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Article

Forecasting with a Bivariate Hysteretic Time Series
Model Incorporating Asymmetric Volatility and
Dynamic Correlations
Hong-Thi Than †

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; thanthihong@tdtu.edu.vn
† Current address: Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Abstract: This study explores asymmetric volatility structures within multivariate hysteretic autore-
gressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the
dynamic behavior of global financial assets. The proposed framework integrates regime switching
and time-varying delays governed by a hysteresis variable, enabling the model to account for both
asymmetric volatility and evolving correlation patterns over time. We adopt a fully Bayesian inference
approach using adaptive Markov Chain Monte Carlo (MCMC) techniques, allowing for the joint estima-
tion of model parameters, Value-at-Risk (VaR), and Marginal Expected Shortfall (MES). The accuracy
of VaR forecasts is assessed through two standard backtesting procedures. Our empirical analysis
involves both simulated data and real-world financial datasets to evaluate the model’s effectiveness in
capturing downside risk dynamics. We demonstrate the application of the proposed method on three
pairs of daily log returns involving the S&P500, Bank of America (BAC), Intercontinental Exchange
(ICE), and Goldman Sachs (GS), present the results obtained, and compare them against the original
model framework.

Keywords: bivariate student t-distribution; hysteresis; asymmetry structures in volatility; Markov
chain Monte Carlo; value-at-risk; marginal expected shortfall; out-of-sample forecasting

1. Introduction
Shocks to a time series can cause persistent effects, whereby the influence of disturbances spreads

and persists over time. This phenomenon, referred to as the hysteresis effect, reflects a form of path
dependence in which system dynamics respond asymmetrically to past shocks. To address issues
related to excessive or spurious regime shifts, a range of univariate hysteretic time series models
have been developed by authors of ([1–7]). In financial econometrics, it is well-established that asset
returns tend to exhibit co-movement. Understanding and forecasting the temporal dependence in the
second-order moments of these returns is a key concern in finance. Multivariate models provide a
useful framework for capturing complex features such as volatility clustering across multiple assets,
time-varying correlations, and joint downside tail risks across industries. These considerations have led
researchers to extend univariate volatility models into the multivariate setting. For instance, authors of
[8] introduced the VECH and BEKK models, while authors of [9] proposed the Dynamic Conditional
Correlation (DCC) model, which allows for a time-varying conditional correlation matrix. In contrast,
authors of [10] developed a model that captures correlation dynamics through a weighted average
of past correlation matrices, reflecting the persistence of conditional correlations. Authors of [11]
develop an asymmetric Dynamic Conditional Correlation (AG-DCC) model to examine the presence
of asymmetric responses in conditional volatility and correlation between financial asset returns,
particularly allowing for asymmetries in the correlations. A comprehensive discussion on generalized
univariate volatility models can be found in [12]. Authors of [13] suggest an extension of [10] using a
Bayesian Markov chain Monte Carlo (MCMC) technique to accommodate heavy-tailed distributions.
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Nonetheless, these models do not consider regime-switching behavior, which is potentially essential
for modeling structural shifts and regime-dependent dynamics in financial markets.

In the multivariate context, authors of [14] propose the Hysteretic Vector Autoregressive (HVAR)
model, which incorporates delayed regime switching based on a hysteresis variable. Specifically,
transitions between regimes occur only when this variable exits a predefined hysteresis zone. Aauthors
of [15] introduce a bivariate HAR model incorporating GARCH errors and time-varying correlations.
This model integrates features of dynamic correlation, asymmetric effects on correlation and volatility,
and heavy-tailed distribution within the multivariate HAR framework previously developed by
[14]. However, the asymmetry in [15] is introduced only through the regime-switching behavior
of a hysteresis variable within the system. This approach overlooks the leverage effects associated
with individual asset returns, which have been emphasized in earlier studies in [11]. In univariate
framework, authors of [16] and [17] examine the intricate dynamics between financial returns and
volatility, emphasizing the asymmetric effects of shocks. Authors of [16] modify the GARCH model to
account for seasonal volatility patterns, differential impacts of positive and negative return innovations,
and the influence of nominal interest rates on conditional variance. Similarly, of [17] generalizes the
ARCH framework by modeling conditional variance as a quadratic function of past innovations,
allowing for a nuanced capture of volatility patterns, including asymmetries and leverage effects. Both
studies underscore the importance of accommodating asymmetries in volatility modeling to better
understand and predict financial market behaviors.

As a result, the volatility specification in [15] leaves room for improvement in modeling asym-
metric effects at the level of individual return series. In this paper, we develop an extension of the
multivariate hysteretic autoregressive (MHAR) model with GARCH errors and dynamic correlations
(see [15]) to accommodate asymmetries in volatility dynamics. Specifically, we incorporate two well-
known asymmetric volatility specifications: the GJR-GARCH, as defined in [16], and the QGARCH
proposed in [17]. These extensions result in two model variants, namely the MHAR–GJR–GARCH and
the MHAR–QGARCH models.

To the best of our knowledge, this is the first study to explore asymmetric volatility structures
within the MHAR–GARCH framework. By introducing these asymmetric components, the proposed
models offer greater flexibility in capturing the heterogeneity and nonlinear behavior commonly
observed in financial asset returns. Such flexibility is particularly important in modeling risk dynamics,
especially during periods of market turbulence where asymmetries in volatility play a crucial role.
Based on the proposed models, we employ an adaptive multivariate t-distribution to account for
heavy-tailed errors, and utilize the SMN representation (see [18]) to flexibly model marginal error
distributions with varying degrees of freedom, improving the model’s fit to the target time series.

In finance, systemic risk refers to the possibility that problems in one financial institution or a
group of them could spread throughout the financial system due to the strong connections between
institutions. Such a chain reaction can lead to serious disruptions or even cause the entire market to
collapse. Following [19], the Marginal Expected Shortfall (MES) is employed to empirically evaluate
the extent to which this risk measure addresses practical concerns related to systemic risk, using a
large sample of major U.S. banks. In this study, we consider two widely used risk measures: Value
at Risk (VaR) and MES, which MES plays a more prominent role in capturing tail risk and systemic
vulnerability. Additionally, we implement two backtesting procedures to assess the accuracy of
out-of-sample VaR forecasts.

A major limitation of the proposed models lies in their increasing complexity, particularly due
to the large number of parameters that must be estimated and the challenges involved in modeling
nonlinear multivariate structures. As the nonlinearity and asymmetric structures of the proposed
models, traditional estimation methods become inefficient or impractica. To overcome these difficulties,
we adopt a Bayesian framework using Markov Chain Monte Carlo (MCMC) techniques, which allows
for simultaneous inference of all unknown parameters.
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The remainder of this paper is divided into the following sections: The multivariate hysteretic au-
toregressive model with time-varying correlations and asymmetry structures in volatility is presented
in Section 2. Bayesian inference for model parameters is presented in Section 3. Forecasting VaR and
the marginal expected shortfall(MES) are mentioned in Section 4. Section 5 examines simulation. The
empirical study is demonstrated in Section 6 and marks are covered in Section 7.

2. Multivariate Hysteretic Autoregressive Model with Asymmetry Structures in
Volatility and Time-Varying Correlation

Consider the MHAR-GARCH model, which is a multivariate hysteretic autoregressive model
with GARCH errors:

yt = Φ
(Jt)
0 +

c

∑
l=1

Φ
(Jt)
l yt−l + at, (1)

at = diag
(√

h1,t, . . . ,
√

hk,t

)
ϵt where ϵt ∼ D(0, Σt),

hi,t = ω
(Jt)
i0 +

pi

∑
l=1

α
(Jt)
il a2

i,t−l +
qi

∑
l=1

β
(Jt)
il hi,t−l , i = 1, . . . , k,

Σt =
(

1 − θ
(Jt)
1 − θ

(Jt)
2

)
Σ(Jt) + θ

(Jt)
1 Σt−1 + θ

(Jt)
2 Ψt−1,

Jt =


1 if zt ≤ rL

2 if zt > rU

Jt−1 otherwise, rL < rU ,

and the (u, v)th element of Ψt−1 is formulated as:

ψuv,t−1 =

S
∑

s=1
ϵu,t−sϵv,t−s√(

S
∑

s=1
ϵ2

u,t−s

)(
S
∑

s=1
ϵ2

v,t−s

) , 1 ≤ u < v ≤ S⋆ ≤ S. (2)

where yt = (y1,t, . . . , yk,t)
′
is a vector of k assets at time t, Jt is a regime indicator, Φ

