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Abstract: Based on a previous risk calculation study along a road corridor, risk is recalculated using 

stochastic simulation by introducing variability for most of the parameters in the risk equation. This 

leads to an exceedance curve comparable to that of catastrophe models. This approach introduces 

uncertainty into the risk calculation in a simple way, which can be used for poorly documented 

cases to fulfil lack of data. This approach seems to tend to minimize risk or to question risk calcula-

tions. 

Keywords: landslide; rockfall, risk, stochastic, uncertainty, transportation corridors 

 

1. Introduction 

Several authors have used power-laws to assess hazards as a function of the volume 

or area of instability [1, 2, 3, 4] or risk [5]. Volumes are often used as a quantification of 

magnitude of landslides. The frequency of failure of a volume greater than a given volume 

Vol [3] for a given region and several observations N0 during a period t is given by: 

In general, the analysis is based on the following conceptual formula (modified from 

[6]): 

Where r, is the temporal frequency of rupture for a given period in a given perimeter, 

fr the probability of rupture associated with a given magnitude (here  = r×fr). PS is a spa-

tial weight if the exact location is not known, Pp the frequency of propagation for a given 

location, Exp is the exposure, E corresponds to the value or unit of the object at risk and V 

its vulnerability. 

One of the problems is that this formulation does not explicitly incorporate uncer-

tainty. Uncertainty has mainly been applied by introducing random variables into the cal-

culation of the factor of safety [7, 8]. Uncertainty can also be inserted by using first-order 

second-moment (FOSM) methods for which an objective function is chosen which is sup-

posed to respect a Gaussian distribution, for example the safety factor, whose analytical 

expression is known, as well as the variances of the variables [9, 10, 6]. [11] applied the 

FOSM technique for inserting uncertainty in the risk analysis of block falls potentially 

λ(𝑣 ≥ 𝑉𝑜𝑙) =
𝑁0

∆𝑡
(

Vol

𝑉0
)

−𝑏

=  𝑎 𝑉𝑜𝑙−𝑏 (1) 

𝑅 =  𝜆𝑟  ×  𝑓𝑟  ×  𝑃𝑆 ×  𝑃𝑝 ´ 𝐸𝑥𝑝 ´ 𝐸´ 𝑉 (2) 
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affecting a tourist area shows that the 1-sigma confidence interval varies from 48 to 132% 

of the mean value. Simulations of block trajectories can provide probabilities of excess as 

a function of impact energy on objects [12]. [13] showed that by inserting uncertainty by 

Monte Carlo simulations, the risk of rockfall on a section of railway track is reduced. 

Here the analysis carried out by [5] along a road section is taken up again, and sim-

plified, by replacing some parameters by random variables and by using Monte Carlo 

simulations using MATLAB 2016a. The approach is comparable to that of [13], but the 

intention is to show that such an approach can be applied, particularly when data are 

lacking, in a similar way to the disaster model [14], which presents the results according 

to a surplus curve with no particular constraints. 

2. Model data 

[5] use equation (1) and provide a simple synthetic example of risk calculation along 

a stretch of road in British Columbia that is adapted to follow the ratings used in this 

chapter. On average, N0 = 100 events reach the road per year for volumes greater than V0 

= 0.001 m3 , they are distributed according to a cumulative power with the observed b equal 

to 0.434 and a = N0 × V0b = 4.99 (Figure 1): 

λ(𝑣 ≥ 𝑉𝑜𝑙) =
100

1 𝑦𝑒𝑎𝑟
(

𝑉𝑜𝑙

0.001
)

−0.434

= 4.99 𝑉𝑜𝑙−0.434 (3) 

By integrating by classes, we obtain the frequencies of each class, i.e. by making the 

difference between the values obtained for the two limits of a volume class by the equation 

(3). PS is equal to 1 since it is known that it reaches the road section under consideration. 

