches an absolute minimum at t = 2.8 - 107° ms.

3. Potassium Channel Power. The total potassium channel power (PK + Pfem,,() lags behind the
sodium channel, exhibiting an opposite trend. When (PNa + Prem, Na) rises, (PK + Prem, K) drops,
and vice versa. Its positive peak emerges slightly delayed, in line with potassium’s role in
repolarization.

4. Convergence and Next Cycle. Notably, at t=3.5-10"ms, all internal power terms
(Pcap, Pya + Premnas Pk + Pfem,K) converge to zero, while P,,; remains positive and continues to
decrease. Soon after, (PNa + Pfem,Na) becomes positive and (PK + Pfem‘K) becomes negative,
with both reaching extreme values at ¢ = 0.00612ms. A subsequent relative maximum in P,
appears at t = 4.7 - 10~°ms. Finally, P,,, dips into negative territory, completing one cycle of
power exchange and preparing the system for the next.

This analysis underscores the cyclical energy flow within the HH framework. Depolarization
involves strong coupling between capacitive charging and sodium ion flux, while repolarization is
facilitated by potassium’s delayed conductance. After hyperpolarization, the system transitions to a
state where the external current again becomes the primary energy source, allowing the cycle to
repeat.

These power exchanges emphasize both the electrical storage and dissipation mechanisms
inherent in neuronal activity. The external energy supply sustains the rapid influx and efflux of ions
through voltage-gated channels, restoring the membrane potential after each depolarization event.
Through this lens, the Hodgkin-Huxley model not only captures the electrophysiological behavior
of excitable cells but also provides a framework for analyzing the energetics and metabolic costs of
neuronal signaling.
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3.4. Integration of the Hodgkin-Huxley Model with a Elettro-Mechanical Oscillator

The coupling of the HH neuronal model with a electro-mechanical oscillator introduces a novel
bioelectromechanical system, enabling the direct conversion of membrane potentials into mechanical
motion. This integration leverages the dynamic properties of the HH model and incorporates the
capacitive behavior of the membrane into a resonating mechanical structure. The system’s equations
are presented below in coherence with the notation used in this study.

Focusing on the analysis of the driving circuit (1) with the electromechanical converting circuit
(2), as illustrated in Figure 1, the complete system integrates the neuronal membrane described by
the HH model with a mechanical resonator. This resonator comprises a mass (M), a spring with
stiffness (K), and a damping element characterized by the coefficient (D). Additionally, the
mechanical oscillator is equipped with a capacitor, whose capacitance varies with the displacement
of the oscillator’s movable plate.

To ensure the compatibility of the two systems, the HH model equations (1) —formulated in
terms of specific quantities such as current per unit area—are scaled by the total membrane area S,
in this case, a cell radius of 5000ucm was assumed. The membrane dynamics are governed by the
following set of equations:

CmScellV = Scell(g_Namsh(ENa - V) + gKn4(EK - V) + Iext) + IC'
n=a,(1—-—n)—LBn

n = ap(l=m)—=Bnm, ' @
l h = an(1—h) = Byh
Here I. = —C, V is the current in capacitor coupled to the elastic mechanical oscillator.
The mechanical oscillator is described by the following second-order differential equation:
d?x dx c2v?
M F +D E +Kx = m,

where:
e x is the displacement of the movable plate of the capacitor,

e S is the surface area of the capacitor plates,
€0S . . . . . cpso s
o (Cy= do"_x is the displacement-dependent capacitance of the capacitor, €, is the permittivity of

free space,

e d, represents the rest distance between the fixed and movable plates of the capacitor
incorporated into the resonator, it ensures the capacitor has a finite capacitance in its rest state.
The term on the right-hand side of the equation represents the electrostatic force exerted by the
capacitor, which depends on the square of the transmembrane potential and the displacement-
dependent capacitance.
Note that to integrate this equation with the HH model, which utilizes time in milliseconds, we
redefine the time variable t as t (ms): T =t,, =t X 1073s. This substitution affects the time

2 2 2 2
derivatives as follows: = =22 = 1000 £, L = (i) = (1000)2 £ = 10° £ Substituting these
dat at at

at dtdr dc’ dt?
into the mechanical oscillator equation yields:

oy X L 103p ™ _ Gav?
10°M 55+ 10°D 5 + Kx = 25, 3)

where: T is time in milliseconds (ms), x(7) remains in meters (m), M, D, and K retain their SI
units (kg, N's/m, and N/m respectively). This normalization ensures that the time scales of the
mechanical oscillator are directly compatible with those of the HH neuronal model, facilitating
coherent integration of the bioelectrical and mechanical dynamics.

