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Abstract 

Background/Objectives: This study evaluates photon-counting CT (PCCT) for high-resolution 

imaging of mouse femurs and investigates how APOE genotype, sex, and humanized nitric oxide 

synthase (HN) expression influence bone morphology during aging. Methods: A custom-built micro-

CT system with a photon-counting detector (PCD) was used to acquire dual-energy scans of mouse 

femur samples. PCCT projections were corrected for tile gain differences, iteratively reconstructed 

with 20 µm isotropic resolution, and decomposed into calcium and water maps. PCD performance 

was benchmarked against an energy-integrating detector (EID) using modulation transfer functions 

and line profiles. Contrast-to-noise ratio quantified effects of iterative reconstruction and material 

decomposition. Femur features such as mean cortical thickness, mean trabecular spacing 

(TbSp_mean), and trabecular bone volume fraction (BV/TV) were extracted from calcium maps using 

BoneJ. Statistical analysis used 57 aged mice representing APOE22, APOE33, and APOE44 genotypes, 

including 27 expressing HN. We used generalized linear models (GLMs) to evaluate main and 

interaction effects of age, sex, genotype, and HN status on femur features and Mann-Whitney U tests 

for stratified analyses. Results: PCCT outperformed EID-CT in spatial resolution and enabled 

effective separation of calcium and water. GLMs revealed significant interactions between sex and 

HN status affecting trabecular features. Female HN mice exhibited reduced BV/TV and increased 

TbSp_mean compared to both male HN and female non-HN mice. While genotype effects were 

modest, genotype by sex stratified analysis found significant effects of HN status only in female 

APOE22 and APOE44 mice. Conclusions: These results demonstrate PCCT’s utility for femur 

analysis in mice, supporting its application in skeletal disease research. 

Keywords: photon-counting CT; mice; bone 

 

1. Introduction 

High-resolution bone imaging is critical to understanding the interplay between skeletal 

integrity and systemic factors such as aging, metabolism, inflammation, and genetic predisposition. 

X-ray CT is typically used for these studies due to its inherent high contrast for bone imaging. While 

many previous studies have used conventional micro-CT systems with energy-integrating detectors 

(EID) to quantify bone architecture, this type of detector has limitations in spatial resolution, beam 

hardening, and compositional differentiation. Photon-counting computed tomography (PCCT), by 

contrast, represents a transformative advance. Unlike EID systems that use scintillators to convert x-

ray photons into light and then into electrical signals, photon-counting detectors (PCDs) convert each 

x-ray photon directly into an electrical pulse and count them based on user-defined energy thresholds 

[1,2]. This results in improved spatial resolution, reduced electronic noise, and multi-energy imaging 

in a single acquisition [2]. 

PCCT’s potential for bone imaging has been demonstrated in both clinical and preclinical 

studies. In cadaveric human bones, PCCT has been shown to improve tissue contrast and reduce 
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metal artifacts compared to dual-energy EID CT [3,4]. Preclinical work using PCCT in rodent models 

has also shown accurate material decomposition and significant detection of disease-related changes, 

such as those induced by ovariectomy [5]. However, the application of PCCT to high-resolution bone 

morphometry in genetically diverse murine models has not yet been fully explored. 

Bone health is interconnected with cardiovascular and neurological systems through shared 

pathways involving apolipoprotein E (APOE) and nitric oxide (NO) [6–9]. APOE, a lipid-transport 

protein with three isoforms (ε2, ε3, ε4), influences bone formation via lipid metabolism [6]. Genetic 

variation or deficiency in APOE has been linked to altered bone remodeling [9,10]. While some 

studies report associations between ε4 and reduced bone mineral density [6,11,12], others find no 

clear link [13,14], suggesting context-dependent effects. 

Mouse models are useful for studying how interactions between risk factors influence bone 

health because both their genetic background and lifestyle factors such as diet and exercise can be 

tightly controlled. While prior studies of bone health have used mice with variation in APOE 

genotype [15,16], incorporating additional variation in immune response via presence or absence of 

a humanized NOS2 (HN) gene [17] is much less common. NOS2 regulates nitric oxide (NO) 

production during inflammation, affecting bone remodeling via osteoblast/osteoclast activity and 

oxidative stress [18]. 

In this study, we leverage a custom high-resolution PCCT system to image femurs from 57 aged 

mice with defined homozygous APOE genotypes (APOE22, APOE33, APOE44), including a subset 

expressing humanized NOS2. We demonstrate the technical performance of PCCT in terms of spatial 

resolution, contrast to noise ratio, and spectral decomposition. Using calcium maps derived from 

multi-energy acquisitions, we quantify trabecular and cortical bone features and examine group-level 

trends linked to sex, immune status, APOE genotype, and age. This work highlights PCCT’s 

advantages for musculoskeletal research and applies PCCT imaging of mouse femurs to study the 

complex interactions between risk factors for impaired bone health. 

2. Materials and Methods 

2.1. Mouse Cohort and Sample Preparation 

This study analyzed femurs from 57 aged C57BL/6J mice genetically engineered to express one 

of three human APOE alleles (ε2, ε3, or ε4) in homozygous form, resulting in 3 distinct APOE 

genotypes (APOE22, APOE33, APOE44). Of these, 27 mice (47%) also expressed a humanized version 

of the NOS2 gene (HN), providing an immune background more representative of human physiology 

[17,19,20]. The cohort included both sexes and spanned an age range of 13.2 to 28.0 months (mean ± 

SD: 17.8 ± 3.3 months). All animals were maintained on a standard chow diet (LabDiet 5001), with an 

average body mass of 31.1 ± 4.1 g at the time of imaging. Each APOE genotype group included both 

male and female mice, though minor sex imbalances occurred in the APOE22HN and APOE44HN 

subgroups due to breeding constraints. Table 1 summarizes the distribution by genotype, sex, and 

HN status; Table 2 provides the corresponding age distributions. 