(Jt)
0 is a k-dimensional

vector, Φ
(Jt)
l is a k × k matrix, Σ(Jt) is a k × k positive-definite matrix with diagonal elements, scalar

parameters are satisfied θ
(Jt)
1 , θ

(Jt)
2 > 0 and 0 < θ

(Jt)
1 + θ

(Jt)
2 < 1, and Ψt−1 is a k × k sample correlation

matrix shocks from t − S, . . . , t − 1 for a pre-specified S. Moreover, zt is a hysteresis variable. In
this study, we investigate two distinct forms of asymmetric volatility within the framework of a
multivariate hysteretic autoregressive (MHAR) model. The first approach incorporates the asymmetric
volatility structure proposed by [16] into the MHAR-GARCH framework, resulting in the MHAR-GJR-
GARCH model. The second approach introduces the quadratic GARCH specification, as developed
by authors of [17], leading to the formulation of the MHAR-QGARCH model. We also derive the
volatility dynamics of the MHAR-GJR-GARCH model:

hi,t = ω
(Jt)
i0 +

pi

∑
l=1

α
(Jt)
il a2

i,t−l +
qi

∑
l=1

β
(Jt)
il hi,t−l +

ri

∑
l=1

δ
(Jt)
il Ii,t−l{ϵt−l < 0}a2

i,t−l , i = 1, ˙..., k,

where Ii(.) is a k × 1 indicator function that returns the value of 1 when the argument is true or 0
otherwise. The volatility of the MHAR - QGARCH model is as follows:

hi,t = ω
(Jt)
i0 +

pi

∑
l=1

α
(Jt)
il a2

i,t−l +
qi

∑
l=1

β
(Jt)
il hi,t−l +

ri

∑
l=1

δ
(Jt)
il ai,t−l , i = 1, ˙..., k,

We now consider the basic cases of two models: the bivariate HAR(1) – GJR – GARCH(1,1) model and
the bivariate HAR(1) – QGARCH(1,1) model. We assume that innovations in Equation (1) follow the
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modified bivariate Student-t distribution (see [15]). In this case, we apply the scale SMN representation
(see [18]) to the adapted bivariate Student-t distribution, T ∗

2 (0, Σt, ν) and we choose zt = y1,t−d. Then,
the bivariate HAR(1) - GJR - GARCH(1,1) model is described as follows:

yt = Φ
(Jt)
0 + Φ

(Jt)
1 yt−1 + at, (3)

at = diag(
√

h1,t,
√

h2,t)ϵt,

ϵt|Λt ∼ N2(0, Λ−1/2
t ΣtΛ−1/2

t ),

Λ1/2
t = diag(

√
λ1,t,

√
λ2,t), λi,t ∼ Ga

(νi
2

,
νi
2

)
, i = 1, 2,

Σt =
(

1 − θ
(Jt)
1 − θ

(Jt)
2

)
Σ(Jt) + θ

(Jt)
1 Σt−1 + θ

(Jt)
2 Ψt−1,

Jt =


1 if y1,t−d ≤ rL,
2 if y1,t−d > rU ,
Jt−1 otherwise,

with the (u, v)th element of Ψt−1 is described in (2) and the conditional volitilities as follows:

hi,t = ω
(Jt)
i0 + α

(Jt)
i1 a2

i,t−1 + β
(Jt)
i1 hi,t−1 + δ

(Jt)
i1 Ii,t−1{ϵt−1 < 0}a2

i,t−1, i = 1, 2,

where Ii(.) is a 2 × 1 indicator function that returns the value of 1 when the argument is true or 0
otherwise. The positivity and stationarity conditions for volatility are given as follows:

ω
(Jt)
i0 > 0, α

(Jt)
i1 ≥ 0, β

(Jt)
i1 ≥ 0, δ

(Jt)
i1 ≥ 0 and α

(Jt)
i1 + β

(Jt)
i1 + δ

(Jt)
i1 ≤ 1. (4)

The bivariate HAR(1) - QGARCH(1,1) model modifies the conditional volatilities as follows:

hi,t = ω
(Jt)
i0 + α

(Jt)
i1 a2

i,t−1 + β
(Jt)
i1 hi,t−1 + δ

(Jt)
i1 ai,t−1, i = 1, 2,

where the positivity and stationarity conditions for volatility are given as follows:

ω
(Jt)
i0 > 0, α

(Jt)
i1 ≥ 0, β

(Jt)
i1 ≥ 0, δ

(Jt)
i1 ≥ 0, (δ(Jt)

i1 )2 ≤ 4(1 − α
(Jt)
i1 − β

(Jt)
i1 ),

and α
(Jt)
i1 + β

(Jt)
i1 ≤ 1, (5)

and we specify the unconditional correlation matrix Σ(Jt):

Σ(Jt) =

[
1 ρ(Jt)

ρ(Jt) 1

]
.

3. Bayesian Inference
To estimate the unknown parameters of the proposed models in a Bayesian framework, for

example, we create groups of the unknown parameters: (i) ϕ
(Jt)
i = (ϕ

(Jt)
i0 , ϕ

(Jt)
i1 , ϕ

(Jt)
i2 )

′
, i, Jt = 1, 2;

(ii) r = (rL, rU)
′
; (iii) ν = (ν1, ν2)

′
; (iv) ρ = (ρ(1), ρ(2))

′
; (v) γ

(Jt)
i = (ω

(Jt)
i0 , α

(Jt)
i1 , β

(Jt)
i1 , δ

(Jt)
i1 )

′
, i, Jt = 1, 2;

(vi) η(Jt) = (θ
(Jt)
1 , θ

(Jt)
2 )

′
, and (vii) d. We define θ as a vector of all unknown parameters of the proposed

model. Following that, the bivariate HAR(1) - GJR - GARCH(1,1) and bivariate HAR(1) - QGARCH(1,1)
models’ conditional likelihood functions are given by:

ln(L(y|θ)) ∝ ∑
t

{
2

∑
Jt=1

[
−0.5 ln

(
h1,th2,t(1 − ρ(Jt)

2
)

λ1,tλ2,t

)
(6)

− 1

2(1 − ρ(Jt)
2
)

(
λ1ta2

1t
h1,t

+
λ2ta2

2t
h2,t

−
2ρ(Jt)a1ta2t

√
λ1,tλ2,t√

h1,t
√

h2,t

)]}
,
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where at = yt − Φ
(Jt)
0 − Φ

(Jt)
1 yt−1.

We set up prior distributions for the unknown parameters. Assume that ϕ
(Jt)
i ∼ N3(µ0i, Σ−1

0i ),
i, Jt = 1, 2; for parameter threshold rL ∼ Unif(l1, l2), where l1 and l2 are the pth and (100 − 2p)th
percentiles of observed time series, respectively, for 0 < p < 33. Furthermore, rU |rL ∼ Unif(u1, u2),
where u2 is the (100 − p)th percentile and u1 = rL + c∗ for c∗ is a selected number that ensures
rL + c∗ ≤ rU and at least p% of observations are in the range (rL, rU). For degrees of freedom,
we assume the scale mixture variables λi,t ∼ Ga(νi/2, νi/2) and νi ∼ Unif(2, 60), i = 1, 2, and
ρ(Jt) ∼ Unif(−1, 1). For lag d, we choose the discrete uniform prior p(d) = 1/d0 with maximum delay
d0. In terms of volatility parameters, γ

(Jt)
i follows a uniform distribution such that γ

(Jt)
i is proportional

to I(S1) or I(S2), where S1 and S2 are the sets that satisfy (4) and (5), respectively.
The conditional posterior distribution for each group is proportional to the conditional likelihood

function multiplied by the prior density for that group, as shown below:

P(θl |y, θ−l) ∝ L(y|θ)P(θl |θ−l),

where θl is each parameter group, P(θl) is its prior density, and θ−l is the vector of all parameters,
except θl . The conditional posterior distribution of delay lag d follows a multinomial distribution with
a probability:

Pr(d = i|y, θ−d) =
p(y|d = i, θ−d)Pr(d = i)

∑d0
j=1 p(y|d = j, θ−d)Pr(d = j)

, i = 1, . . . , d0.

In this study, with the exception of the lag parameter d, the conditional posterior distributions
of the remaining parameter groups exhibit non-standard forms. To make statistical inference, we
employ an adaptive Markov Chain Monte Carlo (MCMC) method for selected parameter groups,
complemented by a random walk Metropolis algorithm. Specifically, we assume that the innovation
term in Equation (3) follows a Gaussian distribution, which serves as the kernel for sampling ϕ

(Jt)
i .

For the parameter groups η(Jt) and γ
(Jt)
i , where i, Jt = 1, 2, an adaptive MCMC approach is utilized

to draw samples, whereas the remaining parameters are updated using the random walk Metropolis
algorithm. The detailed procedures of the adaptive Metropolis-Hastings MCMC algorithm are thor-
oughly presented by authors of [1] and [15], where the authors provide a comprehensive framework
for its implementation and application. Based on guidelines of [1], we further manage a scale matrix to
attain ideal acceptance rates of 20% to 60%.