When the HH model is integrated with the mechanical oscillator, the membrane potential
influences the resonator’s motion through the variable capacitor, and the displacement x in turn
modifies the capacitance seen by the membrane. This two-way feedback links the bioelectrical and
mechanical components and can produce complex dynamical behavior. Rewriting eq.s (2) and (3) in
a normal form:
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V= —[gNam h(Ey, — V) + gun*(Ex = V) + Lot
(Cm+do—x5ceu)
_ noo(V)—n_ L moo(V)—m. . hoo(V)—h.
4 ) ' (V) (V) , (4)
ax _
d‘r - x
e RN [ —10°*Dv, — Kx]
dr 10°M L2goS
2 2
the last equation can also be written as o % - zw"f v, — 2 x where: w, = \/E and
dt 210°MgpS 10 10 M
{ _ D
- 2wp M

Energy Considerations

The powers associated with the electro-mechanical resonator in the coupled HH and resonator
system are derived from the mechanical energy components and their interactions with the capacitor.

The variable capacitor depends on the resonator’s displacement x(t), the instantaneous energy

stored in this capacitor is: E¢, = 1Ca(t)Vz(t). Consequently, the instantaneous power associated
with Ca arises from the time derivative of this electrostatic energy: Pgy == dc“(t) Vi) +
C,(V () %(tt). After substitution with the actual value of C,(t), the formula produces:

1
Ca = 2 (d

v V() + 2V ()R,

The first term quantifies the power contribution due to the mechanical motion of the capacitor
plate, while the second term, corresponds to the conventional power exchange from changes in the
voltage across the capacitor at a given capacitance.

Power due to the resonator's kinetic energy, to the spring force and dissipated by the resonator's
damping are listed below:

dv
Py = Mv, &=
kin Ux dt
Pelas = —Kxvy /
— 2
Pdamp = —Dvy

The total power balance for the resonator alone is:
Pres = PCa + Pkin + Pelas + Pdampr
When the resonator is coupled with the HH model, the complete power balance reads:

ScetPext = Scell(Pcap + Pon + Pfem) + Pres,

recalling that the previously calculated powers for the HH model, in section 3.2, were specific
powers, they must be multiplied by the cell surface area S,,;; to obtain the total power contributions.

The energy exchanges in the coupled system can be categorized into: i) Electrochemical Energy,
represented by the ionic currents and the capacitive charging/discharging of the membrane; ii)
Mechanical Energy: comprising kinetic energy, potential energy, and dissipation; iii) Electrostatic
Energy, stored in the capacitor of the mechanical oscillator.

4, Numerical Simulations and Discussion

Numerical simulations are performed with the values listed in Tables 1 and 2. Initial condition
of Eq. 1 are V(0) = Ve and n(V = 0) = n(Vyese), M(Vyest), R(Vyese); initial condition for the
displacement and velocity of the oscillator are null. The external current is set I,y, = 9 uA/cm?. For
a spherical cell, S, is calculated as: S = 47r?, where r is the cell radius. Assuming r = 50 um,
the cell surface area is: S, = 4m(50 x 1072 cm? = 3.14 x 10™* cm?.
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The physical parameters of the oscillator are set as follows. Figure 3 and 4 indicate that the
fundamental period of the ensuing oscillatory process is about T = 15ms. To achieve sufficiently
large oscillation amplitude in the mechanical oscillator, its natural frequency should be tuned to

match that of the driving circuit, namely: \/§= Wy =%. Thus, selecting: K = 9.9 x 10‘62

follows M = % = 5.6423 x 107 kg. In a similar fashion, let the viscous damping factor { = wD — =
2 n

0.025, it follows D = 1.182 x 107N - s/m; the other parameters are d, = 4.5um, ¢, = 8.85X
107*2F/m,S = 4.3 x 10~° m?.

