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Abstract

In recent years, speech-driven facial synthesis has attracted significant a ttention d ue t o i ts wide 
applications in virtual humans, remote conferencing, and digital human generation. However, existing 
methods still face limitations in terms of realism, synchronization, and robustness, primarily due 
to noise interference in speech signals and insufficient precision in audio-visual feature f usion. To 
address these challenges, this paper proposes an enhanced speech-driven facial synthesis framework: 
RAE-NeRF (Residual-based Audio-video Encoder with Neural Radiance Fields). The framework 
integrates three core modules: (1) the ZipEnhancer speech enhancement module, which extracts 
high-quality features from noisy speech; (2) a residual-based audio-visual encoder that effectively 
fuses audio and visual features to drive facial expressions accurately; and (3) a tri-plane hash encoder 
that achieves high-quality 3D facial modeling and rendering while maintaining efficiency. Extensive 
experiments conducted on multiple datasets demonstrate that RAE-NeRF significantly outperforms 
existing mainstream approaches in terms of realism, lip-sync accuracy, and noise robustness, validating 
the proposed framework’s effectiveness and superiority in complex environments for speech-driven 
facial synthesis.

Keywords: lip synchronization; speech enhancement; neural radiance fields; 3D reconstruction; facial 
synthesis

1. Introduction
With the rapid advancement of artificial intelligence, digital avatars have shown great potential

in various application scenarios such as intelligent assistants, customer service, virtual reality, and film
production. To meet the requirements of specific tasks, constructing highly realistic and personalized
digital human faces has become a growing research focus.

Among these technologies, speech-driven talking head synthesis has emerged as a core compo-
nent, aiming to generate synchronized lip movements and facial expressions based on speech input,
thereby enabling natural and lifelike dynamic face generation. This technology plays a particularly
important role in fields such as digital assistants [1], virtual reality [2], and visual effects in film
production [3], where higher demands are placed on visual realism and spatiotemporal coherence.

Although deep generative models have achieved significant progress in recent years [1,4–9],
existing methods still fall short of satisfying the increasing demand for high-quality and highly
interactive digital avatars. Traditional approaches based on Generative Adversarial Networks (GAN)
[10–13] perform well in modeling lip movements, but often suffer from identity inconsistency, leading
to visual artifacts such as unstable tooth size and fluctuating lip thickness during synthesis. Recently,
NeRF-based methods have gained attention due to their ability to preserve facial details and maintain
identity consistency. However, NeRF still faces several challenges in speech-driven talking head
synthesis tasks, such as lip-sync mismatches, difficulty in controlling facial expressions, and unstable
head poses-all of which negatively affect the naturalness and immersive quality of the generated
videos.
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Although many recent speech-driven talking head synthesis methods have made significant
strides in improving synthesis quality and inference speed, several key challenges remain unresolved.
For example, SyncTalk [14], ER-NeRF [15], and RAD-NeRF [16] incorporate Instant-NGP [17] technol-
ogy to accelerate the generation of dynamic 3D avatars and enhance real-time performance. However,
these methods still suffer from limitations in modeling precision and rendering fidelity. First, audio
inputs are often affected by background noise, resulting in inaccurate feature extraction and subse-
quently degrading lip-sync accuracy and the naturalness of facial movements. Second, it remains
challenging to fully model high-level correlations between audio and visual modalities during feature
alignment, which is crucial for producing detailed and realistic dynamic expressions.

To address the aforementioned challenges, in this paper, we propose an enhanced speech-driven
facial synthesis framework that focuses on improving audio-visual alignment accuracy and facial detail
fidelity. Unlike previous approaches that directly feed raw audio into the encoder, our framework
introduces a speech denoising module prior to the audio-visual encoding process. This effectively
suppresses background noise interference, improving the clarity and stability of the audio signal at
the source. By enhancing the expressiveness of speech features, our method allows for more accurate
control of lip movements and facial dynamics, thereby significantly improving the naturalness of the
synthesized avatars.

In addition, we design a Residual-based Audio-Visual Encoder to deeply extract and fuse the
spatiotemporal correlations between audio and visual modalities. By incorporating residual connec-
tions, the encoder strengthens feature learning capacity and alleviates the gradient vanishing problem
in high-dimensional spaces. This design improves the model’s accuracy in capturing complex facial
dynamics and enhances the stability and consistency of audio-visual alignment. Notably, it delivers
more natural motion restoration in detailed regions such as lips, cheeks, and jaw.