In a Bayesian framework, we need to set up the initial values for each parameter group. For
autoregressive coefficient parameters, ϕ

(Jt)
i = (0, 0, 0); for degrees of freedom ν

(Jt)
i = 50; ρ

(Jt)
i = 0.5;

d0 = 3; ω
(Jt)
i0 = α

(Jt)
i1 = β

(Jt)
i1 = δ

(Jt)
i1 = 0.1; and (θ

(Jt)
1 , θ

(Jt)
2 ) = (0.05, 0.2) for i, Jt = 1, 2; thresholds rL

and rU are established at the 33rd and 67th percentiles, respectively; and we set p = 20 to make certain
of enough observations in each regime for a valid inference. For the remainder of the analysis, we
specify S = 3.

4. Forecasting Marginal Expected Shortfall and Value at Risk
Value-at-Risk (VaR) and Marginal Expected Shortfall (MES) are now considered systemic risk

assessments for financial risk management. The authors of [19] define MES as a financial firm’s
marginal contribution to the financial system’s expected shortfall. The authors of [20] define MES at
the alpha level for a financial institution at time t given Ft−1 as follows:

MESt = E[y2,t | y1,t < VaR1,t(α);Ft−1], (7)

where VaR1,t(α) is the VaR of y1,t at the α-level such that P(y1,t < VaR1,t(α) | Ft−1) = α. Here, y2,t

stands for the stock return of a financial institution, whereas y1,t stands for the market return.
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To produce MESt, we estimate one-step-ahead quantiles and volatilities for y1,n+1 from the
investigated model described in (3) with forecast origin t = n. We get quantiles from the posterior
predictive distribution, which is:

p(yn+1|Fn) =
∫

θ∈Θ
p(yn+1|Fn, θ)p(θ|Fn)dθ. (8)

Suppose that {θ[r], r = n0 + 1, . . . , N} are rth MCMC draw from the posterior density p(θ|Fn)

after the n0 burn-in sample. Thus, we can sample {y[r]
n+1, r = n0 + 1, . . . , N} from the marginal

predictive distribution, p(yn+1|Fn), by sampling the following conditional distribution:

y[r]
n+1|Fn, θ[r] ∼ T ∗

2 (µ
[r]
n+1, Σ

∗[r]
n+1, ν[r])

T ∗
2 (y[r]

n+1|µ
[r]
n+1, Σ

∗[r]
n+1, ν[r]) =

∫ ∞

0

∫ ∞

0
N2

(
y[r]

n+1

∣∣∣µ[r]
n+1, λ−1/2

n+1 Σ
∗[r]
n+1λ−1/2

n+1

)
×

2

∏
i=1

Ga

λi,n+1

∣∣∣∣∣∣ ν
[r]
i
2

,
ν
[r]
i
2

dλ1,n+1dλ2,n+1, (9)

where µ
[r]
n+1 and Σ

∗[r]
n+1 = diag(h[r]1,n+1, h[r]2,n+1)Σ

[r]
n+1 are a conditional mean and covariance of

p(yn+1|Fn, θ) at the rth iteration. To assess the correctness of a VaR performance, we calculate
the violation rate (VRate). The accuracy of a VaR performance is verified by recording the failure rate;
that is, the violation rate:

Violation rate =
1
h0

n+h0

∑
t=n+1

I(rt < −VaRt) (10)

where h0 is the out-of-sample period size and rt is the return at time t. We use two tests to assess the
validity of the VaR forecasts: the conditional coverage (CC) test created by [21] and the unconditional
coverage (UC) test created by [22]. The CC test is conducted to investigate the null hypothesis that the
violations are independently distributed, whereas the UC test is suggested to determine whether the
percentage of violations is equivalent to the VaR significance level.

5. Simulation Study
In order to access the effectiveness of the Bayesian approach, we run two simulations of the

suggested models in this section. Model 1 is the bivariate HAR(1)- GJR - GARCH(1,1) model and
Model 2 is the bivariate HAR(1) - QGARCH(1,1) model. Model 1 is given by::

yt = Φ
(Jt)
0 + Φ

(Jt)
1 yt−1 + at, (11)

at = diag
(√

h1,t,
√

h2,t

)
ϵt, ϵt ∼ T ∗

2 (0, Σt, ν)

ϵt|Λt ∼ N2(0, Λ−1/2
t ΣtΛ−1/2

t ),

Φ(1)
0 =

[
ϕ
(1)
10

ϕ
(1)
20

]
=

[
−0.10
−0.10

]
, Φ(1)

1 =

[
ϕ
(1)
11 ϕ

(1)
12

ϕ
(1)
21 ϕ

(1)
22

]
=

[
0.20 0.25
0.25 0.30

]

Φ(2)
0 =

[
ϕ
(2)
10

ϕ
(2)
20

]
=

[
−0.08
−0.15

]
, Φ(2)

1 =

[
ϕ
(2)
11 ϕ

(2)
12

ϕ
(2)
21 ϕ

(2)
22

]
=

[
0.30 0.35
0.35 0.30

]
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with h1,t =

{
0.07 + 0.20a2

1,t−1 + 0.20h1,t−1 + 0.40I1,t−1{ϵt−1 < 0}a2
1,t−1 if Jt = 1,

0.03 + 0.20a2
1,t−1 + 0.25h1,t−1 + 0.55I1,t−1{ϵt−1 < 0}a2

1,t−1 if Jt = 2,

h2,t =

{
0.04 + 0.25a2

2,t−1 + 0.10h2,t−1 + 0.40I2,t−1{ϵt−1 < 0}a2
2,t−1 if Jt = 1,

0.02 + 0.30a2
2,t−1 + 0.15h2,t−1 + 0.40I2,t−1{ϵt−1 < 0}a2

2,t−1 if Jt = 2,

Σt =

{
(1 − 0.40 − 0.10)Σ(1) + 0.40Σt−1 + 0.10Ψt−1 if Jt = 1,
(1 − 0.50 − 0.20)Σ(2) + 0.50Σt−1 + 0.20Ψt−1 if Jt = 2,

where Jt =


1 if y1,t−d < −0.5,
Jt−1 if −0.45 ≤ y1,t−d ≤ 0.1,
2 if y1,t−d > 0.1,

and Σ(1) =

[
1 0.65

0.65 1

]
, Σ(2) =

[
1 0.8

0.8 1

]
, ν =

[
ν1

ν2

]
=

[
8.0

10.0

]
, and d = 1.

Model 2 is describled as follows:

yt = Φ
(Jt)
0 + Φ

(Jt)
1 yt−1 + at, (12)

at = diag
(√

h1,t,
√

h2,t

)
ϵt, ϵt ∼ T ∗

2 (0, Σt, ν)

Φ(1)
0 =

[
ϕ
(1)
10

ϕ
(1)
20

]
=

[
−0.10
−0.08

]
, Φ(1)

1 =

[
ϕ
(1)
11 ϕ

(1)
12

ϕ
(1)
21 ϕ

(1)
22

]
=

[
0.32 0.30
0.37 0.35

]

Φ(2)
0 =

[
ϕ
(2)
10

ϕ
(2)
20

]
=

[
−0.08
−0.08

]
, Φ(2)

1 =

[
ϕ
(2)
11 ϕ

(2)
12

ϕ
(2)
21 ϕ

(2)
22

]
=

[
0.35 0.30
0.33 0.37

]

with h1t =

{
0.07 + 0.20a2

1,t−1 + 0.10h1,t−1 + 0.40a1,t−1 if Jt = 1,
0.03 + 0.30a2

1,t−1 + 0.10h1,t−1 + 0.35a1,t−1 if Jt = 2,

h2t =

{
0.04 + 0.40a2

2,t−1 + 0.05h2,t−1 + 0.30a2,t−1 if Jt = 1,
0.02 + 0.30a2

2,t−1 + 0.10h2,t−1 + 0.20a2,t−1 if Jt = 2,

Σt =

{
(1 − 0.40 − 0.35)Σ(1) + 0.40Σt−1 + 0.35Ψt−1 if Jt = 1,
(1 − 0.55 − 0.15)Σ(2) + 0.55Σt−1 + 0.15Ψt−1 if Jt = 2,

where Jt =


1 if y1,t−d < −0.45,
Jt−1 if −0.45 ≤ y1,t−d ≤ 0.1,
2 if y1,t−d > 0.1,

and Σ(1) =

[
1 0.5

0.5 1

]
, Σ(2) =

[
1 0.85

0.85 1

]
, ν =

[
ν1

ν2

]
=

[
8.0

10.0

]
, and d = 1.

Models 1 and 2 are created utilizing the actual values shown in Tables 1 and 2. For each time
series, we set up the sample size n = 2, 000. We carry out N = 30, 000 MCMC iterations and discard
the first M = 10, 000 burn-in iterates. For the hyper - parameters, we choose the initial values for
all parameters of the investigated model to be µ0i = 0, diag(Σ0i) = 0.1, l1 = ℘20, u2 = ℘80, cL = 2,
cU = 60, and d0 = 3.