Figure 7 shows the membrane potential, along with the displacement and velocity of the
mechanical oscillator, plotted versus time. While the time behaviour of the membrane potential
remains nearly identical to that of the uncoupled scenario, the oscillator exhibits a characteristic
oscillatory behaviour consisting of an initial transient phase followed by a steady-state regime.
During the initial transient, a harmonic amplitude modulation emerges: its carrier frequency is
approximately w,, whereas the modulating frequency is considerably lower and roughly matches
the difference between the driving frequency and the system’s natural frequency.

Membrane Potential

o
S

V(t) (mV)
g o

100 200 300 400 500 600 700 800 900 1000

x10° Oscillator displacement

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)
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o

&

i 0 100 200 300 400 500 600 700 800 900 1000
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Figure 7. Cell membrane potential, displacement and velocity of the resonator versus time.
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Figure 8. Normalized FFT of the membrane potential (in blue line) and of the displacement of the mechanical

oscillator system (in red). Normalization is performed by dividing each time signal by its maximum amplitude.
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The frequency content of these responses are illustrated in Figure 8, which displays the
normalized Fourier transform, ensuring a consistent scale across all spectra. From Figure 8, one can
observe that the oscillator’s displacement predominantly concentrates its energy at w,, chosen to be
close to the driving frequency. Additionally, there is a less energetic peak at lower frequency, roughly
10 Hz, which accounts for the low-frequency oscillation associated with the amplitude-modulated
(AM) wave. This low-frequency component decays after a characteristic time span.

The typical timescale of the transient vibration is given by %{ ~100 Hz, beyond three times this

interval, the transient behaviour subsides, and the oscillator settles into stable vibrations around a
mean displacement of slightly less than 106 m. The duration and prominence of the initial AM wave
are governed by the damping factor C. Altering C leads to distinct changes in both the amplitude and
frequency of the observed modulation, thereby influencing the overall transient dynamics of the
coupled system.

Figure 9 presents the energy contributions associated with both the neuronal membrane and the
mechanical resonator. The first two subplots exhibit behavior closely resembling that of the
uncoupled HH model, in Figure 5. Examination of the resonator reveals that, given the small
displacements and velocities involved, the primary energetic contribution arises from the capacitor.
This contribution can be separated into a mechanical term, stemming from the variation in
capacitance, and an electrical term, resulting from the voltage changes across the capacitor over time.

10l Pra

ok i S— S — L
Pric

kg*m%(ms)®

51 | Pcin
\ —— Pelastic
Pdamp

——PCa

0 2 4 6 8 10 12 14 16 18 20
Time (ms)

Figure 9. Power components during a single charge-discharge cycle, organized into three subplots with different
y-axis scales: (top) ionic power contributions (Pya, Pk, Penas Prx) and capacitive power (P,p), (middle) external

power (Pe,;), and (bottom) power associated with the mechanical oscillator.

It has been noted that the external current can serve as a control parameter. Figure 10 illustrates
the behavior of the coupled system when this external current is set to 3 pA. After a single cycle, the
membrane potential settles into a stable value, effectively inhibiting further pulsatile behavior.
Likewise, following the initial transient phase, the resonator’s displacement converges to a fixed
position, and its velocity becomes zero, indicating that the mechanical subsystem also reaches a
steady equilibrium. In conclusion, by exploiting this mechanism in a cyclic manner, it becomes
possible to induce periodic action potential firing in the driving circuit, effectively establishing a limit
cycle in the bioelectric system. An opposing regulatory mechanism counters the effect of the external
current by returning the membrane potential toward equilibrium. Consequently, when the external
current again drives the membrane away from this equilibrium, another spike is generated,
producing a stable, repeating sequence of action potentials. Notably, this spiking behaviour —and
thus the resulting limit cycle—only emerges for suitable values of ;.
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Figure 10. Cell membrane potential, Displacement and velocity of the resonator plotted versus time with I,y =
3uA.

