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Abstract：  

Previous studies had shown that mRNA, miRNA and lncRNA wer e 

associated with cardiovascular diseases. The study was aimed to explore 

the differential expressions of mRNA, lncRNA and miRNA between 

coronary artery disease (CAD) and healthy control, and their interaction in 

CAD. We investigated the differential expression of ceRNA between CAD 

and healthy control through data collected from Gene Expression Omnibus 

(GEO) microarrays. Furthermore, we investigated the biological function 

of these differential expressions of ceRNAs by Gene Ontology (GO), 

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. 

Protein-protein interaction (PPI) network was created  to identify the hub 

genes. Biosystems and literature search were performed for signaling 

pathways and their function of the included differential expression ceRNAs. 

A total of 456 miRNA expression profiles, 16,325 mRNA expression 

profiles, and 2,869 lncRNA expression profiles were obtained . Eleven Go 

and KEGG pathways (count ≥9), top 15 of PPI network node connectivity rank, and 

top 15 of ceRNA network node degree centrality rank were achieved at the 

statistical significance level (P<0.05). We further identified that several 

differential expressions of ceRNAs and their signaling pathways were 

associated with CAD through biosystems and literature search.  Based on 

eleven Go and KEGG pathways, top 15 of PPI network node connectivity rank, and 

top 15 of ceRNA network node degree centrality rank in CAD population, our 

findings would contribute to further exploration for the molecular mechanism of 

CAD. 
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1. Introduction 

Coronary artery disease (CAD) is a complex phenotype driven by genetic 

and environmental factors. However current therapies focus on addressing 

the role of cholesterol and lifestyle in CAD. Despite advances in the 

development of lipid-lowering therapies, clinical trials have shown that a 

substantial risk of cardiovascular disease persists af ter currently 

recommended medical therapy.1 Stratification for subsequent  coronary 

events among patients with CAD is of considerable interest because of the 

potential to guide secondary preventive therapies. Recently, eight 

microRNAs (miRNAs) were identified to facilitate acute coronary 

syndrome diagnosis.2 Targeting Angptl3 messenger RNA (mRNA) retarded 

the progression of atherosclerosis and reduced levels of atherogenic 

lipoproteins.3 The expressing 9p21.3-associated long non-coding RNA 

ANRIL induces risk CAD phenotypes in non-risk vascular smooth muscle 

cells.4 So far, it is not clear the mechanism of these RNAs in CAD and their 

interaction.  

  Noticeably, the different types of RNA molecule competed to bind to 

miRNA, which reduced the inhibitory effect of miRNA targeting on its 

mRNA.5 These competitive endogenous RNA (ceRNA) included various 

types of RNA transcripts, such as circular RNA (circRNA), long -chain 

non-coding RNA (lncRNA), pseudogenes and protein-encoded mRNA, 

which competed for miRNA through the "language" mediated by the 

miRNA response element (MRE) .6 After that, researchers used 

bioinformatics methods to predict ceRNA regulatory networks. The effect 

of ceRNA on the target gene and the dependence of ceRNA on miRNA 

would be verified at the experiments of proteins and RNAs, but the 

functional verification would be performed at the experiments of cells and 

animal models. 

Thus, the study was aimed to explore the d ifferential expressions of 

mRNA, lncRNA and miRNA between CAD and healthy control, and  the 
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interaction of them, including constructure of ceRNA regulatory networks, 

which would contribute to the molecular mechanism of CAD.     

2. Results 

2.1. Basic Information Statistics of Differential Expression Analysis 

As described in the Methods, a total of 456 miRNA expression profiles 

(supplementary Table1), 16,325 mRNA expression profiles (supplementary 

Table 2), and 2,869 lncRNA expression profiles were obtained 

(supplementary Table 3).    

According to the set threshold, 18 differentially expres sed miRNAs were 

finally obtained, including 16 down-regulated and 2 up-regulated 

(supplementary Table 4). a total of 92 differential lncRNAs were obtained, 

including 46 down-regulated and 46 up-regulated (supplementary Table 5).  

A total of 610 differential mRNAs were obtained, including 244 

down-regulated and 366 up-regulated (supplementary Table 6). 

Based on the obtained differential miRNA, lncRNA and mRNA,  the heat 

map was shown in Figure 1 and the volcano map was shown in Figure 2.  

