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Abstract

This paper presents a systematic methodology for identifying optimal scaling regions in segment-based
box-counting fractal dimension calculations through a three-phase algorithmic framework combining
boundary artifact detection, sliding window optimization, and grid offset optimization. Unlike tradi-
tional pixelated approaches that suffer from rasterization artifacts, the method used directly analyzes
geometric line segments, providing superior accuracy for mathematical fractals and other computa-
tional applications. The three-phase optimization algorithm automatically determines optimal scaling
regions and minimizes discretization bias without manual parameter tuning, achieving significant
error reduction compared to traditional methods. Validation across Koch curves, Sierpinski triangles,
Minkowski sausages, Hilbert curves, and Dragon curves demonstrates substantial improvements:
excellent accuracy for Koch curves (0.11% error) and significant error reduction for Hilbert curves.
All optimized results achieve R? > 0.9988. Iteration analysis establishes minimum requirements
for reliable measurement, with convergence by level 6+ for Koch curves and level 3+ for Sierpinski
triangles. Each fractal type exhibits optimal iteration ranges where authentic scaling behavior emerges
before discretization artifacts dominate, challenging the assumption that higher iteration levels imply
more accurate results. This work provides objective, automated fractal dimension measurement with
comprehensive validation establishing practical guidelines for mathematical fractal analysis. The
sliding window approach eliminates subjective scaling region selection through systematic evaluation
of all possible linear regression windows, enabling measurements suitable for automated analysis
workflows.

Keywords: fractal dimension; box-counting method; sliding window optimization; scaling region
selection; boundary artifact detection; convergence analysis

1. Introduction

The accurate measurement of fractal dimensions presents a fundamental challenge that spans
from theoretical mathematics to practical engineering applications. While the theoretical foundation
was established by Richardson’s pioneering coastline studies [1] and Mandelbrot’s fractal geometry
framework [2], practical computational methods began with Liebovitch and Toth’s breakthrough
algorithm [3]. Despite decades of subsequent refinement, systematic errors persist, with recent analysis
quantifying baseline quantization errors at approximately 8% [4].

Consider the fundamental dilemma in fractal dimension measurement: while fractals like the
Koch curve have precisely known theoretical dimensions (D = log(4)/ log(3) ~ 1.2619), even these
mathematical objects produce inconsistent computational results depending on implementation details
and scaling region selection. A carefully implemented box-counting algorithm might yield D = 1.32
using one scaling region and D = 1.18 using another—but which measurement captures the true
mathematical scaling behavior?
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This illustrates a key challenge in fractal dimension estimation: inconsistent computational results
despite known theoretical values. Traditional box-counting methods provide varying answers, with
dimension estimates depending on arbitrary choices in scaling region selection.

1.1. The Evolution Of Box-Counting Optimization

The box-counting dimension D of a (fractal) object is defined as:

D — lim 08 N(€)

e—0log(1/€) @

where N(e) is the number of boxes of size € needed to cover the object. In practice, the limit is
approximated through linear regression on the log-log plot of N(e) versus € over a carefully selected
range of box sizes. It is expected that the larger € box-counts, if considered alone, would give inaccurate
dimension (slope) because of the limit not yet being approached. However, at the other extreme the
smallest box sizes may also, if considered alone, give inaccurate dimension (slope) due to numerical
and other issues. The critical insight underlying the general algorithm is that scaling region selection
can be formulated as an optimization problem: given a set of (log(e;),log(N(€;))) pairs, find the
contiguous subset that maximizes linear regression quality while minimizing deviation from known
theoretical values when available.

The computational implementation of fractal dimension measurement began with Liebovitch and
Toth’s breakthrough algorithm [3], which established the efficiency foundation essential for practical
applications. This was followed by systematic efforts to address parameter optimization challenges
throughout the 1990s: Buczkowski et al. [5] identified critical issues with border effects and non-
integer box size parameters, while Foroutan-pour et al. [6] provided comprehensive implementation
refinements that improved practical reliability. Roy et al. [7] demonstrated that scaling region selection
fundamentally determines accuracy, highlighting the persistent challenge of subjective decisions in
linear regression analysis.

