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Abstract: This study explores asymmetric volatility structures within multivariate hysteretic autore-
gressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the
dynamic behavior of global financial assets. The proposed framework integrates regime switching
and time-varying delays governed by a hysteresis variable, enabling the model to account for both
asymmetric volatility and evolving correlation patterns over time. We adopt a fully Bayesian inference
approach using adaptive Markov Chain Monte Carlo (MCMC) techniques, allowing for the joint estima-
tion of model parameters, Value-at-Risk (VaR), and Marginal Expected Shortfall (MES). The accuracy
of VaR forecasts is assessed through two standard backtesting procedures. Our empirical analysis
involves both simulated data and real-world financial datasets to evaluate the model’s effectiveness in
capturing downside risk dynamics. We demonstrate the application of the proposed method on three
pairs of daily log returns involving the S&P500, Bank of America (BAC), Intercontinental Exchange
(ICE), and Goldman Sachs (GS), present the results obtained, and compare them against the original
model framework.

Keywords: bivariate student t-distribution; hysteresis; asymmetry structures in volatility; Markov
chain Monte Carlo; value-at-risk; marginal expected shortfall; out-of-sample forecasting

1. Introduction

Shocks to a time series can cause persistent effects, whereby the influence of disturbances spreads
and persists over time. This phenomenon, referred to as the hysteresis effect, reflects a form of path
dependence in which system dynamics respond asymmetrically to past shocks. To address issues
related to excessive or spurious regime shifts, a range of univariate hysteretic time series models
have been developed by authors of ([1-7]). In financial econometrics, it is well-established that asset
returns tend to exhibit co-movement. Understanding and forecasting the temporal dependence in the
second-order moments of these returns is a key concern in finance. Multivariate models provide a
useful framework for capturing complex features such as volatility clustering across multiple assets,
time-varying correlations, and joint downside tail risks across industries. These considerations have led
researchers to extend univariate volatility models into the multivariate setting. For instance, authors of
[8] introduced the VECH and BEKK models, while authors of [9] proposed the Dynamic Conditional
Correlation (DCC) model, which allows for a time-varying conditional correlation matrix. In contrast,
authors of [10] developed a model that captures correlation dynamics through a weighted average
of past correlation matrices, reflecting the persistence of conditional correlations. Authors of [11]
develop an asymmetric Dynamic Conditional Correlation (AG-DCC) model to examine the presence
of asymmetric responses in conditional volatility and correlation between financial asset returns,
particularly allowing for asymmetries in the correlations. A comprehensive discussion on generalized
univariate volatility models can be found in [12]. Authors of [13] suggest an extension of [10] using a
Bayesian Markov chain Monte Carlo (MCMC) technique to accommodate heavy-tailed distributions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Nonetheless, these models do not consider regime-switching behavior, which is potentially essential
for modeling structural shifts and regime-dependent dynamics in financial markets.

In the multivariate context, authors of [14] propose the Hysteretic Vector Autoregressive (HVAR)
model, which incorporates delayed regime switching based on a hysteresis variable. Specifically,
transitions between regimes occur only when this variable exits a predefined hysteresis zone. Aauthors
of [15] introduce a bivariate HAR model incorporating GARCH errors and time-varying correlations.
This model integrates features of dynamic correlation, asymmetric effects on correlation and volatility,
and heavy-tailed distribution within the multivariate HAR framework previously developed by
[14]. However, the asymmetry in [15] is introduced only through the regime-switching behavior
of a hysteresis variable within the system. This approach overlooks the leverage effects associated
with individual asset returns, which have been emphasized in earlier studies in [11]. In univariate
framework, authors of [16] and [17] examine the intricate dynamics between financial returns and
volatility, emphasizing the asymmetric effects of shocks. Authors of [16] modify the GARCH model to
account for seasonal volatility patterns, differential impacts of positive and negative return innovations,
and the influence of nominal interest rates on conditional variance. Similarly, of [17] generalizes the
ARCH framework by modeling conditional variance as a quadratic function of past innovations,
allowing for a nuanced capture of volatility patterns, including asymmetries and leverage effects. Both
studies underscore the importance of accommodating asymmetries in volatility modeling to better
understand and predict financial market behaviors.

As a result, the volatility specification in [15] leaves room for improvement in modeling asym-
metric effects at the level of individual return series. In this paper, we develop an extension of the
multivariate hysteretic autoregressive (MHAR) model with GARCH errors and dynamic correlations
(see [15]) to accommodate asymmetries in volatility dynamics. Specifically, we incorporate two well-
known asymmetric volatility specifications: the GJR-GARCH, as defined in [16], and the QGARCH
proposed in [17]. These extensions result in two model variants, namely the MHAR-GJR-GARCH and
the MHAR-QGARCH models.

To the best of our knowledge, this is the first study to explore asymmetric volatility structures
within the MHAR-GARCH framework. By introducing these asymmetric components, the proposed
models offer greater flexibility in capturing the heterogeneity and nonlinear behavior commonly
observed in financial asset returns. Such flexibility is particularly important in modeling risk dynamics,
especially during periods of market turbulence where asymmetries in volatility play a crucial role.
Based on the proposed models, we employ an adaptive multivariate t-distribution to account for
heavy-tailed errors, and utilize the SMN representation (see [18]) to flexibly model marginal error
distributions with varying degrees of freedom, improving the model’s fit to the target time series.

In finance, systemic risk refers to the possibility that problems in one financial institution or a
group of them could spread throughout the financial system due to the strong connections between
institutions. Such a chain reaction can lead to serious disruptions or even cause the entire market to
collapse. Following [19], the Marginal Expected Shortfall (MES) is employed to empirically evaluate
the extent to which this risk measure addresses practical concerns related to systemic risk, using a
large sample of major U.S. banks. In this study, we consider two widely used risk measures: Value
at Risk (VaR) and MES, which MES plays a more prominent role in capturing tail risk and systemic
vulnerability. Additionally, we implement two backtesting procedures to assess the accuracy of
out-of-sample VaR forecasts.

A major limitation of the proposed models lies in their increasing complexity, particularly due
to the large number of parameters that must be estimated and the challenges involved in modeling
nonlinear multivariate structures. As the nonlinearity and asymmetric structures of the proposed
models, traditional estimation methods become inefficient or impractica. To overcome these difficulties,
we adopt a Bayesian framework using Markov Chain Monte Carlo (MCMC) techniques, which allows
for simultaneous inference of all unknown parameters.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The remainder of this paper is divided into the following sections: The multivariate hysteretic au-
toregressive model with time-varying correlations and asymmetry structures in volatility is presented
in Section 2. Bayesian inference for model parameters is presented in Section 3. Forecasting VaR and
the marginal expected shortfall(MES) are mentioned in Section 4. Section 5 examines simulation. The
empirical study is demonstrated in Section 6 and marks are covered in Section 7.