Experimental results demonstrate that our proposed method significantly outperforms existing
models on several benchmark datasets, achieving noticeable improvements in lip-sync precision, facial
expression naturalness, and overall visual fidelity. These advancements provide a solid foundation for
building high-quality, photorealistic digital avatars and offer new insights for practical applications of
speech-driven virtual humans.

In summary, the main contributions of this paper are as follows:

• Speech Denoising Module: We introduce a noise suppression component before the audio
encoding stage to purify the input signal, reducing the impact of background noise and enhancing
the usability of audio features.

• Residual-based Audio-Visual Encoder: We propose a novel encoder architecture that leverages
residual connections to improve cross-modal feature fusion and alignment, thereby enhancing
modeling accuracy and visual output quality.

• Extensive Experimental Validation: We conduct comprehensive quantitative and qualitative
experiments across multiple datasets to evaluate the proposed method in terms of lip-sync
accuracy, facial detail restoration, and visual realism. The results consistently demonstrate
superior synthesis quality and robustness compared to existing approaches.

The remainder of this paper is organized as follows. Section II summarize related research
achievement in the field of audio-driven talking head synthesis. Then in Section III, we present the
details of our design, including the architecture and the neural networks. Subsequently, we provide
experimental results to validate our design. Finally, Section V concludes the paper.

2. Related Works
Researchers have made substantial efforts to improve the performance of audio-driven talking

head synthesis, introducing various denoising techniques to enhance signal-to-noise ratio (SNR) and
improve signal quality. The main achievements in this field are summarized as follows.
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2.1. Audio-Driven Talking Head Synthesis

In recent years, audio-driven talking head synthesis based on GANs has attracted significant
attention [4,7,18–24]. While these methods have achieved notable progress in generating coherent
video sequences, they still face challenges in maintaining identity consistency of the synthesized
subjects. A typical class of approaches focuses on synthesizing the lip region [5,10–13,25], modeling
lip movements to produce synchronized lip animations and enhance the expressiveness of talking
heads. For instance, Wav2Lip [5] introduces a lip-sync expert module to improve the accuracy of
lip movements. However, due to its reliance on multiple reference frames for reconstruction, it
demonstrates limited capability in preserving identity consistency.

In contrast, works such as [4,6,8,26] attempt full-face synthesis. While these methods improve the
overall facial dynamics, they often struggle to maintain synchronization between facial expressions
and head poses. To address the limitations of GAN-based methods in terms of generation speed and
spatial consistency, recent studies have turned toward NeRF-based approaches.

With the rapid development of NeRF techniques [27–32], their ability to efficiently model 3D
structures has shown promising potential in talking head synthesis. However, traditional NeRF
renderers are computationally intensive, slow to render, and require large memory, making them
unsuitable for real-time applications.

To mitigate these issues, SSP-NeRF [33] introduces a semantically guided sampling mechanism
that effectively captures the varying impact of audio signals on different facial regions, thereby
enhancing the modeling of local facial dynamics. RAD-NeRF [16], built upon the Instant-NGP
framework [17], further improves rendering efficiency and visual quality. Nevertheless, it still relies
on a complex audio processing pipeline, which increases the training burden and computational cost.
Moreover, some multi-stage strategies [34,35] pretrain audio-visual alignment modules and utilize
NeRF-based renderers to generate higher-quality images.

While these methods enhance expression fidelity, the additional training stages often introduce
synchronization errors, limiting their effectiveness in tasks that demand high temporal and spatial
consistency.

2.2. Speech Denoising Techniques

Speech Enhancement (SE) aims to improve the quality of speech signals degraded by complex
acoustic environments, making device-captured audio clearer and more intelligible. By suppressing
background noise and highlighting relevant speech components, SE provides more reliable audio
inputs for downstream tasks such as speech communication and automatic speech recognition (ASR),
thereby enhancing overall performance and human-computer interaction experiences.

Current mainstream SE methods can be broadly categorized into two types: time-domain models
and time-frequency (TF) domain models. Time-domain approaches directly model the signal at the
waveform level by encoding noisy waveforms into latent representations, which are then processed
using architectures such as Transformers and reconstructed into clean speech [36,37]. In contrast,
TF-domain methods first extract Short-Time Fourier Transform (STFT) features from the noisy signal,
use deep neural networks to predict the frequency domain representation of clean speech, and finally
apply the inverse STFT (ISTFT) to reconstruct the waveform [38,39].