Recent advances have emphasized error characterization and mathematical precision improve-
ments. Bouda et al. [4] quantified baseline quantization error at approximately 8%, establishing
benchmark expectations for algorithmic improvements, while Wu et al. [8] demonstrated that fun-
damental accuracy improvements remained possible through interval-based approaches. Despite
these sustained methodological advances, the fundamental problem persists: subjective scaling region
selection introduces human bias, limits reproducibility, prevents automated analysis, and creates
barriers for large-scale applications requiring objective, automated fractal dimension measurement.

Despite these sustained methodological advances, a fundamental problem persists: the subjective
selection of scaling regions for linear regression analysis. In practice, the log-log relationship between
box count and box size appears linear only over limited ranges, and the choice of this range dramatically
affects calculated dimensions. This subjectivity manifests in several critical ways:

*  Reproducibility challenges: Different researchers analyzing identical data may select different
scaling regions, yielding inconsistent results

*  Accuracy limitations: Arbitrary inclusion of data points outside optimal scaling ranges introduces
systematic errors

* Application barriers: Manual scaling region selection prevents automated analysis of large
datasets or real-time applications

*  Bias introduction: Human judgment in region selection may unconsciously favor expected results

These limitations are particularly problematic for applications requiring objective, automated
analysis essential for parameter studies, optimization workflows, and systematic comparative studies.
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1.2. Research Objectives and Proposed Approach

This work, then, addresses the scaling region selection challenge through a comprehensive algo-
rithm in three distinct phases which builds upon decades of methodological development. The research
objectives directly target the fundamental limitations identified across this historical progression:

Primary Objective: Develop an automatic sliding window optimization method that objec-
tively identifies optimal scaling regions without manual parameter tuning combined with enhanced
boundary artifact detection and grid offset optimization.

Validation Strategy: Establish algorithm reliability through comprehensive validation across
five different fractal types with precisely known dimensions, targeting significant error reduction
compared to traditional methods while establishing practical computational guidelines for optimal
iteration selection. This comprehensive validation framework establishes the foundation for the
algorithmic development presented in the following section, providing objective, automated methods
that eliminate subjective bias while achieving precision across diverse fractal geometries.

2. Materials And Methods

A comprehensive three-phase optimization framework was developed that systematically ad-
dresses the fundamental limitations identified in Section 1. Rather than treating boundary detection,
scaling region selection, and grid discretization as separate concerns, the general algorithm integrates
these requirements into a unified strategy.

2.1. Design Philosophy: Synthesis of Historical Insights

The sliding window optimization algorithm synthesizes key insights from the literature into a
unified algorithmic strategy guided by three fundamental principles:

Segment-Based Geometric Analysis: Unlike traditional pixelated approaches, this method ana-
lyzes curves formed by a set of straight line segments, eliminating rasterization artifacts and providing
superior accuracy for mathematical applications where interface geometry must be preserved precisely.

Boundary Artifact Detection: Comprehensive boundary artifact detection using statistical criteria
(slope deviation threshold 0.12, correlation threshold 0.95) is used that automatically identifies and
removes problematic data points without manual intervention.

Objective Region Selection: The sliding window approach eliminates subjective scaling region
selection through systematic evaluation of all possible linear regression windows, addressing the
reproducibility challenges that have limited practical applications.

2.2. Three-Phase Implementation Framework

This comprehensive approach addresses the complete pipeline from data generation through final
dimension calculation, with each phase targeting specific limitations identified in historical research.
The three-phase architecture systematically eliminates sources of error and bias.