2. Multivariate Hysteretic Autoregressive Model with Asymmetry Structures in
Volatility and Time-Varying Correlation

Consider the MHAR-GARCH model, which is a multivariate hysteretic autoregressive model

with GARCH errors:
wo= “”+i<1>“”yt + a, M
a; = dlag(\/a,.. \/E) where €; ~ D(0,%),
hyy = @l +Z¢xll a2, 1+2/Bf{t)h,»,t,1, i=1,...k
=1
o= (1- 99” — 60200 0V, + 6w,y

1 ifz; <rp
I = 2 if z¢ > ry
Ji—1 otherwise, r; < ry,

and the (u, v)th element of ¥;_; is formulated as:

S

Y €ut—s€uyt—s
s=1

wuv,tfl = 5 S ’
\/ (szl ei’t_s> (szl G%’t_s)
(Jr)

where y; = (y1t,- - -, yk,t)/ is a vector of k assets at time t, J; is a regime indicator, ®;

1<u<ov<S*<S. (2)

is a k-dimensional
vector, <I>l(] ) is a k x k matrix, ZUt) is a k x k positive-definite matrix with diagonal elements, scalar
parameters are satisfied 9%1 ! ), 95] 0> 0and 0 < 95] 0y 99 s 1,and ¥;_1 is a k x k sample correlation
matrix shocks from t — S, ...,t — 1 for a pre-specified S. Moreover, z; is a hysteresis variable. In
this study, we investigate two distinct forms of asymmetric volatility within the framework of a
multivariate hysteretic autoregressive (MHAR) model. The first approach incorporates the asymmetric
volatility structure proposed by [16] into the MHAR-GARCH framework, resulting in the MHAR-GJR-
GARCH model. The second approach introduces the quadratic GARCH specification, as developed
by authors of [17], leading to the formulation of the MHAR-QGARCH model. We also derive the
volatility dynamics of the MHAR-GJR-GARCH model:

qi i
hip = w4 Zal{f)aft Y B+ Y o0, e < 0}ad,_y, i =1,k
1=1 =1

where I;(.) is a k x 1 indicator function that returns the value of 1 when the argument is true or 0
otherwise. The volatility of the MHAR - QGARCH model is as follows:

i
hi,t = —I— Z lel alt 1 =+ Z :B Zl‘ 1 + Z él(l]t)ai,t—l/ i= 1,.:.,k,
I=1

We now consider the basic cases of two models: the bivariate HAR(1) - GJR - GARCH(1,1) model and
the bivariate HAR(1) - QGARCH(1,1) model. We assume that innovations in Equation (1) follow the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2266.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2025 d0i:10.20944/preprints202505.2266.v1

40f24

modified bivariate Student-t distribution (see [15]). In this case, we apply the scale SMN representation
(see [18]) to the adapted bivariate Student-t distribution, 7,*(0, Z;, v) and we choose z; = y; ;4. Then,
the bivariate HAR(1) - GJR - GARCH(1,1) model is described as follows:

Yy = ‘D(()h) + ‘ngytfl +a, ®3)

a = diag(y/hy \/ha)es,

et|Ar ~ Np(0, AV 2mn 12,

. Vi V, .
AY2 = diag(\/A1y, /Aas), Aip ~ Ga(zZ 21) i=1,2,
Zt — (1 _ 9§]t) _ Qéh)>z(h) + 9§]t)zt_1 + Qgh)‘ft—l/

1 ify g <rp,
v = 2 ifya>ru
Ji—1 otherwise,

with the (u#, v)th element of ¥;_1 is described in (2) and the conditional volitilities as follows:
hip = (]t)+“1(1]r)azt LB g+ 6 T 1 e <0}af, 4, i=12,

where I;(.) is a 2 x 1 indicator function that returns the value of 1 when the argument is true or 0
otherwise. The positivity and stationarity conditions for volatility are given as follows:

W > 0,410 > 0,800 > 0,600 > 0and Y + pU) 1 60 < 1. @)
The bivariate HAR(1) - QGARCH(1,1) model modifies the conditional volatilities as follows:
hip = ( = "‘1(1 )alt 1 +/3 hitq +5§1]t)ﬂi,t—1, i=1,2,

where the positivity and stationarity conditions for volatility are given as follows:

(]t) >0, DC( > Olﬁl(l]t) > 0’51(1]t) >0, (5l(lft)>2 < 4(1 _ (]t) _ :Bz(llt))’
and lx(]t + [3 5)

and we specify the unconditional correlation matrix Z(/t):

3. Bayesian Inference

To estimate the unknown parameters of the proposed models in a Bayesian framework, for

example, we create groups of the unknown parameters: (i) z[)lU Y= (([Jl.(gf),(pl ) 4)1 )/ i,Ji =
(i) r = (r,r)'; i) v = (v1,12); v) p = (oM, 0®); ) 41 = (I, a0, g0, 600 iy = 1,2;
(vi) g = (9? t), 95] 2 ), and (vii) d. We define 8 as a vector of all unknown parameters of the proposed

model. Following that, the bivariate HAR(1) - GJR - GARCH(1,1) and bivariate HAR(1) - QGARCH(1,1)
models’ conditional likelihood functions are given by:

2
hytho (1 —pUn)")
9 oS -05In| ———— 7~ 6
In(C(y/0) z{ ) [ ( S0 ©
B 1 Avpad, n Age33, B 2000 ay,a00 /A1 A0
2(1 — pUn?y \ I ha Vie/ho '
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where a; = y; — d>(()m - (IDgt)yt,l.

We set up prior distributions for the unknown parameters. Assume that 4)1(] ) N3 (poi, Z&l),
i,J+ = 1,2; for parameter threshold r; ~ Unif(l3,1;), where I; and [, are the pth and (100 — 2p)th
percentiles of observed time series, respectively, for 0 < p < 33. Furthermore, r;|r; ~ Unif(uy,uz),
where u; is the (100 — p)th percentile and u; = rp + c¢* for ¢* is a selected number that ensures
rp 4+ ¢* < ry and at least p% of observations are in the range (r7,ry). For degrees of freedom,
we assume the scale mixture variables A;; ~ Ga(v;/2,v;/2) and v; ~ Unif(2,60), i = 1,2, and
pUD) ~ Unif(—1,1). For lag d, we choose the discrete uniform prior p(d) = 1/dy with maximum delay
() (Jb)

do. In terms of volatility parameters, -; ;

to I(Sq1) or I(S;), where S; and S; are the sets that satisfy (4) and (5), respectively.

follows a uniform distribution such that «.’"’ is proportional
The conditional posterior distribution for each group is proportional to the conditional likelihood
function multiplied by the prior density for that group, as shown below:

P(6]y,0_;) < L(y|0)P(6;]6_;),

where 0, is each parameter group, P(6)) is its prior density, and 0_; is the vector of all parameters,
except 6;. The conditional posterior distribution of delay lag d follows a multinomial distribution with
a probability:

p(yld =i,6_4)Pr(d = i)

Pr(d:i|y,6,d): - - ,izl,...,do.
£ p(yld = j,0_4)Pr(d = j)

In this study, with the exception of the lag parameter d, the conditional posterior distributions
of the remaining parameter groups exhibit non-standard forms. To make statistical inference, we
employ an adaptive Markov Chain Monte Carlo (MCMC) method for selected parameter groups,
complemented by a random walk Metropolis algorithm. Specifically, we assume that the innovation

term in Equation (3) follows a Gaussian distribution, which serves as the kernel for sampling ¢1.(] 2
(Je)
i

to draw samples, whereas the remaining parameters are updated using the random walk Metropolis

For the parameter groups #/) and "/, where i, J; = 1,2, an adaptive MCMC approach is utilized
algorithm. The detailed procedures of the adaptive Metropolis-Hastings MCMC algorithm are thor-
oughly presented by authors of [1] and [15], where the authors provide a comprehensive framework
for its implementation and application. Based on guidelines of [1], we further manage a scale matrix to
attain ideal acceptance rates of 20% to 60%.

In a Bayesian framework, we need to set up the initial values for each parameter group. For
autoregressive coefficient parameters, ([Jl-(] 0 (0,0,0); for degrees of freedom 1/1-(] 0 — 50; plU 0 — 0.5;
dy = 3; wgt) = Dégt) = ,qu’) = (Sgt) = 0.1; and (Ggm, Ggm) = (0.05,0.2) for i, J; = 1,2; thresholds r
and ry; are established at the 33rd and 67th percentiles, respectively; and we set p = 20 to make certain
of enough observations in each regime for a valid inference. For the remainder of the analysis, we
specify S = 3.