The probability of propagation is relative to the location of the object, according to [5] as 

it is a two-way road, small volumes (< 5 m3 ) affect only one of the lanes, and for smaller 

volumes they do not necessarily affect the car passing over them, but for volumes above 

100 m3 the affected road section width D is completely covered and Pp = 1. Exposure is 

calculated according to D, which increases roughly like the cubic root of the volume. The 

average vehicle length Lv is 5.4 m and 5,000 vehicles travel per day. Here only fatal acci-

dents of at least one occupant are counted and therefore vulnerability is equal to lethality, 

injuries are not considered and therefore E is implicitly set to 1. The values of vulnerability 

or probability of death and probability of impact are modified according to functions in-

stead of discrete sets of values (Figure 2). As an example, the class of blocks from 0.1 to 1 

m3 we obtain (Table 1): 

𝑅(0.1 –  1 𝑚3) =  (𝜆𝑟  ×  𝑓𝑟)  ×  𝑃𝑆 ×  𝑃𝑝 ´ 𝐸𝑥𝑝 ´ 𝐸´ 𝑉

=  8.56 ×  1 ×  0.4 ´ 0.0167 ´ 1´ 0.2 

=  0.011 𝑓𝑎𝑡𝑎𝑙 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 

(4) 

The exposition is recalculated according to [15]: 

𝑅𝐸𝑥𝑝 = 𝑁𝑣

(𝐿𝑣 + 𝐷)

𝑣𝑣

=
5000

24

(5.4 + 1)

80 × 1000
=  0.0167  (6) 

where vv is the speed of the vehicle and Nv is the number of vehicles per year. The 

sum of all classes up to 105 m3 indicates an average annual frequency of fatal accidents of 

0.106, i.e. approximately one accident every 10 years. This way of calculating is conserva-

tive, the risk is increased by using the upper bounds of the classes. The following para-

graph attempts to overcome this problem by introducing simulations, which allow the 

uncertainty to be incorporated. 
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Figure 1. Cumulative frequency distribution as a function of magnitude (volume) of 390 events 

along 75 km of Highway 99 in British Columbia and adjustment proposed by [5] for 100 event per 

year and modified to 130 event per year (modified from [5]). 

 

Figure 2. Model for the probability of impact or spread and vulnerability created from data from 

[5] to make the functions continuous. 

Table 1. Details of risk calculations for different classes (modified from [5]). 

Volume 4.99×Vol-0.434 lr × fr D 

~Vol(1/3) 

Exp Pp V H × Pp × 

Exp × V 

1/R 

[m3] [#/yr] [#/yr] [m] [-] [-] [-] [-] [yr] 

0.001 100.000        

0.010 36.813 63.187 0.2 0.0146 0.1 0.05 0.005 217.0 

0.100 13.552 23.261 0.5 0.0154 0.2 0.1 0.007 139.9 

1.0 4.989 8.563 1 0.0167 0.4 0.2 0.011 87.6 

10 1.837 3.152 2 0.0193 0.6 0.5 0.018 54.9 

100 0.676 1.160 5 0.0271 0.8 0.8 0.020 49.7 

1'000 0.249 0.427 10 0.0401 1.0 1.0 0.017 58.4 
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10'000 0.092 0.157 30 0.0922 1.0 1.0 0.014 69.0 

>10'000  0.092 50 0.1443 1.0 1.0 0.013 75.7 

      Total 0.106 9.4 

3. Introduce uncertainty into risk calculation 

Nowadays, the related uncertainty for risk management is more and more required, 

one of the means to obtain it, is to use risk calculation simulations. This is presented 

through a previous example of risk calculation by modifying the procedure of [5]. The 

first step of the simulation consists in simulating according to the distribution the volumes 

of blocks that will fall, it is necessary to define the minimum and maximum frequencies 

corresponding to the maximum (105 m3) and minimum (10-3 m3) volumes of the distribu-

tion function. Let Fmax= 4.99 × 0.0010.434 = 100 and Fmin= 4.99 × 100'0000.434 = 0.0337. Starting 

from the power law cumulative distribution, it is quite easy to invert it and thus by draw-

ing at random in an equiprobable way values between Fmin and Fmax such that the simulated 

frequency is given by: 

