Pre prints.org

Article Not peer-reviewed version

Three Problems in Graph Coteries to
Show P Does not Equal NP

Dharmarajan R " and Ramachandran D
Posted Date: 24 July 2025
doi: 10.20944/preprints202507.2089.v1

Keywords: Algorithm; polynomial time; connectedness; Eulerian graphs; cliques; class P; class NP

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4237410

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2025 doi:10.20944/preprints202507.2089.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Three Problems in Graph Coteries to Show P Does not
Equal NP

R. Dharmarajan * and D. Ramachandran 2

Niels Abel Foundation, Palakkad 678011, Kerala, India

2 Sathyabama University

*

Correspondence: mathnafrd@gmail.com

Abstract

The P versus NP problem, a conjecture formulated by Stephen Cook in 1971, is one of the most
challenging problems in contemporary mathematics and theoretical computer science. A concise
mathematical formulation of the problem reads: is P = NP? In longer phrasing, this asks: given a
problem instance, if some additional data can be recognized fast enough as logically implying the
existence of a solution (to the instance), then can a solution be computed fast enough without the aid
of any such additional data? In this article we present the idea of graph coteries that are sets whose
members are sets with specified graph-theoretic properties. Then we formulate three problems in
graph coteries to show P # NP.

Keywords: Algorithm; polynomial time; connectedness; Eulerian graphs; cliques; class P; class NP

MSC: 11Y16; 05C38; 05C45; 05C69

1. Introduction

More on terminologies, symbols and notations used in this article can be found in [3] or [6] or [8].
Throughout this article, N will denote the set of positive integers, W the set of non-negative integers
(i.e., W =NU{0}), Z the set of integers and R the set of real numbers.

This article has eight sections. Section 1 directs the reader to some references for relevant details
on algorithms, the problem classes P and NP, attempted solutions and feasible solutions. Section 2
contains graph-theoretical concepts essential for the three problems hinted at in the abstract. Section 3
hints at the types of problem variants that are widely used.

The three problems are presented in Section 4. The first problem is centered on connectedness
of graphs; the second on Eulerian graphs; and the third on cliques. Each of these three problems is
shown to be in NP but not in P (Section 5 and Section 6). Section 7 mentions a few other possible graph
coteries. Section 8 presents the conclusion of our discussions.

Our discussions also draw on the following topics that can be found in some detail in the
suggested references:

Algorithms [3-5,10].

Problem instance and size of an instance [3-5].

A step in an algorithm [3-5].

Polynomial-time algorithm [2-5,10].

Class P and class NP of problems [2-5,9,11].

Feasible solutions and proposed solutions [3-5,7].

Certificates and certificate candidates; check and verification [4,5].
Atomic sub-outputs of solutions [4,5].

o X0 N U=

Bijective maps (or, bijections) [6,8].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2025 doi:10.20944/preprints202507.2089.v1

20f7

2. Essential Graph Theory

A set is a collection of definite and distinguishable objects [3,8]. Each object in a set is an element or
a member of the set. It is taken for granted that if X is a given set then there is a well-formed definition
that decides conclusively whether or not two given elements of X are distinct. Wherever necessary,
such a definition is made explicit. There is a unique set that contains no members, and this is the empty
set, denoted by ¢.

The cardinality (or, size) of a set X is the number of elements in X, and is denoted by | X|. Obviously
|X| > 0.If | X| € W then X is a finite set; else X is an infinite set.

The set of all the subsets of a set X, including the empty set ¢ and the set X itself, is denoted by
P(X) and is the power set of X. If X is finite of cardinality n then P (X) is finite [3,8] of cardinality 2".
The set P(X) — {¢} denotes the set of all nonempty subsets of X.

A simple graph G is a pair G = (V, E) where:

(i) V is a finite set, each element of which is called a vertex of G and
(ii) E is a finite set, each element of which is a nonempty subset X of V such that |X| < 2 and is called
an edge of G.

If G is a simple graph then neither V nor E can have any repeated elements. V is the vertex set of
G and E is the edge set of G. V = ¢ is possible, which necessiates E = ¢, but the converse is not true.

The expressions x € V and x € G will both mean x is a vertex of G. The expression {x,y} € E
will mean {x,y} is an edge of G where x € Gand y € G.