4. Forecasting Marginal Expected Shortfall and Value at Risk

Value-at-Risk (VaR) and Marginal Expected Shortfall (MES) are now considered systemic risk
assessments for financial risk management. The authors of [19] define MES as a financial firm’s
marginal contribution to the financial system’s expected shortfall. The authors of [20] define MES at
the alpha level for a financial institution at time t given F;_; as follows:

MES; = Elya¢ | y1,6 < VaRy(a); Fi—1], (7)

where VaRj ;(«) is the VaR of y;; at the a-level such that P(y1; < VaRy(«) | Fi—1) = a. Here, y2;
stands for the stock return of a financial institution, whereas y; ; stands for the market return.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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To produce MES;, we estimate one-step-ahead quantiles and volatilities for y; ,11 from the
investigated model described in (3) with forecast origin t = n. We get quantiles from the posterior
predictive distribution, which is:

p(Yni1lFn) = /966P(yn+1lfn,9)p(9\Fn)d9- 8)

Suppose that {6, 7 = ng+1,..., N} are rth MCMC draw from the posterior density p(8|F,)

after the np burn-in sample. Thus, we can sample {yﬂrl,r = ngp+1,...,N} from the marginal
predictive distribution, p(y,+1|F»), by sampling the following conditional distribution:

yn+1|]:"’ ~ T ﬂyzﬁfyvm)
* 1/2 1/2
T (yi,rl.1|.un+1/2n[_¢r.]1r"[r]) = / / yn+1 ”n+1"\n+{ En[‘:]l/\n+{ )
[V] U[f]
X HGIZ Aingt 2 - dMpp1dA2u11, )

where y[] and ZZ[J:]l = dlag(h hg]n +1)Zi[:]+1 are a conditional mean and covariance of

1n+1/
p(Yns1|Fn, ) at the rth iteration. To assess the correctness of a VaR performance, we calculate
the violation rate (VRate). The accuracy of a VaR performance is verified by recording the failure rate;

that is, the violation rate:

7’[-‘1-]10
Violation rate = — I(ry < —VaRy) (10)
ho t=n+1

where hy is the out-of-sample period size and r; is the return at time t. We use two tests to assess the
validity of the VaR forecasts: the conditional coverage (CC) test created by [21] and the unconditional
coverage (UC) test created by [22]. The CC test is conducted to investigate the null hypothesis that the
violations are independently distributed, whereas the UC test is suggested to determine whether the
percentage of violations is equivalent to the VaR significance level.

5. Simulation Study

In order to access the effectiveness of the Bayesian approach, we run two simulations of the
suggested models in this section. Model 1 is the bivariate HAR(1)- GJR - GARCH(1,1) model and
Model 2 is the bivariate HAR(1) - QGARCH(1,1) model. Model 1 is given by::

yr = q’(()]t) + <I>§”yt71 + ay, (11)

ap = diag(\/hl,t/\/hz,t)et/ €~ T, (0, v)

€t|At ~ NQ(U,A;1/2ZtAt_1/2),

M {1 ~0.10 qbn ol 020 025

P =1 ,0 | | _o10 &y M | =] 025 030
L P20 | | VY] 4’21 ¢ : :

o [ ¢ ~0.08 4;11 o2 030 035

Q=1 ,0 | 7| _o1s &y @ | =] 035 030
L ‘on i L : i 4’2 ‘Pzz : :
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with h 007+02001t 1 +020h1t 1 +O4011t 1{€t 1 < O}Hlt 1 lf]t =1,
L 0.03 +0.20a3 ,_; + 025/ 41 + 0551 ;_1{er—1 < 0}a],_; if Js =2,
y 0.04 +0.2503 ,_; + 010/ + 040 _1{e;_1 < 0}a3, , ifJi =1,
2t 0.02 + 03043, + 0150151 + 0401 {e;1 < 0}a3,_, if s =2,
5 (1—040—0.10)=M) + 040%;_; +0.10¥;_1 ifJ; =1,
! ( —0.50 — 0.20)E() 4+ 0.50%;_1 + 0.20%,_; if J; =2,
1 if yl,tfd < _05,
where J; Ji—1 if —045<y;; 4 <01,
2 if Yit—a > 01,
and *(V) 065 L x@ = 1 08 , V= L - 8.0 ,and d = 1.
0.65 08 1 Vs 10.0
Model 2 is describled as follows:
Yy = Qé]t) + <I>§myt71 + a, (12)
ap = diag(\/ hyt, \/hZ,t>€t/ €~ T, (0,Z¢,v)
r 1) T r T 1
ol ¢§(1)§ _[-010] 4o l 4)11 4% ] _ l 032 030 ]
ol | T | 008 o) ol 037 035
M 2) 1 r T 2
o) 4%); _[-om ] e [ <pu q%; ] _ [ 035 030 ]
oD | | —0.08 | o2 o2 033 037
, 0.07 +0.20a3 ,_; + 010014 +0.40a1,_1 if Jy =1,
with by = .
0.03 +0.30a3 ,_; + 010/ 41 +0.35a1,_1 if Ji =2,
L[ 004404083, +0.05k, 1 +030ay, 1 if]i =1,
27 ) 0.02+0.30a3, ; +0.10hy,_1 +020a5,; if i =2,
s _ | (1-040- 0.35)2M) 4+0.40%; 1 +0.35¥, ¢ if i =1,
b ( —0.55—0.15)£® 4+ 0.555,_1 + 0.15%¥,_; if J; =2,
1 if yy_g < —045,
where J; = Ji—1 if —045<y;; 4 <01,
2 it yq>01,
andz® = | ! x| L0 v B0 dd =1,
0.5 1 085 1 Vs 10.0

Models 1 and 2 are created utilizing the actual values shown in Tables 1 and 2. For each time
series, we set up the sample size n = 2,000. We carry out N = 30,000 MCMC iterations and discard
the first M = 10, 000 burn-in iterates. For the hyper - parameters, we choose the initial values for
all parameters of the investigated model to be p; = 0, diag(Zo;) = 0.1, I1 = @20, U = pg0, €1, = 2,
cu = 60, and do =3.

Results for the parameter estimates of the simulation study are shown in Tables 1 and 2. The
tables present the posterior means, medians, standard deviations, and 95% credible ranges for Models
1-2 over the 200 replications. We observe that the 95% credible interval contains the corresponding
true value for each parameter. The posterior means and medians in each case are fairly close to the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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true parameter values. The posterior modes of lag d are demonstrated, and it can be explained that
the posterior mode of d provides a reliable estimate of the delay parameter because the posterior
probability for d = 1 is nearly equal to one. To check the convergence of MCMC, we examine the
ACEF plots of all coefficients. For compactness, we present only the autocorrelation function (ACF)
plots based on Model 2, omitting ACF plots of Model 1 to conserve space. Figures 1 and 2 provide
additional evidence supporting the convergence of the MCMC algorithm. Based on these diagnostic
checks, we conclude that the proposed models are well-suited for implementation within the Bayesian
framework.

Table 1. Simulation results of the BHAR(1) - GJR - GARCH(1,1) model obtained from 200 replications.

