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Article
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Abstract: Auto-labeling is one of the main challenges in 3D vehicle detection. Auto-labeled datasets
can be used to identify objects in LiDAR data, which is a challenging task due to the large size of
the dataset. In this work, we propose a novel methodology to generate new 3D based auto-labeling
datasets with a different point of view setup than the one used in the most recognized datasets
(KITTI, WAYMO, etc.). The performance of the methodology has been further demonstrated with
the development of our own dataset with the auto-generated labels and tested under boundary
conditions on a bridge in a fixed position. The proposed methodology is based on the YOLO model
trained with the KITTI dataset. From a camera-LiDAR sensory fusion, it is intended to auto-label
new datasets while maintaining the consistency of the Ground Truth. The main contribution of this
work is a novel methodology to auto-label autonomous driving datasets using YOLO as the main
labelling system. The performance of this approach is measured retraining the contrast models of the
KITTI benchmark.

Keywords: Auto-labeled; LiDAR, Point of View, Deep Learning

1. Introduction

Deep Learning (DL) algorithms in Autonomous Vehicles (AV) have evolved in recent years and
2D-based object detection has received a lot of attention due to the accurate performance achieved by
models such as YOLO [1]. One of the reasons behind the performance of object detection models is the
presence of large-scale labeled datasets such as COCO [2] with more than 220K labeled images of a
total of 330k with 1.5M object instances, 80 object categories and 91 stuff categories.

However, 3D sensors, such as light detection and ranging (LiDAR), have attracted the interest of
researchers, but due to the lack of labeled data, 3D-based object detection models have not yet reached
the same performance as 2D-based ones. One of the leading datasets for 3D vehicle detection is KITTI
[3], but its main weakness is its relatively small size, which contains around 15.000 images, which
cannot be enough to train certain DL models. Recently, another 3D-labeled perception dataset has been
published as WAYMO [4], with 2,030 video segments yielding a total of 390k frames. Because many
frames correspond to the same vehicle in the same video, the WAYMO dataset lacks in it’s variability.
In addition, both datasets have been developed in a very similar way, using images and point clouds
taken from a vehicle with multiple sensors. This point of view, in addition to being the most used in
AV systems, is relatively specific and cannot be used in other tasks that need different angles of vision.

DL models need large volumes of data for good performance [5], the availability of the data can
be a critical factor in the results of DL algorithms. The datasets mentioned above have been labeled
with much less information than the 2D-based ones and have also been presented with a fixed point of
view. However, both datasets have been routinely selected by researchers due to the cost involved in
annotating new 3D labels. The challenges facing the AV industry are widely different with different
set-ups and configurations of the sensors, e.g. using cameras and LiDAR placed in the middle of
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a roundabout or on a bridge that points over the road. As these datasets are not enough for new
scenarios and the tedious and costly work that has to be done to traditionally build new datasets, a
new approach, auto-labeled datasets, has to be adopted.

Instead of manually labeling 2D data, commercial tools or works based on Convolutional Neural
Networks (CNNs) have been proposed to generate auto-labeled datasets [6–8]. As CNNs achieve
contrasting results in 2D object detection, one of the main ideas that has been proposed is to auto-label
datasets. There are works such as [6,9] where LiDAR point clouds are projected on the input images
obtaining as output the object bounding box coordinates and the class as a 3D label, this ways achieving
3D auto-generated labels. Despite the auto-labeling process in both works, the datasets have been
developed with the same point of view as KITTI and WAYMO, so the bias in the datasets is still a
problem. Nevertheless, as far as we are concerned, it is worth researching whether there is a way to
use the models present in the literature to generate datasets with a new approach.

Before diving into the idea of creating a novel methodology to generate different auto-labeled
datasets, it has been proposed to use DL model designs to detect objects over images like YOLO to
generate new labels. Depending on the occlusion level of the object, sets 3 levels of difficulty, and the
accuracy of the research, taken as F-score, for each difficulty is 0.957 when easy, 0.927 when moderate
and 0.740 when hard.

