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Abstract: This review is focused on the current status of quantitative MR (qMR) of skeletal muscle. 

The first section covers the techniques of qMR in muscle with the focus on each quantitative 

parameter, the corresponding imaging sequence, discussion of the relation of the measured 

parameter to underlying physiology/ pathophysiology, the image processing and analysis 

approaches, and studies on normal subjects. We cover the more established parametric mapping 

from T1 weighted imaging for morphometrics including image segmentation, proton density fat 

fraction, T2 mapping, diffusion tensor imaging to emerging qMR features such as magnetization 

transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The 

second section is a summary of current clinical applications of qMR of muscle; the intent is to 

demonstrate the utility qMR in different disease states of the muscle rather than a complete 

comprehensive survey. 

Keywords: quantitative muscle MRI; fat fraction; T2 mapping; diffusion tensor imaging; 
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1. Introduction 

Quantitative MRI (qMRI) differs from conventional MRI in its ability to provide objective 

quantitative metrics of the underlying tissue [1]. Conventional MRI is a map of the signal intensities 

in different tissue where the signal intensities are a complicated function of the acquisition pulse 

sequence and the underlying tissue parameters. qMRI can capture non-visual metrics related to 

underlying tissue properties including the chemical structure and biological microstructure. 

Measurement of each metric, also referred to as parametric mapping (images of the parameter are 

computed on a voxel basis), requires a specially designed imaging pulse sequence coupled to an 

underlying biophysical model that provides the link between the observed parameter and underlying 

tissue properties. qMRI yields numerical values with a unit (e.g., distance, volume, relaxation times) 

or as a percent (e.g., proton density fat fraction). The qMRI approach provides the basis for 

developing imaging biomarkers; the latter can have significant clinical impact on diagnostics 

including earlier detection of disease, in the assessment of disease severity and therapeutic response, 

and on accurate prognosis. It has the potential to replace or complement biopsies enabling non-

invasive assessment of the disease, increasing patient comfort while introducing minimal to no 

disturbance to the pathology of interest1.  However, despite the compelling advantages of qMRI 

based biomarkers, it has yet to be adopted widely in the clinical setting [2]. The slow adoption to 

clinical practice is due to several reasons: (i) longer duration protocols arising from the need for 

performing different acquisitions for multi-parametric mapping and (ii) the lack of standards for 

qMRI including the large number of parametric image acquisition protocols as well as post-

processing techniques [3]. The National Institute of Standards and Technology (NIST) hosted 

workshops in 2014 and 2017 with participants from over 16 organizations working towards standards 

in quantitative MRI [3]. The recommendations of the workshops included a call for efforts directed at 

standardizing the imaging and analysis protocols, as well as on developing phantoms with material 
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composition and shape/size appropriate to the particular anatomy and method [3].  The clinical 

realization of qMRI is anticipated to occur once the standardized acquisition and analysis protocols 

along with reference phantoms are transferred to the clinic [3]. Toward this, the Radiological Society 

of North America (RSNA) organized the Quantitative Imaging BioMarkers Alliance (QIBA)  [4]. 

QIBA’s mission is “to improve the value and practicality of quantitative imaging biomarkers by reducing 

variability across devices, sites, patients and time” [4]. Of the 22 imaging biomarker committees that span 

different modalities, there are 9 committees on qMRI techniques including a qMRI group devoted to 

musculoskeletal (qMRI-MSK) and another group to quantifying proton density weighted fat fraction 

(QIBA-MRI-PDFF) [4]. 

qMRI has been implemented extensively in the brain characterizing a wide range of neurological 

diseases, including conditions with inflammatory, cerebrovascular and neurodegenerative pathology 

[5]. A number of recent studies have explored qMRI in oncological applications to characterize 

malignancies in breast, lung, prostate and brain cancer, and to either monitor or for early prediction 

of response to anti-cancer therapies [6]. In the area of musculoskeletal applications of qMRI, there is 

a Musculoskeletal Biomarkers Committee of the QIBA with a focus on cartilage compositional and 

morphological characterization [7]. MRI-based cartilage compositional analysis is clinically 

significant as parametric changes can be identified in the early phases of osteoarthritis before 

morphological changes are seen in structural MRI [7]. Spin-spin relaxation time (T2) and spin-lattice 

relaxation time in the rotating frame (T1ρ) have emerged as the most viable approaches for 

characterizing cartilage composition; T2 reflects changes in water, collagen content, and orientation 

of collagen fibers, whereas T1ρ is more sensitive to proteoglycan content [7].  

There are also several studies exploring qMRI in skeletal muscle and several metrics have been 

extracted and explored for their sensitivity to biochemical and microstructural changes in tissue in 

normal and in diseased states [8–11]. It has been applied to characterizing muscle in normal subjects 

including exploring differences based on age and sex, trained vs untrained and the effect of exercise 

[8]. The utility of qMRI in characterizing several disease conditions including dystrophy, late onset 

POMPE, and sarcopenia has been reported [12–14]. 

This review is devoted to the current status of quantitative MR (qMR) of skeletal muscle. The 

first section covers the techniques of qMR in muscle with the focus on each quantitative parameter, 

the corresponding imaging sequence, discussion of the relation of the measured parameter to 

underlying physiology/ pathophysiology, the image processing and analysis approaches, and studies 

on normal subjects. We cover the more established parametric mapping fromT1 weighted imaging 

for morphometrics including image segmentation, proton density fat fraction, T2 mapping, diffusion 

tensor imaging to more exploratory/less applied qMR features such as magnetization transfer 

including ultralow TE imaging for macromolecular fraction and MR strain mapping. The second 

section is a summary of current clinical applications of qMR of muscle; the intent is to provide the 

user a flavor for qMR in different disease states of the muscle rather than a complete comprehensive 

survey. We have not included spectroscopy in this review. We refer the interested reader to recent 

references of experts' consensus recommendations for proton and for phosphorous magnetic 

resonance spectroscopy [15,16]. 

2. Quantitative Magnetic Resonance Imaging 

2.1. Muscle Morphology 

Muscle volume, anatomical cross-sectional areas (CSA) and physiological cross-sectional areas 

(PCSA) are predictors of muscle strength [17]. Further, these morphological measures are clinically 

important in characterizing and tracking the progression of many diseases including muscular 

dystrophies, myopathies and sarcopenia [18,19]. While earlier studies extracted fiber lengths from 

ultrasound to compute PCSA, fiber lengths can now be conveniently determined by combining 

muscle volume from MR morphological imaging with fiber length from MR diffusion tensor imaging 

[20].  MR imaging has been successfully used to accurately quantify skeletal muscle volume and 

cross-sectional area (CSA) with <5% intra- and inter-observer reproducibility in several muscles 
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including thigh and lower leg muscles [21]. However, quantification of muscle volume requires 

segmentation of the muscle over a stack of slices which is a tedious and time-consuming task if 

performed manually. In order to obtain a metric that is more readily extracted, Bamman et. al. have 

shown that it is possible to substitute the volume metric by cross sectional area measurements [17]. 

Lanza et. al. also compared muscle volume to anatomical cross-sectional area metrics and established 

that the different assessments do not affect the muscle size-strength relationship [22].   

The T1 weighted fast spin echo (FSE) sequence is optimal for morphological imaging in terms of 

image quality and due to its reduced sensitivity to magnetic field inhomogeneities and has thus been 

used extensively in earlier studies for extracting muscle volume and or CSA [8]. However, volume 

acquisitions with gradient echo fat-water Dixon sequences provide speed, excellent SNR, and 

contrast for segmenting muscles [23]. Susceptibility artifacts are minimized in these sequences by 

acquiring at low TEs. Another advantage is that the Dixon methods also provide a fat fraction map 

which can be subtracted from the muscle volume (or CSA) to obtain the muscle volume (or CSA) of 

contractile tissue corrected for fat [10]. 

2.1.1. Image Processing (Segmentation) 

It should be noted that segmentation still remains largely manual in most clinical settings [21]. 

Manual segmentation cannot be performed readily for 3D datasets for many muscles given that the 

process is both time intensive and operator dependent [21]. However, widespread use of qMRI for 

biomarkers depends critically on the ability to segment muscle volumes in an automated fashion [21]. 