2.2.1. Phase 1: Enhanced Boundary Artifact Detection

The first phase, Algorithm 1, systematically identifies and removes boundary artifacts that corrupt
linear regression analysis, addressing limitations identified by Buczkowski et al. [5] and Gonzato et
al. [9].
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Algorithm 1 Phase 1: Enhanced Boundary Artifact Detection
1: Input: Box count data (log(e€;),log(N(e;))), optional manual trim parameters
2: Output: Cleaned data with boundary artifacts removed
3:
4: if manual trimming requested then
5: Apply specified boundary point removal > Allows user override if needed
6: end if
7:
8: if sufficient points available (n > 8) then
9:  Calculate segment_size = max(3, |n/4|) > Min 3 points for regression, quarter-segments for
analysis
10: Compute linear regression slopes for:
11 * First segment: points [0, segment_size — 1|
12: * Middle segment: points [segment_size,2 x segment_size — 1]
13: e Last segment: points [n — segment_size,n — 1]
14:
15: Set slope_threshold = 0.12 > Slope deviation tolerance
16: Set r2_threshold = 0.95 > Minimum linearity requirement
17:
18: if | first_slope — middle_slope| > slope_threshold OR first_r> < r?_threshold then
19: Mark first segment for removal > Large-scale boundary effects
20: end if
21: if |last_slope — middle_slope| > slope_threshold OR last_r? < r2_threshold then
22 Mark last segment for removal > Small-scale discretization effects
23: end if
24:
25: Apply boundary trimming and verify linearity improvement
26: Return: Trimmed data (I0g(€cean), 10§(N(€ciean)))
27: end if

Rather than relying on arbitrary endpoint removal, this phase uses statistical criteria to identify
genuine boundary artifacts. The slope deviation threshold (0.12) and correlation threshold (0.95) were
determined through systematic analysis across multiple fractal types, providing objective artifact
detection without manual parameter tuning.

2.2.2. Phase 2: Comprehensive Sliding Window Analysis

The second phase, Algorithm 2, implements the core innovation: systematic evaluation of all
possible scaling regions to identify optimal linear regression windows without subjective selection. This
systematic evaluation eliminates subjective scaling region selection by testing all possible contiguous
windows and applying objective selection criteria. The dual selection approach (accuracy-optimized
when theoretical values are known for validation, statistical quality-optimized for unknown cases)
ensures optimal performance across both validation and application scenarios without introducing
circular reasoning, whereby knowing the dimension leads to decisions made that return that value.
This circularity manifests in several possible ways:

*  Subjective endpoint selection: Researchers may unconsciously choose scaling ranges that yield
dimensions close to expected values

*  Post-hoc justification: Poor-fitting data points may be excluded without systematic criteria,
introducing confirmation bias

¢ Inconsistent methodology: Different practitioners analyzing identical datasets may select differ-
ent scaling regions, yielding inconsistent results

¢ Limited reproducibility: Manual scaling region selection prevents automated analysis of
large datasets
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Algorithm 2 Phase 2: Comprehensive Sliding Window Analysis

1: Input: Cleaned box count data, optional theoretical dimension Dy,
: Output: Optimal fractal dimension Dy,s;, window parameters

2
3:
4: Compute log values: x; = log(¢;) and y; = log(N(e;))
5: Set window size range: Wy, = 3, Wyax = 1
6: Initialize: RZ,, = —1, Dppsy = 0, best_window_info = {}
7

8: for window size w = w,,j;, t0 Wy do

9:  best_r*_for_window = —1

10: best_result_for_window = {}

12: for starting position start = 0 ton — w do
13: end = start +w — 1 > Inclusive end index for w points
14: Extract window data: {(x;,y;)|start <i < end}

16: Perform linear regression: y = mx + b

17: Calculate dimension D = —m (negative slope)
18: Calculate correlation coefficient R?

19: Calculate standard error SE

21: if R? > best_r?_for_window then

22: Store as best result for this window size:

23: best_result_for_window = {D, R?,SE, start,end}
24: end if

25: end for

27: Record best result for this window size
28: end for

30: Selection Criteria:

31: if theoretical dimension Dy, known then

32: Select window minimizing |D — Dy, | among high-quality fits (R?> > 0.995) > Validation mode:
accuracy-optimized

33: else

34: Select window maximizing R? among reasonable dimensions (1.0 < D < 3.0) > Application mode:
statistical quality-optimized

35: end if

36:

37: return Dy, optimal window size, scaling region bounds, regression statistics

2.2.3. Phase 3: Grid Offset Optimization

The third phase, Algorithm 3, implements grid offset optimization to minimize discretization bias
inherent in traditional box-counting methods. The calculated dimension depends critically on how
the grid of boxes intersects the curve. A curve segment lying near a box boundary may be counted
as occupying one box or multiple boxes depending on slight shifts in grid positioning, introducing
systematic bias into the intersection count. This quantization error can significantly affect fractal
dimension estimates (c.f., Bouda et al. [4], Foroutan-pour et al. [6], and Gonzato et al. [9]).
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Algorithm 3 Phase 3: Grid Offset Optimization

Input: Segments, box_size, min_box_size, spatial index bounds
Output: Minimum box count across all tested grid offsets

=

Determine adaptive grid density based on box size:
if box_size < min_box_size x 5 then

Set offset_increments = [0, 0.25, 0.5, 0.75] > Fine grid: 4x4 offset tests (16 total)
else if box_size < min_box_size x 20 then

Set offset_increments = [0, 0.33, 0.67] > Medium grid: 3x3 offset tests (9 total)
else

Set offset_increments = [0, 0.5] > Coarse grid: 2x2 offset tests (4 total)
: end if

=
@ NP2

: Initialize: min_count = co, max_count =0

14: for dx_fraction in offset_increments do

15: for dy_fraction in offset_increments do

16: Calculate offsets: offset_x = spatial_min_x + dx_fraction x box_size
17: offset_y = spatial_min_y + dy_fraction x box_size

18: Count occupied boxes using spatial indexing within bounds

19: current_count = number of boxes intersecting segments

20: min_count = min(min_count, current_count)

21: max_count = max(max_count, current_count)

22: end for

23: end for

24:

25: Calculate improvement: improvement_pct = (max_count - min_count) / max_count x 100%

N
[=))

: return min_count, improvement_pct

2.3. Computational Implementation Details

The segment-based approach requires several key computational components that distinguish it
from traditional pixelated methods:

2.3.1. Spatial Indexing and Line-Box Intersection

Efficient fractal dimension calculation for large datasets requires optimized spatial indexing.
Hierarchical spatial partitioning [10] is implemented combined with the Liang-Barsky line clipping
algorithm [11] for robust line-box intersection testing.

The Liang-Barsky algorithm provides several advantages for fractal analysis:

¢  Computational Efficiency: O(1) line-box intersection tests enable scalability to large datasets

¢  Numerical Robustness: Parametric line representation avoids floating-point precision issues
common in geometric intersection

¢  Partial Intersection Handling: Accurately handles line segments that partially cross box boundaries

2.3.2. Adaptive Box Size Determination
Automatic box size range calculation adapts to fractal extent and complexity:

¢  Minimum box size (€,,,): Set to 2x average segment length to ensure adequate geometric resolution
. Maximum box size (€,,,x): Limited to 1/8 of fractal bounding box to maintain statistical validity
*  Logarithmic progression: Box sizes follow €; = €, - 2! for consistent scaling analysis

This adaptive approach ensures consistent measurement quality across fractals of vastly different
scales and complexities.

2.4. Computational Complexity and Efficiency
The three-phase approach achieves computational efficiency through strategic resource allocation:

e Phase 1: O(n) for boundary artifact detection, with early termination for clean data
e Phase 2: The sliding window analysis has practical complexity O(n®) where n represents the
number of box sizes, typically 10-20 for box size ranges spanning 2-3 decades of scaling. This

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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remains computationally efficient because 7 is determined by the logarithmic box size progression
rather than the number of line segments.

e Phase 3: O(k - m) where k is the number of offset tests (4-16) and m is the spatial intersection
complexity, with adaptive testing density

Total computational complexity remains practical for real-time applications while providing
systematic optimization across all three algorithmic phases.

3. Results

To validate the accuracy and robustness of the fractal dimension algorithm, comprehensive testing
was performed using five well-characterized theoretical fractals with known dimensions ranging from
1.26 to 2.00, shown in Figures 1 through 5. This validation approach ensures our method performs
reliably across the full spectrum of geometric patterns encountered in two-dimensional fractal analysis.