To address the quality degradation under low SNR conditions, recent studies have incorporated
complex-valued modeling in the TF domain and employed both explicit and implicit strategies
for optimizing magnitude and phase estimation of STFT [40], achieving significant improvements
in speech restoration. Unlike ASR models that predominantly focus on temporal modeling (e.g.,
processing hidden features X ∈ RB×T×C) [41], SE and Speech Separation (SS) [42,43] tasks typically
retain both temporal and frequency dimensions. In processing feature tensors X ∈ RB×T×F×C, they
often employ dual-path architectures to model along both T and F axes in parallel.

Although SE and SS models usually have fewer parameters (typically in the range of millions)
compared to ASR models [44], their dual-path mechanisms introduce notable computational costs. In
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recent years, the development of efficient ASR encoders such as Efficient Conformer [45], Squeeze-
former [46], and Zipformer [47] has significantly reduced the computational burden by introducing
hierarchical downsampling mechanisms. For example, Squeezeformer applies a U-Net structure to
downsample the temporal dimension of intermediate representations to 12.5 Hz, while Zipformer
further introduces multi-level, non-uniform downsampling strategies to improve efficiency. Inspired
by these advances, ZipEnhancer [48] extends temporal downsampling techniques to SE models and
combines them with frequency-domain downsampling, achieving a favorable trade-off between
speech quality and computational efficiency. This development paves the way for lightweight and
high-performance SE solutions.

3. RAE-NeRF Architecture Design
In this section, we present the proposed RAE-NeRF framework in detail, with an overview of the

architecture illustrated in Figure 1. First, we describe the core component of the ZipEnhancer model
[48] used in the speech denoising module-namely, the DualPath Zipformer Blocks. Then, we elaborate
on the structure of our Residual-based Audio-Visual Encoder. Finally, we introduce the tri-plane hash
representation employed to model spatial geometric information.

Figure 1. RAE-NeRF Architecture. Audio and video frames are first extracted from the reference video. The audio
is denoised using the ZipEnhancer module and then fed into our proposed Residual-based Audio-Visual Encoder
to extract lip movement features. Meanwhile, the Tri-Plane Hash Encoder H3 encodes the 3D coordinates of the
video frames into spatial geometric features. These geometric features, together with the extracted expression
features, are then input into an MLP decoder to predict the head’s color c and density σ. Finally, the model
generates high-quality speech-driven facial video outputs.

3.1. DualPathZipformer Blocks
3.1.1. Down-UPSampleStacks

Unlike the single-path downsampling modules commonly used in automatic speech recognition
(ASR), we adopt a dual-path structure for time-frequency domain modeling, which simultaneously
performs upsampling and downsampling in both the time and frequency dimensions. As shown
in Figure 2, the Down-UPSampleStack consists of paired DownSample and UpSample modules to
achieve symmetric compression and expansion along either the temporal or frequency axes.

Specifically, we denote the down-up modules in the temporal dimension as T_DownSample and
T_UpSample, and their counterparts in the frequency dimension as F_DownSample and F_UpSample.
The sampling factor is represented by r. Our sampling strategy follows the simple method used in
Zipformer: the DownSample module applies r learnable scalar weights (normalized by softmax) to
aggregate every r frames, whereas the UpSample module repeats each frame r times. Through this
process, the original input feature map Y

′
l ∈ RC×T×F, where C is the number of channels, T is the

temporal length, and F is the frequency dimension-is downsampled into Y
′∗
l ∈ RC× T

r ×
F
r at layer l. The

downsampled features are then passed to a DualPath ZipformerBlock for efficient modeling in both
time and frequency domains at a reduced frame rate.
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Figure 2. The overall architecture of DualPathZipformerBlocks.

In addition, a Bypass module, analogous to residual connections, is included to preserve unsam-
pled information and enhance the model’s representational capacity. It is worth noting that the dashed
DownSample components shown in Figure 2 are optional and are omitted when r = 1.

3.1.2. ZipformerBlock

In the Dual-Path structure, both the F_ZipformerBlock and T_ZipformerBlock share the same
model architecture. For the compressed feature Y

′∗
l within a mini-batch, shaped as B × T

r × F′
r × C,

where B is the batch size, the data is first reshaped to B×T
r × F

′

r × C and fed into the F_ZipformerBlock

to capture frequency-domain dependencies. Then, it is reshaped to B×F
′

r × T
r × C and passed through

the T_ZipformerBlock to model temporal correlations. The final output is the updated feature repre-
sentation Y

′∗
l+1.