An excellent recent review of the segmentation approaches developed for muscle tissue type and for 

muscle segmentation is given in Ref. [24].  

An important segmentation task in muscle diseases is the identification of tissue composition 

(muscle, adipose, and connective tissue). Fuzzy c-means (FCM) clustering has been proposed that 

considers partial volume effects at muscle/fat boundaries as well as intramuscular fat infiltration; an 

extension of the FCM used dual echo images from an Ultralow TE acquisition to segment adipose 

and connective tissue from muscle tissue in calf muscle [25]. Figure 1 shows the results of the non-

contractile vs contractile tissue volumes in a young (23 year) and a senior (83 year) participant; the 

higher amount of adipose and connective (non-contractile) tissue in the senior subject is clearly 

visualized.  

 

Figure 1. 3D rendering of the hard thresholded (52%) volumes of IMCT/IMAT tissue in the triceps 

surae muscles; young subject (a) and older subject (b). It should be noted that the aponeurosis 

surrounding each muscle was selectively eroded in order to provide a better view of the IMCT/IMAT. 

The top and bottom views are given as 3D volume projections. Reproduced with permission from the 

authors in Ref [25]. 
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The identification of the different compartments of fat has clinical implications and includes 

subcutaneous adipose tissue (SAT) which is separated from the internal adipose tissue (IAT) by fascia 

(e.g., fascia lata for the thigh). The fat regions within the fascia are further classified into intramuscular 

fat within each muscle region as well as perimuscular fat between the muscles. To identify the 

separate deposits of fat, it is important to identify SAT from IAT; the methods to achieve this are 

detailed in Reference [24]. Various methods have been proposed to identify the inner border of the 

SAT based on active contours and extensions such as gradient vector flow snakes [26]. Most of these 

algorithms perform accurately for healthy subjects but not as well in patients with high fat infiltration 

[24]. The next step is the identification of individual muscle volumes—this is important as fat 

infiltration occurs differently across muscles and further, there could also be a proximo-distal pattern 

of infiltration [24]. Segmentation of individual muscles is challenging as muscles have similar 

intensity and the boundaries between different muscles are thin and often not seen due to partial 

volume effects. Segmentation strategies based on pre-labeled atlases (manual labeling) use non-linear 

registration of the new data to the labeled atlas to identify individual muscles. Most atlas-based 

approaches have been developed for thigh and hip muscles [27] and extending to other muscles 

would involve developing new atlases and further, the applicability of atlases to identify muscles 

with high fat filtration has not yet been established. Semi-automated segmentation methods show 

promise; Ogier et. al. used a semi-quantitative method incorporating shape information and non-

linear registration to propagate the contour from prior slices for fat quantification in the thighs and 

lower legs of healthy subjects and patients with myotonic dystrophy type 1 and obtained very good 

agreement with manual segmentations [28]. 

Deep Neural Networks (DNN) have recently made a huge impact in image segmentation 

including in medical image segmentation [24]. For image segmentation applications, DNN are 

supervised learning systems trained on manually segmented images. One of the requirements for 

robust segmentation is that the DNN be trained with a large number of images. A recent report 

compared several deep convolutional neural network (CNN) architectures (U-Net 2D, U-Net 3D, 

TransUNet, and HRNet) for segmenting ten thigh and calf muscles from control and subjects with 

neuromuscular disease (NMD) [29]. All CNNs performed well with high geometric accuracy for 

healthy subjects as well as those with NMD; however, the HRNet correctly identified all muscles. A 

recent publication using DNNs for segmentation focus on lower extremities and established that 

these systems are not only applicable for control healthy subjects but also subjects with pathology 

[30]. Agosti et al used MRI data from controls and subjects with facioscapulohumeral dystrophy 

(FSHD) and amyotrophic lateral sclerosis (ALS) to train CNNs with multi-echo spin echo and a multi-

echo gradient echo [31]. The proposed network accurately segmented thigh and calf muscles even in 

the presence high fat infiltration. Further, the authors have released the automatic segmentation tool 

resulting as an open-source repository, available at the link in Reference [32]. 

Deep neural networks hold promise for automated muscle segmentation even in the presence 

of a high percentage of fat infiltration. While still in a relatively initial phase of development for 

muscle segmentation it continues to be an area of intense research activity. The applicability of the 

systems to images from different protocols, scanners, and institutions has to be demonstrated before 

widespread adoption. The availability of the systems as an open-source repository will clearly be a 

great start for a larger group of researchers to train and test the DNN systems. 

2.2. Quantification of Fatty Infiltration in Muscle 

Myosteatosis refers to fatty infiltration of skeletal muscle which occurs in a variety of conditions 

or combination of conditions including aging, disuse, injury, diabetes and neuromuscular disease 

[11]. Myosteatosis is associated with loss of muscle mass and strength and increased mortality among 

the elderly [33]. Adipose tissue is considered an endocrine organ that influences numerous 

physiological and pathological processes. During weight gain and with aging, adipocytes can reach 

their capacity to store fat, which increases ectopic storage of fat around and within the non-adipose 

tissue organs, such as skeletal muscle, liver, and pancreas. In the past decade, myosteatosis has 

emerged as an important fat depot associated with insulin resistance and Type 2 Diabetes [34]. There 
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are two fat depots within skeletal muscle: fat infiltration within myocytes (intramyocellular fat) and 

visible fat within the fascia surrounding skeletal muscle (intermuscular fat) [11]. The quantification 

of both skeletal muscle fat depots can be determined by using invasive analyses such as skeletal 

muscle biopsy samples, or, by using noninvasive radiological techniques such as computed 

tomography (CT), magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). 

2.2.1. Fat quantification Based on Chemical-Shift Encoded (CSE) Imaging 

The original two-point Dixon method relies on the differences in resonant frequencies between 

water and the main fat peak to generate images where fat and water signal are in-phase or out-of-

phase at specific echo times [35]. These in- and out- phase images are then combined to yield a 

magnitude-based fat fraction image. However, the simple two-point Dixon method is prone to errors 

in fat quantification that arise from various sources: including main magnetic field inhomogeneities, 

and other confounding factors such as T1, T2, noise bias, T2* correction, spectral complexity of fat, 

eddy currents, and J-coupling [35]. While the extended Dixon methods address main magnetic field 

inhomogeneities, they do not address the multiple spectral peaks of fat which leads to fat and water 

being incompletely separated [35]. The state of art sequences offer correction for inhomogeneities and 

confounders and are based on multi-echo SPGR volume acquisitions that model the multiple 

resonant frequencies of fat, estimate and correct for T2* in the presence of fat, and use a special 

reconstruction called Iterative Decomposition of Water and Fat with Echo Asymmetry and Least 

Squares Estimation (IDEAL) to extract the MR-Proton density weighted fat fraction (MR-PDFF) [36]. 

This fat quantification sequence or a close variant is available on commercial scanners (IDEAL-IQ on 

GE, qDIXON on Siemens and mDIXONQuant on Philips scanners) [37]. The QIBA MRI-PDFF 

committee reported a large-scale study using a commercial PDFF phantom (12 vials with fat fraction 

from 0 to 100 %) that confirmed the accuracy of MRI in determining fat fraction obtained for multiple 

vendors, at both 1.5 T and 3.0 T, and for multiple pulse sequences [38]. The results from this study 

provide a measure of confidence to physicians who are using or planning to integrate PDFF as a 

biomarker for skeletal muscle disease.  

Given the clinical importance of fat infiltration in skeletal muscle, a number of studies have 

investigated fat quantification in skeletal muscle. These studies are detailed later in clinical 

applications of quantitative biomarkers for pathological muscle while studies on normal subjects are 

summarized here. PDFF of the paraspinal musculature in normal subjects has been shown to be 

significantly lower in men compared to women and further, significantly correlated with age  [39]. 

Significant age-related differences in calf muscle composition (adipose from PDFF and fibrosis from 

ultra-low TE imaging) has been reported in a cross-sectional study of young and senior subjects [40]. 

In another study, PDFF measurements correlated significantly with paraspinal isometric strength and 

was a better predictor of paraspinal muscle strength beyond CSA [41].  