Parameter True Mean Med Std 2.5% 97.5% Coverage
o) ¢§é) 010  -01022  -0.1023 00280  -0.1573  -0.0472 94.00
0 o) | -010  -01014 01015 00185  -0.1375  -0.0650 98.00
o) 020 01992 01992 00482 01048 02936 95.50
ol 4% 025 02465 02465 00440 01602  0.3330 95.50
e 025 02510 02511 00215 02089  0.2932 96.00
o\ 030 02959 02960 00328 02312  0.3601 97.00
o@ P | 008 00811 00811 00119 01045 -0.0579 94.50
0 ¢ | 015 -01512 01512 00081  -0.1671  -0.1354 92.00
12 030 03005 03005 00347 02323 03688 95.50
o 4% 035 03472 03472 00344 02797 04149 95.00
oy 035 03514 03514 00162 03197  0.3832 94.00
o2 030 02972 02972 00234 02513  0.3432 95.00
L 050 04989 -04988 00184  -05334  -0.4640 94.50
ru 010 00885 00890 00324 00266  0.1503 92.50
" 800 91324 89642 14995 66907 125705 97.50
vy 1000 101588 99447 17664 73307  14.2193 98.50
o 065 06460 06483 00323 05758 07021 97.50
0@ 080 07990 07990 00295 07414  0.8572 95.50
d 100 10000 10000 00204 10000  1.0000 100.00
W) | 007 00782 00775 00144 00521  0.1088 89.50
all 020 02139 02091 01148 00218 04385 100.00
,3}” 020 02191 02167 01143 00243 04388 100.00
5@ 040 03821 03819 00613 02620 05020 91.00
w?) 003 00349 00345 00073 00217  0.0506 91.00
ol 020 02147 02131 00356 01502  0.2899 96.50
,3%21) 025 02792 02754 01150 00721 05080 97.00
s 055 05240 05248 00492 04245  0.6184 93.00
w§1> 004 00382 00879 00068 00259 00524 93.00
a(ﬁ 025 02458 02439 00682 01190  0.3837 97.00
Bl 010 01262 01196 00694 00163 02754 97.50
5@ 040 03781 03781 00677 02450  0.5107 96.00
w§2> 002 00218 00216 00039 00147  0.0298 94.00
o) 030 03063 03044 00441 02253 03971 97.00
Bl 015 01830 01769 00830 00430  0.3542 95.00
5%]) 040 03808 03809 00525 02781 04824 94.00
ol") 040 03915 03986 01819 00710  0.7004 97.00
eim 010 01011 00968 00476 00258  0.1938 96.50
6! 050 04615 04672 01083 02370  0.6571 96.50
GEZ) 020 02092 02065 00412 01364  0.2969 95.50
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Table 2. Simulation results of the BHAR(1) - QGARCH(1,1) model obtained from 200 replications.
Parameter True Mean Med Std 2.5% 97.5% Coverage
q>(1) 4)]?)) -0.10 -0.1003 -0.1002 0.0203 -0.1404 -0.0606 94.00
0 ¢ é) -0.08 -0.0792 -0.0792 0.0153 -0.1093 -0.0493 93.50
¢ i) 0.32 0.3185 0.3186 0.0351 0.2494 0.3871 94.00
q)gl) 4%; 0.30 0.2973 0.2972 0.0292 0.2401 0.3548 97.00
¢ 0.37 0.3717 0.3717 0.0217 0.3290 0.4143 94.50
(])2;) 0.35 0.3467 0.3467 0.0250 0.2976 0.3958 95.00
o 4)%) -0.08 -0.0808 -0.0808 0.0108 -0.1021 -0.0595 96.50
0 (pé(z)) -0.08 -0.0802 -0.0802 0.0070 -0.0940 -0.0665 95.50
4)(%) 0.35 0.3427 0.3427 0.0394 0.2652 0.4197 94.00
¢§2) 4)%2 0.30 0.3027 0.3027 0.0372 0.2295 0.3759 95.00
$1 0.33 0.3290 0.3290 0.0183 0.2930 0.3647 94.00
(pgg) 0.37 0.3666 0.3667 0.0235 0.3204 0.4127 95.00
rL -0.45 -0.4501 -0.4503 0.0069 -0.4626 -0.4370 93.00
u 010 00970 00973 00113 00750  0.1170 93.00
1%t 8.00 9.2129 9.0257 1.5569 6.7229 12.8309 93.50
1% 10.00 10.2736 10.0551 1.8017 7.3914 14.4714 99.50
p(l) 0.50 0.4951 0.4994 0.0563 0.3723 0.5928 92.50
p(z) 0.85 0.8472 0.8479 0.0257 0.7948 0.8958 94.50
d 1.00 1.0000 1.0000 0.0152 1.0000 1.0000 100.00
w(é) 0.07 0.0784 0.0778 0.0124 0.0557 0.1040 91.50
tx%i) 0.20 0.2235 0.2213 0.0467 0.1386 0.3220 95.00
/3%11) 0.10 0.1107 0.1098 0.0289 0.0566 0.1704 96.00
(5%? 0.40 0.3613 0.3628 0.0832 0.1955 0.5205 95.50
w%é) 0.03 0.0343 0.0340 0.0060 0.0234 0.0470 92.00
a%i) 0.30 0.3306 0.3282 0.0558 0.2291 0.4473 94.00
'3%21) 0.10 0.1030 0.1032 0.0236 0.0555 0.1490 96.50
(5%%) 0.35 0.3289 0.3285 0.0527 0.2268 0.4339 94.00
w%é) 0.04 0.0371 0.0369 0.0051 0.0276 0.0478 95.00
zx%i) 0.40 0.4115 0.4095 0.0555 0.3089 0.5284 94.50
ﬁ%ll) 0.05 0.0533 0.0525 0.0192 0.0180 0.0932 95.00
(5%1) 0.30 0.2855 0.2850 0.0618 0.1664 0.4087 95.00
wgﬁ) 0.02 0.0212 0.0211 0.0026 0.0163 0.0267 94.50
Dé(i) 0.30 0.3212 0.3197 0.0449 0.2387 0.4122 95.50
[3%21) 0.10 0.1032 0.1031 0.0138 0.0767 0.1308 93.00
5%?) 0.20 0.1904 0.1892 0.0410 0.1129 0.2733 96.00
9%1) 0.40 0.3810 0.3847 0.1001 0.1753 0.5660 94.00
Gil) 0.35 0.3582 0.3561 0.0563 0.2543 0.4744 96.00
o1 0.55 0.5157 0.5244 0.0928 0.3104 0.6746 96.50
GEZ) 0.15 0.1573 0.1531 0.0427 0.0850 0.2535 98.00
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ACF_simu01_QGARCH. jpg

Figure 1. The ACF plots of after burn-in MCMC iterations for all parameters from the BHAR(1) - QGARCH(1,1)
model.
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ACF_simu02_QGARCH. jpg

Figure 2. The ACF plots of after burn-in MCMC iterations for all parameters from the BHAR(1) - QGARCH(1,1)
model.
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6. Emperical Study

The empirical analysis in this study is based on daily closing prices of four major financial indices:
the S&P500, Bank of America (BAC), Intercontinental Exchange (ICE), and Goldman Sachs (GS). The
data span from January 4, 2006, to December 30, 2021, encompassing a total of 4026 trading days.
These data were retrieved from Yahoo Finance, a widely recognized source for historical market data.
To construct the return series, we compute the continuously compounded returns (log-returns) using
the formula y; = log(p:) — log(p;—1), where p; denotes the asset’s closing price at time t.

Table 3 defines three target datasets: DS1 {S&P500, GS}, DS2 {S&P500, ICE}, and DS3 {S&P500,
BAC}. It also presents the descriptive statistics of the corresponding return series, along with the
results of two multivariate normality tests: Mardia’s test and the Henze-Zirkler test (see [23,24]). The
return distributions are clearly skewed and have high kurtosis, especially showing strong positive
skewness. Due to the noticeable asymmetry and the presence of heavy tails in the return data, we
recommend using asymmetric models with fat-tailed multivariate error distributions instead of models
that assume multivariate normal errors. Figure 3 presents the time series plot of daily returns for the
selected financial assets. As shown, the sample period spans several significant market events, notably
the Global Financial Crisis, which officially began on September 15, 2008, following the bankruptcy
of Lehman Brothers. For the purpose of estimation and out-of-sample evaluation, the dataset is
divided into two distinct sub-periods. The first segment, consisting of 3726 daily observations, is used
to estimate the model parameters. The remaining 300 observations are reserved for out-of-sample
forecasting and performance assessment.

This section’s hyper-parameters correspond to those in the simulation study. Tables 4—7 present
a summary of Bayesian estimates for three datasets for the BHAR(1) - GJR - GARCH(1,1) and the
BHAR(1) - QGARCH(1,1) models. The significant value of ¢\3 in Tables 4 and 6 indicate that the
performance of the previous day’s return of Goldman Sachs stock has a considerable negative impact

on the S&P 500’s returns in the lower regimes. We can see that the parameter estimates for (/)ﬁ), 4:%?,

¢S), and (pg) are identical in both fitted models when we look at datasets DS2 and DS3 in Tables 5
and 7. To assess the validity of the proposed models, we further employ the Geweke convergence
diagnostic (see [25]). The p-values reported in Tables 8 and 9 suggest that the MCMC chains generated
from the models have converged. As there is no statistical evidence of non-convergence, we conclude
that the proposed models are appropriately specified and reliable for inference.