The order of G is denoted by |G| and is defined to be the number of vertices in G. Obviously,
|G| = |V|. The girth of G is the number of edges in G and is denoted by ¢(G) or by e as convenient,
providing no ambiguity arises.

Two distinct vertices x and y of G are adjacent in G if {x,y} € E. If {x,y} ¢ E then x and y
are nonadjacent. The vertex x is self-adjacent if {x} € E. G is loop-free if it has no self-adjacent vertex
(meaning, | X| = 2 whenever X € E).

By the above definitions, if G = (V, E) is a simple loop-free graph of order 7, it is immediate that

(n—1)
— ok

the girth of G cannot exceed &

Let x € G. The neighbourhood of x in G is denoted by N (x) or N(x), and is defined to be the set
of all y € V such that y is adjacent to x in G. The non-negative integer |[Ng(x)| is the degree of x in G,
and is denoted by dx(G) or dx.

All graphs considered in this article are assumed simple and loop-free with positive orders.

A graph | = (W, F) is a subgraph of a graph G = (V,E) if (i) W C V and (ii) F C E. In this case |
is said to be contained in G or G is said to contain |. | is a proper subgraph of G if | is a subgraph of G
with either W C V or F C E. If] is a subgraph of G such that |J| = |G| then] is a spanning subgraph of
G.

Let S be a nonempty subset of V -i.e., S € P(V) — {¢}. The subgraph of G induced by S is denoted
by G[S] and is defined to be the graph G[S] = (S, E[S]) where E[S] is the set of all the edges {x,y} € E
such that x € Sand y € S. The order of G[S| = (S, E[S]) is (obviously) |S|. For convenience, we
will denote the girth of G[S] by ¢(S) (rather than e(G[S])) in the coming discussions. In particular, if
S = V — {x} then GJ[S] will be denoted by G — x. In this case ¢(S) = e — dx(G) where e is the girth
of G.

Two graphs G; = (V4, E1) and Gy = (V;, Ey) are isomorphic if there exists a bijection [6] f : V] — V;
with the property that x and y are adjacent vertices in G; if and only if f(x) and f(y) are adjacent
vertices in Gy. In this case the graph-theoretic properties of G; are exactly those of Gy, and vice-versa.

Let G = (V, E) be a graph. In Subsection 2.1 through Subsecion 2.3, we define coteries of G based
on specific graph theoretic properties possessed (or not) by subsets of V. For the remainder of this
section, assume G = (V,E) and |G| > 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2025 doi:10.20944/preprints202507.2089.v1

30f7

2.1. Connect Coteries

A path in G is a sequence X1, ..., xy of k distinct vertices of G such that k > 2 and {x]-, x]-+1} € E
foreachj=1,...,k — 1. Such a sequence is also called a path between x; and xy. G is a connected graph
if there is a path between x and y whenever x and y are distinct vertices of G. A graph that is not
connected is disconnected. A graph of order 1 is assumed connected.

The setof all S € P(V) — {¢} such that the induced subgraph GI[S] is connected will be called
the connect coterie of G, and will be denoted by AT (G).

The setof all S € P(V) — {¢} such that G[S] is disconnected will be called the disconnect coterie of
G, and will be denoted by A~ (G).

Clearly AT(G)UA™(G) = P(V) — {¢} and AT (G) N A~ (G) = ¢.

Either of AT(G) and A~ (G) will be called a A coterie of G. These two coteries together will be
referred to as the pair of antithetic A coteries (of G).

2.2. Euler Coteries

G is an Eulerian graph [6] if dx(G) is even for each vertex x of G.

The setofall S € P(V) — {¢} such that G[S] is an Eulerian graph will be called the Euler coterie of
G, and will be denoted by £1(G).

The setof all S € P(V) — {¢} such that G[S] is not an Eulerian graph will be called the non-Euler
coterie of G, and will be denoted by £~ (G).

Obviously EM(G)UE(G) =P (V) — {p}and ET(G)NE(G) = ¢.

Either of £1(G) and £~ (G) will be called an £ coterie of G. These two coteries together will be
referred to as the pair of antithetic £ coteries (of G).