2.2.1.1. Analysis of Fat Fraction Maps 

The output of the IDEAL and its variants are separated fat and separated water signal images. 

In-phase images are then calculated by taking the sum of the separated water and fat images while 

out-of-phase images are calculated by taking the absolute value of the difference of the separated 

water and fat images. Fat fraction images are generated from the ratio of the separated fat signal over 

the sum of the separated water and fat signals [11]. There are several different approaches to 

analyzing the fat fraction maps. A threshold can be applied to the fat fractions map to identify fat 

dominant regions; however, the selection of the threshold is arbitrary and measured adipose tissue 

volumes will vary with the threshold. Karampinos et al reported PDFF for calf muscles in subjects 

with diabetes and provide a comprehensive assessment of PDFF in different compartments including 

the subcutaneous adipose tissue (SAT), individual muscle ROIs (defined as intramuscle fat, intraMF), 

and intermuscular fat (denoted interMF) which is the region between individual muscles (Figure 2) 

[42]. It should be noted that in the latter work, the segmentations of the individual muscles were 

eroded to exclude edge pixels (the latter are included in the interMF). The sum of intraMF and 

interMF is the intramuscular adipose tissue (IMAT). This latter study showed that significant 
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differences between normal and Type 2 Diabetes Mellitus subjects were seen only in interMF and not 

in IMAT [42]; this finding emphasizes the importance of determining fat fraction separately in 

different compartments. A note of caution is the decreased ability to obtain accurate fat fraction in 

the presence of significant fibrosis (e.g., in Duchenne Muscular dystrophy). The low signal in voxels 

with fibrotic tissue in both water and fat images can bias the estimation of PDFF. 

 

Figure 2. Segmentation of muscle and fat compartments: (a) typical in-phase IDEAL image and 

superimposed ROIs for subcutaneous fat and bone and bone marrow regions, (b) subcutaneous 

adipose tissue (SAT) mask, (c) mask including all the muscle regions and excluding the bone and bone 

marrow regions in the tibia and fibula, (d) typical T2-weighted FSE image and superimposed 

muscular ROIs used for the evaluation of fat distribution, (e) masks of 6 muscular ROIs, and (f) mask 

of soft tissue excluding subcutaneous fat and 6 muscular ROIs. Three muscles (medial gastrocnemius-

MG, lateral gastrocnemius-LG, soleus-SOL) and three muscle compartments (anterior compartment-

AC, lateral compartment-LC, deep posterior compartment-DP) were used to define muscular regions. 

Fat within the mask of (c) corresponds to IMAT, fat within the mask of (e) corresponds to intraMF, 

and the fat within the mask of (f) corresponds to interMF. Reproduced with permission from the 

authors in Ref [42]. 

2.3. T2 Mapping 

The spin-lattice relaxation time, T2 is sensitive water mobility in tissue and since water mobility 

is very different in the intracellular and extracellular regions, it is reflective of the relative amounts 

of water in the intracellular and extracellular muscle compartments.  In its simplest form, T2 can be 

measured by the signal decay in two images acquired at two TEs.  It is routinely measured by a 

multi-spin echo (MSE) sequence with a single excitation RF pulse followed by multiple refocusing 

1800 pulses to acquire images at different TEs; typical number of acquired echoes is ~15-18 echoes 

with the first echo acquired at TE time of ~8 ms (min TE) and an echo spacing of ~8 ms [10].  

Earlier studies on ex-vivo tissue identified multi-exponential T2 decay which modeled the decay 

as arising from multiple compartments [10].  However, Saab et al showed, using a novel technique 

with the first echo acquired at TE of 0.6 ms and 2000 echoes that acquired data in a single large voxel, 

that multi-exponential decay is also present in in-vivo muscle tissue [43].  They compared this latter 

technique with a standard imaging sequence with 6 echoes and min TE of 18ms.  The former 

technique revealed multi-exponential relaxation with lowest T2 component (< 5ms) arising from the 

hydration shell of macromolecules such as proteins while the longest T2 at 283ms was a very small 

fraction and was potentially assigned to either ‘free water’ or vascular blood. Of interest are the three 

intermediate peaks, the longest T2 component (~100ms) of these corresponds to water in the 
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interstitial (extracellular) compartment (10% fraction) while the T2 components in the range of 25-

45ms were of intracellular origin (85% fraction). However, the standard imaging sequence yielded 

31ms when the data was fit to a mono-exponential decay. It is important to understand that from a 

clinical perspective, an increase in the interstitial space and consequently, the extracellular water will 

result in an increase in the measured T2. It should be noted that elevated T2 values occur in a variety 

of tissue conditions: inflammation, tumor, necrosis, and denervation, and also in response to the acute 

changes that occur after exercise of moderate to high intensity. However, though changes in T2 are 

non-specific, it can still be clinically effective as a tool for monitoring ‘disease activity’- i.e., as a 

sensitive indicator of disease severity that shows immediate responsive to underlying pathological 

processes [10]. 

The above background provides the basis for understanding the relationship of T2 to pathology. 

Skeletal muscle edema can be caused by a number of pathologies including from trauma, early 

myositis ossificans and inflammatory myopathies. Edema results in an increase in the interstitial 

space which results in the increase in T2. This T2 elevation is seen with many pathological conditions 

(e.g., idiopathic inflammatory myopathies [44], and Duchenne Muscular Dystrophy [12]).  It should 

be noted that the earliest studies employed T2 mapping in order to localize muscle activation as well 

as to identify patterns of muscle activation with exercise [45].  

Another aspect of muscle T2 imaging is the infiltration of fat that occurs with age and in most 

pathological muscle conditions [10]. Since T2 of fat is longer than that of muscle, increases in fat 

infiltration will lead to elevated T2 values [46].  Fat suppressed sequences can be used to extract the 

T2 of muscle [44] but these can suffer from inadequate fat suppression. A different approach taken in 

other studies is to use the T2 values as a metric of fat infiltration [47].  But this precludes the 

identification of other intrinsic changes in muscle like inflammation that can also result in T2 

elevation. The T2 of water and the T2 of fat can be extracted from a multiexponential fit to the 

experimental data enabling one to disambiguate the effects of inflammation from that of fat 

infiltration [8]. 

There has been a long-standing research effort at implementing T2 mapping that demonstrate 

spatial patterns and intensity of muscle activation; this approach has also been called muscle 

functional imaging [45].  It has been well established that muscle T2 increases with exercise [48]. 

While earlier studies hypothesized that the exercise induced T2 increases were primarily from an 

increase in extracellular fluid volume, it is now accepted that the increase in T2 arises from an increase 

in muscle volume as a consequence of an accumulation of intracellular water driven by osmotically 

and/or hydrostatically driven fluid shifts [45].  

2.3.1. T2 Analysis 

The experimental data can be fit to a mono- or multi-exponential fits using nonlinear curve-

fitting methods.  In order to avoid making assumptions about the number of exponential decays that 

are required to model the experimental data, nonnegative least squares (NNLS) fitting can be used 

where the algorithm produces a spectrum of T2 values [10]. When the data is fit to a mono-

exponential decay, it yields an average T2 from both the water and fat compartments of muscle and 

is referred to as the ’global T2 relaxation time’ [45]. As discussed above, the global T2 will be 

influenced significantly by the extent of fat infiltration and will shift to longer T2s with higher 

intramuscular fat. The bias to longer T2s can be understood by comparing the T2 of muscle (33ms 

@3T) to that of fat (150ms @3T); as fat fractions increase (e.g., in patients with muscular dystrophy), 

‘global T2 values’ will shift to longer T2s. In order to identify the intrinsic T2 changes in water 

(muscle) with pathology, one can selectively excite water or suppress fat.  Another approach is to fit 

the data to bi-exponential or tri-exponential fit where the unknowns of the fit are the fat fraction, the 

T2s of water and fat. This approach requires a fairly large number of echoes for a robust fit as there 

are many fit parameters. Azzabou et. al. reported that a tri-exponential fit to multi-echo data with a 

17 echo multi-echo spin-echo sequence [49]. This latter study extracted muscle water T2 which was 

independent of fat over a large range of fat fraction in muscle.  Recently, an Open-Source toolkit for 

water T2 mapping that implements fast reconstruction enabled by extended phase graphs (EPG) 
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simulations and dictionary matching implemented on a general-purpose graphic processing unit has 

been reported [50], further enabling T2 mapping to be implemented by the clinical community. 