3.1.3. Bypass

The Bypass module introduces a learnable residual connection that flexibly integrates the input x
and the output y of a wrapped intermediate module. The output is defined as:

O = (1 − w)⊙ x + w ⊙ y (1)

where w denotes a learnable channel-wise weight, and ⊙ indicates element-wise multiplication along
the channel dimension. A smaller value of w indicates a higher tendency to bypass the intermediate
module, thereby preserving more of the original input signal.

3.2. Residual-Based Audio-Visual Encoder

To effectively extract deep semantic information from input audio features, we design a residual-
connected audio encoder module, termed the Residual-based Audio-visual Encoder. This module
consists of multiple Fully Connected Residual Blocks (FCResBlocks), which help maintain the net-
work’s expressive capacity while improving training stability.

3.2.1. Network Architecture

As illustrated in Figure 4, the input to the Residual-based Audio-Visual Encoder is a 512-
dimensional audio feature vector. After passing through three FCResBlocks, it is mapped to a low-
dimensional audio representation of size daud (set to 64 in our implementation). The transformation
process is listed as follows:

• First FCResBlock: Input dimension = 512, Output dimension = 256;
• Second FCResBlock: Input dimension = 256, Output dimension = 128;
• Third FCResBlock: Input dimension = 128, Output dimension = daud.

Each FCResBlock contains two fully connected (Linear) layers, with a LeakyReLU activation in
between. A residual connection is employed to preserve low-level information from the input. The
detailed formulation is provided in Equation 4.
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3.2.2. Definition of FCResBlock

Given an input feature x ∈ Rdin , the output y of an FCResBlock is defined as:

h1 = LeakyReLU(W1x + b1),

h2 = W2h1 + b2,

r =

x, if din = dout

Wresx + bres, otherwise
,

y = LeakyReLU(h2 + r).

(2)

Here, W1, W2, and Wres are learnable weight matrices, and b1, b2, and bres are their correspond-
ing biases. This structure ensures that essential information from the input is retained during the
transformation process, helping to mitigate the vanishing gradient problem.

Figure 3. The overall architecture of Residual-based Audio-visual Encoder.

3.2.3. Down-UPSampleStacks

Unlike the single-path downsampling modules commonly used in automatic speech recognition
(ASR), we adopt a dual-path structure for time-frequency domain modeling, which simultaneously
performs upsampling and downsampling in both the time and frequency dimensions. As shown
in Figure 2, the Down-UPSampleStack consists of paired DownSample and UpSample modules to
achieve symmetric compression and expansion along either the temporal or frequency axes.

Specifically, we denote the down-up modules in the temporal dimension as T_DownSample and
T_UpSample, and their counterparts in the frequency dimension as F_DownSample and F_UpSample.
The sampling factor is represented by r. Our sampling strategy follows the simple method used in
Zipformer: the DownSample module applies r learnable scalar weights (normalized by softmax) to
aggregate every r frames, whereas the UpSample module repeats each frame r times. Through this
process, the original input feature map Y

′
l ∈ RC×T×F, where C is the number of channels, T is the

temporal length, and F is the frequency dimension-is downsampled into Y
′∗
l ∈ RC× T

r ×
F
r at layer l. The

downsampled features are then passed to a DualPath ZipformerBlock for efficient modeling in both
time and frequency domains at a reduced frame rate.

In addition, a Bypass module, analogous to residual connections, is included to preserve unsam-
pled information and enhance the model’s representational capacity. It is worth noting that the dashed
DownSample components shown in Figure 2 are optional and are omitted when r = 1.

3.2.4. ZipformerBlock

In the Dual-Path structure, both the F_ZipformerBlock and T_ZipformerBlock share the same
model architecture. For the compressed feature Y

′∗
l within a mini-batch, shaped as B × T

r × F′
r × C,

where B is the batch size, the data is first reshaped to B×T
r × F

′

r × C and fed into the F_ZipformerBlock

to capture frequency-domain dependencies. Then, it is reshaped to B×F
′

r × T
r × C and passed through
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the T_ZipformerBlock to model temporal correlations. The final output is the updated feature repre-
sentation Y

′∗
l+1.

3.2.5. Bypass

The Bypass module introduces a learnable residual connection that flexibly integrates the input x
and the output y of a wrapped intermediate module. The output is defined as:

O = (1 − w)⊙ x + w ⊙ y (3)

where w denotes a learnable channel-wise weight, and ⊙ indicates element-wise multiplication along
the channel dimension. A smaller value of w indicates a higher tendency to bypass the intermediate
module, thereby preserving more of the original input signal.