Table 1. Distribution of mice in femur study by genotype/HN status and sex. 

Genotype Female Male Total 

APOE22 5 5 10 

APOE33 5 5 10 

APOE44 5 5 10 

APOE22HN 6 3 9 

APOE33HN 5 5 10 

APOE44HN 5 3 8 

Total 31 26 57 
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Table 2. Age distribution for entire mouse population and for subgroups by genotype/HN status and sex. 

Group (# of mice) Age in Months (Mean + Std Dev) 

APOE22 (10) 18.88 + 2.88 

APOE33 (10) 18.45 + 5.12 

APOE44 (10) 19.63 + 1.37 

APOE22HN (9) 16.45 + 1.32 

APOE33HN (10) 14.06 + 1.09 

APOE44HN (8) 19.5 + 1.54 

Female (31) 17.74 + 3.38 

Male (26) 17.86 + 3.19 

All Mice (57) 17.79 + 3.27 

All animal procedures were approved by the Duke University Institutional Animal Care and 

Use Committee (IACUC, Protocol Registry Number: A173-20-08). Mice were euthanized by 

transcardiac perfusion under deep anesthesia induced by intraperitoneal injection of 

ketamine/xylazine (100 mg/kg and 10 mg/kg, respectively), as previously described [21]. We ensured 

that this euthanasia was done humanely with concern for the welfare of the mouse. The left femur 

was excised, and soft tissues were carefully removed. Femurs from three different mice were 

embedded in 1% agarose (w/v in PBS) inside 15 mL conical tubes, with rubber bands serving as 

fiducial markers to help us differentiate between the femurs. Once the gel solidified, the tubes were 

filled with phosphate-buffered saline (PBS) to preserve hydration and reduce beam hardening during 

our CT acquisition. The preparation followed recommendations for ex vivo murine femur imaging 

[22]. Following completion of sample preparation, each vial containing femurs was scanned using 

PCCT. 

2.2. Photon-Counting CT Scanning 

All ex vivo imaging was performed using a custom-built micro-CT scanner equipped with two 

x-ray detectors: a photon-counting detector (PCD) and a conventional energy-integrating detector 

(EID) [23]. The PCD (XC-Thor, XCounter AB) consists of 8 tiled CdTe-based detector chips with 

dimensions of 128×256 pixels per tile (1024×256 for whole detector), a pixel size of 100 μm, and two 

programmable energy thresholds per acquisition. The EID module (Dexela 1512, PerkinElmer) 

features a 75 μm pixel size and uses a CsI scintillator coupled to a CMOS sensor. The PCD was the 

primary detector used for high-resolution femur imaging and material decomposition. The EID was 

included in this study solely for comparison of spatial resolution, as detailed in our previous studies 

[20,23]. Both detectors are mounted orthogonally to the x-ray source and can be interchanged without 

altering the scanning geometry [23]. For all PCD scans, the x-ray source was operated at 60 kVp and 

134 μA. Data were acquired using a helical trajectory, covering 1400 angular views over 1070° of total 

rotation with 21 mm of vertical translation. At each projection angle, 100 low-noise exposures of 40 

ms were averaged. The PCD energy thresholds were set to 15 keV and 34 keV to optimize sensitivity 

for calcium and water separation in subsequent material decomposition. With these settings, each 

vial scan required approximately 2 hours and 6 minutes to complete. 

2.3. Artifact Correction 

The 8 detector tiles of the XC-Thor PCD have varying spectral response. As a result, the 

projections have noticeable intensity differences between tiles even after log-normalization, and low 

frequency concentric bands are present in the reconstructed image [24]. As we have discussed in our 

prior study on ex-vivo brain imaging [20], we correct this using the multiplicative projection domain 

water gain correction proposed by Kim and Baek [25], with a PBS vial used in place of a water vial. 

This procedure involves: (1) acquiring a PCCT scan of a vial filled with only PBS solution using the 

same trajectory as the femur scanning, (2) constructing artificial PCCT projections on the computer 
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to resemble an ideal PCCT scan of a PBS vial without artifacts, (3) creating PBS gain projections by 

dividing the ideal PBS projections by the PCCT projections from the real scan of the PBS vial, and (4) 

Multiplying the PCCT projections from a real scan of a femur sample vial by the PBS gain projections. 

After this correction of background nonuniformities, the PCD projections from a femur sample vial 

are ready for reconstruction. 

2.4. Image Reconstruction 

Since analytical reconstruction of the corrected PCCT projections of a femur sample vial with 

the weighted filtered backprojection (wFBP) algorithm [26] results in a noisy image, iterative 

reconstruction is necessary. Accordingly, we performed iterative reconstruction of our PCD 

projections with two energy thresholds using the Multi-Channel Reconstruction (MCR) Toolkit [27]. 

Our reconstructed volumes have an isotropic voxel size of 20 μm and about 1000 axial slices with 

dimensions of 960×960 voxels, although there was some variation in the values of these dimensions 

to account for changes in position of the vial and the femurs inside it. For iterative reconstruction, we 

used the split Bregman method with the add-residual-back strategy [28] and rank-sparse kernel 

regression regularization (RSKR) [27,29], solving the following optimization problem: 

X =  arg min
𝑋

1

2
 ∑ || 𝑅𝑋(𝑒)  −  𝑌(𝑒) ||2

2
𝑒  +  𝜆|| 𝑋 ||𝐵𝑇𝑉 .     (1) 

Thus, we solve iteratively for the vectorized, reconstructed data, the columns of X, for each 

energy simultaneously (indexed by e). The reconstruction for each energy minimizes the reprojection 

error (R, system projection matrix) relative to the log-transformed PCD projection data acquired at 

each energy (the columns of Y). To reduce noise in the reconstruction, the data fidelity term is 

minimized subject to the bilateral total variation (BTV) measured within and between energies via 

RSKR. Each set of 2 energy channel, tile artifact corrected PCD projection data from a femur sample 

scan was reconstructed using this approach with 4 iterations. 