In the proposed work, the mechanical oscillator uses a simple electrostatic actuator composed
of a single capacitor with two facing plates. Where required by specific applications, multiple pairs
of plates can be incorporated —common in electrostatic microactuator technology —to proportionally
increase both the actuation force and the resulting displacement. The same principle applies to the
number of neuronal cells included in the bio-motor: employing multiple excitable cells or cell bodies,
for example in an electrically connected ensemble, proportionally augments the power delivered to
the mechanical oscillator.

Furthermore, the mechanical oscillator can serve as an actuator element in any micromechanical
device, thus functioning as the principal motor. A promising application of this bio-electromechanical
system is in micropump technology. In this setup, the mobile capacitor plate acts as the movable wall
of a variable-volume chamber. Two one-way valves are typically installed in the chamber, ensuring
that as the membrane oscillates, it generates a pulsatile fluid flow. This mechanism can be exploited
to pump biological fluids or other liquids in a controlled, cyclic manner.

5. Theoretical Analysis of Parametric Amplification in Coupled
Hodgkin-Huxley and Mechanical Oscillator Systems

This chapter illustrates how the nonlinear dependence of the capacitance on the resonator’s
displacement can induce parametric resonance, ultimately amplifying the mechanical oscillations. By
combining a first-order Taylor expansion of the position-dependent capacitance with a dominant
harmonic representation of the driving voltage, the system’s governing equation takes a Mathieu-
like form [13], highlighting the conditions under which small oscillations grow significantly.

Consider the dynamic equation of the mechanical oscillator coupled with HH model:

d%x
dt?

M2+ D2t Kx = Fopee(x,t),

C2(x,t)V2(x,t) C = €S
yYa —

where F,j..(x,t) = 2eas -

5 Forec(x,t) represents the electrostatic force generated
by a capacitor C,(x) charged to a voltage V(t).
For small oscillations, expand C,(x) about x = 0:

Ca(x) ~ CO + Cl X,

where

&S

27
dO

C=22 o==(22)

- E do—x

x=0
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Higher-order terms (e.g., x?) are omitted to keep the analysis tractable. Suppose the driving
voltage is dominated by a single harmonic:

V(t) = V,cos(wt).

In practice, additional DC or higher-frequency components may be incorporated; however, the
principal mechanism of interest arises from the primary harmonic!.
Substituting the Taylor-expanded C,(x) and the single-harmonic voltage gives:

Co+Cq x]? [Vycos(wt)]?
2&S

Forec(x,t) = [

Expanding and simplifying using the identity cos?6 = i(l + cos20):
2
Forec(x,t) = 4‘:—15 (C§ +2Cy €, 0)[1 4+ cosRwt)],
0

Neglecting higher-order terms (x?) for small oscillations, the force simplifies to:

VECoCy VECoCy

Fetec(,t) = 208 208

xcos(2wt),
Substituting the expanded electrostatic force back into the oscillator’s equation of motion:

d?x dx VZC, Cy VZC, Cy
M—+D—+Kx = 2wt),
dt2+ dt+ x 22,5 x+ 22,5 xcos(2wt)

rearranges to:

xcos(2wt).

d?*x dx VZCo Cy VECo Cy
K- x =
dte? dt

Moz tPgt 26,5 26, S
Dividing through by M and defining w, = \/K/M and { = D/(2VKM), the equation becomes:

d?x dx 5
W"‘Z((Doa‘l' 0)0_

Vi G Cl) = VEGo Gy xcos(2wt)

2e0SM) " T 2e,5M
This resembles the standard Mathieu equation:

d?x ~

—=+ (&% — hecoswt))x =0,
VZCoCy

2e9SM
(M &, S), and the damping term has been disregarded.

where @, = w§ — and h encapsulates the modulation strength proportional to VZC, C;/
If the modulation frequency w is near the system’s natural frequency @, , small disturbances in
x(t) can be amplified substantially. The damping D limits unbounded growth, but moderate
damping still allows significantly larger amplitudes compared to ordinary (single-frequency) forced
resonance.
In summary, by modeling the capacitor’s displacement dependence to first order and
approximating the voltage with its dominant harmonic, the system’s governing equation naturally