3.3. Residual-Based Audio-Visual Encoder

To effectively extract deep semantic information from input audio features, we design a residual-
connected audio encoder module, termed the Residual-based Audio-visual Encoder. This module
consists of multiple Fully Connected Residual Blocks (FCResBlocks), which help maintain the net-
work’s expressive capacity while improving training stability.

3.3.1. Network Architecture

As illustrated in Figure 4, the input to the Residual-based Audio-Visual Encoder is a 512-
dimensional audio feature vector. After passing through three FCResBlocks, it is mapped to a low-
dimensional audio representation of size daud (set to 64 in our implementation). The transformation
process is as follows:

• First FCResBlock: Input dimension = 512, Output dimension = 256;
• Second FCResBlock: Input dimension = 256, Output dimension = 128;
• Third FCResBlock: Input dimension = 128, Output dimension = daud.

Each FCResBlock contains two fully connected (Linear) layers, with a LeakyReLU activation in
between. A residual connection is employed to preserve low-level information from the input. The
detailed formulation is provided in Equation 4.

3.3.2. Definition of FCResBlock

Given an input feature x ∈ Rdin , the output y of an FCResBlock is defined as:

h1 = LeakyReLU(W1x + b1),

h2 = W2h1 + b2,

r =

x, if din = dout

Wresx + bres, otherwise
,

y = LeakyReLU(h2 + r).

(4)

Here, W1, W2, and Wres are learnable weight matrices, and b1, b2, and bres are their correspond-
ing biases. This structure ensures that essential information from the input is retained during the
transformation process, helping mitigate the vanishing gradient problem.
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Figure 4. The overall architecture of Residual-based Audio-visual Encoder.

3.3.3. Overall Module Workflow

The complete structure of the Residual-based Audio-Visual Encoder is shown in Figure 4. Suppose
the input is a 3D tensor X ∈ RB×T×512, where B is the batch size and T is the time window size
(defaulting to 16). The model encodes each frame independently along the temporal dimension,
resulting in an audio representation Z ∈ RT×daud , which is used for subsequent cross-modal alignment
or task-specific modeling.

3.4. Tri-Plane Hash Representation

To represent a static 3D scene, NeRF [27] leverages multi-view images and their corresponding
camera poses to construct an implicit function F for scene modeling. The function is defined as
F : (x, y, z) → (c, σ), where (x, y, z) denotes a point in 3D space and (θ, ϕ) indicates the viewing
direction. The output consists of c = (r, g, b), representing the radiance color at that location in the
given direction, and σ, representing the volumetric density at that location.

The color value Ĉ(r) of each pixel in the final rendered image is obtained by integrating the
volumetric information sampled along a ray r(t) = o + td originating from the camera position o in
the direction d. The integration is computed as follows:

Ĉ(r) =
∫ t f

tn
σ(r(t)) · c(r(t), d) · T(t) dt (5)

Here, tn and t f represent the near and far bounds of sampling along the ray, respectively. T(t) is the
accumulated transmittance, which measures the probability that the ray is not occluded from the
origin up to time t. It is defined as:

T(t) = exp
(
−

∫ t

tn
σ(r(s)) ds

)
(6)

To alleviate hash collisions and enhance feature representation capabilities, we introduce three
orthogonal 2D hash grids [15]. Specifically, a 3D spatial coordinate x = (x, y, z) ∈ RXYZ is encoded
using three multi-resolution 2D hash encoders from different projection directions, following the
design in [17]. Each encoder projects the 3D point onto a 2D plane and maps the projected coordinates
(a, b) to a feature vector, as defined by:

HAB : (a, b) → fAB
ab (7)

Here, the output feature fAB
ab ∈ RLD encodes geometric information on the projection plane RAB, where

L denotes the number of resolution levels and D is the feature dimensionality at each resolution level.
We denote the multi-resolution hash encoder on plane RAB as HAB.
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The final geometric feature vector fx ∈ R3×LD is obtained by concatenating the hash features from
three orthogonal planes XY, YZ, and XZ:

fx = HXY(x, y)⊕HYZ(y, z)⊕HXZ(x, z) (8)

where ⊕ denotes the concatenation operation.
The resulting feature fx, together with the viewing direction d, the lip feature fl , and the expression

feature fe, is fed into an MLP decoder. The overall implicit function based on the tri-plane hash
representation is defined as:

FH : (x, d, fl , fe;H3) → (c, σ) (9)

where H3 denotes the combination of the three hash encoders HXY, HYZ, and HXZ as specified in
Equation 7.