Results for the parameter estimates of the simulation study are shown in Tables 1 and 2. The
tables present the posterior means, medians, standard deviations, and 95% credible ranges for Models
1-2 over the 200 replications. We observe that the 95% credible interval contains the corresponding
true value for each parameter. The posterior means and medians in each case are fairly close to the
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true parameter values. The posterior modes of lag d are demonstrated, and it can be explained that
the posterior mode of d provides a reliable estimate of the delay parameter because the posterior
probability for d = 1 is nearly equal to one. To check the convergence of MCMC, we examine the
ACF plots of all coefficients. For compactness, we present only the autocorrelation function (ACF)
plots based on Model 2, omitting ACF plots of Model 1 to conserve space. Figures 1 and 2 provide
additional evidence supporting the convergence of the MCMC algorithm. Based on these diagnostic
checks, we conclude that the proposed models are well-suited for implementation within the Bayesian
framework.

Table 1. Simulation results of the BHAR(1) - GJR - GARCH(1,1) model obtained from 200 replications.

Parameter True Mean Med Std 2.5% 97.5% Coverage

Φ
(1)
0

ϕ
(1)
10 -0.10 -0.1022 -0.1023 0.0280 -0.1573 -0.0472 94.00

ϕ
(1)
20 -0.10 -0.1014 -0.1015 0.0185 -0.1375 -0.0650 98.00

Φ
(1)
1

ϕ
(1)
11 0.20 0.1992 0.1992 0.0482 0.1048 0.2936 95.50

ϕ
(1)
12 0.25 0.2465 0.2465 0.0440 0.1602 0.3330 95.50

ϕ
(1)
21 0.25 0.2510 0.2511 0.0215 0.2089 0.2932 96.00

ϕ
(1)
22 0.30 0.2959 0.2960 0.0328 0.2312 0.3601 97.00

Φ
(2)
0

ϕ
(2)
10 -0.08 -0.0811 -0.0811 0.0119 -0.1045 -0.0579 94.50

ϕ
(2)
20 -0.15 -0.1512 -0.1512 0.0081 -0.1671 -0.1354 92.00

Φ
(1)
1

ϕ
(2)
11 0.30 0.3005 0.3005 0.0347 0.2323 0.3688 95.50

ϕ
(2)
12 0.35 0.3472 0.3472 0.0344 0.2797 0.4149 95.00

ϕ
(2)
21 0.35 0.3514 0.3514 0.0162 0.3197 0.3832 94.00

ϕ
(2)
22 0.30 0.2972 0.2972 0.0234 0.2513 0.3432 95.00

rL -0.50 -0.4989 -0.4988 0.0184 -0.5334 -0.4640 94.50
rU 0.10 0.0885 0.0890 0.0324 0.0266 0.1503 92.50
ν1 8.00 9.1324 8.9642 1.4995 6.6907 12.5705 97.50
ν2 10.00 10.1588 9.9447 1.7664 7.3307 14.2193 98.50
ρ(1) 0.65 0.6460 0.6483 0.0323 0.5758 0.7021 97.50
ρ(2) 0.80 0.7990 0.7990 0.0295 0.7414 0.8572 95.50
d 1.00 1.0000 1.0000 0.0204 1.0000 1.0000 100.00
ω
(1)
10 0.07 0.0782 0.0775 0.0144 0.0521 0.1088 89.50

α
(1)
11 0.20 0.2139 0.2091 0.1148 0.0218 0.4385 100.00

β
(1)
11 0.20 0.2191 0.2167 0.1143 0.0243 0.4388 100.00

δ
(1)
11 0.40 0.3821 0.3819 0.0613 0.2620 0.5020 91.00

ω
(2)
10 0.03 0.0349 0.0345 0.0073 0.0217 0.0506 91.00

α
(2)
11 0.20 0.2147 0.2131 0.0356 0.1502 0.2899 96.50

β
(2)
11 0.25 0.2792 0.2754 0.1150 0.0721 0.5080 97.00

δ
(2)
11 0.55 0.5240 0.5248 0.0492 0.4245 0.6184 93.00

ω
(1)
20 0.04 0.0382 0.0379 0.0068 0.0259 0.0524 93.00

α
(1)
21 0.25 0.2458 0.2439 0.0682 0.1190 0.3837 97.00

β
(1)
21 0.10 0.1262 0.1196 0.0694 0.0163 0.2754 97.50

δ
(1)
21 0.40 0.3781 0.3781 0.0677 0.2450 0.5107 96.00

ω
(2)
20 0.02 0.0218 0.0216 0.0039 0.0147 0.0298 94.00

α
(2)
21 0.30 0.3063 0.3044 0.0441 0.2253 0.3971 97.00

β
(2)
21 0.15 0.1830 0.1769 0.0830 0.0430 0.3542 95.00

δ
(2)
21 0.40 0.3808 0.3809 0.0525 0.2781 0.4824 94.00

θ
(1)
1 0.40 0.3915 0.3986 0.1819 0.0710 0.7004 97.00

θ
(1)
2 0.10 0.1011 0.0968 0.0476 0.0258 0.1938 96.50

θ
(2)
1 0.50 0.4615 0.4672 0.1083 0.2370 0.6571 96.50

θ
(2)
2 0.20 0.2092 0.2065 0.0412 0.1364 0.2969 95.50
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Table 2. Simulation results of the BHAR(1) - QGARCH(1,1) model obtained from 200 replications.

Parameter True Mean Med Std 2.5% 97.5% Coverage

Φ
(1)
0

ϕ
(1)
10 -0.10 -0.1003 -0.1002 0.0203 -0.1404 -0.0606 94.00

ϕ
(1)
20 -0.08 -0.0792 -0.0792 0.0153 -0.1093 -0.0493 93.50

Φ
(1)
1

ϕ
(1)
11 0.32 0.3185 0.3186 0.0351 0.2494 0.3871 94.00

ϕ
(1)
12 0.30 0.2973 0.2972 0.0292 0.2401 0.3548 97.00

ϕ
(1)
21 0.37 0.3717 0.3717 0.0217 0.3290 0.4143 94.50

ϕ
(1)
22 0.35 0.3467 0.3467 0.0250 0.2976 0.3958 95.00

Φ
(1)
0

ϕ
(2)
10 -0.08 -0.0808 -0.0808 0.0108 -0.1021 -0.0595 96.50

ϕ
(2)
20 -0.08 -0.0802 -0.0802 0.0070 -0.0940 -0.0665 95.50

Φ
(2)
1

ϕ
(2)
11 0.35 0.3427 0.3427 0.0394 0.2652 0.4197 94.00

ϕ
(2)
12 0.30 0.3027 0.3027 0.0372 0.2295 0.3759 95.00

ϕ
(2)
21 0.33 0.3290 0.3290 0.0183 0.2930 0.3647 94.00

ϕ
(2)
22 0.37 0.3666 0.3667 0.0235 0.3204 0.4127 95.00
rL -0.45 -0.4501 -0.4503 0.0069 -0.4626 -0.4370 93.00
rU 0.10 0.0970 0.0973 0.0113 0.0750 0.1170 93.00
ν1 8.00 9.2129 9.0257 1.5569 6.7229 12.8309 93.50
ν2 10.00 10.2736 10.0551 1.8017 7.3914 14.4714 99.50

ρ(1) 0.50 0.4951 0.4994 0.0563 0.3723 0.5928 92.50
ρ(2) 0.85 0.8472 0.8479 0.0257 0.7948 0.8958 94.50

d 1.00 1.0000 1.0000 0.0152 1.0000 1.0000 100.00
ω
(1)
10 0.07 0.0784 0.0778 0.0124 0.0557 0.1040 91.50

α
(1)
11 0.20 0.2235 0.2213 0.0467 0.1386 0.3220 95.00

β
(1)
11 0.10 0.1107 0.1098 0.0289 0.0566 0.1704 96.00

δ
(1)
11 0.40 0.3613 0.3628 0.0832 0.1955 0.5205 95.50

ω
(2)
10 0.03 0.0343 0.0340 0.0060 0.0234 0.0470 92.00

α
(2)
11 0.30 0.3306 0.3282 0.0558 0.2291 0.4473 94.00

β
(2)
11 0.10 0.1030 0.1032 0.0236 0.0555 0.1490 96.50

δ
(2)
11 0.35 0.3289 0.3285 0.0527 0.2268 0.4339 94.00

ω
(1)
20 0.04 0.0371 0.0369 0.0051 0.0276 0.0478 95.00

α
(1)
21 0.40 0.4115 0.4095 0.0555 0.3089 0.5284 94.50

β
(1)
21 0.05 0.0533 0.0525 0.0192 0.0180 0.0932 95.00

δ
(1)
21 0.30 0.2855 0.2850 0.0618 0.1664 0.4087 95.00

ω
(2)
20 0.02 0.0212 0.0211 0.0026 0.0163 0.0267 94.50

α
(2)
21 0.30 0.3212 0.3197 0.0449 0.2387 0.4122 95.50

β
(2)
21 0.10 0.1032 0.1031 0.0138 0.0767 0.1308 93.00

δ
(2)
21 0.20 0.1904 0.1892 0.0410 0.1129 0.2733 96.00

θ
(1)
1 0.40 0.3810 0.3847 0.1001 0.1753 0.5660 94.00

θ
(1)
2 0.35 0.3582 0.3561 0.0563 0.2543 0.4744 96.00

θ
(2)
1 0.55 0.5157 0.5244 0.0928 0.3104 0.6746 96.50

θ
(2)
2 0.15 0.1573 0.1531 0.0427 0.0850 0.2535 98.00

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2025 doi:10.20944/preprints202505.2266.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2266.v1
http://creativecommons.org/licenses/by/4.0/