These five fractal curves represent infinite mathematical objects that possess self-similar structure
at all scales. Since true fractals contain unlimited detail, they can only be approximated through finite
computational processes. Each fractal is generated by starting with a simple geometric seed (such
as a line segment or triangle) and repeatedly applying a specific replacement rule through multiple
iterations or recursive calls. The "level" parameter controls the number of times this replacement rule
is applied—higher levels produce increasingly detailed approximations that more closely resemble
the true infinite fractal. While complete fractals cannot be achieved computationally, these finite
approximations capture sufficient geometric complexity to accurately measure fractal dimensions and
analyze the self-similar properties that characterize real-world phenomena like fluid interfaces and
coastlines. Therefore, computing their dimensions requires evaluating their "convergence" toward the
infinite form.

Consequently, fractal dimension computation involves two critical aspects: first, whether the
algorithm accurately calculates the dimension of the given curve, and second, whether the curve
accurately represents the desired theoretical fractal. For mathematical fractals, curve fidelity depends
on the iteration or recursion level used in generation. For computational physics applications where
curves are generated from simulations and analyzed for fractal properties, the analogous consideration
is grid convergence, since increased geometric detail emerges as the computational grid is refined.

3.1. Comprehensive Validation Framework

The validation strategy addresses both methodological rigor and practical applicability through
systematic testing across diverse fractal geometries and avoiding the circularity problem.

3.1.1. Fractal Selection and Computational Scope

The validation employs five well-characterized theoretical fractals with known dimensions span-
ning the complete range relevant to mathematical fractal analysis as shown in Figures 1- 5:

e  Koch snowflake (D = 1.2619): Classic self-similar coastline fractal with 16,384 segments at
level 7.

¢  Minkowski sausage (D = 1.5000): Exact theoretical dimension with 262,144 segments at level 6.

e  Hilbert curve (D = 2.0000): Space-filling curve approaching two-dimensional behavior with
16,383 segments at level 7.

e  Sierpinski triangle (D = 1.5850): Triangular self-similar structure with 6,561 segments at level 7.

¢  Dragon curve (D = 1.5236): Complex space-filling pattern with 1,023 segments at level 9.

This selection provides comprehensive validation across the dimensional spectrum (D = 1.26 to
D =2.00) while testing computational scalability across nearly three orders of magnitude in dataset
size (1K to 262K segments). Each fractal represents distinct geometric characteristics, from simple
coastlines to complex space-filling patterns.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Koch snowflake (Level 7): Classic self-similar coastline fractal (D = 1.2619)

0.31
0.24
P

0.14

. ind .

RWMAR o nd AR o

- "
» »» i
0.0 = ‘-‘l  § »
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 2. Minkowski sausage (Level 6): Classic boundary-type fractal with known theoretical dimension (D =
1.5000)
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Figure 3. Hilbert curve (Level 7): Space-filling curve approaching two-dimensional behavior (D = 2.0000)
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Figure 4. Sierpinski triangle (Level 7): Triangular self-similar structure (D = 1.5850)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1392.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2025 d0i:10.20944/preprints202508.1392.v1

10 of 19

1.0
I::I
==
LI 1 1
0.8 — _' =
o o e ,_ll_l '__Il_ll_l '__I 0
. - .
1 1 ] |
1 — T | |
— - I
0.6 I [ -
| 1 O I__I |-
> [ ] LI =
I -
0.4 :E: 4 ,_|I_I
1 |
1
= 1
[ — |
| —1 T
0.2 ::_ __l | I:|:|::|
O S I 1T
e =
I | I .|
0.0 H Ho
T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 5. Dragon curve (Level 9): Complex space-filling pattern (D = 1.5236)

3.1.2. Dual-Criteria Selection Framework

Sliding window optimization eliminates subjective bias through a systematic dual-criteria ap-
proach that explicitly separates algorithm validation from real-world application:

Validation Mode (Theoretical Fractals): When theoretical dimensions are known (Koch curves,
Sierpinski triangles, etc.), the algorithm minimizes |Dyjcuiated — Dineoretical| among all windows achiev-
ing high statistical quality (R? > 0.995). This approach is appropriate for algorithm validation because:

*  The theoretical dimension provides an objective accuracy benchmark

*  Statistical quality thresholds prevent selection of spurious fits

¢ The goal is explicitly to validate algorithmic performance against known standards
*  Results inform algorithm development and parameter optimization