2.5. Material Decomposition 

We performed image-based material decomposition of the PCD iterative reconstruction using 

the method of Alvarez and Macovski [30]. Thus, we performed a post-reconstruction spectral 

decomposition with H2O and calcium (Ca) as basis functions: 

𝑋(𝑒) =  𝐶𝐻2𝑂𝑀𝐻2𝑂(𝑒) +  𝐶𝐶𝑎𝑀𝐶𝑎(𝑒).         (2) 

In this formulation, M is a matrix of material sensitivities (attenuation per unit concentration for 

each material) at each energy. We computed the values in M by scanning and reconstructing a 

phantom containing a water vial and a vial of 40 mg/mL Ca in water and fitting the slope of 

attenuation measurements taken in the vials. CH2O represents density in g/mL for H2O, while CCa is 

the Ca concentration in mg/mL. Finally, X is the attenuation coefficient of the voxel under 

consideration at energy e. Material decomposition was performed by matrix inversion, solving the 

following linear system at each voxel:   

C =  XM-1              (3) 

Orthogonal subspace projection was used to prevent negative concentrations [29]. Post 

decomposition, the material maps were assigned to colors and visualized in ImageJ. 

2.6. Image Quality Assessment 

Using one of our femur sample vials, we performed a quantitative assessment of the effects of 

PBS gain correction and iterative reconstruction. For this sample, we selected a line profile through 

the center of the vial in the first energy threshold (15 keV) and measured the intensity along this line 

in the wFBP reconstruction of the uncorrected projections, wFBP reconstruction of the PBS-corrected 

projections, and iterative reconstruction of the PBS-corrected projections. Then, we computed percent 

image uniformity (PIU) along each line profile using the following formula. 
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𝑃𝐼𝑈 =  100 × (1 −
(𝑚𝑎𝑥−𝑚𝑖𝑛)

(𝑚𝑎𝑥+𝑚𝑖𝑛)
)          (4) 

To compare spatial resolution between photon-counting and energy-integrating detectors, we 

acquired additional scans of the QRM Micro-CT Bar Pattern Phantom (https://www.qrm.de/) and a 

representative mouse femur. Both samples were scanned using both the PCD and EID of our micro-

CT system described in Section 2.2 with the same helical trajectory and matched acquisition settings: 

60 kVp tube voltage, 134 μA current, and an exposure time of 1.2 seconds per projection angle (the 

maximum allowable for the EID without saturation). The PCD scan used energy thresholds of 15 and 

34 keV. All images were reconstructed at 20 μm isotropic voxel size using our iterative reconstruction 

pipeline to enable direct comparison of PCD and EID data. For the QRM phantom reconstructions, 

we computed image contrast for the bar patterns with 3.3, 5, 10, and 16.6 line pairs per mm (lp/mm) 

and fit a Gaussian curve to these measurements to produce modulation transfer functions (MTFs) for 

the PCD and EID scans. For the femur, we measured the intensity along the same line profile through 

trabecular bone in both the PCD and EID reconstructions. We then normalized both line profiles by 

their maximum value and plotted them together to provide a visual assessment of spatial blurring of 

the trabecular bone. 

Finally, using one of our femur samples, we compared image contrast between the PCD wFBP 

reconstruction, PCD iterative reconstruction, and material decomposition of the PCD iterative 

reconstruction. We computed contrast to noise ratio (CNR) for each displayed image (PCD 15 keV 

and PCD 34 keV from both wFBP and iterative reconstructions, Water, Calcium) using the following 

formula: 

𝐶𝑁𝑅 =  
𝜇1−𝜇2

√𝜎1
2+𝜎2

2

2

            (5) 

where 1 and 1 are the mean and standard deviation from a foreground region of interest (ROI) in 

trabecular bone and 2 and 2 are the mean and standard deviation from a background, non-bone 

ROI inside the femur. 

2.7. Femur Feature Extraction 

Following iterative reconstruction and material decomposition of each scan, we extracted 

quantitative features from the calcium material map for each femur using ImageJ and its BoneJ plugin 

[31]. First, we created separate image volumes that isolate each individual femur in the sample vial 

by creating a substack of axial slices from a cropped rectangular region of interest in the calcium map. 

Using this smaller, femur-specific volume, we followed the instructions from use case 2 in the BoneJ 

manuscript [31] to align the femur to its principal axes and compute mean cortical thickness in two 

dimensions (MeanThick2D) and in three dimensions (MeanThick3D) from the central axial slice of 

the femur. 

Next, we analyzed the trabecular bone in the metaphyseal region located slightly above the 

growth plate of the distal femur, as suggested in previous studies of mouse femurs [22,32]. 

Specifically, we selected a region that is 80 axial slices (1.6 mm) in height, with the bottom slice located 

40 slices (0.8 mm) above the center of the growth plate. An example of trabecular region selection is 

illustrated in the bounding box in Figure 1a. After extracting a metaphyseal substack from the femur 

specific volume, we used the freehand selection tool in ImageJ to draw manual contours of the region 

inside the cortical bone on every 10th axial slice, and then we interpolated the ROIs. This results in 

an 80-slice volume of interest (VOI) with a shape that matches the region inside the cortical bone. 