4. Experiments
4.1. Experimental Settings

The dataset used in our experiments consists of two parts: one comprises publicly available video
sources, including datasets from [33,49,50]; the other consists of internally recorded videos, covering
speech content in English, Chinese, and Korean. On average, each video contains approximately 6160
frames. The internally recorded videos have a frame rate of 30 frames per second (FPS), while the
publicly available datasets operate at 25 FPS. In terms of resolution, internal videos are 540 × 540,
videos from the AD-NeRF dataset [49] are 450 × 450, and other public videos are 512 × 512. All videos
feature centrally aligned human portraits.

For both qualitative and quantitative performance comparisons, we selected two NeRF-based
methods as baselines: ER-NeRF [15] and SyncTalk [14], as well as a GAN-based method, Wav2Lip [5].

The training of our model is divided into two stages. In the coarse stage, the portrait head
model undergoes 100,000 training iterations. This is followed by a fine stage with an additional 25,000
iterations to further improve synthesis quality. We employ 2D hash encoders with a resolution level
of L = 14 and a feature dimension F = 1. In each iteration, 2562 rays are sampled for optimization.
We use the AdamW optimizer [51], with a learning rate of 0.01 for the hash encoders and 0.001 for all
other modules. All training processes are conducted on an NVIDIA GeForce RTX 3090 GPU, with the
total training time being approximately 2 hours.

4.2. Denoising Performance Analysis

To evaluate the denoising effectiveness of the proposed ZipEnhancer network, we conducted a
quantitative analysis using audio clips extracted from videos of six speakers in the publicly available
dataset provided by [34].

We employed five widely adopted objective evaluation metrics to assess speech quality and
intelligibility: Segmental Signal-to-Noise Ratio (SNRseg), Weighted Spectral Slope (WSS), Short-
Time Objective Intelligibility (STOI), Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [52], and
Mel-Cepstral Distance (MCD) [53].

As illustrated in the Figures 5 and 6 , we conducted a comprehensive quantitative evaluation
of the ZipEnhancer module using five objective metrics. For the SI-SDR metric, the denoised speech
achieved a score of 30.35 dB, representing a substantial improvement over the noisy input’s score of
-9.05 dB. This significant gain indicates that the denoised signal is much closer to the original clean
speech in terms of spectral power distribution, with interference effectively suppressed.
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Figure 5. Comparison of ZipEnhancer’s audio denoising performance under SI-SDR, SNRseg, and STOI metrics.

Figure 6. Comparison of ZipEnhancer’s audio denoising performance under MCD and WSS metrics.

In terms of SNRseg, the segmental signal-to-noise ratio increased from -1.97 dB for the noisy
input to 24.53 dB after denoising, demonstrating that the energy of speech segments relative to noise
was greatly enhanced. Regarding the STOI metric, the denoised speech achieved a score of 0.9998,
compared to 0.9982 for the noisy signal, indicating improved short-time intelligibility. This suggests
that the denoised speech is more comprehensible and thus more suitable for downstream applications
such as speech recognition and communication.

For the MCD metric, the denoised speech yielded a score of 0.178, significantly lower than the
5.275 measured for the noisy input. This reflects a major reduction in spectral distortion and a notable
enhancement in perceived audio quality. Lastly, the WSS score dropped from 3.48 (noisy input) to 0.57
(denoised), indicating that the spectral tilt of the denoised signal more closely resembles that of the
clean reference, thereby improving the naturalness and realism of the speech.

Taken together, the results across all five evaluation metrics consistently demonstrate that the
ZipEnhancer network exhibits strong denoising performance in both speech quality and intelligibility.
These improvements provide a robust foundation for subsequent talking-head synthesis tasks.

4.3. Quantitative Evaluation

Full Reference Quality Assessment To comprehensively evaluate the quality of the generated
images, we employ several full-reference image quality metrics, including Peak Signal-to-Noise Ratio
(PSNR), Learned Perceptual Image Patch Similarity (LPIPS) [54], Multi-Scale Structural Similarity
(MS-SSIM), and Frechet Inception Distance (FID) [55]. These metrics measure different aspects of
image clarity, structural fidelity, and perceptual similarity.