𝐹𝑠𝑖𝑚 = 𝐹𝑚𝑖𝑛 +  𝑟𝑛𝑑 ×  (𝐹𝑚𝑎𝑥  −  𝐹𝑚𝑖𝑛) (6) 

Knowing that rnd is a random variable varying from 0 to 1 according to a uniform 

distribution. Thus, the corresponding volume is: 

𝑉𝑠𝑖𝑚 = (
𝐹𝑠𝑖𝑚

𝑎
)

−
1
𝑏

  (7) 

This makes it possible to simulate a distribution of rockfall events per year. Instead 

of calculating by class, the calculation is performed for each of the 100 simulated volumes. 

Based on these simulations, it is possible to add distributions for several variables in the 

risk calculation. First the number of events is on average 100 events per year, which can 

become a random variable by using an inverse Poisson distribution, which allows to sim-

ulate random values from a mean for discrete values. 10'000 years are simulated (Figure 

3). 

 

Figure 3. Cumulative distributions of the number of events per year for the 10,000 simulations, 

based on Poisson distribution using an average of 100. 

In the example of [5] there are two estimated variables that are discrete Pp and V. The 

idea is to make them continuous, a linear fit for Pp and by a second-degree polynomial for 

V from the log base 10 values of the volumes (Figure 2): 
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𝑃𝑝 = 0.180 𝐿𝑜𝑔10(𝐹𝑙𝑖𝑔ℎ𝑡)  +  0.460  (8) 

𝑉 = 0.038 (𝑙𝑜𝑔10(𝐹𝑙𝑖𝑔ℎ𝑡))2  + 0.152 𝑙𝑜𝑔10(𝐹𝑙𝑖𝑔ℎ𝑡) +  0.202 (9) 

The value of D is given by the cubic root of the volume. The last step is to add distri-

bution functions to the other variables. For simplification uniform distribution functions 

are used here, i.e. values are equiprobable between two limits (Table 2). This applies to 

the variables related to the exposure D, vv, Nv. We did not randomized Lv because the 

length of the zone affecting the passengers are not easy to estimate, and does not change 

much, the goal is also to be coherent with [5]. 

Table 2. Limitations of uniform distributions of random variables. 

Variables Units (remarks) Minimum Maximum 

Debris width D m D/2 3D/2 

Vehicle speed vv km/h 57.5 102.5 

Number of vehicles Nv Vehicles/day 4’500 5’500 

Probability of impact or 

propagation at the 

vehicle location Pp 

[-] ; Integrated in the calculation 

from the integration of an order 

of magnitude of the volume 

log10(V(d))-0.5 log10(V(d))+0.5 

Vulnerability 

V(lethality) 

idem idem idem 

4. Results 

The simulation programme with a realization for 10000 blocks with the same data as 

[5], except for the continuous functions for V and Pp, the frequency or probability of acci-

dent is 0. 0992, i.e. one fatal accident every 10 years. By simply adding the variabilities 

shown in the Error! Reference source not found., for 10,000 simulations we obtain 0.103 

(1 accident every 9.7 years), which shows the validity of the simulation compared to [5] 

data. 

Table 3. Characteristics of the excess supply curves in the Figure 4 for the two first columns and 

for two other scenarios by changing the number of occupants in the car and the total number of 

rockfall per year.  