 

Figure 1. Heat map: Note: miRNA, lncRNA, and mRNA are presented from 
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left to right. Top red bar indicates the CAD samples, and blue bar indicates 

the control samples 

 

Figure 2. Volcano plot. Note: miRNA, lncRNA, and mRNA are displayed 

from left to right. Red indicates up-regulation, blue indicates 

down-regulation, grey indicates no significant difference.  

2.2 . Functional and Pathway Enrichment Analysis of Up- and Down- 

regulated MRNA 

GOBP, GOMF, GOCC functional enrichment analysis and KEGG 

pathway enrichment analysis were performed on the  obtained up-regulated 

and down-regulated mRNAs, respectively, and the results showed that a 

total of 36 GOBP, 3 GOCC, 15 GOMF and 2 KEGG pathways were 

significantly enriched (supplementary Table 7); Figure 3 presented only the 

TOP10 results, in accordance with ranking p value). The key results of GO 

and KEGG pathways enrichment analysis were displayed at Table 1.  

 

Figure 3. GO and KEGG PATHWAY enrichment analysis . Note: black lines 

indicate -log10 (p value), bar length indicates the number of enriched 
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genes. 

Category Term Count P Value 

KEGG_PATHWAY hsa04380: Osteoclast differentiation 9 2.82E-02 

KEGG_PATHWAY hsa05200: Pathways in cancer 18 4.33E-02 

GOTERM_MF GO: 0003700~transcription factor activity, sequence-specific DNA binding 50 1.77E-04 

GOTERM_MF GO: 0000978~RNA polymerase II core promoter proximal region sequence- 

specific DNA binding 

24 4.40E-04 

GOTERM_MF GO: 0001076~transcription factor activity, RNA polymerase II transcription 

factor binding 

4 7.53E-03 

GOTERM_MF GO: 0034711~inhibin binding 3 8.38E-03 

GOTERM_MF GO: 0046872~metal ion binding 81 8.79E-03 

GOTERM_MF GO: 0001077~transcriptional activator activity, RNA polymerase II core 

promoter proximal region sequence-specific binding 

15 1.16E-02 

GOTERM_MF GO: 0043565~sequence-specific DNA binding 26 1.32E-02 

GOTERM_MF GO: 0008134~transcription factor binding 16 2.39E-02 

GOTERM_MF GO: 0004675~transmembrane receptor protein serine/threonine kinase 

activity 

3 2.79E-02 

GOTERM_MF GO: 0045236~CXCR chemokine receptor binding 3 2.79E-02 

GOTERM_CC GO: 0042582~azurophil granule 5 2.18E-04 

GOTERM_CC GO: 0042581~specific granule 5 4.50E-04 

GOTERM_CC GO: 0005622~intracellular 55 1.28E-02 

GOTERM_BP GO:0045944~positive regulation of transcription from RNA polymerase II 

promoter 

55 1.47E-05 

GOTERM_BP GO: 0006954~inflammatory response 27 9.45E-05 

GOTERM_BP GO: 0097191~extrinsic apoptotic signaling pathway 7 1.55E-03 

GOTERM_BP GO: 0042832~defense response to protozoan 5 2.23E-03 

GOTERM_BP GO: 0035284~brain segmentation 3 2.69E-03 

GOTERM_BP GO: 0090023~positive regulation of neutrophil chemotaxis 5 3.93E-03 

GOTERM_BP GO: 0000122~negative regulation of transcription from RNA polymerase II 

promoter 

35 7.00E-03 

GOTERM_BP GO: 0032024~positive regulation of insulin secretion 6 7.58E-03 

GOTERM_BP GO: 0045602~negative regulation of endothelial cell differentiation 3 8.60E-03 

GOTERM_BP GO: 0048662~negative regulation of smooth muscle cell proliferation 5 1.08E-02 

Table 1. Go and KEGG pathway enrichment analysis of differential genes 

 

2.3 . Protein Interaction Network Construction (PPI) and Module Analysis 

As described in the methods, we achieved a total of 388 protein interaction 
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relationship pairs, and the network construction was performed using 

Cytoscape software as shown in Figure 4. A total of 171 nodes were 

included in the network. 

 

Figure 4. Protein interaction relationship network diagram (PPI) . Note: red 

indicates up-regulated protein, green indicates down-regulated protein, 

gray line indicates protein interaction rela tionship, and node size indicates 

connectivity degree. 

The network was analyzed for node connectivity  according to the 

parameters set by the Method, the top15 of Degree Centrality (DC) of each 

node was ranked in Table 2. Notably，CXCL8, FPR2, IL6, and PPBP were 

ranked in Top15, which might be hub proteins in the network 

(supplementary Table 8). The top 15 of PPI network node connectivity rank 

were displayed at Table 2. 