10 of 24

ACF_simu01_QGARCH.jpg

Figure 1. The ACF plots of after burn-in MCMC iterations for all parameters from the BHAR(1) - QGARCH(1,1)
model.
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ACF_simu02_QGARCH.jpg

Figure 2. The ACF plots of after burn-in MCMC iterations for all parameters from the BHAR(1) - QGARCH(1,1)
model.
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6. Emperical Study
The empirical analysis in this study is based on daily closing prices of four major financial indices:

the S&P500, Bank of America (BAC), Intercontinental Exchange (ICE), and Goldman Sachs (GS). The
data span from January 4, 2006, to December 30, 2021, encompassing a total of 4026 trading days.
These data were retrieved from Yahoo Finance, a widely recognized source for historical market data.
To construct the return series, we compute the continuously compounded returns (log-returns) using
the formula yt = log(pt)− log(pt−1), where pt denotes the asset’s closing price at time t.

Table 3 defines three target datasets: DS1 {S&P500, GS}, DS2 {S&P500, ICE}, and DS3 {S&P500,
BAC}. It also presents the descriptive statistics of the corresponding return series, along with the
results of two multivariate normality tests: Mardia’s test and the Henze-Zirkler test (see [23,24]). The
return distributions are clearly skewed and have high kurtosis, especially showing strong positive
skewness. Due to the noticeable asymmetry and the presence of heavy tails in the return data, we
recommend using asymmetric models with fat-tailed multivariate error distributions instead of models
that assume multivariate normal errors. Figure 3 presents the time series plot of daily returns for the
selected financial assets. As shown, the sample period spans several significant market events, notably
the Global Financial Crisis, which officially began on September 15, 2008, following the bankruptcy
of Lehman Brothers. For the purpose of estimation and out-of-sample evaluation, the dataset is
divided into two distinct sub-periods. The first segment, consisting of 3726 daily observations, is used
to estimate the model parameters. The remaining 300 observations are reserved for out-of-sample
forecasting and performance assessment.

This section’s hyper-parameters correspond to those in the simulation study. Tables 4–7 present
a summary of Bayesian estimates for three datasets for the BHAR(1) - GJR - GARCH(1,1) and the
BHAR(1) - QGARCH(1,1) models. The significant value of ϕ

(1)
12 in Tables 4 and 6 indicate that the

performance of the previous day’s return of Goldman Sachs stock has a considerable negative impact
on the S&P 500’s returns in the lower regimes. We can see that the parameter estimates for ϕ

(1)
12 , ϕ

(2)
12 ,

ϕ
(1)
21 , and ϕ

(2)
21 are identical in both fitted models when we look at datasets DS2 and DS3 in Tables 5

and 7. To assess the validity of the proposed models, we further employ the Geweke convergence
diagnostic (see [25]). The p-values reported in Tables 8 and 9 suggest that the MCMC chains generated
from the models have converged. As there is no statistical evidence of non-convergence, we conclude
that the proposed models are appropriately specified and reliable for inference.

To evaluate the accuracy of the models using Value-at-Risk (VaR), we present VaR forecasts
along with the results of VaR backtesting at the 1% and 5% significance levels. Specifically, Tables
10 and 11 report the p-values of the Unconditional Coverage (UC) and Conditional Coverage (CC)
tests for the two proposed models: bivariate HAR(1)-GJR-GARCH(1,1) and HAR(1)-QGARCH(1,1) as
well as the benchmark bivariate HAR(1)-GARCH(1,1) model. When evaluating DS1, DS2, and DS3
across the three models, the violation rates (VRate) for the S&P 500 tend to be significantly higher
than the nominal 1% level, suggesting a slight underestimation of tail risk. In contrast, the VRates
for Bank of America (BAC), Intercontinental Exchange (ICE), and Goldman Sachs (GS) indicate a
tendency toward risk overestimation. Nevertheless, the backtesting results show that all three models
perform adequately as risk models. At the 5% significance level, both the proposed models and the
benchmark BHAR(1)-GARCH(1,1) model yield UC and CC test p-values above 5%, indicating no
statistical evidence of model misspecification. These findings confirm that the proposed models deliver
reliable and independent risk forecasts. Figures 4 and 5 display the VaR forecasts based on the bivariate
HAR(1)-GJR - GARCH(1,1) and HAR(1)-QGARCH(1,1) models, which clearly show that the models
are capable of identifying volatility spikes in returns, despite infrequent violations of the forecast
bounds.

To understand how well the proposed models can capture the expected shortfall movement, we
present the backtesting measures of the MES forecasts proposed by authors of [26] in Table 12. The
model with the smallest values in the boxes is the best. These findings indicate that the proposed
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models are the best.

plots01.jpg

Figure 3. The time series plots of S&P 500, GS, ICE, and BAC daily returns.

Table 3. Summary statistics and multivariate normality tests

Data Mean Std Min Max Skewness kurtosis MVN Tests∗

(p-value)

Mardia Henze - Zirkler
S&P500 0.033 1.256 -12.765 10.957 -0.568 16.737
GS 0.033 2.320 -21.022 23.482 0.188 18.086
ICE 0.075 2.578 -19.501 34.217 0.205 20.699
BAC 0.007 3.165 -34.206 30.210 -0.319 26.645
S&P500 vs GS < 0.001 < 0.001
S&P 500 vs ICE < 0.001 < 0.001
S&P 500 vs BAC < 0.001 < 0.001

∗ :“MVN” stands for multivariate normality.
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Table 4. Estimation results, including posterior means, medians, standard deviations, and 95% Bayes credible
intervals of dataset DS1 {S&P 500, GS}, are based on the BHAR(1) - GJR - GARCH(1,1) model.

Parameter Mean Med Std 2.5% 97.5%

Φ
(1)
0

ϕ
(1)
10 0.0453 0.0454 0.0255 -0.0043 0.0967

ϕ
(1)
20 0.0525 0.0538 0.0520 -0.0580 0.1502

Φ
(1)
1

ϕ
(1)
11 -0.0914 -0.0921 0.0375 -0.1624 -0.0205

ϕ
(1)
12 -0.0023 -0.0017 0.0178 -0.0371 0.0323

ϕ
(1)
21 -0.0274 -0.0284 0.0649 -0.1506 0.0972

ϕ
(1)
22 -0.0198 -0.0204 0.0353 -0.0880 0.0516

Φ
(2)
0

ϕ
(2)
10 0.0408 0.0405 0.0137 0.0147 0.0680

ϕ
(2)
20 0.0010 -0.0005 0.0340 -0.0648 0.0717

Φ
(2)
1

ϕ
(2)
11 0.0054 0.0050 0.0283 -0.0500 0.0608

ϕ
(2)
12 -0.0265 -0.0267 0.0124 -0.0499 -0.0024

ϕ
(2)
21 0.0339 0.0321 0.0575 -0.0792 0.1423

ϕ
(2)
22 -0.0421 -0.0411 0.0287 -0.1000 0.0111

rL -0.4935 -0.4744 0.0386 -0.5667 -0.4502
rU 0.6388 0.6497 0.0295 0.5541 0.6814
ν1 8.8291 8.7186 0.9056 7.2395 10.9435
ν2 7.4454 7.4002 0.7572 6.1675 9.1533
ρ(1) 0.8766 0.8765 0.0192 0.8393 0.9150
ρ(2) 0.6681 0.6699 0.0318 0.6014 0.7265
d 1.0000 1.0000 0.0318 1.0000 1.0000
ω
(1)
10 0.0247 0.0243 0.0042 0.0170 0.0341

α
(1)
11 0.0085 0.0082 0.0049 0.0009 0.0188

β
(1)
11 0.1155 0.1153 0.0078 0.1007 0.1299

δ
(1)
11 0.9285 0.9296 0.0073 0.9115 0.9389

ω
(2)
10 0.0179 0.0178 0.0024 0.0135 0.0228

α
(2)
11 0.0223 0.0222 0.0053 0.0117 0.0328

β
(2)
11 0.2750 0.2747 0.0137 0.2483 0.3006

δ
(2)
11 0.8189 0.8195 0.0114 0.7959 0.8404

ω
(2)
10 0.0804 0.0796 0.0158 0.0525 0.1140

α
(2)
11 0.0268 0.0266 0.0086 0.0101 0.0435

β
(2)
11 0.0532 0.0528 0.0082 0.0370 0.0699

δ
(2)
11 0.9353 0.9363 0.0112 0.9108 0.9549

ω
(2)
20 0.0852 0.0850 0.0154 0.0565 0.1159

α
(2)
21 0.0397 0.0396 0.0052 0.0298 0.0503

β
(2)
21 0.0449 0.0452 0.0107 0.0240 0.0654

δ
(2)
21 0.8482 0.8483 0.0139 0.8207 0.8737

θ
(1)
1 0.8058 0.8060 0.0200 0.7676 0.8446

θ
(1)
2 0.0325 0.0325 0.0030 0.0266 0.0383

θ
(2)
1 0.8742 0.8744 0.0162 0.8428 0.9056

θ
(2)
2 0.0428 0.0427 0.0032 0.0366 0.0491
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Table 5. Estimation results, including posterior means and 95% Bayes credible intervals of datasets DS2 and DS3,
are based on the BHAR(1) - GJR - GARCH(1,1) model.