2.4. Diffusion Tensor Imaging (DTI) 

Diffusion arises from random motion of particles suspended in a liquid or gas and results in a 

displacement of particles and the square of the average displacement, <x2>, is governed by Einstein’s 

diffusion equation, which in 1D is given by: <x2>=2𝐷𝑡 , where D is the diffusion coefficient that 

quantifies the extent of diffusion and is characteristic of a given tissue and t is the diffusion time [51]. 

The diffusion coefficient in tissue differs from bulk diffusion coefficient in water as the former is 

hindered by a number of factors including macromolecules and restricted by cells, membrane walls 

and permeability.  Diffusion in tissue is described by the apparent diffusion coefficient (ADC) to 

distinguish it from the bulk free diffusion coefficient.     

The measurement of ADC in a diffusion weighted MRI sequence is accomplished by the addition 

of strong magnetic field gradients that sensitize the signal to the small displacements arising from 

diffusion [52]. However, this simultaneously sensitizes the image to physiological and other gross 

motions that would cause severe artifacts in conventional diffusion weighted spin echo sequence.  

To circumvent these artifacts, a single shot acquisition called echo planar imaging (EPI) is used which 

acquires all the data with a single excitation RF pulse [52]. However, this ultrafast technique suffers 

from low SNR, as well as eddy current, and susceptibility related artifacts; these latter two effects 

result in geometric mis-mapping and local deformations as well as signal loss/signal bunching [53].  

Post-processing pipelines usually employ different algorithms to denoise as well as to correct for 

artifacts prior to extraction of diffusion metrics [54].   

Muscle is a highly organized tissue in which connective tissues (endo-, peri- and epimysium) 

create a complex network to enclose fibers, fascicles and total muscles leading to human skeletal 

muscles being anisotropic media. An extension of diffusion weighted imaging is diffusion tensor 

imaging (DTI) in which diffusion gradients are applied in different directions to extract direction 

dependent diffusion [55]. Thus, DTI is ideally suited to explore the anisotropic tissue microstructure 

as in muscle. The tensor computation process yields the largest diffusion value also denoted as the 

primary eigenvalue and two smaller diffusion values in two orthogonal directions that are ranked by 

magnitude as the secondary and tertiary diffusion eigenvalues [55]. Other diffusion metrics include 

the mean diffusivity (MD) which is the average of the diffusion eigenvalues while the anisotropy of 

diffusion is captured by the fractional anisotropy (FA) metric (a measure of the difference in 

eigenvalues). 

DTI also provides the basis of fiber tracking: the direction of the primary eigenvalue is extracted 

from the computed tensor so that the ‘fiber’ direction is available at each voxel [55]. Fiber tracking 

algorithms use the primary eigenvector direction for 3D muscle fiber tractography. The tracking 

starts from either a manually or automatically identified region of interest and terminated when 

stopping criteria based on FA range, max angular change per tracking step, and/or anatomical 

boundary are met. There are several freeware programs that were developed originally for brain 

imaging that can be adapted for muscle DTI and fiber tractography as well [56]. Recently, a DTI 

Matlab toolbox was released that allows users to perform tractography as well as to obtain muscle 

architectural parameters including fiber length, pennation angle, and curvature [57]. Figure 3 is an 

example of fiber tracking in the medial gastrocnemius using this toolbox customized to the 

acquisition in the authors’ lab.  
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Figure 3. Fibers tracked from the deep aponeurosis (aponeurosis surface shown in deep purple mesh 

seen behind the muscle fibers in green) of the medial gastrocnemius using the MATLAB toolbox in 

Ref. 57. (unpublished work). 

In order to understand the changes in DTI indices with conditions such as disease, exercise, or 

disuse, it is important to know the factors that affect diffusion. While the resolution of DT-MRI 

precludes direct observations at the tissue microscopic scale, the DTI indices may allow for indirect 

inferences about the microarchitecture of skeletal muscles. The measured diffusion indices reflects 

both intracellular and extracellular water volumes and a change in either (cell swelling and/or 

extracellular edema) will result in changes in the diffusion eigenvalues [55]. Other potential 

influences on the diffusion properties of muscle include changes in cell diameter and membrane 

permeability changes [58]. While there is general consensus that the direction of the lead eigenvector 

corresponds to the muscle fiber direction, there is less certainty about the two eigenvectors 

corresponding to the secondary and tertiary eigenvalues respectively. Galban et al. proposed that the 

second eigenvalue, λ2, corresponds to diffusion in the endomysium while the third eigenvalue, λ3, 

reflects intracellular diffusion and is thus sensitive muscle fiber diameter [59]. Karampinos, et al. 

proposed an interesting diffusion tensor model that considers the cross-sectional asymmetry of 

muscle fiber geometry [60]. In the latter model, diffusion occurs within the muscle fiber and the 

extracellular space and λ2 and λ3 reflect the principal diameters of the elliptical cross-sectional area 

of the myofibrils.  Recent diffusion modeling studies support the model by Karampinos et al where 

reductions in asymmetry of fiber morphology is seen in the case of disuse simulated by unilateral 

limb suspension and in a cross-sectional study of aging effects [61,62]. It is potentially likely that 

changes in fiber diameter would be reflected in changes of one or both of λ2 and λ3 and in FA. In 

summary, diffusion indices are related in a complex manner to free water in the different 

compartments, cell wall permeability, as well as muscle fiber diameter and cross-sectional 

asymmetry. 

The application of DTI to characterize disease conditions is detailed later while a brief summary 

of studies on normal subjects is provided here. DTI derived indices have been shown to be sensitive 

to age [59,63], and environmental factors (disuse, exercise) [61,64,65]. Age related effects of DTI 

changes in the calf plantarflexors have been attributed to muscle atrophy or to the combined effects 

of an increase in extracellular volume and a decrease in muscle fiber diameter (from muscle atrophy) 

[59,63]. Froeling et al reported that eigenvalues and FA were increased in thigh muscles of amateur 

long-distance runners up to 2 days after running a marathon [64].  The combined application of DTI 

and T2 mapping allowed the differentiation of microstructural changes caused by active exercise or 
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endurance training [65]. Sinha et al found that all eigenvalues decreased with disuse simulated by 

unilateral limb suspension and diffusion modeling yielded smaller diameter and more symmetric 

fibers post-suspension [61]. 

In addition to the information provided by the DTI derived indices, DTI also enables the study 

of tissue architecture through the ability to perform fiber tractography [66]. Fiber tracking in calf, 

thigh and forearm muscles, reproducibility and validation of the architectural parameters have been 

reported [66]. Further, a multi-center trial including six MRI 3T sites and five travelling subjects 

reported excellent reproducibility of DTI and architecture measures in calf muscle with semi-

automated segmentation of the calf muscles [67]. DTI fiber tractography has also been performed 

outside of the extremity muscles; in the masseter muscle fiber tracking confirmed regional differences 

in the fiber orientation change between different mandibular positions [68].  Fiber tractography has 

also enabled 3D visualization of the three major levator ani subdivisions, which can inform in-vivo 

functional anatomy [69]. Interest in DTI of pelvic floor muscles was triggered by initial results that 

showed fiber tractography might be able to reveal microstructural abnormalities in the pelvic support 

that are not noticeable using conventional MRI techniques [70]. DTI based fiber tracking also 

identified age-related significant differences in fiber length and pennation angle of the gastrocnemius 

muscles between young and senior subjects; these results agreed with ultrasound measurements [63]. 