Node Degree P Value TYPE Name 

GNG13 22 0.017945 DOWN G protein subunit gamma 13 
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GNG11 22 0.04065 DOWN G protein subunit gamma 11 

CXCL1 18 0.000525 UP C-X-C motif chemokine ligand 1 

CXCR4 14 0.000134 UP C-X-C motif chemokine receptor 4 

CXCL8 14 0.001358 UP C-X-C motif chemokine ligand 8 

SNAP23 14 0.006229 UP synaptosome associated protein 23 

FPR3 13 0.003603 DOWN formyl peptide receptor 3 

RAB44 13 0.028049 UP RAB44, member RAS oncogene family 

SKP2 12 0.000943 UP S-phase kinase associated protein 2 

GPR18 12 0.001281 DOWN G protein-coupled receptor 18 

GALR3 12 0.001499 UP galanin receptor 3 

CXCL6 12 0.002672 UP C-X-C motif chemokine ligand 6 

ITCH 12 0.007857 UP itchy E3 ubiquitin protein ligase 

S1PR3 12 0.010344 UP sphingosine-1-phosphate receptor 3 

GRM2 12 0.010472 UP glutamate metabotropic receptor 2 

Table 2. PPI network node connectivity rank（TOP15）  

2.4 . MRNA and lncRNA Co-expression Analysis 

We performed co-expression analysis of differentially expressed mRNAs 

and lncRNAs. According to the threshold set by the Methods, we screened 

a total of 1487 significantly coordinately expressed relationship pairs, 

including 381 mRNAs and 74 lncRNAs (supplementary Table 9) 

2.5 . MiRNA Target Genes and Upstream lncRNA Prediction Analysis 

Based on the differentially expressed miRNAs and differential lncRNAs, 

a total of 452 lncRNA-miRNA relationship pairs were predicted as 

described in the Methods (supplementary Table 10), including 18 miRNAs, 

and 72 lncRNAs. 

  Also based on differentially expressed miRNAs, target gene prediction 

was performed using mirWalk as described in the Methods, after taking the 

intersection with the differential mRNAs, 276 miRNA-mRNA relationship 

pairs were obtained, including 17 miRNAs, and 170 

mRNAs (supplementary Table 11) 

2.6 . Pathway Enrichment Analysis of lncRNAs and MiRNAs 

As described in the Methods, a total of 27 lncRNAs were enriched by 
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KEGG pathway (supplementary Table 12) and 12 miRNAs were enriched 

by KEGG pathway (supplementary Table 13), here we showed a part of the 

results in Figure 5.  

 

Figure 5. Results of lncRNA and miRNA pathway enrichment analysis. 

Note: top: lncRNA; bottom: miRNA; the decrease of significant p -value is 

shown from blue to red color, and bubble size indicates the proportion of 
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enriched genes (the number of involved term genes accounts for the 

number of input genes).  

2.7 . CeRNA Network Analysis 

As described in the Methods section, based on the obtained  

miRNA-lncRNA and miRNA-mRNA relationship pairs, 

miRNA-lncRNA-mRNA relationship pairs regulated by the same miRNA 

were firstly screened, along with the positive co-expression relationship 

between mRNA and lncRNA (correlation coefficient>0.7), and 

lncRNA-miRNA-mRNA relationship pairs were further screened for 

network construction, i.e., the ceRNA network as shown in Figure 6.  

 

Figure 6. ceRNA network diagram. Note: the red circles represent 

up-regulated mRNAs, and green circles represent down-regulated mRNAs; 

yellow triangles represent up-regulated miRNAs, and gray triangles 

represent down-regulated miRNAs; blue diamond’s represent 
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down-regulated lncRNAs, and pink diamonds represent up-regulated 

lncRNAs; The blue T-type lines represent the miRNA-lncRNA regulatory 

relationships, the yellow arrows represent the miRNA-mRNA regulatory 

relationships, and the green dotted lines represent the co -expression 

relationships of mRNA and lncRNA. 

 The network contained a total of 87 lncRNA-miRNA relationship pairs, 

88 miRNA-mRNA relationship pairs, and 137 lncRNA-mRNA 

co-expression relationships (supplementary Table 14). There were a total 

of 36 lncRNAs, 64 mRNAs, and 15 miRNAs.  Connectivity analysis was 

performed on each node of the ceRNA network to obtain mRNA, miRNA, 

and lncRNA connectivity as detailed in Table 3. 