These new auto-generated labels are the ones proposed to train models with new scenarios. But
to conclude that the new labels work with new approaches, proven models have to be taken to analyze
the performance using the new labels. Therefore, we have proposed to retrain the contrast models
presented in the KITTI benchmark [10,11] such as [12–14] to be retrain with the new autogenerated
labels. The performance obtained, although lower than that achieved with manually taken labels, is
still reliable, with a small drop in accuracy expected compared to that achieved with manually taken
labels. So, manually taken labels can be replaced by auto-generated ones and the models can continue
to perform well.

Due to the minor deviation obtained with the proposed models, the slightly reduced accuracy
is balanced by the enormous amount of data that can be generated at low cost. Therefore, the main
contribution of this work is a novel methodology proposed to generate new 3D based auto-labeled
datasets from boundary conditions and it has been further demonstrated with the development of our
own 3D auto-labeled dataset with the point of view of sensors located at an elevated point above an
infrastructure, in our case, a bridge over a highway.

One of the challenges facing researchers in the automotive field is to find datasets that fit a specific
scenario. Traditionally, most of the work has been developed under the same conditions, i.e. they
usually consist of a vehicle with different sensors placed in similar positions such as on the roof of the
vehicle or on the hood, generating datasets with the same viewpoint. The main problem associated
with this is that it is not possible to use these data for applications with different perspectives, thus
requiring further research. Therefore, models have been developed that can automatically generate
labeled datasets, avoiding the tedious task of manually labeling new data each time a system is
developed.

Although there are datasets that have been manually labeled as KITTI [3], WAYMO [4], or
nuScenes [15], the trend is evolving towards labeling automation. There are works such as [16] in
which a not complete auto-labeling process is proposed. Annotators identify a bounding box in a
LiDAR point cloud in a particular frame and then, using tracking techniques, automatically propagate
it to the rest of the video frames. This technique does not completely reduce human workload, but it
considerably increases the size of the labeled dataset at a low cost.

To achieve fully auto-labeled datasets, one of the types of models that can best handle this type of
data is CNNs. There are several examples such as [17], where GAN networks based on CNNs are used
to perform data augmentation on a labeled dataset generating new labeled images from scratch. One
of the main limitations of this approach is that it cannot work with point clouds, making it impossible
to use this approximation in LiDAR based detection.
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In [6] the YOLO architecture is also used, in this case re-trained with the KITTI dataset. In [7] a
combination of complexYOLO [18] with PointRCNN [12] is proposed for the detection of objects in
LiDAR data. The other approximation is followed in [19] where the SSD network is used to project the
bounding box of a corresponding camera image onto the LiDAR point clouds. However, in spite of
all the literature, there are already several applications that can handle the process of automatic label
images, such as LabelBox, Image Labeler, RectLabel, etc.

Most of the previous auto-labeling models lack in their generalization, being only capable of work
under certain circumstances, e.g. the point of view of a camera in the front of a car. Previous work such
as [20] used traditional computer vision techniques and LiDAR point clouds to auto-label new datasets
with different camera angles. This research is focused on using transfer learning techniques on models
trained with KITTI, to use these new models to auto-label new datasets using different camera angles.

2. Methodology

In this paper, we propose a framework capable of tackling the following two problems: generate
3D based auto-labeled datasets for AV tasks and verify the auto-labeling process by evaluating the
performance of the datasets regardless of the point of view in which the sensors, such as cameras or
LiDAR, are placed to generate the dataset.

To achieve our goal and propose a methodology, we first used the KITTI dataset as our base
workbench, as it is a dataset used in multiple previous AV papers like [12–14] in which DL models
applied to 3D object detection are presented on the point cloud generated by lasers. However, although
the aforementioned works are recognized as the models that offer the best results with KITTI, in
particular [7,8], these works use radar sensors as input to carry out the detection work. There are other
classification works that allow vehicle detection through techniques such as object segmentation and
by using transfer learning techniques [16,21,22]. Finally, other works such as [6,17], try to implement
data augmentation techniques through GAN models applied to pint cloud datasets.

Furthermore, the KITTI dataset is published and can be publicly accessed. Thus, we will apply the
2D auto-labeling model to the raw KITTI dataset to project the bounding box of the images into point
clouds, generating new automatic labels. Then the results of the auto-label dataset will be compared
against the human KITTI annotated dataset. These results, measured with the F-Score, will show the
difference between the human annotated labels and the auto-labels produced in our system.

