MOLECULAR CHARACTERIZATION OF PHOSPHOLAMBAN AND RENINANGIOTENSIN SYSTEM GENES MUTATIONS AND CLINICAL EPIDEMIOLOGY IN HUMAN CARDIOMYOPATHY

Gnana Veera Subhashini^{1*}, Beesetti Swarna latha¹, Mavuluri Jayadev¹, Emmanuel C², 2 K M Cherian² 3 1. Baba Clinical and Genomic Research Centre, Chennai 600113, Tamilnadu, India. 4 5 2. International Center for Cardio Thoracic and Vascular Diseases, Frontier Lifeline, 6 Chennai, India. 7 8 * Correspondence: Dr. N. Gnana Veera Subhashini 9 Email Id: dr.ngvsubhashini@bcgrc.com 10 11 **ABSTRACT Background** 12 13 Cardiomyopathy is commonly observed disease that may occurs due to mutations in either susceptible genes or modifier gene. People with broad age group are affected 14 either attributable to spontaneous or inherited mutations of these genes. Various gene 15 16 mutations are reported so far but only few of them were studied in detail. 17 Methods

1

- 18 In the current study, we evaluated epidemiological variables like age, sex, familial status,
- 19 parental consanguinity. We also described specific clinical symptoms associated with the
- 20 cardiomyopathy condition in Indian population.

Results

21

27

32

36

37

- 22 Our studies on mutation screening of phospholamban gene revealed two transitions
- 23 (4880 C/T, 4887 T/G) in 5' flanking region which might cause inherited dilated
- 24 cardiomyopathy with refractory congestive heart failure are We further deliberated the
- 25 gene polymorphism of renin angiotensin system gene angiotensin-1-converting enzyme
- as an associated marker/ modifier in cardiomyopathy patients and their family members.

Conclusions

- 28 Information on epidemiological, clinical statistics, phospholamban gene mutation analysis
- 29 and angiotensin-1-converting enzyme gene polymorphism is essential to guide the
- 30 successful execution for future therapies and benefits us to identify those patients at risk
- for faster disease progression, congestive heart failure, and arrhythmia.
- 33 Keywords: Cardiomyopathy, Hemodynamic and Biochemical Parameters,
- 34 Epidemiological and clinical Parameters, Phospholamban Angiotensin-1-converting
- 35 enzyme.

INTRODUCTION

- 38 In the present scenario, the debilitating nature of cardiovascular disorder is alarming and
- 39 needs a constant watch on the premature morbidity and mortality status. Cardiomyopathy
- 40 is the heart muscle disease and most common genetic disease of the heart, characterized

by heterogeneous morphologic expression and clinical condition (1). It can manifest negligible to extreme hypertrophy, minimal to extensive fibrosis, myocyte disarray, absent to severe left ventricular outflow tract obstruction, distinct septal morphologies, or hypocontractile (2). Cardiomyopathy can cause heart failure (HF), which in most cases leads to sudden cardiac death (SCD). Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), Restrictive Cardiomyopathy (RCM) and Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) are four types of cardiomyopathies reported (3). These types can be primary myocardial disorders or at times develop as a secondary consequence of a variety of conditions *viz.*, myocardial ischemia, inflammation, viral infection, increased myocardial pressure or volume load, and toxic agents (4). The etiology of both HCM and DCM involve cardiac energy imbalances and the clinical expressions of them are based on the addictive factors that are involved in it.