Node Degree Type logFC P Value 

hsa-miR-539-5p 30 mi_down -0.31167 0.002388 

hsa-miR-654-5p 27 mi_down -0.38709 0.001381 

hsa-miR-432-5p 22 mi_down -0.29313 0.011733 

PSMA3-AS1 20 lnc_up 0.629594 0.032669 

hsa-miR-136-5p 19 mi_down -0.34012 0.010986 

MIR29A 18 lnc_up 0.849701 0.001608 

RP11-420L9.4 17 lnc_down -0.69127 0.00077 

LINC01619 14 lnc_up 0.610105 0.005996 

NACC2 14 m_up 1.011445 7.23E-05 

hsa-miR-329-3p 13 mi_down -0.28995 0.006895 

hsa-miR-1246 12 mi_up 0.489247 0.000567 

hsa-miR-133b 11 mi_down -0.40401 0.045067 

hsa-miR-431-5p 11 mi_down -0.37006 0.001259 

ST20-AS1 10 lnc_up 1.167706 0.000122 

STK35 10 m_up 1.147951 0.000764 

Table 3. ceRNA network node degree centrality rank (TOP15)  

3. Discussion 

The study analyzed the differential  genes at the statistical significance 
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level between CAD and healthy control, and found eleven Go and KEGG 

pathways (count ≥9), top 15 of PPI network node connectivity rank, and 

top 15 of ceRNA network node degree centrality rank, which would 

contribute to further exploration for the molecular mechanism of CAD.  

   Firstly, the Go and KEGG pathways (count ≥9) showed their function in Table 1, 

and they contained a large number of differential genes at the statistical 

significance level in CAD, thus these Go and KEGG pathways might play a role 

of molecular level of CAD. Several further explored experiments related to these 

pathways would achieve the interesting and important findings in CAD field.   

  Secondly, in top 15 of PPI network node connectivity rank, we found that the 

extensive protein interaction relationship pairs  at the statistical significance 

level in CAD (Table 2), which matched with their signaling pathways in the 

biosystems (supplementary Table 15). Some of them were identified to play 

a role in cardiovascular diseases. For example, GNG11 was a member of the 

gamma subunit family of heteromeric G-protein. Overexpression of GNG11 activated 

ERK1/2 of the MAP kinase family, but did not Ras.20 These findings provide 

clinically relevant biological insight into heritable variation in vagal heart rhythm 

regulation, with a key role for genetic variants (GNG11, RGS6) that influence 

G-protein heterotrimer action in GIRK-channel induced pacemaker membrane 

hyperpolarization (supplementary Table 15).21  

CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and 

pericytes and supported luminal and sub-EC neutrophil crawling.  CXCL1 and 

CXCL2 act in a sequential manner to guide neutrophils through venular walls as 

governed by their distinct cellular sources.22 Angiotensin II-induced infiltration of 

monocytes in the heart is largely mediated by CXCL1-CXCR2 signalling which 

initiates and aggravates cardiac remodelling. Inhibition of CXCL1 and/or CXCR2 

may represent new therapeutic targets for treating hypertensive heart diseases 

(supplementary Table 15).23 

Wnt-Cxcr4 (C-X-C motif chemokine receptor 4) signaling in regulation of 

oligodendrocyte precursor cells (OPCs)-endothelial interactions coordinates OPC 
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migration with differentiation.24 Many of the neutrophils reenter the vasculature and 

have a preprogrammed journey that entails a sojourn in the lungs to up-regulate 

CXCR4 before entering the bone marrow, where they undergo apoptosis.25 Vascular 

CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial 

barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial 

functions of arterial CXCR4 by selective modulators might open novel therapeutic 

options in atherosclerosis (supplementary Table 15).26 

  Oleic acid treatment decreases the insulin sensitivity of heart muscle cells, and this 

sensitivity is completely restored by transfection with SNAP23. Thus, SNAP23 might 

be a link between insulin sensitivity and the inflow of fatty acids to the cell 

(supplementary Table 15).27  

Co-activator-associated arginine methyltransferase 1 (CARM1) is a crucial 

component of autophagy in mammals. CARM1-dependent histone arginine 

methylation is a crucial nuclear event in autophagy, and identify a new signalling axis 

of AMPK-SKP2-CARM1 in the regulation of autophagy induction after nutrient 

starvation (supplementary Table 15).28 

GPR18 is a cannabinoid-activated orphan G protein-coupled receptor (GPCR) that 

is selectively expressed on immune cells.29 A salutary cardiovascular role for GPR18, 

mediated, at least partly, via elevation in the levels of adiponectin (supplementary 