To evaluate the accuracy of the models using Value-at-Risk (VaR), we present VaR forecasts
along with the results of VaR backtesting at the 1% and 5% significance levels. Specifically, Tables
10 and 11 report the p-values of the Unconditional Coverage (UC) and Conditional Coverage (CC)
tests for the two proposed models: bivariate HAR(1)-GJR-GARCH(1,1) and HAR(1)-QGARCH(1,1) as
well as the benchmark bivariate HAR(1)-GARCH(1,1) model. When evaluating DS1, DS2, and DS3
across the three models, the violation rates (VRate) for the S&P 500 tend to be significantly higher
than the nominal 1% level, suggesting a slight underestimation of tail risk. In contrast, the VRates
for Bank of America (BAC), Intercontinental Exchange (ICE), and Goldman Sachs (GS) indicate a
tendency toward risk overestimation. Nevertheless, the backtesting results show that all three models
perform adequately as risk models. At the 5% significance level, both the proposed models and the
benchmark BHAR(1)-GARCH(1,1) model yield UC and CC test p-values above 5%, indicating no
statistical evidence of model misspecification. These findings confirm that the proposed models deliver
reliable and independent risk forecasts. Figures 4 and 5 display the VaR forecasts based on the bivariate
HAR(1)-GJR - GARCH(1,1) and HAR(1)-QGARCH(1,1) models, which clearly show that the models
are capable of identifying volatility spikes in returns, despite infrequent violations of the forecast
bounds.

To understand how well the proposed models can capture the expected shortfall movement, we
present the backtesting measures of the MES forecasts proposed by authors of [26] in Table 12. The
model with the smallest values in the boxes is the best. These findings indicate that the proposed
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models are the best.

plotsOl. jpg

Figure 3. The time series plots of S&P 500, GS, ICE, and BAC daily returns.

Table 3. Summary statistics and multivariate normality tests

Data Mean Std Min Max Skewness kurtosis MVN Tests*
(p-value)
Mardia Henze - Zirkler

S&P500 0.033 1.256 -12.765 10.957  -0.568 16.737

GS 0.033 2.320 -21.022 23.482 0.188 18.086

ICE 0.075 2.578 -19.501 34.217 0.205 20.699

BAC 0.007 3.165 -34.206 30.210 -0.319 26.645

S&P500 vs GS < 0.001 < 0.001
S&P 500 vs ICE < 0.001 < 0.001
S&P 500 vs BAC < 0.001 < 0.001

* :“MVN” stands for multivariate normality.
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Table 4. Estimation results, including posterior means, medians, standard deviations, and 95% Bayes credible
intervals of dataset DS1 {S&P 500, GS}, are based on the BHAR(1) - GJR - GARCH(1,1) model.

Parameter Mean Med Std 2.5% 97.5%
ol ¢§})) 00453 00454 00255  -0.0043 0.0967
0 oY) 0.0525 00538 00520  -0.0580 0.1502
o) 00914 -00921 00375  -0.1624  -0.0205
o) 4% 00023 00017 00178  -0.0371 0.0323
ol -0.0274 00284 00649  -0.1506 0.0972
4@ -0.0198 00204 00353  -0.0880 0.0516
o (P?J) 00408 00405 00137 00147 0.0680
0 o\ 00010 -0.0005 00340  -0.0648 0.0717
o2 00054 00050 00283  -0.0500 0.0608
o 4;% 00265 0.0267 00124 -0.0499  -0.0024
s 0.0339 00321 00575  -0.0792 0.1423
oY 00421 00411 00287  -0.1000 0.0111
r 04935 04744 00386  -0.5667  -0.4502
ru 0.6388 0.6497  0.0295 0.5541 0.6814
" 8.8291 87186  0.9056 72395  10.9435
vy 74454 74002 07572 61675 9.1533
p® 0.8766 0.8765 0.0192 0.8393 0.9150
p@ 0.6681 0.6699 0.0318 0.6014 0.7265
d 1.0000 10000  0.0318 1.0000 1.0000
Wy 0.0247 0.0243  0.0042 0.0170 0.0341
all 0.0085 0.0082  0.0049 0.0009 0.0188
,B%l) 0.1155 0.1153 00078  0.1007 0.1299
5?11) 0.9285 09296 00073 09115 0.9389
o) 0.0179 00178 00024 00135 0.0228
a(lﬁ% 0.0223 00222 00053 00117 0.0328
/3]@) 02750 02747 00137 02483 0.3006
5521) 0.8189 08195 00114 07959 0.8404
o) 00804 0079 00158  0.0525 0.1140
a(lﬁg 0.0268 00266 00086  0.0101 0.0435
[5]{2) 00532 00528 0008  0.0370 0.0699
51321) 0.9353 09363 00112 09108 0.9549
o) 00852 00850 00154  0.0565 0.1159
zxg% 00397 0039 00052  0.0298 0.0503
Bl 0.0449 00452 00107  0.0240 0.0654
(5%]) 0.8482 08483  0.0139 0.8207 0.8737
o) 0.8058 08060 00200 07676 0.8446
eé” 0.0325 00325 00030  0.0266 0.0383
6\ 0.8742 0.8744  0.0162 0.8428 0.9056
9§2> 0.0428 00427 00032  0.0366 0.0491

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2266.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2025 d0i:10.20944/preprints202505.2266.v1

15 of 24

Table 5. Estimation results, including posterior means and 95% Bayes credible intervals of datasets DS2 and DS3,
are based on the BHAR(1) - GJR - GARCH(1,1) model.

DS2 DS3
Parameter mean 2.5% 97.5% mean 2.5% 97.5%
ol [ o00871 00325 01398 00598 00081 0.109%
o) | 0.0742 00073 01589 00017 -0.0931 0.0911
o) |-00831 -00915 00291  -0.1103 -0.1858 -0.0376
o) | -00299 -0.0563 -0.0035 00115 -0.0181 0.0395
4;%? 01255 -0.2212 -0.0305  -02095 -0.3419 -0.0754
4@ -0.0393 -0.0947 00168 00721 00058 0.1372
o2 | 00514 00218 00787 00471 00203 0.0728
¢§§) 00270 -0.0346 00860 00342 -0.0222 0.0882
¢2) | -00372 -00857 00130  -0.0299 -0.0829 0.0255
4;%) 00094 -0.0241 00043  -0.0155 -0.0336 0.0018
o2 |-00181 -0.1160 00778  -0.1706 -0.2781 -0.0684
oY |-00553 -0.1000 -0.0091 00213 -0.0304 0.0708
L 05351 -0.5778 -04536  -05601 -05769 -0.5315
ru 0.6238 05814 06569 06208 05852 0.6668
" 6.8541 56768 83212 89290 7.2431 10.8435
vy 51780 44976 60264 61178 52628 7.0598
o) | 08877 08006 09790 08202 07953 0.8431
p@ | 02767 01298 03908 05443 04328 0.6347
d 10000 1.0000 10000  1.0000 1.0000 1.0000
W) | 00210 00145 00312 00276 00174 0.0395
o) | 00115 00018 00233 00148 00017 00302
/3%1) 00989 00840 0.132 01115 00978 0.1253
(51%113 09337 09178 09441 09221 09013 0.9384
w(lﬁ} 00142 00100 0018 00169 00125 0.0216
aai) 00164 00040 00305 00224 00124 0.0336
ﬁ%” 02234 01814 02657 02727 02426 02999
55% 0.8368 08118 08592 08261 08047 0.8456
W) | 00424 00202 00703 0109 00734 0.1484
oY 100313 00118 00512 00653 00401  0.0927
B | 00481 00309 00654 00472 00247 00692
5511) 09356 09073 09562 08704 08372 0.8974
wﬁ%’ 0.0366 0.0206 00550 00165 0.0020 0.0358
oY | 00533 00424 00653 00540 00423  0.0667
B | 00381 00242 00525 0099 00756 0.1234
5@ 0.8506 0.8217 08776 08644 08381 0.8857
o) | 08311 07798 08711 03327 02778 0.3865
o) | 00590 00521 00683 01297 01155 01438
o2 | ooes 09114 09419 09137 08977 09292
9§2) 0.0254 00211 00297 00340 00294 0.0384
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Table 6. Results of estimation of the BHAR(1) - QGARCH(1,1) model are shown, including posterior means,
medians, standard deviations, and 95% Bayes credible intervals of the dataset DS1.