Application Mode (Unknown Dimensions): For real-world applications where true dimensions
are unknown, the algorithm maximizes R? among windows yielding physically reasonable dimensions
(1.0 < D < 2.0 for two dimensional structures). This approach ensures objectivity because:

*  No prior knowledge of expected dimensions influences selection
e  Statistical quality becomes the primary optimization criterion

¢  Physical constraints prevent obviously unphysical results

¢  The method remains fully automated and reproducible

3.2. Sliding Window Optimization Results

This section presents the performance of the three-phase optimization algorithm across all five the-
oretical fractals, demonstrating the significant improvements achieved through systematic elimination
of measurement artifacts and biases.

3.2.1. Algorithmic Enhancement Demonstration: Three-Phase Progression

The Hilbert curve provides an illustration of the algorithm’s effectiveness, representing a challenge
for fractal dimension measurement due to its space-filling nature and complex geometric structure.
As demonstrated in Figures 6—8 the progressive improvement achieved through each algorithmic
phase. This progression demonstrates the cumulative necessity of all three algorithmic phases for
optimal performance.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1392.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2025

d0i:10.20944/preprints202508.1392.v1

11 0f19

10* 4

10° o

Number of Boxes (N)

102 4

10"

—@— Data points
== Fit: D = 1.8013 + 0.0339

Box Size (r)

Figure 6. Basic box-counting for the Hilbert curve (Level 7) includes all box sizes in the regression giving

D = 1.8013 4 0.034 (9.9% error).
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Figure 7. Optimization using only Algorithms 1 and 2 for the Hilbert curve: D = 1.9764 + 0.014 (1.2% error).
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Figure 8. Complete three-phase optimization: D = 1.9923 4 0.0174 (0.39% error).

Basic Box-Counting: Figure 6 illustrates the implementation analyzing data for all box sizes
shown which produces D = 1.801 & 0.034, representing 9.9% error from the theoretical value D = 2.000.
The large error and uncertainty reflect boundary artifacts, poor scaling region selection, and grid
discretization bias.

Two-Phase Optimization: If boundary artifact detection and sliding window optimization
(Algorithms 1 and 2) are added the results shown in Figure 7 improves performance to D = 1.976 &
0.014, achieving 1.20% error.

Complete Three-Phase Optimization: Finally, integration of the grid offset optimization of
Algorithm 3 as shown in Figure 8 yields D = 1.992 & 0.017 with only 0.39% error.

3.2.2. Validation Results and Performance Summary

The three-phase optimization algorithm demonstrates consistent good performance across all five
theoretical fractals. Figures 9 and 10 illustrate the detailed optimization process for the Minkowski
sausage, showing both the sliding window analysis that identifies the optimal scaling region and
the resulting excellent power-law fit. Likewise, Figure 11 shows the effectiveness of the three phase
algorithm for the Koch snowflake. Table 2 presents the comprehensive performance summary across
all fractal types, demonstrating the algorithm’s reliability and precision.
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Figure 9. Minkowski sausage optimization: Sliding window analysis identifies optimal 17-point scaling region
yielding D = 1.504 4 0.014 (0.25% error from exact theoretical D = 1.500)
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Figure 10. Minkowski log-log analysis: Excellent power-law scaling across the optimal window with R? = 0.9988
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Figure 11. Koch curve (iteration level 7) sliding window optimization demonstrates optimal 14-point scaling
region with D = 1.2605 + 0.0101 (0.11% error from exact theoretical D = 1.2619).

To demonstrate the effectiveness of the three-phase optimization approach, Table 1 presents
baseline results using traditional box-counting with all available box sizes included in linear regression
analysis. These results establish the performance benchmark against which our optimized algorithm
is evaluated.

Table 1. Baseline box-counting results using all available box sizes in linear regression (no optimization).