The prevalence of the dilated cardiomyopathy has formerly been estimated

at 36.5/100,000, with an incidence of 4-8/100,000 persons-year (5). An echocardiographic analysis of 4111 subjects in CARDIA study by (6) revealed hypertrophic cardiomyopathy affects 1 in 500 people, a prevalence similar to familial hypercholesterolemia. Recent study estimates prevalence of dilated and hypertrophic Cardiomyopathy as 36 cases per 100,000 people and 10–20 cases per 100,000 people respectively (7). Most of the dilated Cardiomyopathy cases are sporadic; although 20–35% of them are familial (8). The incidence of dilated cardiomyopathy varies in men and women. However, in general, heart failure is more common in men (9). The treatment arm of the Studies on Left Ventricular Dysfunction (SOLVD), in which only 15% of the

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

patients were women, reported no sex-related difference in survival in either the placebo group or the Enalapril group (10, 11). Age distribution depends on prognosis, diagnosis or onset of any underlying disease. However, advancing age is reported as an independent risk factor for mortality in several studies (12). Phospholamban (PLN) is a small transmembrane phosphoprotein of 52 amino acids that plays an important role in cardiac contraction and relaxation. Phospholamban, expressed in the sarcoplasmic reticulum membrane controls cellular calcium levels by a mechanism that depends on its phosphorylation (13). The human ventricle and quadriceps displayed high levels of phospholamban transcripts and proteins (14), whereas lower expression in smooth muscles and right atrium. DCM patients with a phospholamban gene mutation have a chronically inhibited Ca2+- ATPases pump, which leads to DCM in their teenage (15, 16).Susceptibility genes have a role in the development of cardiomyopathies, whereas modifier genes have a role in the evolution or prognosis of the disease. In most studies due to limited sample sizes, the role of susceptibility and modifier genes have been only suggestive (17). Various genes underlying cardiomyopathy have been identified from linkage as well as candidate gene studies, and include those coding for proteins involved in the cytoskeleton, the Z-disk, the nuclear envelop, ion conduction and calcium handling proteins (18). This variability in expression of these causal genes is also seen among family members sharing the same mutation. This variable expressivity, which confuses genotype/phenotype correlations, could be partially explained by both environmental influences and genetic modifiers (19). The angiotensin-1-converting enzyme (ACE) polymorphism has been commonly studied with variable results. It's noteworthy to study and understand the importance of modifier genes. The genetic polymorphisms of the renin-angiotensin-aldosterone system (RAAS) are found to influence the progression to cardiac disorders (20). Angiotensin-1-converting enzyme (ACE), a modifier gene was perceived to have insertion/Insertion (I/I) genotype associated with low serum ACE activity levels, Insertion/Deletion (I/D) genotype with intermediate levels and Deletion/Deletion (D/D) high serum ACE activity levels. The effect of ACE polymorphism on survival in patients with DCM with a DD genotype had poorer prognosis than other genotypes (5-year survival rate 49 vs.72%, p=0.001) (21). The DD genotype was also associated with an increase in left ventricular mass (22).

The present study investigates the association of spectrum of clinical symptoms, the epidemiological variables like age, sex, familial status, parental consanguinity and the mutations in the gene encoding phospholamban cardiac protein and to establish the genotype – phenotype correlations, to identify the modes of inheritance and the risk stratification in a group of clinically well characterized patients and their relatives associated with the cardiomyopathy condition in Indian population. We further studied the role of angiotensin-1-converting enzyme gene polymorphism as an associated marker/ modifier in cardiomyopathy patients and their family members.

MATERIALS AND METHODS

STUDY SUBJECTS

A total of 109 unrelated index cardiomyopathy patients and their family members who were consecutively enrolled in cardiology units of the Government General Hospital, Chennai and International Center for Cardiothoracic and Vascular Diseases (ICCTVD), Dr. K.M. Cherian Heart Foundation, A unit of Frontier lifeline, Chennai, South India, were included in the present study. A panel of 100 age matched healthy control subjects with no history of heart disease was obtained. The study protocol was approved by the Institutional Review Board and a Written consent was obtained from all subjects in accordance with the Institutional Ethical committee human subject guidelines.