Figure 1b shows an example of freehand contour selections on 3 axial slices from the distal 

metaphyseal substack. By using the “clear” and “clear outside” functions in ImageJ, we defined 

separate volumes for the trabecular bone inside the contoured VOI and the cortical bone outside the 

VOI. We performed Otsu’s thresholding on each of these volumes to generate a trabecular mask and 

a cortical mask, then added them together to create a combined trabecular & cortical mask. The 

trabecular mask was passed into BoneJ to compute the trabecular bone volume and surface area. Bone 
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volume was divided by the total volume of the 80-slice contoured VOI to compute bone volume 

fraction (BV/TV). Trabecular spacing (TbSp) and trabecular thickness (TbTh) maps were defined by 

passing the combined trabecular & cortical mask into the BoneJ thickness function and then clearing 

the region outside the contoured VOI in the resulting maps. For each of these maps, we then 

computed the mean across all voxels that do not have value 0 or NaN to obtain TbSp_mean and 

TbTh_mean. Finally, mean calcium concentration (MeanCaConc) was computed by multiplying the 

calcium map of the distal metaphyseal VOI by the trabecular mask and taking the mean across all 

voxels that have a nonzero value. 

 

Figure 1. Region selections for femur processing. (a) Coronal view of a cropped femur specific volume of interest 

from the calcium map. The yellow line at the center of the femur shows the location at which mean cortical 

thickness was computed, while the yellow bounding box near the bottom of the femur shows the location of the 

metaphyseal volume of interest from which trabecular metrics were computed. (b) First (top), 40th (center) and 

80th (bottom) axial slice of metaphyseal region, with contours of the boundary of the trabecular region shown 

in yellow. Both the coronal femur image in (a) and the 1st axial slice of the metaphyseal region in (b) include 

scale bars to show a length of 1 mm on the image. 

2.8. Statistical Analysis of Femur Features 

After extracting the features described above from each femur, we used statistical methods to 

understand how these features are influenced by age, sex, APOE genotype, and immune status (HN). 

Our statistical analysis code, which is included in the online repository for this manuscript 

(https://gitlab.oit.duke.edu/rohan.nadkarni/pcct-femur-analysis/), used the scipy and statsmodel 

packages in the Python programming language. 
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2.8.1. Tests for Normality and Homogeneity of Variance 

First, we checked whether each feature followed a normal (bell-shaped) distribution using the 

Shapiro-Wilk test [33]. In the Shapiro-Wilk test, the null hypothesis is a normal distribution, the 

alternative hypothesis is a skewed distribution, and the significance level we chose for rejection of 

the null hypothesis was 5%. Next, we used Levene’s test to check if each femur feature meets the null 

hypothesis of homogeneity of variances across experimental subgroups [34], with a 5% significance 

level for rejection of this hypothesis. Table A1 in the Appendix shows the p-values from the Shapiro-

Wilk and Levene’s tests. MeanThick2D, MeanThick3D, and MeanCaConc all had a p-value greater 

than 0.05 in both tests, so we accept the null hypotheses that the feature is normally distributed and 

has equal variances across subgroups. BV/TV, TbTh_mean, and surface area did not meet the 

assumption of normal distribution but did meet the assumption of equal variances, while TbSp_mean 

failed both assumptions. 

2.8.2. Multi-factor Generalized Linear Models 

Each feature was analyzed using a generalized linear model (GLM), which can easily be adapted 

for normally distributed or skewed response data by adjusting its two main parameters: (1) the 

expected probability distribution family of the response variable and (2) the link function used to 

transform the response variable. Our consistent use of GLMs for both normally distributed and 

skewed data ensured that the predictors and types of model parameters (coefficient and p-value for 

each predictor) were identical for all femur features. 

Features that were normally distributed and had equal variances across subgroups were 

analyzed using a GLM with the Gaussian distribution family. The formula for the GLM was: 

Feature ~ Age + Sex + Genotype + HN + Age:Sex + Age:Genotype + Age:HN + Sex:Genotype + 

Sex:HN + Genotype:HN. 

In this formula, Feature refers to a femur feature such as MeanThick2D, Genotype refers to 

classification of mice by APOE with HN status ignored (APOE22, APOE33, or APOE44), and HN 

refers to classification of mice by HN status with APOE genotype ignored (HN or non-HN). In our 

model, Age (in months) is a continuous variable, while the remaining 3 independent variables are 

categorical. For our categorical variables, the reference (level 0) values in our model were Male, 

APOE33, and non-HN. We included all two-way interactions but excluded higher-order interactions 

from the GLM formula to simplify interpretation. 

For features that failed the Shapiro-Wilk test or both tests, we applied a GLM with the Gamma 

distribution and a log link function, which is suitable for positively skewed data [35]. These GLMs 

used the same formula as above. 

For all GLMs, p-values were corrected for multiple comparisons using the Benjamini-Hochberg 

(BH) false discovery rate (FDR) procedure at a 5% threshold [36]. P-values corresponding to a single 

predictor across all femur features were grouped together during FDR correction. We report 

coefficients and corrected p-values for significant predictors only. 

2.8.3. Stratified Subgroup Analyses 

In addition to running GLMs on the entire cohort of 57 mice, we ran several stratified subgroup 

analyses. First, we separated the data into male-only and female-only and assessed the effect of 

genotype on each femur feature within these subgroups (Figure A1). Then, we separated the data 

into HN and non-HN and assessed the effect of genotype on each femur feature within each of those 

groups (Figure A2). In these stratified analyses, we used the Kruskal-Wallis test [37] to check for 

differences by genotype, with FDR correction of p-values using the BH method at a 5% significance 

threshold as described earlier. This test evaluates a null hypothesis of equal medians between three 

or more groups, making it suitable for femur features that are not necessarily normally distributed 

after stratification. 
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Our other stratified analyses investigated the effects of sex and HN on femur features. We sorted 

mice into HN and non-HN subgroups and determined if sex has an effect in each group. Conversely, 

we also sorted mice into male and female subgroups and determined if HN status has an effect in 

each group. For the femur features with significant difference by HN status in at least one sex specific 

subgroup, we then sorted mice into genotype by sex subgroups (e.g., APOE22 Female) and assessed 

the effect of HN status in all six of these groups (Figure A3). Since HN and sex both have just 2 

categories, we used the Mann-Whitney U test (Kruskal-Wallis test comparing only two groups) with 

BH FDR correction of p-values for each of these stratified tests. 