Thresholds Frequency Return period T [year] 

Case A A B C D 

 [ev./year] 1 occ. N0 = 100 1 occ. N0 = 130 1-2 occ. N0 = 100 1-2 occ. N0 = 130 

Average 0.060 16.8 12.9 11.3 8.6 

Minimum (max. T) 0.011 89.8 69.3 58.8 44.0 

2.50% 0.019 51.6 34.9 35.0 24.0 

5% 0.022 45.3 31.3 31.4 21.6 

Median 0.048 21.0 15.3 14.1 10.4 

95% 0.138 7.20 5.9 4.8 3.9 

97.5 0.167 6.00 5.0 3.9 3.3 

Maximum (Min. T) 0.4080 2.5 2.6 1.8 1.6 
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By carrying out 10,000 simulations of one year with a number of annual rockfalls 

distributed according to the Figure 3, we obtain an average frequency of 0.059 events per 

year, i.e. one event every 17 years (Table 2). The median is 0.048, i.e. a longer time than 

that obtained by [5] separates the potential accidents. The fact that no longer working in 

classes reduces the average frequency is divided almost by a half. The so-called excess 

curves indicate that there is a 95% chance that there is less than 46 years between two 

events (Figure 4). The probability of having an event every seven and a half years is 5%, 

which is not negligible.  

 

Figure 4. Simulation results. a. 10 realisation of the volume distribution; b. histogram of simulated 

fatal accident frequencies; c. excess curve or probability that the frequency is greater than a given 

value; d. probability that the accident return period is greater than a given value. 

5. Discussion and conclusion 

The orders of magnitude are respected since [5] indicate that the return period of fatal 

accidents observed the same Highway 99 between 1960 and 1996 is 12 years and 8 years 

from 1980 to 1996 as traffic increased. Here the mean and median values are T = 17 and 21 

years and 95% of the simulated return periods are greater than 7.5 years, which is close to 

the observation. This result can be interpreted in different ways, either by using high prob-

ability thresholds or by modifying the distributions of the random variables introduced, 

which are nevertheless symmetrical. Or the recent accidents statistics and an analysis of 

accidents by collisions must be questioned, which could be added and halve the simulated 

return period.  

By increasing the number of events per year to N0 = 130, it also fit the data (Figure 1) 

by maximizing the frequency, the average return period is 12.9 years (median 15.3) (Table  

case B), by adding a randomized number of occupants being 1 or 2 randomly it provides 

T = 11.2 years (median 14.1; case C) and if both are used, the result is 8.6 years (median 
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10.4; case D). It shows that reasonable hypothesis can lead to an agreement with the ob-

served data. It also shows that there is still 5% chance the return period ranged between 

7.2 and 3.9 years. It is also noteworthy that the centred 95% confidence levels ranges for 

return period decrease with hazard increase and the occupants increase case A to D, 51.6 

to 6.0 years (range 45.6), 34.9 to 5.0 years (29.9), 35.0 to 3.9 years (31.1) and 24.0 to 3.3 years 

(20.7) respectively.  

This approach makes it possible to add probabilities of realization to frequencies or 

return period, which is useful for decision-making, the above example permits to analyse 

the risk calculation sensitivity. Randomizing the original data of [5] it minimizes the av-

erage risk because it calculates values for all realizations and not just for classes, but at the 

same time it provides elements for the quantification of uncertainties. [16] have also 

shown that the risk calculation using probabilistic approach reduced the risk compared 

to average value. This type of approach is likely to be developed in the landslide risks 

assessment, by also introducing variability such as those of propagation models. It is a 

way to introduce the catastrophe model in the landslide risk assessments.  

The main objective of this note is to show that this kind of method can be applied 

easily, by adding other random variables, while using other distribution functions, such 

as the normal distribution, the log-normal distribution, the triangular distribution, etc. In 

any case the use of Poisson’s distributions is a valid approach when nothing is known. 

This method becomes especially useful when the knowledge of the data is partial, mean-

ing that it is possible to obtain an excess curve using expert input, as proposed by [13] and 

[11]. Such sensitivity studies should be used more often in a near future, but at the same 

time recommendations should be issued so that the results can be compared for risk man-

agement purposes.  
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