DS2 DS3

Parameter mean 2.5% 97.5% mean 2.5% 97.5%

ϕ
(1)
10 0.0871 0.0325 0.1398 0.0598 0.0081 0.1094

ϕ
(1)
20 0.0742 -0.0073 0.1589 0.0017 -0.0931 0.0911

ϕ
(1)
11 -0.0331 -0.0915 0.0291 -0.1103 -0.1858 -0.0376

ϕ
(1)
12 -0.0299 -0.0563 -0.0035 0.0115 -0.0181 0.0395

ϕ
(1)
21 -0.1255 -0.2212 -0.0305 -0.2095 -0.3419 -0.0754

ϕ
(1)
22 -0.0393 -0.0947 0.0168 0.0721 0.0058 0.1372

ϕ
(2)
10 0.0514 0.0218 0.0787 0.0471 0.0203 0.0728

ϕ
(2)
20 0.0270 -0.0346 0.0860 0.0342 -0.0222 0.0882

ϕ
(2)
11 -0.0372 -0.0857 0.0130 -0.0299 -0.0829 0.0255

ϕ
(2)
12 -0.0094 -0.0241 0.0043 -0.0155 -0.0336 0.0018

ϕ
(2)
21 -0.0181 -0.1160 0.0778 -0.1706 -0.2781 -0.0684

ϕ
(2)
22 -0.0553 -0.1000 -0.0091 0.0213 -0.0304 0.0708
rL -0.5351 -0.5778 -0.4536 -0.5601 -0.5769 -0.5315
rU 0.6238 0.5814 0.6569 0.6208 0.5852 0.6668
ν1 6.8541 5.6768 8.3212 8.9290 7.2431 10.8435
ν2 5.1780 4.4976 6.0264 6.1178 5.2628 7.0598

ρ(1) 0.8877 0.8006 0.9790 0.8202 0.7953 0.8431
ρ(2) 0.2767 0.1298 0.3908 0.5443 0.4328 0.6347

d 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ω
(1)
10 0.0210 0.0145 0.0312 0.0276 0.0174 0.0395

α
(1)
11 0.0115 0.0018 0.0233 0.0148 0.0017 0.0302

β
(1)
11 0.0989 0.0840 0.1132 0.1115 0.0978 0.1253

δ
(1)
11 0.9337 0.9178 0.9441 0.9221 0.9013 0.9384

ω
(2)
10 0.0142 0.0100 0.0188 0.0169 0.0125 0.0216

α
(2)
11 0.0164 0.0040 0.0305 0.0224 0.0124 0.0336

β
(2)
11 0.2234 0.1814 0.2657 0.2727 0.2426 0.2999

δ
(2)
11 0.8368 0.8118 0.8592 0.8261 0.8047 0.8456

ω
(1)
20 0.0424 0.0202 0.0703 0.1096 0.0734 0.1484

α
(1)
21 0.0313 0.0118 0.0512 0.0653 0.0401 0.0927

β
(1)
21 0.0481 0.0309 0.0654 0.0472 0.0247 0.0692

δ
(1)
21 0.9356 0.9073 0.9562 0.8704 0.8372 0.8974

ω
(2)
20 0.0366 0.0206 0.0550 0.0165 0.0020 0.0358

α
(2)
21 0.0533 0.0424 0.0653 0.0540 0.0423 0.0667

β
(2)
21 0.0381 0.0242 0.0525 0.0996 0.0756 0.1234

δ
(2)
21 0.8506 0.8217 0.8776 0.8644 0.8381 0.8857

θ
(1)
1 0.8311 0.7798 0.8711 0.3327 0.2778 0.3865

θ
(1)
2 0.0599 0.0521 0.0683 0.1297 0.1155 0.1438

θ
(2)
1 0.9266 0.9114 0.9419 0.9137 0.8977 0.9292

θ
(2)
2 0.0254 0.0211 0.0297 0.0340 0.0294 0.0384
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Table 6. Results of estimation of the BHAR(1) - QGARCH(1,1) model are shown, including posterior means,
medians, standard deviations, and 95% Bayes credible intervals of the dataset DS1.

Parameter Mean Med Std 2.5% 97.5%

Φ
(1)
0

ϕ
(1)
10 0.0139 0.0128 0.0328 -0.0493 0.0796

ϕ
(1)
20 -0.0248 -0.0279 0.0584 -0.1333 0.0933

Φ
(1)
1

ϕ
(1)
11 -0.0638 -0.0663 0.0454 -0.1448 0.0290

ϕ
(1)
12 -0.0370 -0.0370 0.0170 -0.0699 -0.0039

ϕ
(1)
21 -0.0100 -0.0138 0.0797 -0.1648 0.1542

ϕ
(1)
22 -0.0657 -0.0651 0.0375 -0.1386 0.0053

Φ
(2)
0

ϕ
(2)
10 0.0338 0.0336 0.0153 0.0052 0.0658

ϕ
(2)
20 0.0179 0.0191 0.0347 -0.0535 0.0869

Φ
(2)
1

ϕ
(2)
11 -0.0217 -0.0224 0.0298 -0.0792 0.0379

ϕ
(2)
12 -0.0050 -0.0048 0.0122 -0.0290 0.0201

ϕ
(2)
21 -0.0261 -0.0244 0.0592 -0.1475 0.0836

ϕ
(2)
22 -0.0072 -0.0071 0.0274 -0.0617 0.0481

rL -0.1680 -0.1595 0.0222 -0.2108 -0.1405
rU 0.0179 -0.0013 0.0449 -0.0329 0.1243
ν1 8.7278 8.6580 0.9039 7.0614 10.6549
ν2 7.3638 7.3355 0.6199 6.1993 8.6153
ρ(1) 0.8502 0.8501 0.0134 0.8239 0.8759
ρ(2) 0.2581 0.3011 0.2326 -0.3197 0.5698
d 1.0000 1.0000 0.2326 1.0000 1.0000
ω
(1)
10 0.0817 0.0813 0.0043 0.0742 0.0902

α
(1)
11 0.1243 0.1244 0.0087 0.1066 0.1415

β
(1)
11 0.0092 0.0093 0.0032 0.0026 0.0153

δ
(1)
11 0.8724 0.8728 0.0096 0.8534 0.8916

ω
(2)
10 0.0036 0.0035 0.0014 0.0009 0.0065

α
(2)
11 0.0201 0.0202 0.0050 0.0106 0.0300

β
(2)
11 0.0037 0.0033 0.0025 0.0002 0.0093

δ
(2)
11 0.8448 0.8448 0.0102 0.8237 0.8635

ω
(1)
20 0.1986 0.1975 0.0243 0.1490 0.2492

α
(1)
21 0.0886 0.0880 0.0086 0.0732 0.1066

β
(1)
21 0.0310 0.0309 0.0124 0.0083 0.0555

δ
(1)
21 0.9002 0.9015 0.0140 0.8686 0.9248

ω
(2)
20 0.0435 0.0425 0.0146 0.0150 0.0726

α
(2)
21 0.0422 0.0420 0.0058 0.0314 0.0536

β
(2)
21 0.0123 0.0123 0.0052 0.0029 0.0232

δ
(2)
21 0.8589 0.8595 0.0133 0.8316 0.8816

θ
(1)
1 0.6106 0.6104 0.0155 0.5806 0.6422

θ
(1)
2 0.0407 0.0407 0.0036 0.0338 0.0477

θ
(2)
1 0.9163 0.9179 0.0158 0.8818 0.9403

θ
(2)
2 0.0503 0.0504 0.0046 0.0425 0.0584
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Table 7. Estimation results are shown, including posterior means and 95% Bayes credible intervals of datasets
DS1, DS2, and DS3, based on the BHAR(1) - QGARCH(1,1) model.