Table 15).30 

Thirdly, in top 15 of ceRNA network node degree centrality rank, the extensive 

ceRNA interaction relationship pairs  at the statistical significance level  in 

CAD (Table 3) , which matched with their description in the literature search 

(supplementary Table 16). Certainly, we also found that several ceRNA was 

related to cardiovascular diseases. For example, by regulating CDKN2A and 

inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the 

cell cycle and migration of endothelial cells. The interaction of STK35L1 with 

nuclear actin might be critical in the regulation of these fundamental endothelial 

functions.44 Serine/threonine kinase 35 (STK35) is a recently identified human kinase 

with an autophosphorylation function, linked functionally to actin stress fibers, cell 
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cycle progression and survival (supplementary Table 16).45 Nuclear-retained 

importin α2 binds with DNase I-sensitive nuclear component(s) and exhibits selective 

upregulation of mRNA encoding STK35 by microarray analysis. Chromatin 

immunoprecipitation and promoter analysis demonstrated that importin α2 can access 

to the promoter region of STK35 and accelerate its transcription in response to 

hydrogen peroxide exposure. Furthermore, constitutive overexpression of STK35 

proteins enhances caspase-independent cell death under oxidative stress conditions 

(supplementary Table 16).46  

4. Materials and Methods 

4.1. Data Preprocessing 

miRNA expression profiling data were obtained from NCBI GEO (Gene 

Expression Omnibus, GEO, http://www.ncbi.nlm.nih.gov/geo/) database 7 

to download the expression profile data after normalization of the dataset 

serial number GSE59421. A total of 96 samples with the subjects’ 

characteristics (63 healthy controls (CTRL), 33 CAD blood samples), 

which were detected using the Agilent ‐ 021827 Human miRNA 

MicroArray (V3) platform (miRBase release 12.0 miRNA ID version). 

The mRNA/lncRNA data were also obtained from the NCBI GEO 

database to download the expression profile data after normalization of the 

dataset serial number GSE42148. A total of 24 samples with the subjects’ 

characteristics (11 CTRL, 13 CAD blood samples), which were detected 

using the Agilent ‐ 028004 SurePrintG3 Human GE 8 x 60K Microarray 

platform (Feature Number version). 

4.2 . MRNA and lncRNA Annotation 

The sequences matched the probes of Agilent-028004 were obtained 

from the platform annotation file, and the human reference genome 

(GRCh38) sequences was downloaded from the GENCODE database8  

(https://www.gencodegenes.org/releases/current.html), and the probe 

sequences were aligned onto the reference genome using the seqmap 

software.9 Firstly, we retained the uniquely aligned (unique map) probes, 
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and secondly, we referred their position to the chromosome with positive 

and negative strand information, the gene matched each probe was obtained 

according to the human gene annotation file (Release 25) provided by 

GENCODE. 

We kept the probe with the annotating information "protein_coding" as 

the matching probe for mRNA, the probes with the annotating information 

with "antisense", "sense_intronic", "lincRNA", "sense_overlapping" or 

"processed_transcript" were considered to the matching lncRNA probe. 

Finally, the probe numbers and mRNA/lncRNA (Gene symbol) were 

matched one by one to remove probes that did not match to Gene symbol. 

For different probes mapping to the same gene, we used the average of 

different probes as the final expression value of the mRNA/lncRNA. 

4.3. Differential MRNA, lncRNA and MiRNA Screening 

We took the R software limma package with the classical Bayesian 

method10 (version 3.10.3, 

http://www.bioconductor.org/packages/2.9/bioc/html/limma.html) . The 

differential analysis was performed between CAD and CTRL. Importantly, 

the miRNAs, mRNAs, and lncRNAs were analyzed to obtain their p values 

and logFC values, which were evaluated at the levels of both fold 

difference and statistical significance. The threshold of differential 

expression was set as miRNA: p value < 0.05 and |logFC| > 0.263 (>1.2 

times). 

4.4. Functional Enrichment and Pathway Analysis of Differentially 

Expressed MRNA 

Enrichment analysis was performed with the common enrichment 

analysis tool DAVID11 (version 6.8, https://david-d.ncifcrf.gov/) to analyze 

the up- and down- regulated genes, which were involved in the pathways of 

Gene Ontology BP (biological process),12 CC (cellular component), MF 

(molecular function) and KEGG.13 Significant enrichment results were 

considered to a significance threshold p value < 0.05 and an at least 2 of 
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enrichment number (count).  