2.3. Clique Coteries

A nonempty subset M of V is a clique of G if either (i) |[M| > 1 and the vertices of M are pairwise
adjacent in G or (ii) |[M| = 1. G is a complete graph if V is a clique of G.

Thesetofall S € P(V) — {¢} such that S is a clique of G (i.e., the G[S] is a complete graph) will
be called the clique coterie of G, and will be denoted by QT (G).

The setof all S € P(V) — {¢} such that S is not a clique of G will be called the non-clique coterie of
G, and will be denoted by Q)™ (G).

It is immediate that QT (G) U Q™ (G) = P(V) — {¢} and QT (G) N Q™ (G) = ¢.

Either of Q" (G) and Q™ (G) will be called a Q) coterie of G. These two coteries together will be
referred to as the pair of antithetic Q) coteries (of G).

2.4. On Cardinalities Of Graph Coteries

Proposition 2.1. Given a graph G of positive order, at least one coterie in each of the pairs of antithetic
coteries (of G) seen in Sections 2.1 through 2.3 exists.

Proof. It suffices to prove the statement for the pair of antithetic A coteries of G; a similar reasoning
applies to each of the other pairs of antithetic coteries.

The conclusion holds since |AT(G)| + |[A™(G)| = |P(V) — {¢}| = 2" — 1 from the definitions of
the A coteries (Subsection 2.1.). e

Proposition 2.2. Let G = (V, E) have order n. Then:
(i) Either |A*(G)| > 2" 'or |A~(G)| > 2" L.

(i) Either |ET(G)| > 2" 1or |EF(G)| > 2" .

(iii) Either |QT(G)| > 2" or |Q~(G)| > 2"~ L.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2025 doi:10.20944/preprints202507.2089.v1

40f7

Proof. It suffices to prove (i); a similar reasoning applies to each of (ii) and (iii). By the defintions in
n

Subsection 2.1, we have |[AT(G)| + |A7(G)| = 2" — 1. Then either |AT(G)| > 2 or |A(G)| >
2" —1
2 2" —1 1
Next, —5 = 2n-1 - 3 ¢ N, whereas |A"(G)| € Nand |A~(G)| € N. Then (i) follows immedi-
ately. o

Proposition 2.3. The cardinality of one A coterie exceeds that of the other. A similar conclusion holds
for each of the other two pairs of antithetic coteries

Proof. |AT(G)| 4+ |A™(G)| = 2" — 1, an odd positive integer. Then [AT(G)| # |A™(G)|. o

2.5. Superior Coteries

Of the two A coteries of G, the one with the larger cardinality (see Proposition 2.2 and Proposition
2.3) will be called the superior A coterie. A similar definition applies to each of the other types of coteries.

3. Problem Variants

A variant of a problem Q is a formulation of Q that seeks a desired type of solution to a given
instance of Q. Types of variants that are widely studied and used are: optimization, computation
and decision.

An optimization variant of Q is a formulation of Q that asks for a solution of an optimum measure
(which is either the maximum or the minimum of the concerned measure) to each instance of Q [1].

A computation variant of Q is a formulation that asks for a solution (to each instance of Q) subject
to finitely many conditions.

A decision variant of Q is a formulation of Q using a decision question that asks for either a
“yes” or a “no” answer to each instance. The basic ingredients [1] of a decision variant are: the set of
instances, the set of attempted solutions (i.e., certificate candidates [4,5]) and the predicate that decides
whether an input certificate candidate yields a solution.

In the context of the P versus NP problem, we shall be concerned with optimization and decision
variants only. It is common to formulate an optimization problem Q as a decision problem to find out
if Q isin NP.

4. Variants Of Problems In Graph Coteries

We formulate three problems that we name Problem A, Problem £ and Problem (). We give their
optimization and decision variants.
In each problem the input graph is G = (V, E) of order n € N.

4.1. Optimization Variants

1. Problem A. Find the superior A coterie of G.
2. Problem &. Find the superior £ coterie of G.
3. Problem Q. Find the superior () coterie of G.

4.2. Decision Variants of Problems A, € and ()
In each of the following decision versions:
(i) the inputs are (i-a) graph G and (i-b) n = |G|,
(ii) the certificate candidate is C(G) = n and
(iif) the output is either YES (i.e., the desired coterie exists) or NO (i.e., no such coterie exists).