DS1 DS2 DS3

Parameter mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5%

ϕ
(1)
10 0.0139 0.0328 -0.0493 0.0476 -0.0161 0.1136 0.0753 0.0219 0.1301

ϕ
(1)
20 -0.0248 0.0584 -0.1333 0.0654 -0.0425 0.1699 0.0267 -0.0725 0.1215

ϕ
(1)
11 -0.0638 0.0454 0.0454 -0.0579 -0.1326 0.0212 -0.1049 -0.1784 -0.0299

ϕ
(1)
12 -0.0370 0.0170 0.0170 -0.0376 -0.0600 -0.0135 0.0060 -0.0227 0.0332

ϕ
(1)
21 -0.0100 0.0797 0.0797 -0.1247 -0.2361 -0.0108 -0.1902 -0.3188 -0.0611

ϕ
(1)
22 -0.0657 0.0375 0.0375 -0.0581 -0.1167 0.0016 0.0550 -0.0102 0.1181

ϕ
(2)
10 0.0338 0.0153 0.0153 0.0413 0.0084 0.0738 0.0418 0.0107 0.0692

ϕ
(2)
20 0.0179 0.0347 0.0347 0.0046 -0.0635 0.0696 0.0309 -0.0239 0.0867

ϕ
(2)
11 -0.0217 0.0298 0.0298 -0.0236 -0.0837 0.0270 -0.0236 -0.0732 0.0309

ϕ
(2)
12 -0.0050 0.0122 0.0122 -0.0063 -0.0226 0.0099 -0.0117 -0.0292 0.0059

ϕ
(2)
21 -0.0261 0.0592 0.0592 0.0158 -0.0893 0.1169 -0.1659 -0.2692 -0.0598

ϕ
(2)
22 -0.0072 0.0274 0.0274 -0.0475 -0.0951 -0.0029 0.0314 -0.0202 0.0814
rL -0.1680 0.0222 0.0222 -0.2019 -0.2123 -0.1811 -0.5473 -0.5747 -0.4611
rU 0.0179 0.0449 0.0449 0.0524 -0.0385 0.1507 0.6111 0.5527 0.6559
ν1 8.7278 0.9039 0.9039 6.8073 5.5809 8.3232 8.9350 7.3051 10.8176
ν2 7.3638 0.6199 0.6199 5.2143 4.5484 5.9952 6.0211 5.1460 7.0315

ρ(1) 0.8502 0.0134 0.0134 0.9172 0.8269 0.9912 0.8109 0.7864 0.8350
ρ(2) 0.2581 0.2326 0.2326 -0.4946 -0.9541 0.0104 0.4795 0.0228 0.6653

d 1.0000 0.2326 0.2326 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ω
(1)
10 0.0817 0.0043 0.0043 0.0604 0.0510 0.0712 0.0486 0.0357 0.0637

α
(1)
11 0.1243 0.0087 0.0087 0.1046 0.0899 0.1219 0.1214 0.1067 0.1380

β
(1)
11 0.0092 0.0032 0.0032 0.0077 0.0006 0.0159 0.0077 0.0003 0.0228

δ
(1)
11 0.8724 0.0096 0.0096 0.8916 0.8704 0.9085 0.8748 0.8573 0.8916

ω
(2)
10 0.0036 0.0014 0.0014 0.0033 0.0007 0.0067 0.0194 0.0144 0.0249

α
(2)
11 0.0201 0.0050 0.0050 0.0159 0.0050 0.0275 0.0318 0.0186 0.0472

β
(2)
11 0.0037 0.0025 0.0025 0.0035 0.0005 0.0066 0.0025 0.0003 0.0049

δ
(2)
11 0.8448 0.0102 0.0102 0.8628 0.8411 0.8832 0.8427 0.8174 0.8655

ω
(1)
20 0.1986 0.0243 0.0243 0.0685 0.0457 0.0938 0.1229 0.0857 0.1593

α
(1)
21 0.0886 0.0086 0.0086 0.0742 0.0578 0.0945 0.1115 0.0883 0.1343

β
(1)
21 0.0310 0.0124 0.0124 0.0127 0.0032 0.0231 0.0149 0.0031 0.0279

δ
(1)
21 0.9002 0.0140 0.0140 0.9164 0.8854 0.9391 0.8462 0.8143 0.8775

ω
(2)
20 0.0435 0.0146 0.0146 0.0214 0.0037 0.0417 0.0176 0.0025 0.0381

α
(2)
21 0.0422 0.0058 0.0058 0.0539 0.0424 0.0664 0.0650 0.0549 0.0769

β
(2)
21 0.0123 0.0052 0.0052 0.0058 0.0006 0.0122 0.0061 0.0012 0.0119

δ
(2)
21 0.8589 0.0133 0.0133 0.8709 0.8462 0.8923 0.8766 0.8514 0.8970

θ
(1)
1 0.6106 0.0155 0.0155 0.8121 0.7590 0.8588 0.3322 0.2221 0.4398

θ
(1)
2 0.0407 0.0036 0.0036 0.0636 0.0492 0.0774 0.1214 0.0944 0.1499

θ
(2)
1 0.9163 0.0158 0.0158 0.9664 0.9447 0.9801 0.9279 0.8839 0.9620

θ
(2)
2 0.0503 0.0046 0.0046 0.0124 0.0037 0.0221 0.0340 0.0226 0.0447
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Table 8. Geweke Diagnostic of all parameters for DS1, DS2, and DS3 based on the BHAR(1) - GJR - GARCH(1,1)
model.

DS1 DS2 DS3

Parameter Statistic p-value Statistic p-value Statistic p-value

ϕ
(1)
10 -0.0597 0.9524 -0.8079 0.4192 -0.0636 0.9493

ϕ
(1)
20 -0.1791 0.8579 -0.3346 0.7379 -0.0162 0.9870

ϕ
(1)
11 1.3573 0.1747 -1.5891 0.1120 -0.2181 0.8274

ϕ
(1)
12 0.7764 0.4375 1.7514 0.0799 -0.4235 0.6720

ϕ
(1)
21 0.5771 0.5639 -2.2308 0.0257 -0.0380 0.9697

ϕ
(1)
22 0.6501 0.5156 1.8316 0.0670 -0.7052 0.4807

ϕ
(2)
10 1.8243 0.0681 0.4597 0.6457 -0.7424 0.4579

ϕ
(2)
20 1.5591 0.1190 1.8774 0.0605 -0.6209 0.5346

ϕ
(2)
11 0.1958 0.8448 -0.6016 0.5474 -0.9727 0.3307

ϕ
(2)
12 -1.1547 0.2482 1.5224 0.1279 0.3103 0.7564

ϕ
(2)
21 1.0562 0.2909 -1.2477 0.2121 -0.5624 0.5738

ϕ
(2)
22 -1.9255 0.0542 -0.6378 0.5236 -0.0487 0.9611
rL -1.1629 0.2449 -2.8326 0.0046 1.8200 0.0688
rU -0.2210 0.8251 0.2319 0.8166 1.0950 0.2735
ν1 -1.1139 0.2653 -0.9501 0.3421 0.9806 0.3268
ν2 -1.6291 0.1033 0.0019 0.9985 0.1521 0.8791

ρ(1) -0.7965 0.4258 1.1421 0.2534 -1.6976 0.0896
ρ(2) 1.2195 0.2227 -0.9170 0.3591 1.2624 0.2068
ω
(1)
10 -0.9039 0.3660 -0.3661 0.7143 0.0221 0.9824

α
(1)
11 0.9563 0.3389 -1.2333 0.2174 0.1894 0.8498

β
(1)
11 -1.3752 0.1691 1.0816 0.2794 1.2501 0.2113

δ
(1)
11 -0.0239 0.9809 -0.4108 0.6813 -0.8739 0.3822

ω
(2)
10 0.2948 0.7682 -0.4945 0.6209 0.4263 0.6699

α
(2)
11 0.0896 0.9286 -2.0540 0.0400 -0.2839 0.7765

β
(2)
11 -0.0769 0.9387 0.9074 0.3642 1.8353 0.0665

δ
(2)
11 -0.4204 0.6742 -0.8867 0.3753 0.3284 0.7426

ω
(1)
20 1.6858 0.0918 0.6269 0.5307 -1.2515 0.2107

α
(1)
21 -0.8687 0.3850 1.4275 0.1534 -1.1246 0.2608

β
(1)
21 1.2312 0.2182 -0.6642 0.5066 0.7641 0.4448

δ
(1)
21 -1.3606 0.1736 -0.5054 0.6133 0.5095 0.6104

ω
(2)
20 0.0002 0.9999 0.4037 0.6864 -0.1893 0.8499

α
(2)
21 -1.6979 0.0895 0.6527 0.5139 -0.6733 0.5008

β
(2)
21 1.2623 0.2068 1.0262 0.3048 -0.4108 0.6812

δ
(2)
21 0.0031 0.9975 -1.2335 0.2174 1.0696 0.2848

θ
(1)
1 -1.0077 0.3136 0.2864 0.7746 -0.2729 0.7850

θ
(1)
2 0.2581 0.7963 -0.6037 0.5460 0.1467 0.8834

θ
(2)
1 0.6031 0.5465 0.4883 0.6253 -1.0627 0.2879

θ
(2)
2 0.4767 0.6336 -1.0663 0.2863 1.9815 0.0475
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Table 9. Geweke Diagnostic of all parameters for DS1, DS2, and DS3 based on the BHAR(1) - QGARCH(1,1)
model.