No Reference Quality Assessment Given that high PSNR images may still exhibit perceptual
inconsistencies in texture details [56], we further incorporate two no-reference quality assessment
methods for more precise and perceptually aligned evaluations: the Natural Image Quality Evaluator
(NIQE) [57] and the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [58]. These

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2025 doi:10.20944/preprints202509.2231.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2231.v1
http://creativecommons.org/licenses/by/4.0/


11 of 17

metrics help assess the perceptual realism of generated images without relying on reference ground
truths.

Synchronization Assessment To evaluate facial motion accuracy and synchronization, we adopt
the Landmark Distance (LMD) metric, which measures the spatial discrepancy between predicted and
ground-truth facial landmarks. A lower LMD score indicates better temporal alignment and motion
fidelity.

Evaluation Results The quantitative evaluation results for head reconstruction are summarized
in Tables 1 and 2. We compare our method with existing GAN-based and NeRF-based approaches.
It can be observed that our method achieves superior performance across all image quality metrics.
Moreover, in terms of facial motion synchronization, our approach outperforms most competing
methods, demonstrating its effectiveness in both visual quality and temporal consistency.

Table 1. The full reference quality assessment results of the head reconstruction.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Wav2Lip 34.849174 0.987339 0.016931 5.581930
ER-NeRF 36.577897 0.997066 0.008733 5.736807
SyncTalk 42.492073 0.999254 0.003496 1.548124
RAE-NeRF 42.642164 0.999274 0.003332 1.401045

In the full reference quality evaluation (in Table 1), RAE-NeRF achieves a PSNR value of 42.642164,
which is slightly higher than that of SyncTalk (42.492073) and significantly surpasses those of Wav2Lip
and ER-NeRF. This indicates that RAE-NeRF generates images with lower luminance error and higher
clarity. Regarding structural similarity, the SSIM score of RAE-NeRF reaches 0.999274, which is close to
SyncTalk’s 0.999254 and notably higher than those of the other two methods. This suggests that RAE-
NeRF effectively preserves structural details and produces images highly consistent with the original.
In terms of perceptual quality, RAE-NeRF achieves the lowest LPIPS score (0.003332), indicating that
its outputs are perceptually closest to the ground truth and visually more realistic. Furthermore, the
FID score of RAE-NeRF is 1.401045, also the lowest among the four methods, demonstrating that the
distribution of its generated images closely matches that of real images.

Table 2. The no reference quality assessment and synchronization assessment results of the head reconstruction.

Methods LMD ↓ BRISQUE ↓ NIQE ↓
Wav2Lip 2.0289 52.9446 7.4609
ER-NeRF 1.9174 52.9446 7.4267
SyncTalk 1.9961 49.9054 7.3830
RAE-NeRF 1.9090 49.8398 7.3829

In the no reference quality and synchronization evaluation (in Table 2), RAE-NeRF shows superior
performance as well. For lip motion synchronization, the LMD score of RAE-NeRF is 1.090, outper-
forming Wav2Lip (2.0289) and ER-NeRF (1.9174), and even better than SyncTalk (1.9961), indicating
more accurate alignment between facial motion and speech. In terms of no-reference image quality
metrics, RAE-NeRF achieves a BRISQUE score of 49.8398, lower than those of Wav2Lip and ER-NeRF,
and comparable to SyncTalk (49.9054), reflecting a good balance of naturalness and perceptual quality.
Its NIQE score is 7.3829, slightly lower than those of Wav2Lip (7.4609) and ER-NeRF (7.4267), and
nearly identical to SyncTalk (7.3830), further confirming the superior perceptual quality of RAE-NeRF
under no-reference conditions.
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Taken together, the results from Tables 1 and 2 demonstrate that our RAE-NeRF model consistently
outperforms existing methods in both visual quality and dynamic accuracy. It not only ensures
high image fidelity, structural consistency, and perceptual realism, but also achieves more precise
synchronization of facial motion with speech, offering a robust and high-quality solution for head
reconstruction tasks.

4.4. Qualitative Evaluation

Compared with existing methods such as Wav2Lip, ER-NeRF, and SyncTalk, the proposed RAE-
NeRF demonstrates significant advantages across multiple dimensions, as illustrated in Figure 7.
Overall, the generated videos achieve superior alignment with reference frames, more accurate lip-
sync, and more natural facial expressions. Specifically, the lip movements generated by our method
closely mirror the dynamic articulation patterns of real human speech. The eye gaze and facial
expressions are also highly consistent with those in the original video, resulting in a strong sense of
realism and naturalness. In contrast, Wav2Lip exhibits noticeable lip-sync errors in certain frames;
ER-NeRF occasionally generates mismatched expressions or gaze directions; and SyncTalk suffers from
incorrect mouth shapes and blinking artifacts in some frames, negatively impacting synchronization
and visual quality.