Finally, we assessed the effect of age within stratified subgroups. Since age is a continuous 

variable in our analysis, this was done using linear regression. For each combination of femur feature 

and categorical variable (sex, APOE genotype, HN), we generated a scatter plot with age on the x-

axis and the femur feature (or its natural logarithm if it has a skewed distribution) on the y-axis, with 

separate color-coding and best fit lines for each level (e.g., Male and Female) of the categorical 

variable. Unlike the multivariate GLMs discussed earlier, this stratified analysis fitted lines with the 

simple formula: G(Feature) = mAge + b. Where G() refers to the log() operation for femur features 

with a skewed distribution and the identity operation for femur features with a normal distribution. 

P-values from these regressions were BH FDR-corrected across all features within each categorical 

level. 

2.9. Qualitative Assessment of Trabecular Structure 

To validate the accuracy of our trabecular metrics and provide a visualization of differences 

between femur samples, we used ImageJ’s 3D Viewer plugin to generate 3D renderings of the 

combined trabecular and cortical bone mask from the distal metaphyseal region of several femur 

samples. Specifically, we compiled a figure to display two metaphyseal 3D renderings for each 

combination of sex, APOE genotype, and HN status. For each combination, we arranged the 

renderings so that the younger mouse is on the left and the older mouse is on the right. For each 

femur sample selected for rendering, we also display the corresponding bone volume fraction and 

age. 

3. Results 

3.1. Image Quality Assessment 

Figure 2 demonstrates that both PBS gain correction and iterative reconstruction substantially 

improved image quality. An axial slice from the 15 keV threshold shows progression from the 

uncorrected wFBP (Figure 2a) to PBS-corrected wFBP (Figure 2b), and finally to PBS-corrected 

iterative reconstruction (Figure 2c). Line profiles across the vial reveal increasing PIU across methods: 

29.5 (uncorrected), 57.5 (PBS-corrected), and 76.2 (PBS-corrected and iterative). Notably, the iterative 

reconstruction also eliminated ring and streak artifacts near the femurs through joint regularization 

across energy thresholds. 
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Figure 2. Effects of PBS gain correction and iterative reconstruction in an axial slice from the 15 keV energy 

threshold of a vial with 3 femurs. (a) wFBP reconstruction of PCD projection before PBS gain correction (b) wFBP 

reconstruction of PBS gain corrected PCD projection (c) Iterative reconstruction of PBS gain corrected PCD 

projection. The plot to the right of each image shows the attenuation values along the yellow line profile 

overlayed on the image. The calibration bar in (a) shows the display setting for all images in units of cm-1. 

Figure 3 compares PCD and EID performance using the QRM Micro-CT Bar Pattern Phantom 

and a mouse femur. The PCD bar pattern image (Figure 3a) showed improved contrast at higher line 

pair frequencies (10 and 16.6 lp/mm) compared to the EID image (Figure 3b), consistent with MTF 

curves showing 10% MTF at 19.44 lp/mm for PCD and 14.54 lp/mm for EID (Figure 3c). In femur 

images (Figure 3d–e), the PCD clearly delineates bone boundaries with reduced spatial blurring. Line 

profile analysis (Figure 3f) further confirms a sharper transition and narrower peak for the PCD 

image. To minimize noise in bone imaging, all PCCT femur scans in our aging study used longer 

exposure (4 seconds per angle) than the data shown in Figure 3. This longer exposure remained 

within PCD dynamic range and did not introduce saturation. 
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Figure 3. Spatial resolution assessment of PCD and EID scans on our ex vivo micro-CT system using the QRM 

Micro-CT Bar Pattern Phantom and a femur sample. (a) PCD iterative reconstruction of QRM phantom at first 

energy threshold (b) EID iterative reconstruction of QRM phantom (c) modulation transfer function (MTF) 

curves from PCD and EID QRM phantom reconstructions (d) PCD iterative reconstruction of femur sample at 

first energy threshold (e) EID iterative reconstruction of same femur sample (f) Plot of attenuation normalized 

by maximum value along dashed red line profile in (d) in PCD and EID reconstructions. The calibration bars in 

(a), (b), (d), and (e) show the display settings for these images in units of cm-1. 

Figure 4 shows axial slices of a femur scan across three image types: PBS-corrected wFBP, 

iterative reconstruction, and material maps from decomposition. While the wFBP 34 keV image 

exhibits low CNR due to high noise, iterative reconstruction reduces the noise level and preserves 

bone structure at both energies. Material decomposition further enhances bone separation, with the 

calcium map achieving the highest CNR among all image types. Minor bone residuals in the water 

map are visible, likely due to partial volume effects or basis material limitations. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2025 doi:10.20944/preprints202509.1260.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1260.v1
http://creativecommons.org/licenses/by/4.0/


 11 of 22 

 

 

Figure 4. Axial slice from reconstruction and material decomposition of vial with mouse femurs. (a) wFBP 

reconstruction at both energy thresholds. (b) Iterative reconstruction at both energy thresholds. (c) Water and 

calcium maps from material decomposition of iterative reconstruction. (d) Contrast to noise ratio for each image. 

The calibration bar in (a) shows the display setting for wFBP and iterative reconstructions in units of cm-1, while 

the calibration bars in (c) show the display settings of water in g/mL and calcium in mg/mL. The 15 keV threshold 

image in (a) includes a scale bar to indicate a length of 1 mm on the image. The area highlighted by a dashed 

yellow rectangle in (a) shows the foreground region in the trabecular bone (green circle) and the background 

region (red circle) used to calculate CNR in all images. Note that although the decomposition is very effective in 

separating the bone, some cross-contamination exists, and bone traces are apparent in the water image. 