Furthermore, we will compare the performance of Artificial Neural Network (ANN) models
by training some models from OpenMMlab’s OpenPCDet open-source project [23] with the new
auto-labeled images. OpenPCDet is a general codebase for 3D object detection from point cloud
and the way in which the models have been designed to work is by projecting the labels of the 2D
images onto their corresponding 3D point cloud. In addition, these models have been shown to work
effectively with KITTI and these will be used as a comparison for the performance of the models. In
order to evaluate the performance of the proposed auto-label, we will train again from scratch the
mentioned models with the new datasets. Moreover, as the main purpose is to demonstrate the good
performance of the models with the auto-generated labels rather than to propose improvements such
as a greater capacity to detect more vehicle classes, all tests have been performed only attending to the
car class because it is sufficient to obtain clear results of the performance of the methodology.

Therefore, since the KITTI dataset is widely the most used in the field of AV object detection
as it has been public since 2012 rather than Waymo, which has been available since 2020, KITTI
will be used to develop a 3D auto-label methodology, which will then serve to label new datasets
automatically. Thus, the presented framework demonstrates and tests an auto-labeling workflow using
a well-documented dataset. This method, which demonstrates the possibility of exchanging annotator
labels for auto-generated ones, can be applied to any dataset, including Waymo.
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2.1. YOLO

The idea of auto-labeling the dataset has been proposed in some other works such as [6,7]. It
has been shown that CNNs works well for that purpose when it comes to 2D labeling: Some of the
most popular models used in traffic object detection are: ssd [19], Yolo [1] or ComplexYolo [18]. In
particular, for our purposes, we have selected the last YOLO release, YOLOv5, as its CNN backbone
for automatic 2D labeling of KITTI data.

YOLOv5 has been selected as the model to perform 2D labeling due to the fact that it is one of the
models published in the literature in the object detection task, as shown by Ultralytics, comparing it
with the literature benchmarks [24] as can be shown in Figure 1. YOLOv5 is published as a pre-trained
model and can be used to predict where objects are located in 2D images, as well as to classify
them. We use this information to project the generated bounding boxes onto the 3D point clouds and
automatically build the necessary labels for our target by generating 3D labels.

2.2. KITTI

KITTI dataset is known to have been widely used in 3D AV research, but recently new datasets
have appeared, such as nusCense or Waymo, which are also a very common choice for the latest
work. However, despite the emerging datasets, KITTI has been chosen for the measurement of the
auto-labeling task because all the published models that will be used have been previously trained
with KITTI, and we will be applying the auto-labeling task to the raw KITTI dataset. This will facilitate
the comparison of the results between the proposed methodology and previous work.

KITTI is made up of 7,481 training images and 7,518 test images, as well as their corresponding
point clouds, covering a total of 80,256 labeled objects. In addition, depending on the occlusion of
the object, each label has the difficulty of viewing the object as easy, moderate and hard. The main
idea is to take the raw data as a YOLOv5 input and use the generated bounding boxes as labels and to
measure the YOLO labeling performance. The KITTI dataset labeled by annotators has been used as
ground truth for comparison purposes.

2.3. Validation models

It is considered necessary that the models to be used in this methodology have been previously
tested using KITTI. Thus, we have selected some models from OpenPCDet, in particular it was decided
to test our methodology with PointPillar [13], PointRCNN [12], Voxel R-CNN [14] and PV-RCNN [25].
The main idea is to compare the performance of each model when using KITTI labels with respect to
the labels generated by YOLOv5.

To measure the accuracy of each model as proposed in [26] it is possible to perform BEV or
3D object detection. BEV is a bird’s eye view representation of all features captured from a camera
perspective [27,28]. This method of representing transformed images offers some advantages, such
as the lack of scale ambiguity and the absence of near occlusions due to its overhanging perspective.
However, BEV tends to be sparse, which implies a non-efficient application of CNNs [13]. Furthermore,
3D detection and orientation estimation consist of three parts: First, 2D object detection measured in
Average Precision (AP) is performed. Subsequently, Average Orientation Similarity (AOS) is performed
to measure the 3D orientation estimation. And finally, pure classification and regression are evaluated
[26]. The performance of the KITTI dataset, reported in each paper of each selected model, is shown in
Table 2.