1. A decision variant of Problem A.

Decision question: Does there exist a A coterie of G of cardinality > 2n—17
2. A decision variant of Problem £.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2025 doi:10.20944/preprints202507.2089.v1

50f7

Decision question: Does there exist an & coterie of G of cardinality > 2"~ 1?
3. A decision variant of Problem ().

Decision question: Does there exist a Q) coterie of G of cardinality > 2"~1?

In the next section we give an algorithm that will prove Problem A is in the class NP. By analogy,
we will also show that the other two problems (of Subsection 4.1) are also in NP.

5. Algorithm to Show Problem A is in NP

The following algorithm will be referred to as A-in-NP. The input is (G, n). G and n, as well as
the decision question, the certificate candidate C(G) and the possible outputs, are given in Subsection
4.2.

Algorithm A-in-NP

BEGIN

l.ifneN

2. then print “YES, exists a major A coterie of G” and STOP
3. else print “NO, such a graph has no coteries” and STOP
4. endif

STOP

Proposition 5.1. The algorithm A-in-NP is feasible and correct.

Proof. Line 1 of the algorithm checks if n € N. This check clearly terminates in a finite number of steps.

The possible outputs are all accounted for in two lines - line 2 and line 3. So the algorithm returns
only finitely many outputs. Printing each decision clearly terminates in a finite number of steps.
Consequently, A-in-NP is feasible.

Next, we assert its correctness. If n € N, then the algorithm decides YES. This is correct by
Proposition 2.1.

If n ¢ N, then the algorithm decides NO. This output is correct since a graph of such an order n
has no vertices and hence no coteries at all. o

Proposition 5.2. Given an input (G,), A-in-NP runs in polynomial time in 7.

Proof. The total number (say, T) of steps executed by the algorithm A-in-NP is the sum of the
numbers of steps for all the lines executed. Suppose that one execution of the line j requires ¢; steps
and that this line is executed exactly r; times when the algorithm is executed once. Then ¢;7; is the
number of steps consumed by the line j in one execution of the algorithm.

In one execution of the algorithm, each line is executed once if at all. Hence, forj = 1,...,4,
thj = tj.

We suppose each endif line takes constant time, independent of n.

The number of steps required for line 1 is at most n?. Likewise for lines 2 and 3. Hence
Th <3n%+1.

Proposition 5.3. To each instance G of Problem A there is a certificate that is verified by A-in-NP in
polynomial time in the size (1) of G.

Proof. C(G) = n € N is the required certificate.
Proposition 5.4. Suppose replacements are done in the name and line 2 of the algorithm A-in-NP to

obtain two other algorithms as folllows:
(i) A is replaced by £ to get an algorithm named Algorithm £-in-NP.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2025 doi:10.20944/preprints202507.2089.v1

60f7

(ii) A is replaced by Q) to get Algorithm)-in-NP.
Then, like A-in-NP, each of the resulting algorithms in (i) and (ii) above satisfies the propositions
5.1 through 5.3.

Proof. Straightforward. e

6. NP, P, the Problems A, £ and ()

Proposition 6.1. 2" ! is unbounded above as 1 increases over N.
Proof. Straightforward.

Proposition 6.2. The problems A, £ and () are all in NP.

Proof. Consequence of Proposition 5.1 through Proposition 5.4.
Proposition 6.3. None of the problems A, £ and () can be in P.

Proof. It suffices to show Problem A is not in P. Suppose A(A) is a given feasible algorithm that
outputs the superior A coterie of the input graph G of order n. This output coterie should be either
AT(G) or A=(G), but we shall name it C(G) for convenience. Let |C(G)| = g. Then g > 2" (by
Proposition 2.2). Each of the ¢ members of C(G) is an atomic sub-output of C(G). Name these
sub-outputs Sy, ..., S, in the order that A(A) follows in computing the members of C(G).

Forj=1,...,q — 1, having taken ¢; steps for only the computation of S;, suppose .A(A) takes
another ;1 steps to compute S; 1; in other words, once A(A) executes ¢; steps to compute S; then
beginning with the next step A(A) executes t; 1 steps to compute S;, 1, allowing that any of the
already-computed sub-outputs Sy through S; may be used anywhere in the computation of S;,.
Obviously, then, each ti>1 and t; > 1.