3.2. Statistical Analysis of Femur Features 

3.2.1. Multi-factor Generalized Linear Models 

Table 3 shows all significant predictors from our GLMs applied to the entire cohort of mice 

(n=57). 
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Table 3. Summary of significant predictors from GLMs. 

Femur Feature Predictor Coefficient 

BH FDR 

Corrected p-

value 

Interpretation 

BV/TV Genotype[T.APOE44] 9.08937 0.00976 

APOE44 has a significant 

positive effect on log(BV/TV) 

relative to APOE33. 

BV/TV Sex[T.Female]:HN[T.HN] -2.85595 <1e-5 

The combination of female 

sex and HN expression has a 

significant negative effect on 

log(BV/TV). 

BV/TV Age:Genotype[T.APOE44] -0.484397 0.00518 

The change in log(BV/TV) 

per 1 month increase in age is 

significantly more negative 

(i.e., more age-dependent 

decline) in the APOE44 

group than in the APOE33 

group. 

Surface Area Sex[T.Female]:HN[T.HN] -2.19199 <1e-5 

The combination of female 

sex and HN expression has a 

significant negative effect on 

log(Surface Area). 

Significant predictors were found only for trabecular bone volume fraction (BV/TV) and surface 

area. Notably, a change from the reference genotype (APOE33) to APOE44 was associated with 

increased BV/TV (p = 0.00976). The most pronounced effect was observed for the interaction between 

sex and HN status: female HN mice exhibited significantly lower BV/TV and surface area compared 

to both HN males and non-HN females (p < 1e-5 for both features). Age also interacted with genotype, 

such that APOE44 mice showed a steeper decline in BV/TV with increasing age than APOE33 mice 

(p = 0.00518). While age was a predictor only in this interaction term, we note that APOE44 and 

APOE44HN groups had slightly higher mean ages than APOE33 and APOE33HN, which may have 

contributed to this result. 

 Violin plots in Figure 5a show the full BV/TV distribution across APOE genotypes. While visual 

differences between genotypes were modest, the GLM for BV/TV revealed significant effects. To 

control for confounding variables, Figure 5b shows BV/TV residuals from a GLM that excluded 

genotype effects; these plots further illustrate reduced BV/TV in APOE33 and APOE22 compared to 

APOE44. 

 

Figure 5. Violin plots showing differences in BV/TV by genotype. (a) Plot of observed BV/TV values versus 

APOE genotype. (b) Residuals of confounding variables GLM with formula BV/TV ~ Age + Sex + HN + Age:Sex 

+ Age:HN + Sex:HN versus APOE genotype. The bar with asterisk indicates a significant difference (p<0.05) 

between APOE44 and the reference genotype level APOE33. 
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These findings underscore the importance of sex, APOE genotype, and immune background in 

determining trabecular bone structure in aged mice. 

3.2.2. Stratified Subgroup Analyses 

In our Kruskal-Wallis tests, we did not find a significant difference in femur features by APOE 

genotype within the male only, female only, non-HN only, or HN only subgroups. The violin plots 

associated with these results are shown in the Appendix section in Figures A1 and A2. 

Our Mann-Whitney U tests comparing femurs features by sex within HN and non-HN 

subgroups and by HN status within female and male subgroups returned several statistically 

significant differences. These significant results are reported in Table 4, and the corresponding violin 

plots are shown in Figures 6 and 7. 

Table 4. Summary of significant predictors from stratified subgroup analyses investigating sex and HN 

interactions. All p-values were computed using Mann-Whitney U tests followed by BH FDR correction. 

Femur Feature Predictor Subgroup 

BH FDR 

Corrected p-

value 

Interpretation 

MeanThick2D Sex HN 0.03339 

Significant difference in 

MeanThick2D between 

female HN mice and male 

HN mice. 

BV/TV Sex HN 3.6770e-05 

Significant difference in 

BV/TV between female HN 

mice and male HN mice. 

TbSp_mean Sex HN 3.6770e-05 

Significant difference in 

TbSp_mean between female 

HN mice and male HN mice. 

Surface Area Sex HN 3.6770e-05 

Significant difference in 

surface area between female 

HN mice and male HN mice. 

BV/TV HN Female 0.00050 

Significant difference in 

BV/TV between female HN 

mice and female non-HN 

mice. 

TbSp_mean HN Female 0.00060 

Significant difference in 

TbSp_mean between female 

HN mice and female non-HN 

mice. 

Surface Area HN Female 0.00060 

Significant difference in 

surface area between female 

HN mice and female non-HN 

mice. 
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Figure 6. Violin plots corresponding to Mann-Whitney U comparisons by sex within HN and non-HN 

subgroups. Bars with an asterisk indicate statistically significant difference (p<0.05) by sex after BH FDR 

correction. Only femur features with significant sex difference in at least one subgroup have been plotted. 

The two figures indicate that: 1) female mice that express the HN gene have significantly less 

trabecular bone mass (i.e., smaller BV/TV and surface area and larger TbSp_mean) than male mice 

that express the HN gene and 2) female mice that express the HN gene have significantly less 

trabecular bone mass than female mice that do not express the HN gene. However, our plots and 

Mann-Whitney U tests do not show significant differences in femur features between female non-HN 

and male non-HN or between male HN and male non-HN. 

 

Figure 7. Violin plots corresponding to Mann-Whitney U comparisons by HN status within female and male 

subgroups. Bars with an asterisk indicate statistically significant difference (p<0.05) by HN status after BH FDR 

correction. Only femur features with significant difference by HN status in at least one subgroup have been 

plotted. 