Regardless of the fact that PointPillars of the selected models is the only model that in the paper
has been published the performance measured in BEV. This metric has been considered an interesting
point by us due to the advantages previously mentioned, because it is considered later on when
comparing the performance with auto-generated labels. It will be important and explanatory to count
with more than one metric used to measure the state-of-the-art 3D object detection models based on
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point clouds. This new metric will provide a more complete view of the performance of the proposed
algorithm, making a comparison with the state-of-the-art (SOTA) models possible.

In addition to the fact that the models shown have all been trained with KITTI, two of them,
Voxel-RCNNN and PV R-CNNN, have also been tested with WAYMO and their performance has also
been proven to be good. The aim of this work is to demonstrate that the auto-labeling method does
not depend on the way the dataset has been obtained, in terms of how and from what point of view
the objects have been obtained. In addition, it is proved that the models, existing or to be developed,
can work in different scenario settings (usually focused on the point of view from which the data are
captured).

2.4. Auto-label model

For the labeling task we determined that the YOLOv5 model, pre-trained by Ultralytics, was a
good tool to use based on the comparison shown in the literature benchmark, so this model with its
weights have been selected as the correct ones to perform this process.

Regarding the auto-labeling task, it is decided to use the YOLOv5 model, using the pre-trained
weights in the Ultralytics implementation[24]. It was decided to use this particular model as a result of
its performance reported in the benchmark literature presented on the Ultralytics main page (Figure 1).

Figure 1. v7.0 - YOLOv5 literature Realtime Instance Segmentation [24].

To evaluate the accuracy of YOLOv5 labeling we followed the same procedure as in [26], in Table
1 shows the results of our evaluation on the YOLOv5 model with images from the KITTI raw dataset
[11].

Table 1. auto-labeling performance of the proposed YOLOv5 model with KITTI raw dataset images.

Easy Moderate Hard
F-Score 0.957 0.927 0.740

Once the 2D data are labeled, we propose to label the 3D point clouds by projecting the labels
onto the corresponding KITTI point clouds and use them as ground truth for the 3D detection models.

2.5. Models trained from scratch

Normally, because of the training of the Artificial Intelligence (AI) models, the datasets are divided
into training and test data; KITTI is also divided into a training set and a test set, but the official KITTI
website has a validation tool with its own validation set. As the KITTI test set has been used to measure
the performance of the models that have been trained from scratch with our auto-generated labels,
the comparison with the results shown in each paper is not fair because it is obtained by submitting
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their models to the official benchmark tool with a specific test test selected by authors. Therefore, to
make a proper comparison, the pre-trained models in OpenPCD have been taken to measure their
performance with the KITTI test set, whose results are slightly different 2. The main reason for the
performance differences is not only the set used in the validation, is that an AOS has been calculated
by recalling 40 positions, as recently recommended on the official KITTI website [29].

3. Results

This section describes the different tests carried out on the model to guarantee and demonstrate
its correct operation. Thus, two different steps have been defined in order to ensure two different
validation approaches:

• First step: validate the error with which the images obtained from the sensors are self-labelled.
• Second step: validate that the self-labelled datasets generated are efficient enough to be used as

training datasets for DL models from the literature.

3.1. First step Validation

To check whether the target of generating an auto-labeled dataset has been met, it is necessary to
consult for each model in Table 2 the rows about the OpenPCDet performance and the rows with our
auto-generated labels. Not only is the accuracy of the auto-generated labels is comparable with manual
human annotators, but the performance shown by models trained from scratch with auto-generated
labels is also comparable with the models trained with KITTI. Table 2 shows a slight deviation between
the results obtained using manual labels with respect to the auto-generated labels proposed in the
present work.

Table 2. Comparison of the performance of the models between using the KITTI dataset and KITTI
with auto-generated labels by YOLOv5.