CLINICAL EVALUATION

The index cases were subjected to standard physical examinations, clinical evaluations, electrocardiographic and echocardiograph tests to confirm cardiomyopathy. Cardiomyopathy was diagnosed based on the presence of the following; dilated cardiomyopathy with Left ventricular ejection fraction (LVEF) <45% and left ventricular end diastolic diameter >27mm/m2. However, patients who had secondary cause were not included in the present study. Further, hypertrophic cardiomyopathy was confirmed by LV wall thickness ≥15mm and blood pressure ≤160/100mmHg. Demographic and clinical information (Echocardiographic and Electrocardiographic findings) have been taken from the case sheets of respective hospitals. Family history and parental consanguinity were collected from the patients. Patients were classified according to New York Heart Association (NYHA) and exercise capacity has also been taken.

BLOOD SAMPLE COLLECTION

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Five milliliters of peripheral blood were drawn in EDTA coated vacutainer from patients, family members and control subjects and stored at 4°C until DNA extraction. **DATA COLLECTION** Epidemiology parameters such as height, weight, sex, age at onset, dietary habits, addictions to smoking and alcohol were collected during personal and clinical history. Each of the subjects met the Clinical diagnostic criteria viz., 12 lead electrocardiograms, echocardiogram, clinical symptoms, risk factors, medication and outcome of the disease etc. **CLINICAL CHEMISTRY PARAMETERS:** Blood parameters like sugar, urea, creatinine, creatinine phosphokinase (CpK), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), serum aspartate transaminase (SGOT) and Serum alanine transaminase (SGPT) were analyzed using DaytonaRM Randox auto analyzer according to the manufacturers' instructions. **GENETIC ANALYSIS** In the present study, the index cases are categorized into two groups viz., familial case showing the incidence of the disease in first and second-degree relatives and in sporadic cases lack of any familial incidence, presumably non- genetic in origin. The present study examined a comprehensive screening of Phospholamban and a key determinant/modifier angiotensin-1-converting enzyme gene polymorphism.

156

157

155

154

DNA ISOLATION and QUANTIFICATION

Genomic DNA was extracted from the peripheral blood following the 158 159 protocol of (23). Briefly, the collected blood was mixed with an equal volume of TKM1 160 buffer (10mM Tris-HCl, 10mM KCl,10mM MgCl₂ and 2mM EDTA) and 100 µl Triton X. 161 The contents were centrifuged and the pellet was washed with TKM1 repeatedly until the 162 cell debris is washed out. The pellet is suspended in 800 µl of TKM2 solution (10mM Tris-163 HCI,10mM KCI, 10mM MgCl₂, 2mM EDTA and 0.4M NaCl) followed by centrifugation and 164 precipitation of the supernatant in ethanol. The DNA samples were then stored at -20°C 165 for subsequent analyses. The DNA was quantified using spectrophotometer. The DNA 166 was diluted in TE to yield 50ng/µl concentration.

167

168

169

170

171

172

PHOSPHOLAMBAN (PLN) POLYMERASE CHAIN REACTION

The primers of the hotspots exons of Phospholamban (PLN) forward primer 5'tatttttctcataattaaaattcctgc-3' and reverse primer 5'-aaagtaagaattaccaaagtcagcg-3' for Exon 1 and forward primer 5'-aacaatagtgctgaggaagatgaa-3' and reverse primer 5'ttgttttcctgtctgcatgg-3' for Exon 2 were used (24).

173

174

176

forward

primer

ANGIOTENSIN-1-CONVERTING ENZYME GENOTYPING

The primers of the hotspots exons of the Angiotensin-1-Converting Enzyme (ACE) 175 5'-

5'-tatttttctcataattaaaattcctgc-3'

and

reverse

primer

aaagtaagaattaccaaagtcagcg-3' were used (25). Angitensin-1-converting enzyme genotyping was based on amplification of genomic DNA by PCR and the products were detected on 2% agarose gel. Amplification products 490 bp and 190 bp corresponding to the I and D alleles respectively (26).