Parameter Mean Med Std 2.5% 97.5%
ol ¢§})) 00139 00128 00328  -0.0493 0.0796
0 o) 00248 00279 00584  -0.1333 0.0933
o) 00638 -00663 00454  -0.1448 0.0290
o) 4% 00370 00370 00170  -0.0699  -0.0039
ol 00100 00138 00797  -0.1648 0.1542
4@ 00657 00651 00375  -0.1386 0.0053
o (P?J) 00338 0033 00153  0.0052 0.0658
0 o\ 0.0179 00191 00347  -0.0535 0.0869
o2 00217 00224 00298  -0.0792 0.0379
o 4;% 200050 -0.0048 00122 -0.0290 0.0201
s 00261 -0.0244 00592 -0.1475 0.0836
o2 00072 -00071 00274  -0.0617 0.0481
r 01680 01595 00222 02108  -0.1405
ru 00179 -00013 00449  -0.0329 0.1243
" 8.7278 86580 09039 70614 10.6549
vy 7.3638 73355 06199 6.1993 8.6153
p® 0.8502 0.8501 0.0134 0.8239 0.8759
p@ 0.2581 0.3011 0.2326 -0.3197 0.5698
d 1.0000 10000 0.2326 1.0000 1.0000
Wy 00817 00813 00043 00742 0.0902
all 0.1243 0.1244 00087  0.1066 0.1415
,B%l) 00092 00093 00032  0.0026 0.0153
5?11) 0.8724 08728 0009 08534 0.8916
o) 00036 00035 00014  0.0009 0.0065
a(lﬁ% 0.0201 00202 00050  0.0106 0.0300
/3](2) 00037 00033  0.0025 0.0002 0.0093
5521) 0.8448 0.8448 00102  0.8237 0.8635
w§1> 01986 01975 00243 01490 0.2492
ail 00886 00880 00086  0.0732 0.1066
gLy 00310 00309 00124  0.0083 0.0555
5511) 09002 09015 00140 08686 0.9248
Q) 0.0435 00425 00146  0.0150 0.0726
a(zﬁ% 00422 00420 00058 00314 0.0536
B 0.0123 00123 00052  0.0029 0.0232
5%1) 0.8589 08595 00133 08316 0.8816
o) 06106 06104 00155 0.5806 0.6422
eﬁl) 00407 00407 00036  0.0338 0.0477
6\ 0.9163 09179 0.0158 0.8818 0.9403
eiz) 0.0503 00504 00046  0.0425 0.0584
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Table 7. Estimation results are shown, including posterior means and 95% Bayes credible intervals of datasets
DS1, DS2, and DS3, based on the BHAR(1) - QGARCH(1,1) model.

DS1 DS2 DS3

Parameter mean 25% @ 97.5% mean 2.5% 97.5% mean 2.5% 97.5%
47%) 0.0139 0.0328 -0.0493 0.0476 -0.0161 0.1136 0.0753  0.0219  0.1301
(p;l)) -0.0248 0.0584 -0.1333 0.0654 -0.0425 0.1699 0.0267 -0.0725 0.1215
qb(%) -0.0638 0.0454 0.0454 -0.0579 -0.1326  0.0212 -0.1049 -0.1784 -0.0299
4;](;) -0.0370 0.0170 0.0170 -0.0376  -0.0600 -0.0135 0.0060 -0.0227 0.0332
4)@ -0.0100 0.0797 0.0797 -0.1247 -0.2361 -0.0108 -0.1902 -0.3188 -0.0611
(p%;) -0.0657 0.0375 0.0375 -0.0581 -0.1167 0.0016 0.0550 -0.0102 0.1181
qb?%)) 0.0338 0.0153 0.0153 0.0413 0.0084 0.0738 0.0418 0.0107  0.0692
gb%) 0.0179 0.0347 0.0347 0.0046 -0.0635 0.0696 0.0309 -0.0239 0.0867
(p%? -0.0217 0.0298 0.0298 -0.0236 -0.0837 0.0270 -0.0236 -0.0732  0.0309
(p](%) -0.0050 0.0122 0.0122 -0.0063 -0.0226  0.0099 -0.0117 -0.0292  0.0059
4)](%) -0.0261 0.0592 0.0592 0.0158 -0.0893 0.1169 -0.1659 -0.2692 -0.0598
‘Pz? -0.0072 0.0274 0.0274 -0.0475 -0.0951 -0.0029 0.0314 -0.0202 0.0814
rL -0.1680 0.0222 0.0222 -0.2019 -0.2123 -0.1811 -0.5473 -0.5747 -0.4611
ru 0.0179 0.0449 0.0449 0.0524 -0.0385 0.1507 0.6111 0.5527  0.6559
1% 8.7278 0.9039 0.9039 6.8073 5.5809 8.3232 8.9350 7.3051 10.8176
) 7.3638 0.6199 0.6199 52143 45484 5.9952 6.0211 5.1460 7.0315
p(l) 0.8502 0.0134 0.0134 09172 0.8269 0.9912 0.8109 0.7864  0.8350
p(Z) 0.2581 0.2326 0.2326 -0.4946 -0.9541 0.0104 0.4795 0.0228 0.6653
d 1.0000 0.2326 0.2326 1.0000  1.0000  1.0000 1.0000 1.0000  1.0000
w(é) 0.0817 0.0043 0.0043 0.0604 0.0510 0.0712 0.0486 0.0357  0.0637
ch) 0.1243 0.0087 0.0087 0.1046 0.0899 0.1219 0.1214 0.1067 0.1380
,B%l) 0.0092 0.0032 0.0032 0.0077  0.0006  0.0159 0.0077  0.0003  0.0228
Jﬁl) 0.8724 0.0096 0.0096 0.8916 0.8704 0.9085 0.8748 0.8573 0.8916
wgg) 0.0036 0.0014 0.0014 0.0033  0.0007  0.0067 0.0194 0.0144 0.0249
tx(%) 0.0201 0.0050 0.0050 0.0159  0.0050 0.0275 0.0318 0.0186 0.0472
,Biz) 0.0037 0.0025 0.0025 0.0035 0.0005 0.0066 0.0025 0.0003 0.0049
5;2 0.8448 0.0102 0.0102 0.8628 0.8411 0.8832 0.8427 0.8174 0.8655
51(1)) 0.1986 0.0243 0.0243 0.0685 0.0457 0.0938 0.1229 0.0857  0.1593
tx(i) 0.0886 0.0086 0.0086 0.0742  0.0578 0.0945 0.1115 0.0883 0.1343
,8%1) 0.0310 0.0124 0.0124 0.0127 0.0032 0.0231 0.0149 0.0031 0.0279
52%1 0.9002 0.0140 0.0140 09164 0.8854 0.9391 0.8462 0.8143 0.8775
wég) 0.0435 0.0146 0.0146 0.0214 0.0037 0.0417 0.0176  0.0025 0.0381
ocg) 0.0422 0.0058 0.0058 0.0539 0.0424 0.0664 0.0650 0.0549 0.0769
éz) 0.0123 0.0052 0.0052 0.0058 0.0006 0.0122 0.0061 0.0012 0.0119
1) (% 0.8589 0.0133 0.0133 0.8709 0.8462 0.8923 0.8766 0.8514 0.8970
o) 0.6106 0.0155 0.0155 0.8121 0.7590 0.8588 0.3322 0.2221  0.4398
Qil) 0.0407 0.0036 0.0036 0.0636  0.0492 0.0774 0.1214 0.0944  0.1499
9% 09163 0.0158 0.0158 09664 0.9447 0.9801 0.9279 0.8839  0.9620
Oiz) 0.0503 0.0046 0.0046 0.0124 0.0037 0.0221 0.0340 0.0226  0.0447
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Table 8. Geweke Diagnostic of all parameters for DS1, DS2, and DS3 based on the BHAR(1) - GJR - GARCH(1,1)