Model Source
BEV 3D Detection

Easy Moderate Hard Easy Moderate Hard

PointPillars
Lang et al. [13] 88.35 86.10 79.83 79.05 74.99 68.30

OpenPCDet 92.03 88.05 86.66 87.70 78.39 75.18
OpenPCDet - Auto-labeled 93.55 84.70 81.56 85.06 75.00 71.43

Voxel R-CNN
Deng et al. [14] - - - 90.90 81.62 77.06

OpenPCDet 93.55 91.18 88.92 92.15 85.01 82.48
OpenPCDet - Auto-labeled 95.78 90.99 88.77 92.54 83.28 82.21

PointRCNN
Shi et al. [12] - - - 85.94 75.76 68.32
OpenPCDet 94.93 89.12 86.83 91.49 80.65 78.13

OpenPCDet - Auto-labeled 95.57 90.96 88.80 92.19 82.89 80.33

PV-RCNN
Shi et al. [25] - - - - 81.88 -
OpenPCDet 93.02 90.32 88.53 92.10 84.36 82.48

OpenPCDet - Auto-labeled 92.50 86.93 85.83 90.09 78.25 75.38

Looking through Table 2, the results show that there is a slight difference between each model
taken from the literature in KITTI and from scratch models that have been trained with auto-generated
labels. These differences may be even smaller without doing anything particularly different, since the
weights of each model’s networks are extensively investigated for best performance for each model
using the KITTI dataset and labels, running as many trainings as needed for this purpose. However,
the purpose of this work is not to optimize the results, but to show that the use of the mentioned labels
is reliable, so we performed testing using the same configuration as the original models without much
work to fine tune the network.

A more detailed table analysis shows that the easier the object is to locate, the better the
performance of the auto-generated labels. Breaking down the results into easy, moderate and hard,
the average difference between the original is around 1.2% on easy, 2.1% on moderate and 3.16% on
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hard respect Bird’s Eye View (BEV) metrics. These small differences show the model’s efficiency in
obtaining similar results to the original model.

This variability on the results is justified because of the difference between the ground truth
bounding boxes present on the KITTI dataset and the auto-generated labels of our methodology.
As can be seen in Figure 2, there is a slight variation in the bounding boxes of both methods. The
error calculation on the model performance also takes into account the position and dimension of
the bounding box, which can lead to reduced performance when comparing the KITTI ground truth
against our model results. This penalty on the error is caused by the location and dimension of
the bounding box and not by vehicle detection errors, which produce the above-mentioned result
variation.

Figure 2. KITTI dataset image with two different bounding boxes representation: orange for the
ground truth and green for the one generated with auto-labeled model respectively.

3.2. Second step Validation

As shown in the first validation step, the auto-labeling algorithm provides similar results to
manual labeling. However, it has not been demonstrated whether an auto-labeled dataset with our
model is capable of being used to train a DL model under boundary circumstances.

Therefore, using the same DL models from the literature as in Section 3.1 to demonstrate its
performance using data collected from a different scenario and location than the one proposed in
public datasets (KITTI or WAYMO). Thus, to prove the main contribution of this work, it is necessary
to further test the performance of the models in a scenario in which they have been re-trained from
scratch with our own dataset with the auto-generated labels and the idiosyncrasy of a particular point
of view at the height over the road, Figure 3.

Figure 3. YOLOv5 labels from bridge point of view.

3.2.1. Set up configuration

In this section, the different tools and configurations used to carry out the tests and with which the
results of this section have been obtained will be presented. Thus, the specifications are divided into
different sections that contemplate: the scenario from which the data will be captured, the computer
equipment used and the sensor elements used.
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Scenario In order to achieve the main objective of the current work, it is necessary to carry out a
test in which data can be obtained from a fixed point of view on the infrastructure. This configuration
is relevant for traffic supervision tasks, crossing monitoring, etc. In this way, our methodology is
intended to validate with this new configuration widely used in the field of mobility. The choice of
location is particularly important, as it has to be ensured that data acquisition is from a point of view
as radically different from the traditional one (sensors placed on the roof of a vehicle).

Figure 4. Scenerio satellite image.

It is intended that our own auto-labeled dataset has the point of view of the sensors placed on
a bridge and pointing to the road. In addition, it had to be ensured that the location was relevant to
different case studies. To satisfy this requirement, the pedestrian bridge on km 6 of the A3 highway
next to Madrid has been selected.