Table 5 highlights the statistically significant findings from our Mann-Whitney U tests for 

differences in femur features by HN status within genotype-by-sex subgroups. Only three femur 

features were considered in this analysis—BV/TV, TbSp_mean, and surface area—since these were 

the only features that showed significant HN effects in our sex stratified analysis (Figure 7). 

Significant differences by HN status were found for all 3 femur features in APOE22 females and 

for BV/TV and TbSp_mean in APOE44 females. In contrast, no significant differences by HN status 

were observed in APOE33 females or in any of the male subgroups. 

Table 5. P-values after BH FDR correction from Mann-Whitney U comparisons by HN status within genotype 

by sex subgroups. P-values below the 5% significance level are indicated in bold text. 

 
APOE22 

Female 

APOE22 

Male 

APOE33 

Female 

APOE33 Male APOE44 

Female 

APOE44 

Male 
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BV/TV 0.00433 0.78571 0.09524 0.84127 0.02381 0.78571 

TbSp_mean 0.00433 0.58929 0.15079 0.46429 0.02381 0.75000 

Surface Area 0.00433 0.58929 0.15079 0.46429 0.05556 0.78571 

These results indicate that the HN-associated bone loss in females is modulated by genotype, 

with APOE22 and APOE44 backgrounds showing the strongest effect. This three-way interaction 

(genotype:sex:HN) supports the notion that inflammatory signaling (modeled by HN expression) 

interacts with genetic susceptibility and sex to influence trabecular bone health in aging. The violin 

plots corresponding to the comparisons in Table 5 are shown in the Appendix section in Figure A3, 

providing a visual summary of how HN effects differ by genotype and sex. 

In our linear regression with age on the x-axis and femur feature on the y-axis within subgroups 

defined by sex, HN status, or APOE genotype, only the male subgroup showed statistically 

significant regression lines after BH FDR correction. Specifically, male mice showed a significant 

decrease in cortical thickness (both 2D and 3D measures) and a significant increase in trabecular 

spacing (log-transformed TbSp_mean) with increasing age. Scatter plots illustrating these 

relationships, including regression lines, r² values, confidence intervals, and corrected p-values, are 

shown in Figure 8. 

No other subgroups —females, HN mice, non-HN mice, or any APOE genotype groups—

exhibited significant age-dependent changes in the examined femur features after multiple testing 

correction. Furthermore, the interaction term Age:Sex was not significant in the full-cohort GLMs, 

suggesting that the age-related differences observed in males did not extend to females in this cohort. 

These findings support a sex-specific aging trajectory, where male mice exhibit more 

pronounced bone deterioration with age, while female mice may be more affected by inflammatory 

and genetic interactions (e.g., HN and APOE effects). 

 

Figure 8. Scatter plots of femur feature vs. age. Linear regression plots with age as the independent variable, 

separate linear fits by sex, and (a) MeanThick2D, (b) MeanThick3D, and (c) log(TbSp_mean) as the dependent 

variable. Each plot includes best fit lines as well as their r2 values, 95% confidence intervals, and p-values (in 

legend). For brevity, only plots with a statistically significant regression line (p<0.05) in at least one subgroup 

are shown. 

3.3. Qualitative Assessment of Trabecular Structure 

In Figure 9a, we show 3D renderings of the distal femoral metaphyseal region from 24 

representative mice spanning all combinations of APOE genotype, sex, and HN status. These 

visualizations provide a qualitative perspective on trabecular bone morphology and help 

contextualize the quantitative metrics. Accompanying heatmaps display the corresponding bone 

volume fraction (BV/TV, Figure 9b) and age (Figure 9c) for each sample. 

The 3D renderings confirm key trends observed in the statistical analysis. Female HN mice 

consistently exhibit sparser and more fragmented trabecular structures than either male HN mice or 

female non-HN mice. In contrast, male mice—both with and without HN expression—display more 
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robust and interconnected trabecular networks. These observations are visually striking and align 

closely with the results from GLMs and subgroup analyses. Some differences between males and 

females in the non-HN group were also apparent in the renderings. However, these did not reach 

statistical significance, possibly due to the thicker trabeculae observed in female non-HN mice, which 

may partially offset the reduced number of trabecular elements. 

Overall, the qualitative visualizations in Figure 9 reinforce the conclusion that sex and HN status 

jointly influence trabecular architecture, particularly in female mice. 

 

Figure 9. Qualitative assessment of trabecular bone in metaphyseal region. (a) 3D renderings of combined 

trabecular and cortical masks from metaphyseal volumes of interest, with example bones from two mice shown 

for each combination of genotype, HN status, and sex. Heatmaps indicating (b) bone volume fraction and (c) age 

(in months) for each individual mouse whose bone is displayed in the 3D rendering plot in (a). 

4. Discussion 

Our image quality assessments demonstrated the efficacy of the photon-counting CT based 

femur image acquisition and processing procedure. As illustrated in Figure 2, our application of PBS 

gain correction followed by iterative reconstruction results in femur sample images with minimal 

background nonuniformity and streak artifacts as well as low noise level. Figure 3 displays 
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equivalent dose PCD and EID reconstructions from scans on our ex vivo micro-CT system that 

proved that the PCD has superior spatial resolution in a bar pattern phantom and less spatial blurring 

of bone in a femur sample. We demonstrated in Figure 4 that material decomposition of the multi-

energy PCD iterative reconstruction produces a calcium map that has better contrast between 

trabeculae and background compared to the PCD CT images. These results show that our 

combination of multi-energy photon-counting CT imaging and iterative reconstruction with joint 

regularization of energy channels works well. Material decomposition further enhanced image 

interpretability by isolating calcium content, which is directly correlated with bone density. The 

calcium maps generated in this study demonstrated the highest CNR (Figure 4), ensuring precise 

delineation of trabecular structures. 