Figure 7. Qualitative comparison results.

In terms of eye movement, our method accurately captures and reproduces natural eyeball motion
and maintains a realistic blinking frequency, effectively avoiding the “dead-eye” effect. This enhances
the liveliness and emotional expressiveness of the generated faces. In comparison, SyncTalk shows
considerable discrepancies in the eye region across several frames, while ER-NeRF suffers from slight
misalignment or uneven blinking, leading to a more artificial appearance. By precisely modeling
the dynamics from reference videos, our method significantly improves realism and immersion in
conversational scenarios.

Regarding facial detail preservation, our method produces clearer facial features and retains more
comprehensive details, including skin textures, consistent lighting, and facial shadows, resulting in
visual outputs highly similar to the reference video. Wav2Lip, on the other hand, generates blurry
results in some frames, while ER-NeRF and SyncTalk show limitations in rendering fine-grained
textures.
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In terms of facial expression generation, our method enables precise control over gaze direction,
eyebrow movement, and subtle facial variations synchronized with speech rhythm, further enhancing
the realism of synthesized videos. By contrast, SyncTalk shows weaker coordination between eye and
mouth movements in some frames, and ER-NeRF produces relatively static facial expressions, lacking
dynamic variation.

Moreover, our method excels in head pose consistency and stability, naturally reproducing
variations in head orientation, tilt, and movement as observed in the reference video. ER-NeRF
exhibits visible jitter in some frames, while SyncTalk, though generally stable, occasionally generates
slightly rigid facial details.

Figure 8. Lip motion comparison results.

Finally, in terms of lip motion, our method achieves higher accuracy and naturalness in modeling
lip opening, shape variation, and movement trajectory. The generated results align closely with the
reference video frames, effectively reflecting the dynamic articulatory patterns of human speech,
thereby enhancing the realism and immersive experience of the synthesized talking-head videos.

4.5. Audio-video Encoder

We extracted the Audio-video Encoder used in SyncTalk (AudioNet_ave) and our proposed
Residual-based Audio-visual Encoder (AudioNet_FCResBlock), and trained them on simulated noisy
audio data to compare their convergence behavior in terms of training loss. As shown in the figure
9, both models exhibit significant loss fluctuations during the initial training phase (approximately
the first 40 epochs), but the overall trend indicates convergence. As training progresses, the loss
of AudioNet_FCResBlock decreases more rapidly and becomes noticeably lower than that of Au-
dioNet_ave after around 80 epochs, demonstrating its superior robustness and feature extraction
capability. Furthermore, AudioNet_FCResBlock shows a more stable convergence trajectory through-
out training, and achieves a significantly lower final loss value. These experimental results indicate
that the proposed residual structure contributes to improved model fitting and generalization when
dealing with noise-contaminated speech data, validating the effectiveness of our design in the talking
head synthesis task.
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Figure 9. Training loss comparison between AudioNet_ave and the proposed AudioNet_FCResBlock on noisy
audio data.

5. Conclusion
This paper proposes an enhanced speech-driven facial synthesis framework, RAE-NeRF, aiming

to address the instability, imprecise expression control, and suboptimal 3D reconstruction quality
often encountered in existing methods under noisy speech conditions. The RAE-NeRF framework
consists of three key modules: (1) the ZipEnhancer module, which effectively enhances speech clarity
and provides robust audio features for subsequent processing; (2) a residual-based audio-visual
encoder that introduces a residual structure to efficiently fuse audio and visual features, thereby
improving expression-driving accuracy; and (3) a tri-plane hash encoder that enables high-quality 3D
facial modeling and rendering while maintaining computational efficiency. Experiments on multiple
datasets demonstrate that RAE-NeRF outperforms current mainstream methods in terms of realism,
facial synchronization, and noise robustness. Notably, even under poor speech quality conditions, the
proposed framework maintains stable and natural facial synthesis performance, showcasing strong
robustness and generalization ability. Future work will explore the extension of RAE-NeRF to multi-
language and diverse emotional states, and incorporate emotion recognition mechanisms to enhance
the naturalness and intelligence of virtual human interactions.
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