While indices derived from DTI are sensitive to tissue microstructure, they are not direct 

measures of tissue microstructure. Models of diffusion in muscle have been proposed that are 

customized to the geometry and tissue subtypes in skeletal muscle. The Random Permeable Barrier 

Model (RPBM) has been applied to normal muscle, to monitor the effect of exercise on muscle tissue 

microstructure in normal and diseased conditions as well as to tracking induced atrophy and 

recovery (Reference [71] and references within). The RPBM model treats muscle as a volume with 

randomly oriented infinite flat semipermeable membranes and the time dependence of the transverse 

diffusion coefficient is fit to the model to extract parameters of the tissue microstructure. The RPBM 

study of atrophy found that the myofiber diameter was a stronger predictor of atrophy than either 

anatomical measurements such as cross-sectional area or empirical diffusion parameters [71]. The 

RPBM applied to a cross-sectional study of young and senior subjects revealed that fiber diameter 

from RPBM fits compared to that from histology had the highest correlation for the fit to 2(t); these 

fits also predicted a decrease in fiber diameter and an increase in cell permeability with age (Figure 

4) [62]. The age-related patterns in 2(t) and 3(t) could tentatively be explained from RPBM fits; these 

patterns may potentially arise from a decrease in fiber asymmetry and an increase in permeability 

with age [62]. DT-MRI RPBM metrics has recently been shown to agree with histology in Becker’s 

dystrophy including muscle fiber size and variability indicating that the modeling approach shows 

promise as imaging biomarkers for muscular dystrophies [72]. 
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Figure 4. Average RPBM model fits of 2(t) for the groups of young (left) and senior (right) 

participants respectively. The points are experimentally determined while the dashed line is the 

model-derived fit to the eigenvalue. Reproduced with permission from the authors in Ref. [62]. 

2.5. Fibrosis Quantification 

Most of the MRI quantification methods to document compositional changes with pathology 

have focused on quantification of fat fraction.  However, it should be recognized that another major 

change that occurs in skeletal muscle is fibrosis, i.e., the replacement of contractile tissue by 

connective tissue that has a high percentage of collagen [73]. The replacement of contractile tissue in 

fibrosis has a greater negative impact than fat infiltration since the latter only affects the amount of 

muscle tissue while the former affects both the contractile tissue volume as well as the ability to 

transmit force [74]. In aging muscle, the loss of muscle mass is disproportionately smaller than the 

loss of muscle force [75]. Some of the force loss has been predicted from computational modeling to 

arise from impairment in lateral transmission of force caused by an increase in the connective tissue 

(increase in width of the extracellular matrix) [76]; this was also indirectly inferred from dynamic 

studies of muscle function [77,78]. Fibrosis is also present in muscular dystrophies such as Duchenne 

muscular dystrophy (DMD) and importantly, an increase in endomysial tissue occurs before any 

degeneration in skeletal muscles can be detected [73]. Recognizing the contribution of fibrosis to 

DMD, anti-fibrotic therapies have been developed [73]. MRI techniques to characterize fibrosis and 

monitor response to therapy will be a very useful tool for evaluation of neuromuscular diseases. 

Unfortunately, there are no established MRI approaches to directly image fibrosis as there are for 

quantification of fatty infiltration [8,9]. Here, we discuss two techniques (Magnetization transfer 

contrast and ultralow TEs) that have not yet been fully established but show promise as imaging 

markers of fibrosis.  Collagen and other macromolecules of the extracellular matrix as well as their 

hydration water molecules have very short T2s such that they are not ‘visible’ on conventional images 

acquired with a TE of 5-10ms. However, these very short T2 species can be imaged indirectly via 

magnetization transfer contrast or by imaging at extremely low TEs to capture the signal from even 

the very fast decaying protons. 

2.5.1. Magnetization Transfer Contrast 

Magnetization Transfer (MT) describes the interaction of tissue water protons that reside in 

different environments, encompassing the “free” water proton pool responsible for the conventional 

MR imaging signal intensity and the “restricted” proton pool where protons are bound to 

macromolecules [79]. Protons in the bound pool, such as those bound to myelin, collagen and 

proteoglycan, have a very short T2, making it difficult to image them directly [79]. However, a 

selective off-resonance radio frequency (RF) pulse can be applied such that the free pool remains 

unperturbed, while protons in the bound pool are saturated. The exchange between the excited 

(saturated) bound pool and the free pool effectively reduces the free pool net magnetization. Skeletal 

muscle exhibits a strong magnetization transfer contrast (MTC) though the origin of this contrast is 

still not definitively established. The primary contribution is hypothesized to come from the 

collagenous proteins of the extracellular matrix [80,81], but there is increasing evidence that there are 

contributions from the large abundance of contractile proteins [82].  

The simplest imaging technique to obtain an estimate of the MT effect is the magnetization 

transfer ratio (MTR) calculated from the signal intensity with and without the off-resonance RF pulse. 

Since it requires only two measurements, it is fast and clinically practical [79]. However, MTR values 

are pulse sequence, T1, and RF field homogeneity dependent [79]. On the other end of the spectrum, 

the quantitative magnetization transfer (qMT) techniques fit appropriately acquired MRI data to a 

two-pool model of magnetization exchange between protons bound to macromolecules and free 

protons, providing estimates of the relaxation and exchange rates as well as the ratio of the sizes of 

these two pools [80,81].  A faster, computationally simple, semi-quantitative index of Magnetization 

Transfer that does not fit to a two-pool model but derives an index of Magnetization Transfer denoted 

as MTsat has also been implemented [83]. This index, unlike MTR, is independent of pulse sequence, 
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T1 and RF field homogeneity. MTR, qMT, and MTsat mapping has been reported for skeletal muscle 

[80,81,84–86].  

Age- and gender-based differences in MTR (corrected for B1 inhomogeneities) and MTsat have 

been reported [84–86]. MTR and MTsat were both correlated negatively with age. It should be noted 

that of three quantitative markers (T2, fat fraction and MTR), T2 and Fat fraction were significantly 

positively corelated while MTR (adjusted for fat fraction as a covariate) was significantly negatively 

correlated with age [87]. However, in terms of effect size, MTR was the largest indicating that this 

metric may be a clinically useful biomarker. MTsat (with fat suppression), like MTR, was also 

significantly negatively correlated with age and was higher in males than females [85,86]. These 

results are contradictory to the hypothesis that the MT effect in muscle is a measure of the collagen 

macromolecule. If that hypothesis is correct, then a positive correlation of MT indices with age is 

anticipated since fibrosis (and thus, collagen) increases with age. Morrow et al concluded that age 

related decrease in MTR may arise from myofiber quality and density changes with age [84]. Support 

for the contribution of contractile proteins to MTR also comes from a rat model study of MTR to track 

muscle fiber formation after injection of human muscle progenitor cells for development of muscle 

tissue [82]. In the latter study, MTR increased with myogenesis and correlated well with muscle 

contractility measurements. These studies suggest that biopsy studies are critical to show the 

correlations of MT indices to macromolecules in muscle.   

2.5.2. Ultralow TE (UTE) Imaging 

Ultralow TE imaging, as the name implies, acquires the signal at TE values as low as 8s; 

typically sequences with TEs in the range of 8s to 200s is classified as UTE imaging. Imaging at 8s 

-200 s will render many short T2 species visible. Figure 5 shows fibrotic and adipose voxels (after 

thresholding) extracted from the calf plantarflexors using a combination of UTE (for low T2 tisues) 

and IDEAL (for fat) imaging in a cross-sectional study of young and elderly subjects [40]. The latter 

study showed significant increase of fat and connective tissue fraction in the older cohort.    

One of the big challenges in extracting the short T2 species is that signal from the long T2 species 

is overwhelming. One of the methods suggested is to subtract a longer TE image from a UTE image 

(there is no contribution from short T2 species in the longer TE image); however, the image 

subtraction is very sensitive to magnetic susceptibility effects resulting from the long T2* weighting 

of the images and the initial fast dephasing of the multiple fat resonances mimics short T2 tissue and 

thus their signal is not subtracted. To overcome this, Araujo et al [87] suggested an extension of the 

dual-echo method that considers the T2* decay of long T2 components and also corrects for the 

oscillating behavior of the signal from the different lipid resonances in fat. This idea was also 

implemented in another study that integrated the fat fraction and T2 information from an IDEAL 

sequence with a dual echo UTEs sequence to extract macromolecular fractions (MMF) [88]. The latter 

study extracted MMF from UTE images acquired at 30s and at 200s illustrating the potential to 

identify different macromolecules in muscle (e.g., collagen, contractile proteins) by selection of the 

appropriate TE for the UTE echo.  
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Figure 5. Typical examples of MR images and resulting tissue segmentation in young and older 

women. Left: Water saturated FGRE (showing IMAT), Middle: UTE (showing IMCT), Right: Standard 

morphological images with superimposed outer contours of muscles and the result of the automated 

tissue segmentation. Images in top and bottom row represent one young and old subject, respectively. 