Using this pipeline, we quantified femur features (e.g., BV/TV, TbSp_mean, MeanThick2D/3D) 

across 57 mice with variation in APOE genotype, sex, HN status, and age. Our GLMs identified 

significant Sex:HN interaction effects on BV/TV and Surface Area and found APOE44 to be associated 

with increased BV/TV relative to APOE33 (Figure 5). The result for APOE44 mice is contrary to initial 

expectations that the ε4 allele—linked to neurodegeneration—would have negative effects on bone. 

While this finding diverges from younger cohorts in prior literature [15], it underscores the 

importance of studying aging-specific effects and considering immune context (HN status). 

Stratified subgroup analyses revealed pronounced sex-specific HN effects on trabecular bone 

mass. Specifically, female HN mice had significantly reduced BV/TV, increased trabecular spacing, 

and smaller trabecular surface area compared to both male HN mice and female non-HN mice 

(Figures 6–7, Table 4). This suggests that the humanized immune background in HN mice modulates 

sex differences in bone remodeling—likely via inflammatory or hormonal pathways [38]. Notably, 

these effects were not statistically significant in APOE33 females (Table 5), indicating genotype-

specific modulation of HN influence. 

Aging was associated with cortical thinning and increased trabecular spacing in males (Figure 

8), but not females. This may reflect the earlier onset of bone loss in female mice, potentially masking 

progressive changes over time. Age–sex interaction terms were not significant in whole-cohort GLMs, 

possibly due to strong interactions with HN in female mice. 

3D renderings of trabecular architecture (Figure 9) visually reinforced quantitative findings, 

particularly the stark contrast between female HN and male HN bones. These renderings also suggest 

that statistical non-significance in some subgroups (e.g., female non-HN vs male non-HN) may arise 

from variation in trabecular thickness rather than number of trabeculae. 

C From a biological perspective, our results emphasize that APOE genotype alone has limited 

predictive power for bone health, aligning with some human studies [14]. Instead, the interaction 

between genotype, sex, and immune status (HN) was critical in our study. These findings support 

the use of HN mice in preclinical studies of bone disease, especially for capturing sex-specific 

vulnerabilities. 

Our study complements prior work using PCCT to evaluate cardiac function in APOE/HN mice 

[39]. Together, the cardiac and bone findings point toward systemic effects of APOE and immune 

background across multiple organ systems. Both studies implicate shared mechanisms, e.g., 

inflammation, oxidative stress, lipid metabolism, driving organ remodeling with age. This supports 

the broader utility of PCCT as a multi-organ phenotyping platform in aging research. 

 One shortcoming that we acknowledge is that reconstructions from our micro-CT system have 

a larger voxel size (20 μm) than reconstructions from high quality commercial EID-based micro-CT 

scanners (~5 μm). This is because of the limited field-of-view of our PCD combined with our desire 

to perform high-throughput imaging by scanning multiple femurs (i.e., 3) in each vial. Nevertheless, 

this study demonstrates that properties of the PCD, such as reduced spatial blurring due to direct x-

ray photon detection and simultaneous multi-energy imaging, are useful for bone imaging. Future 

work that incorporates the PCD into commercial micro-CT scanners that can achieve voxel sizes less 

than 10 μm will be critical to ensure that the benefits of photon-counting CT for small animal bone 

imaging are fully realized. 
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Another shortcoming is the size of our study cohort (n=57). Although this sample size is 

sufficiently large for our whole-cohort GLMs and stratified tests involving sex/HN interaction 

(Figures 6 and 7), our investigation of HN effects in genotype-by-sex subgroups (Table 5 and Figure 

A3) may require validation in a larger mouse cohort. 

5. Conclusions 

We present a validated, high-resolution PCCT pipeline for ex vivo bone imaging in aged mice. 

Our image quality assessments confirmed that the PCD provides higher spatial resolution than 

matched dose EID images and that material decomposition of PCD images improves contrast to noise 

ratio. We used our PCCT pipeline to show that trabecular bone metrics are significantly impacted by 

interactions between sex and immune (HN) background, with modulation of this effect by APOE 

genotype. These findings extend the utility of PCCT beyond single-organ applications and highlight 

the complex, multi-factorial influences on bone health in aging. The methodological and biological 

insights gained here lay the groundwork for future multi-organ studies using PCCT in preclinical 

models of aging and disease. 
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Appendix A 

Table A1. Results of Shapiro-Wilk and Levene’s tests on each femur feature. 

Femur Feature Shapiro-Wilk p-value Levene p-value 

MeanThick 2D 0.5626 0.8362 

MeanThick 3D 0.5977 0.7124 

BV/TV < 10-4 0.0556 

TbTh_mean 0.0025 0.6208 

TbSp_mean 0.0020 0.0360 

Surface Area < 10-4 0.0908 

Mean Ca Conc 0.1799 0.9911 
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Figure A1. Violin plots corresponding to Kruskal-Wallis comparisons by APOE genotype within male and 

female subgroups. None of the plots include a bar with asterisk because our Kruskal-Wallis tests did not find 

any femur features with significant difference by genotype within the male subgroup or the female subgroup. 

 

Figure A2. Violin plots corresponding to Kruskal-Wallis comparisons by APOE genotype within HN and non-

HN subgroups. None of the plots include a bar with asterisk because our Kruskal-Wallis tests did not find any 

femur features with significant difference by genotype within the HN subgroup or the non-HN subgroup. 
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Figure A3. Violin plots corresponding to Mann-Whitney U comparisons by HN status within genotype by 

sex subgroups. Bars with an asterisk indicate statistically significant difference (p<0.05) by HN status after BH 

FDR correction. Only femur features that gave significant difference by HN status in at least one sex specific 

subgroup in Figure 7 were included in this figure. 
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