Fractal Theoretical D Baseline D Error % Segments
Dragon 1.5236 1.4747 + 0.0267 3.2% 1,024
Koch 1.2619 1.2519 + 0.0104 0.79% 16,384
Hilbert 2.0000 1.8013 + 0.0339 9.9% 16,383
Minkowski  1.5000 1.4493 + 0.0073 3.4% 262,144
Sierpinski 1.5850 1.5890 + 0.0108 0.3% 6,561
Average 3.5%

Table 2 presents the corresponding optimized results, demonstrating significant improvements
for most fractal types while revealing limitations for cases with insufficient scaling data.

Table 2. Complete three-phase algorithm validation summary.

Fractal Theoretical D Measured D Error % Window R? Segments
Minkowski  1.5000 1.5037 £ 0.0140  0.25% 17 0.9988 262,144
Hilbert 2.0000 1.9923 +0.0174  0.39% 7 0.9996 16,383
Koch 1.2619 1.2605+0.0101  0.11% 5 0.9998 16,384
Sierpinski 1.5850 1.6394 + 0.0075  3.4% 4 1.0000 6,561
Dragon 1.5236 1.6362 +0.0135  7.4% 3 0.9999 1,024
Average 2.3% 7 0.9996

The validation demonstrates strong algorithmic performance with mean absolute error of 2.3%
across all fractal types and consistently high statistical quality (R?> > 0.9996). The algorithm automat-
ically adapts to different fractal characteristics, as evidenced by the varying optimal window sizes

r(s). Distributed under a Creative Commons CC BY license.
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(3-14 points) that reflect each fractal’s unique scaling behavior. This adaptability, combined with
the consistently excellent statistical quality, confirms the robustness of the three-phase optimization
approach across diverse geometric patterns.

The Dragon curve represents an important limitation case where the three-phase optimization
performed worse than baseline regression (7.4% vs 3.2% error). Analysis reveals that the automatic box
size determination generated only 8 box sizes spanning 1.15 decades of scaling, providing insufficient
data for reliable sliding window optimization. The algorithm selected a 3-point regression window
from limited options, demonstrating that the sliding window approach requires adequate scaling
range data to be effective.

3.3. Fractal-Specific Convergence Behavior and Guidelines

The convergence of dimension with iteration level results reveal that each fractal type exhibits
distinct convergence patterns with optimal iteration ranges where authentic scaling behavior emerges
before discretization artifacts dominate. Figure 12 and Figure 13 illustrate representative convergence
behavior for two contrasting fractal types, while Table 3 provides comprehensive guidelines for all five
fractals tested, enabling optimal computational resource allocation across diverse geometric patterns.
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Figure 12. The Dragon curve shows a characteristic oscillatory approach with convergence by level 6-7 and stable
behavior through level 9.
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Figure 13. The Minkowski sausage exhibits rapid convergence by level 2-3 with high stability through level 6.

Table 3. Iteration convergence guidelines for reliable fractal dimension measurement.

Initial Conver- Recommended

Fractal Type e Stable Range | Compute Cost
n+1 .
Sierpinski Level 2-3 Level 4-6 Level 5-6 Low 3 seg
ments)
. . )
Minkowski  Level 2-3 Level 3-6 Level 5-6 High (8" seg
ments)
n
Koch Level 4-5 Level 5-7 Level 6-7 Moderate (4
segments)
n
Dragon Level 5-6 Level 6 Level 8-9 Moderate (2
segments)
Hilbert Level 4-5 Level 5-7 Level 6-7 II;Ial’i}; (complex

The convergence analysis reveals three distinct patterns: **rapid convergers** (Sierpinski,
Minkowski) achieve reliable measurements by level 2-3, making them ideal for validation studies
and computationally efficient applications; **moderate convergers** (Koch, Hilbert) require level 4-5
for initial convergence, representing typical requirements for practical fractal analysis; and **gradual
convergers** (Dragon) need level 6-7, reflecting their mathematical complexity. This classification
provides essential guidance for optimal computational resource allocation and ensures measurement
reliability across diverse fractal types, establishing that higher iteration levels do not automatically
yield more accurate results.

3.3.1. Convergence-Based Best Practices

The results confirms the findings of Buczkowski et al. [5], who demonstrated two fundamen-
tal principles for pixelated geometries: (1) convergence analysis is essential for reliable dimension
measurement, and (2) infinite iteration does not improve—and may actually degrade—dimensional
accuracy.