Reproduced with permission from the authors in Ref [40]. 

2.6. Strain and Strain Rate Imaging 

Strain and strain rate are kinematic properties that can be derived from the displacement 

(strain)- and velocity (strain and strain rate)-encoded magnetic resonance (MR) images and have been 

used to characterize deformation in skeletal muscle [74,77,78]. Strain describes how the tissue is 

deformed with respect to a reference state and requires tissue tracking. Strain rate describes the rate 

of regional deformation and does not require tracking or a reference state since it is an instantaneous 

measure. A positive strain or strain rate indicates a local expansion whereas a negative strain or strain 

rate indicates a local contraction. A number of dynamic studies have used velocity-encoded phase-

contrast (VE-PC) sequences to extract muscle tissue velocities during a contraction paradigm.  Other 

sequences like DENSE encode displacement while MR tagging is an alternate sequence where the 

tagged lines/grid are tracked to quantify strain [89,90].  

Strain ad strain rate tensor imaging of the lower leg was used to study age-related differences 

between younger and older subjects [78,91]. Maximum shear strain was shown to correlate with force 

in this cohort of young and old subjects [91]. Figure 6 shows images of different indices extracted 

from the strain and strain rate tensor data of the lower leg during isometric contraction at different 

%MVCs of a young subject from Reference [91]. Strain rate tensor imaging of disuse atrophy also 

identified maximum shear strain as a significant predictor of force loss with disuse [77]. The authors 

of the latter paper speculated that the dependence of force on shear strain may be related to the 

mechanical properties of the extracellular matrix that may get stiffer with age [77,91]. Recent 

developments in accelerated VE-PC imaging using compressed sensing have enabled multi-slice 

imaging and extraction of the 3-D strain tensors [91].  
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Figure 6. Temporal variation of forces exerted by a young subject averaged during the MR data 

acquisition for different force levels (center panel) along with corresponding strain (right panel) and 

strain rate (left panel) colormaps at the peak values of (strain or strain rate along the fiber) during the 

contraction phase of the dynamic cycle for 60% (left column), 40% (middle column), and 30% MVC 

(right column). The colormap bars are shown in each panel. The temporal frames at which the peaks 

during contraction occurred for strain and strain rate are marked on the force curves. While the peak 

in strains occur at the maximum force reached, peak in strain rates occur earlier and roughly 

correspond to the maximum slope of the force-time curve in the contraction cycle. Reproduced with 

permission from the authors in Ref [91]. 

3. In Vivo Clinical Applications 

3.1. Duchenne Muscular Dystrophy (DMD) 

DMD is an X-linked recessive genetic disease caused by mutation of the dystrophin gene and is 

characterized by severe, progressive muscle wasting. The dystrophin protein connects the muscle 

cytoskeleton with the extracellular matrix and prevents the muscle membrane from being damaged 

during muscle contraction [92]. Therefore, loss of the dystrophin protein leads to degeneration of 

muscle fibers, chronic inflammation, progressive fibrosis and muscle replacement by fat. While 

currently there is no cure for DMD, there are many new treatments that show promise, some of these 

treatments are now in clinical trials [93]. Further, there are rehabilitation training programs to 

improve muscle function [94]; this training has been shown to be most effective in affected muscles 

in the early stages of the disease [92]. Baseline and longitudinal assessment of subjects with DMD can 

be realized by sensitive non-invasive biomarkers. These biomarkers should be able to objectively 

characterize disease severity and progression in muscles as well as the response to pharmacological 

and/or rehabilitation treatment. MRI enables non-invasive, repeatable, and objective assessment of 

individual muscles. It is also evident from Section 2 on the techniques, that the consequences of the 

loss of dystrophin protein listed above can be tracked using MRI. A recent meta-analysis of 

publications of MRI in DMD till 2019 concluded that additional larger clinical trials, more validation 

studies to histology standards, and multiparametric MRI mapping are needed to establish MRI as a 

biomarker in DMD [95].  

There are many clinical studies that have established qMRI as being able to successfully 

characterize and to monitor DMD. Conforming earlier work, Yin et al showed the T2 of thigh muscles 

of DMD subjects was significantly longer than control subjects and that functional outcomes were 

significantly correlated with the overall mean T2 relaxation time [96]. The earlier papers focused on 
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quantifying fat infiltration and used T2 as a surrogate marker of fat and confirmed that fat fraction 

was highly positively correlated with fat fraction from MR spectroscopy [97]. Kim et al explored fat 

suppressed T2 mapping for edema quantification and concluded that fat fraction rather than edema 

was more highly correlated with clinical evaluations [98]  The calf muscles have also been studied 

as there is slower progression in the distal muscles allowing extended longitudinal monitoring [99]. 

This latter study found significant correlations between the change in all soleus T2 (nonfat suppressed 

T2) and change in functional measures over two years. Mankodi et al implemented IDEAL-CPMG to 

extract fat fraction and T2,w in the thigh muscles of subjects with DMD and healthy controls and 

concluded that fat fraction and T2,w may be useful as independent biomarkers of fat infiltration and 

inflammation respectively [100]. Figure 7 shows that IDEAL-CPMG can disambiguate fat infiltration 

from inflammation in the fat fraction and water T2 maps. A longitudinal study of DMD subjects over 

a one-year time period used quantitative MRI (3-point Dixon for F/W, T2 and T1 mapping) to identify 

the most responsive muscle and predict subclinical disease progression in functionally stable 

patients. The latter study concluded that qMRI biomarkers are responsive to disease progression, can 

also detect subclinical disease progression and that the Gluteus maximus is the most responsive to 

disease progression [101].  

 

Figure 7. Representative T1-weighted and IDEAL-CPMG images of the thigh muscles in three subjects 

with DMD. A T1-weighted image (A), T2-corrected fat fraction map (B), and water-T2 map (C) are 

shown representing subject anatomy, changes in muscle apparent fat fraction (AFFIDEAL-CPMG) 

and muscle water T2 (T2,w IDEAL-CPMG) respectively in the thigh muscles of subjects with DMD. 

Different severity of fatty degeneration is present in the thigh muscles of each subject, whereas 

inflammatory activity is sparse and seen in only few muscles (arrow). Reproduced with permission 

from the authors in Ref [100]. 

The majority of quantitative MR studies on subjects with DMD have focused on fat fraction and 

T2 mapping. However, DTI has also been used to identify differences in fiber organization in diseased 

and healthy muscle tissue. Hoojimans et al combined DTI with quantitative in-vivo measures of mean 

water T2, %fat and SNR to evaluate their effect on DTI parameter estimation in DMD subjects and 

healthy controls [102]. Analyzing voxels with a baseline SNR above a certain threshold (to exclude 

voxels with high fat fraction), the latter study reported significantly greater values for MD and for 

the third eigenvalue in the anterior tibialis and in the lateral gastrocnemius muscles and no significant 

change is fractional anisotropy in DMD subjects compared to controls. This study underlines the need 

to account for the effect of confounders on diffusion indices to detect true between-group differences 

between controls and subjects with DMD [102]. Another study of DTI of thigh muscles of DMD 

subjects and health controls showed that, for all the thigh muscles, the MD was higher and FA values 

lower compared to healthy controls and correlated with grade of fatty infiltration; these findings 

indicate that DTI can be used to characterize DMD induced muscle damage and extent of disease 
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severity [103]. More DTI studies with particular attention to effective fat suppression and the baseline 

SNR of analyzed voxels are required to obtain consistent and reliable measurements independent of 

the degree of fat infiltration. 