I In practice, the voltage V(t) within the HH model exhibits a periodic temporal behavior composed of multiple harmonics —
approximately five in Figure 4 —spanning an order of magnitude in frequency. While these higher harmonics contribute to the
overall waveform, the principal mechanism of parametric amplification arises from the primary harmonic. Consequently, the
Mathieu equation remains a valid approximation for capturing the core dynamics of the system. However, the presence of
additional harmonics may introduce minor perturbations, potentially requiring more sophisticated analytical techniques for
a comprehensive description. For the purposes of this analysis, the single-harmonic approximation sufficiently captures the

essential parametric amplification behavior observed numerically.


https://doi.org/10.20944/preprints202502.0250.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 February 2025 d0i:10.20944/preprints202502.0250.v1

18 of 20

displays parametric resonance features. This leads to the well-known Mathieu-like behavior, where
the mechanical oscillator’s amplitude can be substantially amplified at or near the resonant
frequency. In the context of a coupled Hodgkin—-Huxley and electro-mechanical oscillator framework,
these results offer insights into how bioelectrical signals, once rectified and fed into a nonlinear
electrostatic actuator, may yield significant mechanical outputs through parametric amplification.

This simplified derivation underscores the power of nonlinear coupling in electromechanical
systems, highlighting both the potential for large amplitude oscillations and the need to carefully
consider damping, frequency tuning, and operating conditions to harness or mitigate parametric
effects in practical devices. In MEMS or bioelectromechanical devices, this effect can be harnessed to
obtain large displacements from relatively small voltage inputs, provided the operating frequency
and damping are suitably tuned.

6. Conclusions

This work has introduced a bioelectromechanical system that couples the Hodgkin—-Huxley
(HH) neuronal model with a mechanical resonator, demonstrating how electrochemical potential
energy can be harnessed to produce mechanical work. Numerical simulations reveal that, within
specific parameter ranges, the membrane potential achieves a stable limit cycle characterized by
periodic action potentials, subsequently driving small yet significant displacements in the resonator.
The external current and mechanical parameters (e.g., damping, stiffness) emerge as decisive control
variables for inducing or suppressing sustained oscillations.

From a theoretical standpoint, modelling the capacitor’s displacement dependence to first order
and approximating the voltage with its dominant harmonic naturally leads to parametric resonance.
In such a framework, the system’s governing equation adopts Mathieu-like characteristics, where
small perturbations can be substantially amplified at or near the resonant frequency. In the context
of a coupled HH and mechanical oscillator system, these findings clarify how bioelectrical signals,
once rectified and directed into a nonlinear electrostatic actuator, may yield significant mechanical
outputs through parametric amplification.

This simplified derivation underscores the power of nonlinear coupling in electromechanical
devices, highlighting both the potential for large-amplitude oscillations and the necessity of carefully
balancing damping, frequency tuning, and operating conditions. In micromechanical or
bioelectromechanical technologies —such as micropumps or implantable actuators —this effect can be
leveraged to achieve considerable displacements from relatively small voltage inputs.

Future studies will focus on refining this theoretical insight by investigating higher-order
nonlinearities, long-term stability, biocompatible materials, and broader ranges of biological cell
networks, ultimately broadening the functionality and practical applications of such bio-hybrid
systems.
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Abbreviations

The following abbreviations are used in this manuscript:
¢ HH: Hodgkin-Huxley
e MEMS: Microelectromechanical Systems
e [, External current
e  (,,: Membrane capacitance
e (4 Variable capacitor (capacitor associated with the resonator)
e Iyu: Sodium ionic current
e [g: Potassium ionic current
e Epg: Nernst potential for sodium
e Eg:Nernst potential for potassium
e Py Capacitive power (energy stored/released by the membrane capacitor)
e P, Ionic dissipation power
®  Premna and Prep k: Electromotive power contributions (Nernst) for sodium and potassium, respectively
e P, External power
e  Z,:Impedance in the driving circuit
e Z: Additional impedance in the electromechanical converting circuit
e K: Elastic constant (stiffness) of the mechanical oscillator
e M:Mass of the mechanical oscillator
e  D: Damping coefficient of the mechanical oscillator
e  w: Angular frequency of the input signal (voltage)
e w,: Natural frequency of the mechanical oscillator

e  {:Damping ratio
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