The segment-based approach validates both principles while extending them to geometric line
analysis: each fractal type exhibits an optimal iteration range where authentic scaling behavior emerges
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before discretization artifacts dominate. Rather than using maximum available iteration levels, we
employ convergence-stabilized levels that capture authentic fractal scaling.

4. Discussion
4.1. Algorithm Performance and Adaptability

The comprehensive validation process reveals several important characteristics of the sliding
window optimization approach that demonstrate its effectiveness across diverse fractal geometries
without requiring manual parameter adjustment.

The algorithm demonstrates adaptability to different fractal geometries through automatic pa-
rameter selection. The varying optimal window sizes (3-14 points across our test fractals) reflect the
algorithm’s ability to identify fractal-specific scaling characteristics automatically. This adaptability is
particularly evident in the performance differences:

*  Regular Self-Similar Fractals (Koch curves, Sierpinski triangles): Achieve high accuracy with
moderate computational requirements

¢  Complex Space-Filling Curves (Hilbert curves): Require all three optimization phases for optimal
performance but achieve high final accuracy

¢  Irregular Patterns (Dragon curves): Benefit significantly from grid offset optimization due to
their complex geometric arrangements

The practical complexity O(n3) for the sliding window analysis remains computationally man-
ageable because 7 represents the number of box sizes (typically 10-20) rather than the number of
geometric segments, enabling scalability to datasets exceeding 250,000 segments without prohibitive
computational costs.

4.2. Limitations and Future Research Directions

While the validation study demonstrates good performance across mathematical fractals, several
limitations should be acknowledged:

*  Theoretical Fractal Focus: Validation concentrated on mathematically generated fractals with
precisely known dimensions

e 2D Geometric Analysis: Current implementation limited to two-dimensional line segment analysis

e  Parameter Generalization: Empirically determined parameters may require adjustment for
significantly different geometric patterns

*  Box Size Range Limitations: The automatic box size determination algorithm may generate
insufficient scaling data for fractals with highly compact, folded geometries

Several promising research directions emerge from this work: extension to real-world data,
three-dimensional implementation, adaptive parameter optimization, and integration with advanced
statistical methods.

5. Conclusions

This work establishes a comprehensive framework for accurate fractal dimension calculation
through optimal scaling region selection, validated across theoretical fractals and iteration convergence
studies. Our findings provide both significant methodological advances and practical guidelines for
the fractal analysis community.

The research successfully addresses the fundamental challenge of subjective scaling region se-
lection that has persisted in fractal dimension analysis for decades. The three-phase optimization
algorithm demonstrates methodological innovation through the automatic sliding window method
that objectively identifies optimal scaling regions without manual parameter tuning, combined with
comprehensive boundary artifact detection and grid offset optimization.

Key achievements include mean absolute error of 2.3% across five diverse theoretical fractals,
with individual results ranging from high accuracy (Koch: 0.11%, Minkowski: 0.25% error and Hilbert:
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0.39%) to good performance (Sierpinski: 3.4% and Dragon: 7.4% error). All results achieve R? > 0.9996,
indicating strong statistical quality.

The comprehensive validation scope includes systematic testing across five well-characterized
theoretical fractals with known dimensions, compared to the typical validation on one or two specific
fractal types in previous research. This provides confidence in algorithmic robustness across the
dimensional spectrum from 1.26 to 2.00.

The systematic iteration convergence analysis reveals fundamental principles including the
convergence plateau principle where each fractal type exhibits optimal iteration ranges where authentic
scaling behavior emerges before discretization artifacts dominate, and fractal-specific guidelines with
practical convergence requirements ranging from rapid convergers to gradual convergers.

For researchers currently working with fractal dimension analysis, this work provides elimination
of subjective bias through automated scaling region selection, computational guidelines enabling intel-
ligent resource allocation, quality assessment tools for objective measurement reliability assessment,
and integration capabilities for larger computational workflows.

The fundamental contribution of this research is providing the fractal analysis community with
robust tools and quantitative guidelines for accurate, reliable dimension estimation that eliminates
subjective bias while achieving high precision across diverse mathematical fractal complexity.
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