3.2. Idiopathic Inflammatory Myopathies (IIM) 

The idiopathic inflammatory myopathies (IIMs) are a group of autoimmune conditions 

characterized by inflammation of muscle (myositis) that present with weakness, elevated muscle 

enzymes, inflammatory infiltrates on biopsy, and can be accompanied by other systemic 

manifestations [104]. It results in inflammation in other organ systems, resulting in widespread organ 

dysfunction, increased morbidity and early mortality.  The IIMs include dermatomyositis (DM), 

necrotizing autoimmune myopathy (NAM), sporadic inclusion body myositis (sIBM), overlap 

myositis and antisynthetase syndrome (ASyS), and polymyositis (PM) [104]. Qualitative and 

quantitative MRI play an important role in IIM not only as a diagnostic tool but also in monitoring 

progression and response to therapy [105].  

Myositis is accompanied by both fatty infiltration and inflammatory changes [104]. 

Qualitatively, fatty infiltration is seen as hyperintensity on T1-weighted images while the fat fraction 

can be quantified by a 3-point Dixon or more accurately by sequences such as IDEAL or its 

equivalents [35,36]. Qualitative detection of inflammatory changes is performed on T2-weighted 

sequences where they appear as hyperintensities.  It is important to note that fat should be 

suppressed on T2-weighted sequences since it also presents as an hyperintense signal [104]. T2 

mapping is used for quantification of inflammation and as in T2 weighted imaging, it is important to 

suppress fat to exclude the contributions from fat infiltration that accompanies chronic muscle 

damage. Yao et al showed the feasibility of generating fat corrected T2 maps by incorporating 

information from fat fraction maps; they show that T2 was as responsive as fat corrected T2 when 

either is used for qualitative scoring [106]. A note of caution is that qualitative T2,w imaging may fail 

to detect diffuse inflammation as shown in Figure 8. It should also be noted that T2,w can be as high 

as 50ms (15ms above normal condition) in untreated IIM, values that are rarely seen in other muscle 

conditions [104]. Another important aspect is that in the IBM type of IIM, T2,w showed early changes 

before significant intramuscular fat accumulation, providing potential measures of early disease 

before irreversible changes occur [105]. The anatomy covered in IIM is the lower extremity and 

sometimes restricted to only the thighs but whole-body imaging can be useful to detect patterns of 

muscle involvement and fatty infiltration specific to each IIM [104,105]. 

 

Figure 8. Illustration of the possible failure of qualitative imaging to detect diffuse muscle 

edema/inflammation. The left panel is pre-treatment while the right panel is post-treatment. This 

patient with juvenile dermatomyositis had diffuse involvement of the thigh muscles. The muscle 

signal of T2w images appeared quasi-normal, with perhaps a somewhat waxy texture (upper left 

panel). By contrast, the water T2 maps unambiguously measured very high and abnormal T2 values, 

revealing the intense disease activity (lower left panel). It also confirmed the post-treatment 

normalization, with muscle water T2 returning to normal values (lower right panel). Reproduced with 

permission from the authors in Ref [104]. 
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Diffusion tensor imaging has been applied to study muscles of subjects with myositis 

(specifically PM and DM) [107,108]. Both studies found that ADC and the three eigenvalues of 

edematous muscle was significantly increased compared to normal control subjects as well as to non- 

edematous muscle [107,108]. This is not surprising since inflammation increases free water (seen as 

an increase in T2,w) and DTI indices maybe tracking the changes in free water. In the second study, 

which was a faster DTI acquisition, they also found lower FA values in edematous muscle [108]. The 

role of diffusion tensor imaging in myositis awaits further studies. 

3.3. Pompe Disease 

Pompe disease is characterized by a deficiency of acid alpha-glucosidase (AAG) that results in 

muscle weakness and a variable degree of disability [109]. AAG deficiency leads to accumulation of 

glycogen within the lysosomes of the cells in multiple tissues, including skeletal, cardiac, and smooth 

muscle. There is an approved therapy based on enzymatic replacement (ERT) alglucosidase alfa that 

has modified disease progression [110]. qMRI can potentially detect subtle changes with treatment in 

Pompe disease in muscle structure, fat and glycogen content even before the effects are seen clinically 

in muscle function tests [109]. An excellent review of MRI in Pompe disease is available in Reference 

[109]. Figure 9 shows whole body T1 weighted MRI revealing typical patterns of muscle involvement 

in Late-onset Pompe disease (LOPD).  

Rehmann et al used qMRI including quantitative Dixon for fat fraction and diffusion tensor 

imaging to image the thigh muscles of subjects with LOPD and compared to healthy controls.  The 

DTI metrics included mean diffusivity (MD), eigenvalues (λ1-3), radial diffusivity (RD) and fractional 

anisotropy (FA) [111]. They found that even thigh muscles with <10% fat-fraction showed significant 

differences in all the diffusion parameters except for FA; all the diffusion values were significantly 

lower and this has been hypothesized to arise from the accumulation of glycogen in muscle fibers 

that restricts water mobility and therefore, DTI could potentially reveal important structural changes 

early in the progression of the disease even prior to fatty degeneration [111]. The EMBASSY study 

followed 16 LOPD subjects on ERT and assessed the changes from baseline to 6 months using 

histology based (% tissue area of glycogen), MR imaging (T1w, T2, fat fraction) and muscle function 

biomarkers.  The glycogen area decreased and function improved but there were no changes in the 

MR assessment over the 6-month period [112]. 

Long term follow-up of LOPD subjects treated by ERT for fat infiltration in psoas and paraspinal 

muscles based on conventional MRI revealed significant increase between baseline and at 39 months 

which also correlated with a decrease in performance [113]. However, both fat fraction and 

performance did not change in the long-term follow-up (63 months) showing promise for ERT [113]. 

A follow-up of LOPD subjects with qMRI showed that fat fraction increased significantly in every 

thigh muscle by an average of 1.9% per year in ERT treated patients, compared with 0.8% in pre‐

symptomatic patients [114]. The authors of the latter study also observed a significant correlation 

between changes in fat fraction and changes in muscle function tests; this potentially indicates that 

fat fraction and muscle function tests can be considered good outcome measures for clinical trials in 

LOPD patients [114]. These studies show that future research with larger cohort size and long-term 

follow-up of LOPD subjects with ERT are required to determine the efficacy of the treatment. qMRI 

will be clearly very important as newer treatments are introduced and long term follow up is needed 

to assess disease status.  
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Figure 9. Whole-body T1w imaging of patients with late-onset Pompe disease. A, Involvement of 

tongue is observed. In the scapular girdle, the subscapularis (arrow in B and C) and latissimus dorsi 

(arrow in D) are affected, yet the deltoid, biceps, and triceps are not typically involved. Paraspinal 

and abdominal muscles are typically affected (E and F). The gluteus minimus and medius (arrow in 

H) are affected earlier than the gluteus maximus (arrow in I). Patients in the early stages of disease 

may have no glutei involvement (G). In the thigh, the adductor magnus and long head of biceps are 

involved earlier (J and M), whereas posterior muscles and the vasti are affected later in th progression 

(K and N). Eventually, all muscles of the thigh are affected (L and O). A proximal-to-distal gradient 

in the vasti is usually identified (J-M and K-N), although it is lost in advanced stages (L-O). Lower 

legs are usually spared (P), although mild replacement of the soleus (arrow in Q) and media 

gastrocnemius (arrow in R) can be observed. The images shown are from seven patients. T1w, 

T1weighted. Reproduced with permission from the authors in Ref [109]. 

3.4. Sarcopenia  

Sarcopenia is the progressive loss of muscle mass and strength that occurs with advancing age 

as well as with a number of long-term conditions [115]. It was originally defined by a loss of muscle 

mass but has been extended to skeletal muscle function with the latest definition from the European 

Group on Sarcopenia in Older People (EWGSOP): "a muscle disease rooted in adverse muscle 

changes that accrue across a lifetime" [116].  