DS1 DS2 DS3

Parameter Statistic p-value Statistic p-value Statistic p-value

ϕ
(1)
10 -0.2382 0.8117 0.8946 0.3710 0.4246 0.6711

ϕ
(1)
20 -0.5397 0.5894 0.4807 0.6308 0.2105 0.8332

ϕ
(1)
11 -0.3970 0.6914 1.0016 0.3165 0.4172 0.6765

ϕ
(1)
12 0.3031 0.7618 -0.4317 0.6659 -0.0186 0.9852

ϕ
(1)
21 -0.9387 0.3479 0.0066 0.9947 0.6520 0.5144

ϕ
(1)
22 0.6678 0.5043 0.3082 0.7579 -0.0690 0.9450

ϕ
(2)
10 -0.8183 0.4132 -1.0205 0.3075 1.2391 0.2153

ϕ
(2)
20 -1.3403 0.1802 -0.6150 0.5386 0.8368 0.4027

ϕ
(2)
11 0.9480 0.3431 0.5433 0.5869 -0.8564 0.3918

ϕ
(2)
12 0.3792 0.7045 0.1913 0.8483 -0.3520 0.7248

ϕ
(2)
21 1.0261 0.3048 -0.1062 0.9154 0.2221 0.8242

ϕ
(2)
22 -0.1441 0.8854 0.2735 0.7845 -0.6287 0.5295
rL 0.1648 0.8691 -2.0563 0.0398 0.5816 0.5608
rU -0.6512 0.5149 0.4157 0.6777 -0.8724 0.3830
ν1 -0.0228 0.9818 -0.6572 0.5110 -0.1623 0.8711
ν2 0.2329 0.8159 -0.3896 0.6969 -0.7089 0.4784

ρ(1) -0.6398 0.5223 0.4073 0.6838 -0.3435 0.7312
ρ(2) 0.5406 0.5888 0.3116 0.7554 0.3015 0.7630
ω
(1)
10 -0.2259 0.8213 0.5642 0.5726 -1.3067 0.1913

α
(1)
11 0.1495 0.8811 0.8659 0.3866 0.5879 0.5566

β
(1)
11 0.9298 0.3525 -0.2060 0.8368 -1.9950 0.0460

δ
(1)
11 -0.1064 0.9153 -0.6188 0.5360 -0.2741 0.7840

ω
(2)
10 -0.2187 0.8269 0.0908 0.9277 0.6828 0.4947

α
(2)
11 -0.6417 0.5211 0.0376 0.9700 0.8227 0.4107

β
(2)
11 0.2499 0.8027 1.5369 0.1243 0.7921 0.4283

δ
(2)
11 0.5778 0.5634 -0.9276 0.3536 -1.1088 0.2675

ω
(1)
20 0.0092 0.9927 -0.4402 0.6598 0.2285 0.8193

α
(1)
21 0.8557 0.3922 -1.3612 0.1734 0.3195 0.7494

β
(1)
21 -1.1870 0.2352 -0.9613 0.3364 0.8448 0.3982

δ
(1)
21 -0.7819 0.4343 1.3219 0.1862 -0.0380 0.9697

ω
(2)
20 -0.9052 0.3654 -0.1715 0.8638 1.4796 0.1390

α
(2)
21 -0.8971 0.3697 0.0572 0.9544 0.3983 0.6904

β
(2)
21 1.0325 0.3018 -0.1454 0.8844 -0.6278 0.5301

δ
(2)
21 0.7220 0.4703 0.1081 0.9139 -0.9705 0.3318

θ
(1)
1 -0.1814 0.8561 0.5558 0.5783 0.3816 0.7028

θ
(1)
2 2.2145 0.0268 -0.3652 0.7150 -1.0568 0.2906

θ
(2)
1 -0.9347 0.3500 -0.4136 0.6792 -0.0394 0.9686

θ
(2)
2 0.6555 0.5121 1.1169 0.2640 -1.2179 0.2233
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Table 10. VaR predictions and backtesting results at the 1% level with 300 out-of-sample periods based on the
BHAR(1) - GJR - GARCH(1,1), BHAR(1) - QGARCH(1,1), and BHAR(1) - GARCH(1,1) models.

BHAR(1) - GJR - GARCH(1,1) BHAR(1) - QGARCH(1,1) BHAR(1) - GARCH(1,1)

1% p-value 1% p-value 1% p-value

No VRate UC CC No VRate UC CC No VRate UC CC
DS1
S&P500 6 2.00% 0.125 0.273 8 2.67% 0.016 0.044 8 2.67% 0.016 0.045
GS 1 0.33% 0.178 0.402 1 0.33% 0.178 0.401 4 1.33% 0.016 0.045
DS2
S&P500 6 2.00% 0.125 0.273 8 2.67% 0.016 0.045 8 2.67% 0.016 0.044
ICE 1 0.33% 0.178 0.401 1 0.33% 0.178 0.402 4 1.33% 0.581 0.813
DS3
S&P500 7 2.33% 0.048 0.119 6 2.00% 0.125 0.273 9 3.00% 0.005 0.015
BAC 2 0.67% 0.537 0.815 2 0.67% 0.537 0.815 2 0.67% 0.537 0.815

Table 11. VaR predictions and backtesting results at the 5% level with 300 out-of-sample periods based on the
BHAR(1) - GJR - GARCH(1,1), BHAR(1) - QGARCH(1,1), and BHAR(1) - GARCH(1,1) models.

BHAR(1) - GJR - GARCH(1,1) BHAR(1) - QGARCH(1,1) BHAR(1) - GARCH(1,1)

5% p-value 5% p-value 5% p-value

No VRate UC CC No VRate UC CC No VRate UC CC
DS1
S&P500 17 5.67% 0.604 0.313 17 5.67% 0.604 0.313 17 5.67% 0.604 0.873
GS 16 5.33% 0.793 0.507 14 4.67% 0.789 0.344 16 5.33% 0.793 0.507
DS2
S&P500 17 5.67% 0.604 0.313 17 5.67% 0.604 0.313 17 5.67% 0.604 0.873
ICE 16 5.33% 0.793 0.507 14 4.67% 0.789 0.344 16 5.33% 0.793 0.507
DS3
S&P500 18 6.00% 0.44 0.739 17 5.67% 0.604 0.313 16 5.33% 0.793 0.391
BAC 13 4.33% 0.588 0.478 13 4.33% 0.588 0.478 11 3.67% 0.267 0.355

Table 12. The backtesting measures by the authors of [26] for the estimated marginal expected shortfall based on
300 out-of-sample periods.

DS1 DS2 DS3
At 1%
BHAR(1) - GJR - GARCH(1,1) 1.855 1.855 2.953
BHAR(1) - QGARCH(1,1) 1.870 1.870 2.941
BHAR(1) - GARCH(1,1) 2.055 2.055 2.960
At 5%
BHAR(1) - GJR - GARCH(1,1) 1.195 1.195 1.693
BHAR(1) - QGARCH(1,1) 1.253 1.253 1.664
BHAR(1) - GARCH(1,1) 1.401 1.401 1.830

The box values represent the best model.
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VaR01_GJR.jpg

Figure 4. The performance of VaR predictions with 300 out-of-sample periods at 1% based on BHAR(1) - GJR -
GARCH(1,1) model. Value-at-Risk forecasts (solid line) and daily returns (dashed line).
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VaR01_QG.jpg

Figure 5. The performance of VaR predictions with 300 out-of-sample periods at 1% based on BHAR(1) -
QGARCH(1,1) model. Value-at-Risk forecasts (solid line) and daily returns (dashed line).

7. Conclusions
This paper investigates the MHAR–GJR–GARCH and MHAR – QGARCH models by incorpo-

rating asymmetric volatility dynamics, conditional correlations, and a hysteresis variable to control
regime switching and dynamic delays. Bayesian inference is employed for efficient estimation of
the model parameters. A comparative analysis of backtesting results for the VaR and MES forecasts
is conducted. We also include the benchmark model MHAR - GARCH with adapted multivariate

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2025 doi:10.20944/preprints202505.2266.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2266.v1
http://creativecommons.org/licenses/by/4.0/


23 of 24

Student-t errors and compare backtesting measures of Value-at-Risk (VaR) and Marginal Expected
Shortfall (MES) forecasts. The backtesting measures indicate that, in general, the proposed models
demonstrate reliable capabilities in capturing tail risk behavior and delivering accurate risk predic-
tions. Notably, the proposed models deliver significantly improved performance over the original
MHAR–GARCH errors model, particularly in capturing asymmetric tail risks and providing more
accurate risk forecasts.
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