If T, is the total number of steps taken by A(A) to compute and output the members S; through
Sq0f C(G), then Tp >ty + -+ -+ t5 > q > 2"1. By Proposition 6.1, A(A) cannot run in polynomial
time (in 1), from which the conclusion follows. e

7. Other Possible Coteries

Let G = (V, E) be a simple loop-free graph. There are coteries of G other than the ones seen in
Section 2, as shown in the following subsections.

7.1. Independence Coteries

Let S € P(V) — {¢}. Then S is an independent set of G if no two elements of S are adjacent in G.

The setof all S € P(V) — {¢} such that S is an independent set of G is the independence coterie of
G, denoted by Z7(G).

The setof all S € P(V) — {¢} such that S is not an independent set of G is the non-independence
coterie of G, denoted by Z~ (G).

Clearly Z"(G)UZ (G) =P(V) — {¢p}and ZT(G)NZ~(G) = ¢.

Either of Z7(G) and Z~ (G) is an T coterie of G. These two coteries together are referred to as the
pair of antithetic I coteries (of G).

7.2. Vc Coteries

Let S € P(V) — {¢}. Then S is a vertex cover of G if for every edge {x,y} of G it is true that either
xcSorye€s.

The setof all S € P(V) — {¢} such that S is a vertex cover of G is the vc coterie of G, denoted by
B*(G).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2025 doi:10.20944/preprints202507.2089.v1

70f7

The set of all S € P(V) — {¢} such that S is not a vertex cover of G is the non-vc coterie of G,
denoted by B~ (G).

Clearly BT (G)UB~(G) = P(V) — {¢} and BT (G) N B~ (G) = ¢.

Either of BT (G) and B~ (G) is a B coterie of G. These two coteries together are referred to as the
pair of antithetic B coteries (of G).

7.3. More Coterie Problems

Along the lines of the problems A, £ and () presented in Subsection 4.1, problems that are in NP
but not in P can be formulated in the coteries seen in Subsection 7.1 and Subsection 7.2.

8. Conclusions
P # NP follows from Proposition 6.2 and Proposition 6.3.

Acknowledgments: This research was fully funded by Niels Abel Foundation (NAF), Palakkad, Kerala State,
India. The authors are especially grateful to everyone of the referees — all anonymous — who returned highly
favourable reports about the correctness of the proofs in this article, as a result of which NAF gave the authors
substantial financial rewards.

References

1. Bovet, D. P. and Crescenzi, P., 1994, Introduction to the theory of complexity, Prentice Hall, London, UK.

2. Cook, S., 2000, The P versus NP problem, Available online: Http:/ /www.claymath.org/millennium/P vs
NP/pvsNP.pdf.

3. Cormen, T. H, Leiserson, C. E., Rivest, R. L. and Stein, C., 2009, Introduction to Algorithms, MIT Press, USA.

4. Dharmarajan, R. and Ramachandran, D., A problem in Moon-Moser graphs to show P does not equal NP,
Glob. |. Pure Appl. Math. 21 (1) (2025) 51-73.

5. Dharmarajan, R. and Ramachandran, D., A problem in power sets shows P does not equal NP, Available
online: Http:/ /www.preprint.org. Doi: 10.20944 / preprints202503.1321.v2

6. J.M. Harris,].L. Hirst, M.J. Mossinghoff, Combinatorics and Graph Theory, second ed., Springer, New York,
2008. doi: 10.1007 /978-0-387-79711-3

7. Savage,]. E., 1998, Models of Computation, Addison Wesley, Reading, USA.

Stoll, R. R., 2012, Set Theory and Logic, Courier Corporation, USA.

9. Trakhtenbrot, B. A., 1984, “A Survey of Russian Approaches to Perebor (Brute-Force Search) Algorithms,”
IEEE Ann. Hist. Comput. 6(4), pp. 384-400.

10. Wilf, H. S., 1994, Algorithms and Complexity, Internet Edition, Summer.

11. Woeginger, G.J., 2003, “Exact algorithms for NP-hard problems: A survey,” Combinatorial Optimization -
Proc. 5th Intl. Workshop, Aussois, France, pp. 185-207.

S

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2089.v1
http://creativecommons.org/licenses/by/4.0/