model.
DS1 DS2 DS3
Parameter Statistic p-value Statistic p-value Statistic p-value
qb%) -0.0597  0.9524 -0.8079  0.4192 -0.0636  0.9493
qﬁﬁtl)) -0.1791  0.8579 -0.3346  0.7379 -0.0162  0.9870
qb(%) 1.3573  0.1747 -1.5891  0.1120 -0.2181  0.8274
4;]%) 0.7764  0.4375 1.7514  0.0799 -0.4235  0.6720
4)@ 0.5771  0.5639 -2.2308  0.0257 -0.0380  0.9697
(p%;) 0.6501  0.5156 1.8316  0.0670 -0.7052  0.4807
gb%)) 1.8243  0.0681 04597  0.6457 -0.7424  0.4579
gb%) 15591  0.1190 1.8774  0.0605 -0.6209  0.5346
(p%? 0.1958  0.8448 -0.6016  0.5474 -0.9727  0.3307
(p](%) -1.1547  0.2482 15224  0.1279 0.3103  0.7564
4)](%) 1.0562  0.2909 -1.2477  0.2121 -0.5624  0.5738
4)2%) -1.9255  0.0542 -0.6378  0.5236 -0.0487  0.9611
L -1.1629  0.2449 -2.8326  0.0046 1.8200  0.0688
ru -0.2210  0.8251 0.2319  0.8166 1.0950  0.2735
V] -1.1139  0.2653 -0.9501  0.3421 0.9806  0.3268
v -1.6291  0.1033 0.0019  0.9985 0.1521  0.8791
o -0.7965  0.4258 1.1421  0.2534 -1.6976  0.0896
p@ 12195  0.2227 -0.9170  0.3591 12624  0.2068
w(é) -0.9039  0.3660 -0.3661  0.7143 0.0221  0.9824
zxi) 0.9563  0.3389 -1.2333  0.2174 0.1894  0.8498
,8(1) -1.3752  0.1691 1.0816  0.2794 12501 02113
(51811) -0.0239  0.9809 -0.4108  0.6813 -0.8739  0.3822
w g) 0.2948  0.7682 -0.4945  0.6209 04263  0.6699
0:821) 0.0896  0.9286 -2.0540  0.0400 -0.2839  0.7765
,3%2) -0.0769  0.9387 0.9074  0.3642 1.8353  0.0665
51‘:5 -0.4204  0.6742 -0.8867  0.3753 0.3284  0.7426
w%) 1.6858  0.0918 0.6269  0.5307 -1.2515  0.2107
zxg) -0.8687  0.3850 14275  0.1534 -1.1246  0.2608
,8(1) 12312 0.2182 -0.6642  0.5066 0.7641  0.4448
(52%11) -1.3606  0.1736 -0.5054  0.6133 0.5095  0.6104
wglé) 0.0002  0.9999 04037  0.6864 -0.1893  0.8499
a(i) -1.6979  0.0895 0.6527  0.5139 -0.6733  0.5008
,322) 12623  0.2068 1.0262  0.3048 -0.4108  0.6812
é (i 0.0031  0.9975 -1.2335  0.2174 1.0696  0.2848
o) -1.0077  0.3136 0.2864  0.7746 -0.2729  0.7850
9%1) 0.2581  0.7963 -0.6037  0.5460 0.1467  0.8834
9%2) 0.6031  0.5465 04883  0.6253 -1.0627  0.2879
Géz) 0.4767  0.6336 -1.0663  0.2863 19815  0.0475
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Table 9. Geweke Diagnostic of all parameters for DS1, DS2, and DS3 based on the BHAR(1) - QGARCH(1,1)

model.
DS1 DS2 DS3

Parameter Statistic p-value Statistic p-value Statistic p-value
ol | -02382 08117 0896 03710 04246 0.6711
q%é) -0.5397 05894 04807 06308 02105 08332
o) | 03970 06914 10016 03165 04172  0.6765
4;]%) 03031 07618  -04317 06659  -0.0185 0.9852
4)%}) 09387 03479 00066 09947 06520 05144
4@ 0.6678 05043 03082 07579  -0.0690  0.9450
4%) 08183 04132 -1.0205 03075 12391 02153
oy | -1.3403 01802 06150 05386  0.8368  0.4027
¢%§) 09480 03431 05433 05869  -0.8564 0.3918
qﬁ? 03792 07045 01913 08483  -0.3520 0.7248
(p]@ 10261 03048  -0.1062 09154 02221 08242
o) | -01441 08854 02735 07845  -0.6287 05295
L 0.1648 08691 20563 00398 05816  0.5608
ru 06512 05149 04157 06777  -08724 03830
v 00228 09818 -0.6572 05110  -0.1623 08711
vy 02329 08159  -0.3896 0.6969  -0.7089 0.4784
o | 06398 05223 04073 06838  -0.3435 07312
0@ 05406 05888 03116 07554 03015  0.7630
W) | 02259 08213 05642 05726 -1.3067 0.1913
zxi) 0.1495 08811 08659 03866 05879  0.5566
il 09298 03525  -0.2060 0.8368  -1.9950  0.0460
51& 01064 09153 -06188 05360  -02741 07840
WD | 02187 08269 00908 09277  0.6828 04947
a&l) 06417 05211 00376 09700  0.8227 04107
[5%2) 02499 08027 15369 01243 07921 04283
51'}5 05778 05634 09276 0353  -1.1088 0.2675
wlt) | 00092 09927 04402 06598 02285 0.8193
ay 08557 03922  -1.3612 01734 03195  0.7494
Bl | -11870 02352 -09613 03364 08448  0.3982
(52%1B 07819 04343 13219 01862  -0.0380 09697
w§g> 09052 03654  -01715 08638 14796  0.1390
wy | -08971 03697 00572 09544 03983  0.6904
Bl 10325 03018  -0.1454 08844  -0.6278 0.5301
5y 07220 04703 01081 09139  -09705 03318
o' | 01814 0851 05558 05783 03816 07028
ol 22145 00268  -0.3652 07150  -1.0568  0.2906
o7 | 0937 03500 04136 0672 00394 09686
9?’ 0.6555 05121 11169 02640  -12179 02233
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Table 10. VaR predictions and backtesting results at the 1% level with 300 out-of-sample periods based on the
BHAR(1) - GJR - GARCH(1,1), BHAR(1) - QGARCH(1,1), and BHAR(1) - GARCH(1,1) models.

BHAR(1) - GJR - GARCH(1,1) BHAR(1) - QGARCH(1,1) BHAR(1) - GARCH(1,1)
1% p-value 1% p-value 1% p-value
No VRate uC CC No VRate uc CcC No VRate uc CcC
DS1
S&P500 6 2.00% 0125  0.273 8 267% 0.016 0.044 8 267%  0.016 0.045
GS 1 033% 0178  0.402 1 033% 0.178 0.401 4 1.33% 0016 0.045
DS2
S&P500 6 2.00% 0125  0.273 8 267%  0.016 0.045 8 267%  0.016 0.044
ICE 1 033% 0178  0.401 1 033% 0178 0.402 4 1.33% 0581 0.813
DS3
S&P500 7 233%  0.048  0.119 6 2.00% 0.125 0273 9 3.00%  0.005 0.015
BAC 2 0.67% 0537  0.815 2 0.67% 0537 0.815 2 0.67% 0537 0.815

Table 11. VaR predictions and backtesting results at the 5% level with 300 out-of-sample periods based on the
BHAR(1) - GJR - GARCH(1,1), BHAR(1) - QGARCH(1,1), and BHAR(1) - GARCH(1,1) models.