A recent review performs a comprehensive survey of all studies that reported MRI-derived 

biomarkers related to sarcopenia [116]. This review reveals that the primary anatomical regions 

imaged was the thigh followed by the trunk. Currently, MRI allows the assessment of muscle 

quantity and quality (MQQ) using T1w, T2w for cross-sectional area measurements, inflammation/ 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2024                   doi:10.20944/preprints202408.0444.v1

https://doi.org/10.20944/preprints202408.0444.v1


 19 

 

edema from T2w mapping, proton density fat fraction and fat free muscle mass from Dixon or variant 

sequences, extramyocellular and intramyocellular lipid fractions from Magnetic Resonance 

Spectroscopy, ADC, FA, fiber architecture (length and pennation angle) from DTI [40,63,117–120]. 

Yang et al have shown using a modified Dixon sequence that muscle CSA and intermuscular fat area 

at the 50% femur length highly correlated with muscle and intermuscular fat volumes estimated from 

the middle third of the thigh in a cohort of older subjects classified as normal, obese, sarcopenia, and 

sarcopenia-obese [118].   

A MR compositional study established that aging causes significant changes in skeletal muscle 

composition, with marked increases in non-contractile tissues (adipose and fibrosis infiltration) [40]. 

Such quantification of the remodeling process is likely to be of functional and clinical importance in 

elucidating the causes of the disproportionate age-associated decrease of force compared to that of 

muscle volume. Melville et. al. imaged the quadriceps musculature of young healthy females and 

compared them to non-frail and pre-frail/frail older females [119]. MR imaging assessment included 

diffusion tensor imaging, T2 mapping, and quantitative fat fraction using MRS. The latter study 

found that pre-frail/frail adults demonstrated increased FA compared to young controls and non-

frail adults with increasing T2 and intramuscular fat among the control, non-frail and pre-frail/frail 

categories [119]. Another cross-sectional DTI study of young and senior (non-frail) subjects showed 

significantly higher eigenvalues and trend to a higher FA and significantly shorter fiber lengths and 

smaller pennation angles in the gastrocnemius muscles of the senior cohort compared to the young 

cohort [63].  Cameron et. al. extracted DTI indices (fractional anisotropy and mean diffusivity) and 

architecture (fiber length, pennation angle, PCSA) in thigh muscles in a cohort of 94 subjects with an 

age range 22-89 years [120]. The latter study showed skeletal muscle architectural changes with aging 

and intermuscular differences in the microstructure.  

Though, MRI has a number of quantitative assessments of muscle quality and quantity, these 

remain in the realm of research in sarcopenia due to the lack of imaging and analysis standardization, 

complex post-processing, and long scan times. More studies focused on validation as well on the 

identification of simpler MR metrics (acquisition and/or processing) will serve to expedite 

establishment of MRI as an imaging biomarker of sarcopenia. Large scale multi-parametric MR 

imaging studies on cohorts comparing heathy young, active older, pre-frail and frail older subjects 

will be required to determine thresholds for each MR metric for the three sub-groups of older subjects 

to establish MRI based biomarkers of sarcopenia. 

3.5. Muscle Injury 

MRI is routinely used to assess the severity in sports related muscle injuries and combined with 

clinical evaluation, used to predict ‘return to play (RTP)’ [121,122]. It is considered the reference 

standard for the evaluation of muscle injuries [122]. MRI aids in evaluating and in the management 

of sports-related muscle injuries. Further, MRI can also evaluate the long-term changes following 

injury such as scarring and focus or diffuse fatty muscle atrophy [122]. 

The integration of quantitative multiparametric MRI will increase the diagnostic efficiency and 

predictive power of MRI [122].  Most of the quantitative MRI studies thus far have focused on DTI 

and T2 metrics while some have evaluated the loss of muscle volume after injuries and in the 

rehabilitation period.  Muhlenfeld et al reported significant muscle volume loss (between 2% and 

7%) in the upper thigh occurs in recreational soccer players assessed at three and at six weeks 

following a hamstring injury [123]. Diffusion tensor imaging (DTI) and T2 mapping has recently been 

applied to monitor recovery after an acute hamstring injury [124]. All DTI indices except FA were 

elevated compared to control muscles immediately after the injury and normalized during the 

recovery period. Mean T2 relaxation times in injured muscles were not significantly elevated 

compared with control muscles at any time point [124]. Figure 10 shows the baseline, mean diffusion 

and T2 maps in three subjects at three time points after an acute hamstring injury.  Future work 

should explore the potential of DTI indices to predict ‘return to play (RTP)’ and recovery times in 

athletes after an acute strain injury [121,122]. Biglands et al also assessed the ability of T2 mapping, 

diffusion tensor imaging (DTI) and radiologist's scores to detect muscle changes following acute 
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muscle tear in athletes and to predict RTP [125]. While T2 and DTI measurements in muscle could 

detect changes due to healing following muscle tear, they were inferior predictors of RTP compared 

with the radiologists’ visual scoring. Bye et al investigated mechanisms by which short-term 

resistance training (6 weeks) increases strength of partially paralyzed muscles in people with spinal 

cord injury (SCI) using DTI including fiber architecture and physiological cross-sectional area (PCSA) 

[126]. The lack of any change in muscle architecture post-training in this study suggests that short-

term strength gains are due to increased neural drive or an increase in specific muscle tension [126]. 

 

Figure 10. Representative images of three athletes showing coronal fat-suppressed T2-weighted 

images of the hamstring injury depicted by the red oval (first column) together with axial spin echo 
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EPI images (b-value = 0 s/mm2) (second column), reconstructed mean diffusivity(MD) maps (third 

column) and reconstructed qT2 maps (fourth column) at the three time points (time point 1: within 1 

week postinjury; time point 2: 2 weeks after visit 1, and time point 3: at clinical return to play). DTI, 

diffusion tensor imaging; qT2, quantitative T2. Reproduced with permission from the authors in Ref [124]. 

While muscle biomarkers have been entirely devoted to markers of structure, composition, and 

fiber architecture, a few dynamic imaging studies have also been reported [89–91]. Slider et. al. used 

velocity encoded phase contrast imaging to map thigh muscle strains under active lengthening 

paradigms in subjects with prior hamstring injuries [127]. They found relatively larger localized 

tissue strains during active lengthening contractions near the proximal musculotendon junction from 

which they concluded that these large strains may predispose the proximal biceps femoris to injury. 

With faster and 3D imaging capabilities of the 4D Compressed sensing flow sequences, it is possible 

now to cover the entire thigh in the dynamic scan in 4-5 minutes [128]. This opens up exciting 

possibilities to establish imaging biomarkers of muscle function. 

4. Conclusions 

Quantitative MRI and imaging biomarkers are an active area of research and the 

multiparametric nature of MRI allows one to probe the muscle with different metrics.  Some of these 

metrics have reached a stage of maturity to be granted the status of imaging biomarkers10. These 

mature biomarkers are morphological (volumes, cross-sectional areas), compositional (fat 

infiltration) and T2 mapping (inflammatory process, disease activity marker).  The advent of deep 

learning methods is poised to make automated muscle segmentation a reality and with it, brings the 

ability to extract biomarker values in a consistent and accurate manner. These imaging biomarkers 

now need to be evaluated in large scale clinical trials to determine their utility as outcome measures. 

Besides the mature muscle imaging biomarkers, there are other techniques that hold great promise 

and are in different stages of development: diffusion tensor imaging has already shown to provide 

characterization of muscle that is distinct from the established biomarkers in normal and diseased 

states and fibrosis quantification which is still in its infancy. In addition, muscle proton and 

phosphorous MR spectroscopy also show considerable promise; these latter two topics are not 

covered here. Phosphorous spectroscopy of muscle was the subject of some of the earliest studies in 

biological samples and is a well -researched area that provides insight into energy metabolism, a 

metric not available through other MRI approaches. Proton spectroscopy is unique in its ability to 

quantify intramyocellular fat and also serves as a reference standard for quantifying adipose content. 

Other biomarkers of interest but not discussed here are MR elastography for muscle mechanical 

properties and MR perfusion for assessing blood supply to the skeletal muscle.  As mentioned in the 

prior section, dynamic imaging of muscle opens up an unprecedented opportunity to identify a novel 

set of imaging biomarkers of muscle function.  Along with technical advances in imaging sequences, 

image processing, and standardization, large scale multi-institutional studies with well-defined 

outcomes measures in different disease states are required to advance and firmly establish qMR in 

the arsenal of tools for the management of MSK disease conditions. 
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