4.5. Protein Interaction Network (PPI) Construction and Node 

Connectivity Analysis 

In combination with STRING (version: 10.0, 

http://www.string-db.org/),14 the database predicted whether there was an 

interaction relationship between the proteins encoded by the analyzed 

genes. The differential mRNAs were inputted into gene sets,  and homo was 

inputted into species. The parameter of PPI score was set to 0.9 (highest 

confidence), the interactional protein nodes were required in the up- and 

down- regulated genes. After the PPI relationship pairs were obtained, the 

data were analyzed using Cytoscape software (version  3.4.0, 

http://chianti.ucsd.edu/cytoscape-3.4.0/),15 for which a network map was 

constructed. The node connectivity analysis was performed with 

parameters of no weigh by using the CytoNCA plugin (Version 2.1.6, 

http://apps.cytoscape.org/  apps/cytonca).16 The results obtained the 

important nodes in the PPI network that were involved in protein 

interaction relationships, i.e., hub proteins, through the connectivity 

Degree Centrality (DC) rank of individual nodes.  

4.6. lncRNA and MRNA Co-expression Analysis 

The correlation test was performed and their pearson correlation 

coefficients of the differential mRNA and lncRNA were respectively 

calculated by using the matched sample of mRNA and lncRNA data. The 

relationship pairs with r > 0.7 (coordinate expression) and  p value < 0.05 

were focused on screening for the subsequent ceRNA network construction, 

and these mRNAs were considered to be s ignificantly correlated with 

lncRNAs, while mRNAs were considered as potential target genes of 

lncRNAs. 

4.7. Target Genes MiRNA and The Prediction for Their Upstream lncRNA  

Based on the differential miRNAs obtained from the differential analysis, 

miRWalk2.0 (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/)  
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database17 was used,  which integrated the four typical databases  including 

miRWalk, miRanda, RNA22, and TargetScan. If the predicted target genes 

were presented in each of four databases, the marching mRNA was 

considered to be regulated by the miRNA. After the predicted 

miRNA-mRNA relationship pairs were obtained, the mRNAs were f urther 

intersected with the differential mRNAs to obtain the differential 

miRNA-differential mRNA relationship pairs.  

With regard to differential lncRNAs versus differential miRNAs, we 

used the local software miRanda (v3.3a)18 to predict differential 

miRNA-differential lncRNA relationship pairs through software 

parameters (-sc140, -en-20, i.e., screen score > = 140, energy < = -20). 

4.8.  Pathway Enrichment Analysis of lncRNAs and MiRNAs 

Based on the obtained lncRNA-mRNA co-expression relationship pairs 

and miRNA-mRNA relationship pairs, mRNAs were used as potential 

target genes of matching lncRNAs and miRNAs, respectively. KEGG 

Pathway enrichment analysis was performed by using the R package 

clusterProfiler (version: 3.8.1, 

http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html),19 

and its results indirectly predicted the functions of lncRNAs and miRNAs. 

The threshold was set at p value < 0.05. 

4.9.  CeRNA Network Construction 

Based on the obtained mRNA-miRNA and lncRNA-miRNA relationship 

pairs, we firstly screened the miRNA-lncRNA-mRNA relationship pairs 

regulated by the same miRNA, then combined the positive co-expression 

relationship between mRNA and lncRNA (correlation coefficient > 0.7), 

and further screened the miRNA-lncRNA-mRNA relationship pairs for 

network construction, i.e., the ceRNA network . Thus, the lncRNAs and 

mRNAs with positive co-expression relationship regulated by the same 

miRNA in the ceRNA network were each other ceRNAs.  

Finally, the node connectivity (degree) analysis was also pe rformed 
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using the Cytoscape plugin CytoNCA with the parameter set to no weight. 

The higher the connectivity, the higher the import ance of this node in the 

network. 

5. Conclusions 

Based on eleven Go and KEGG pathways, top 15 of PPI network node connectivity 

rank, and top 15 of ceRNA network node degree centrality rank in CAD population, 

our findings would contribute to further exploration for the molecular mechanism of 

CAD. 

Supplementary Materials: Supplementary tables can be found in supplementary 

Material 
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BP  biological process  

CAD coronary artery disease 
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