BHAR(1) - GJR - GARCH(1,1) BHAR(1) - QGARCH(1,1) BHAR(1) - GARCH(1,1)
5% p-value 5% p-value 5% p-value
No VRate uC CC No VRate uc CcC No VRate uc CcC
DS1
S&P500 17 5.67%  0.604  0.313 17 5.67%  0.604 0.313 17 5.67%  0.604 0.873
GS 16 533% 0793  0.507 14 4.67%  0.789 0.344 16 5.33%  0.793 0.507
DS2
S&P500 17 5.67%  0.604  0.313 17 5.67%  0.604 0.313 17 5.67%  0.604 0.873
ICE 16 5.33% 0793  0.507 14 4.67%  0.789 0.344 16 5.33%  0.793 0.507
DS3

S&P500 18 6.00% 0.44 0.739 17 5.67%  0.604 0.313 16 533%  0.793 0.391
BAC 13 4.33%  0.588 0.478 13 4.33%  0.588 0.478 11 3.67%  0.267 0.355

Table 12. The backtesting measures by the authors of [26] for the estimated marginal expected shortfall based on
300 out-of-sample periods.

DS1 DS2 DS3
At1%

BHAR(1) - GJR - GARCH(1,1)  [1.855]  [1.855] 2.953
BHAR(1) - QGARCH(1,1) 1.870 1870  [2.941
BHAR(1) - GARCH(1,1) 2.055 2.055 2.960
At5%

BHAR(1) - GJR- GARCH(1,1) ~ [1.195]  [1.195] 1.693
BHAR(1) - QGARCH(1,1) 1.253 1253 [1.664
BHAR(1) - GARCH(1,1) 1.401 1.401 1.830

The box values represent the best model.
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VaR0O1_GJR. jpg

Figure 4. The performance of VaR predictions with 300 out-of-sample periods at 1% based on BHAR(1) - GJR -
GARCH(1,1) model. Value-at-Risk forecasts (solid line) and daily returns (dashed line).
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VaR01_QG. jpg

Figure 5. The performance of VaR predictions with 300 out-of-sample periods at 1% based on BHAR(1) -
QGARCH(1,1) model. Value-at-Risk forecasts (solid line) and daily returns (dashed line).

7. Conclusions

This paper investigates the MHAR-GJR-GARCH and MHAR - QGARCH models by incorpo-
rating asymmetric volatility dynamics, conditional correlations, and a hysteresis variable to control
regime switching and dynamic delays. Bayesian inference is employed for efficient estimation of
the model parameters. A comparative analysis of backtesting results for the VaR and MES forecasts
is conducted. We also include the benchmark model MHAR - GARCH with adapted multivariate
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Student-t errors and compare backtesting measures of Value-at-Risk (VaR) and Marginal Expected
Shortfall (MES) forecasts. The backtesting measures indicate that, in general, the proposed models
demonstrate reliable capabilities in capturing tail risk behavior and delivering accurate risk predic-
tions. Notably, the proposed models deliver significantly improved performance over the original
MHAR-GARCH errors model, particularly in capturing asymmetric tail risks and providing more
accurate risk forecasts.

References

1.  Chen, C.W.S. and So, M.K.P. On a threshold heteroscedastic model. International Journal of Forecasting. 2006,
22,73-89.

2. Chen, C.WS. and Truong, B.C. On double hysteretic heteroskedastic model. Journal of Statistical Computation
and Simulation. 2016, 86, 2684 - 2705.

3. Li,G.D, Guan, B, Li, WK,, and Yu, P.L.H. Hysteretic autoregressive time series models. Biometrika. 2015,
102, 717-723.

4. Lo, PH., Li, WK, Yu, PL.H., and Li, G.D. On buffered threshold GARCH models. Statistica Sinica. 2016, 26,
1555-1567.

5. Truong, B.C., Chen, C.W.,, and Sriboonchitta, S. Hysteretic Poisson INGARCH model for integer-valued time
series. Statistical Modelling. 2017, 17, 401-422.

6. Zhu, K., Yu, PL.H.,, and Li, W.K. Testing for the buffered autoregressive processes. Statistica Sinica. 2014, 24,
971-984.

7. Zhu, K., Li, WK., and Yu, PL.H. Buffered autoregressive models with conditional heteroskedasticity: An
application to exchange rates. Journal of Business and Economic Statistics. 2017, 35, 528-542.

8.  Bollerslev, T. On the correlation structure for the generalized autoregressive conditional heteroskedastic
process. Journal of Time Series Analysis. 1988, 9, 121-131.

9. Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive
conditional heteroskedasticity models. Journal of Business and Economic Statistics. 2002, 20, 339-350.

10. Tse, Y.K. and Tsui, A K.C. A multivariate generalized autoregressive conditional heteroscedasticity model
with time-varying correlations. Journal of Business and Economic Statistics. 2002, 20, 351-362.

11. Cappiello, L., Engle, R. F,, and Sheppard, K. Asymmetric dynamics in the correlations of global equity and
bond returns. Journal of Financial Econometrics. 2006, 4, 537-572.

12.  Tsay, R.S. Multivariate Time Series Analysis. John Wiley & Sons. 2014 .

13.  Choy, S.T.B., Chen, C.W.S,, and Lin, EEM.H. Bivariate asymmetric GARCH models with heavy tails and

dynamic conditional correlations.Quantitative Finance. 2014, 14, 1297 - 1313.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2266.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2025 d0i:10.20944/preprints202505.2266.v1

24 of 24

14. Chen, C.W.S,, Than-Thi, H., and So, M.K.P. On hysteretic vector autoregressive model with applications,
Journal of Statistical Computation and Simulation. 2019, 89, 191-210.

15. Chen, C. W. S,, Than-Thi, H., So, M. K. P, and Sriboonchitta, S. Quantile forecasting based on a bivariate
hysteretic autoregressive model with GARCH errors and time - varying correlations. Applied Stochastic
Models in Business and Industry. 2019, 6, 1301-1321.

16. Glosten, L.R., Jagannathan, R., and Runkle, D.E. On the Relation between the Expected Value and the
Volatility of the Nominal Excess Return on Stocks. The Journal of Finance. 1993, 48, 1779-1801.

17.  Sentana, E. Quadratic ARCH models. Review of Economics Studies. 1995, 62, 639-661.

18.  Andrews, D.F. and Mallows, C.L. Scale mixtures of normality. Journal of the Royal Statistical Society Ser. B.
1974, 36, 99-102.

19. Acharya,V.V,, Pedersen, L.H., Philippon, T., and Richardson, M. Measuring Systemic Risk. The Review of
Financial Studies. 2017, 30, 2-47.

20. Brownlees, T.C., and Engle, R.F. SRISK: A conditional capital shortfall index for systemic risk measurement.
The Review of Financial Studies. 2017, 30, 48-79.

21. Christoffersen, P. F. Evaluating interval forecasts. International Economic Review. 1998 , 39, 841-862.

22.  Kupiec, P. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives. 1995, 3,
73-84.

23. Henze N and Zirkler B. A class of invariant consistent tests for multivariate normality. Commun Stat Theory
Methods. 1990, 19,3595-3617.

24. Mardia KV. Measures of multivariate skewness and kurtosis with applications. Biometrika. 1970, 57 ,519-530.

25. Geweke, J. Evaluating the accuracy of sampling - Based approaches to calculating posterior moments. Oxford
University Press, Oxford.

26. Embrechts, P, Kaufmann, R., and Patie, P. Strategic long-term financial risks: Single risk factors. Computa-

tional Optimization and Applications. 2005, 32, 61-90.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2266.v1
http://creativecommons.org/licenses/by/4.0/