Sensors The sensors used in this experiment are a normal video camera and a LiDAR. The
camera used is the Aukey PC-LM1E webcam characterized by providing a 640x480 resolution RGB
image compressed in MJPG format at 30fps. Meanwhile, the LiDAR used is the OS1-64 from Ouster
characterized mainly by its 64 laser layers, a scope of 120 metros, vertical field view of 45º and a
frequency of 10Hz.

Figure 5. Sensors set up.

Data processing In order to carry out this experiment, DL models, in particular YOLOv5, had
to be trained, and data obtained directly from the sensors had to be captured and processed. All data
have been processed on a NVIDIA Jetson AGX Xavier with 32 GB memory and Ubuntu 20.04 installed.

As the Nvidia Jetson series is an ARM64 architecture, it is not possible to install the OpenPCDet
project, as the authors explain in their installation guide, due to dependencies between the packages
and the system. To overcome this problem, the docker image l4t-pytorch provided by NVIDIA has
been installed as a container to run the OpenPCDet models.
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3.2.2. Experiments

When sensor fusion is applied to develop models, it is necessary to calibrate them intrinsically
and extrinsically. KITTI has its own calibration matrix for this purpose; however, for our new approach
with a configuration different from KITTI, it is required to perform our own calibrations using a custom
chessboard calibration system. The calibration procedure and results can be seen in Figure 6, in the
same localition describe in section 3.2.1.

(a) (b)

Figure 6. (a) Custom calibration board. (b) LiDAR view from the bridge.

The results obtained in this real-life scenario experiment are very similar to the results presented
by the models in Table 2. As can be seen in a previous comparative (Table 3), in terms of average
precision, the results are close to those of the corresponding model with auto-labeled KITTI as dataset.
In this way, it is shown that the model is able to replicate the results in a very similar way.

Table 3. Training results of different DL models using an auto-labeled dataset from the scenario
described in Section 3.2.1.

Model
BEV 3D Detection

Easy Moderate Hard Easy Moderate Hard
PointPillars 93.05 84.03 81.50 79.99 65.53 61.03
Voxel R-CNN 95.39 91.19 88.56 92.45 83.33 81.95
PointRCNN 95.55 91.00 88.88 92.57 82.84 79.89
PV-RCNN 93.02 87.08 85.13 89.98 79.14 75.08

In the best of the results obtained by the Voxel R-CNN model, an accuracy above 88% in BEV and
in 3D detection above 82% can be seen. This shows good results for vehicle detection, which could be
improved by optimizing the networks used.

4. Conclusions

One of the main challenges in building a model for auto-labeling auto-motion scenarios is dealing
with high data variability. Autonomous vehicles must be capable of operating in a wide variety of
environments and the data used to train the model should reflect this diversity.The problem associated
with this challenge is growing due to the high demand for data needed to provide increasingly complex
AI models with the data.

Regarding the results, the differences between models are not very large; it would be possible to
obtain even better results by applying this method to a larger set of models. Considering these four
models there is the presence, as can be seen, of statistical outliers such as PointPillars or PV-RCNN
with much larger differences than the other two and than with respect to the mean. This is because
these particular models are too dependent on the hyper-parameters used for their training. If better
parameters were sought for these two or a more extensive set of models not dependent on the network
hyper-parameters were used, these statistics could result in a smaller difference in the percentage
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accuracy of the models trained with auto-generated labels with respect to the original ones, since the
outliers would have less significance.

In general, building an auto-labeling model for autonomous vehicles is a complex task that
requires a combination of machine learning, crowd-sourcing, and other techniques. It is important to
carefully design and evaluate the model to ensure that it is capable of accurately labeling the data and
supporting the development of effective autonomous vehicle systems.

This paper has presented an approach to perform this work using models already known from the
literature and has shown that the errors produced in the process are trivial. To take the demonstration
of their performance a little further, we have contrasted the results of training models using known data
such as KITTI and self-labeled data, where, despite slightly worse results, the difference is negligible
in contrast to the benefits of using these technologies.

Therefore, the paper presents a solution to the tedious job of labeling large datasets using a
self-labeling model. As shown in the results presented, the model works correctly with negligible
errors, and it has also been shown that models can be trained exclusively using these self-labeled
datasets.
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