DNA SEQUENCING

Genomic DNA from individuals with different SSCP patterns was amplified and sequenced with using Applied Biosystems 3730xl DNA Analyzer. The sequencing PCR was carried on 96 well micro-titer plates in a 5 µl reaction volume containing nuclease free water, the amplified template, "BigDye" (fluorescently labeled ddNTPs, dNTPs) and primers. The amplified DNA was precipitated by incubating at room temperature with 25µl of 3M-sodium acetate in ethanol (120 µl of 3M-sodium acetate in 3 ml of 100% ethanol) for 15min. The DNA was made single stranded by adding Hi-Di Form amide and sequenced on ABI3730xl automated DNA analyzer. The chromatograms obtained were analyzed on "Auto assembler" chromatogram analyzer on a Macintosh operating system. Complete sequencing work was carried out at the "Center for Cellular and Molecular Biology" Hyderabad.

3.3. BIOINFORMATICS

Multiple Sequence Analysis (MSA) was used for sequence comparison between generated sequences of the present study and to the corresponding reference sequences obtained from GenBank. The generated gene sequences were translated as protein sequences for future analysis (ExPASY Tool). Using Conserved Domains Database and

Motif Finder Database alteration in the conserved domains and motifs as a consequence of mutation were identified for the generated sequences.

3.4. STATISTICAL ANALYSES

Statistical analyses were carried out using Statistical Analysis Solutions (**SAS 9.2**). The mean and standard deviation were computed for various quantitative parameters and calculated. P-value <0.05 was considered significant. Association and relative risk estimates were carried out using Chi square test for the qualitative parameters at 1% and 5% levels of significance. The Allele frequencies were computed by gene counting method. Departure from Hardy- Weinberg equilibrium was tested by chi-square test. The odds ratio was computed using SAS.

RESULTS

EPIDEMIOLOGICAL STUDY

Patients and Baseline Characteristics

A total of 109 unrelated index patients who have echocardiographically and electrocardiographically assessed for cardiomyopathy and 100 aged matched control subjects were studied. About 73 percent of the patients had dilated cardiomyopathy and 27 percent hypertrophic cardiomyopathy. Details on age, body mass index, blood pressure, blood biochemical profile, associated clinical and non-clinical features of the patients, control subjects were given in (Table 1). Males were significantly higher among

the patients (73%). The mean age of all patients was 37.22 ± 12.43 years. Occurrence was familial in 24% of cases, but sporadic in the other 76% of patients. In patients group about 30% of them had family history of sudden cardiac death and 14% of them showed parental consanguinity. Mean value of body mass index and body surface area was same in patients and control (p=0.085, p=0.515).

Hemodynamic and Biochemical Parameters

Diastolic blood pressure, heart rate and systolic blood pressure of cardiomyopathy patients was extremely significant when compared with the control subjects (p<0.05). Cardiomyopathy patients were characterized with high atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) level (p<0.001). Contrastingly creatinine phosphokinase (CpK), serum aspartate transaminase (SGOT), serum alanine transaminase (SGPT), glucose, urea and creatinine levels did not show much variation between patients and control group (Table 1). Similarly, co-morbid factors such as diabetes, obesity, smoking and alcoholism did not show any influence on patient population.

CLINICAL CHARACTERISTICS

The electrocardiographic and echocardiographic characteristics of the cardiomyopathic patients and control group were given in Table 2. All comparisons were significant between cardiomyopathic patients and control (p<0.001) except fractional shortening, left ventricular ejection fraction, outflow tract gradient, early to late (E/A ratio) trans mitral flow velocity, and left ventricular systolic and diastolic volume.

MOLECULAR ASPECTS

Phospholamban Gene Mutation

Phospholamban gene is located on chromosome 6q22.1. Genomic sequence of the gene is 12146 bps nucleotides long which encodes 1742 bps mRNA coding region comprises 159 bps which encodes 2exons. The protein is a pentamer and is a major substrate for cAMP-dependent protein kinase in the cardiac muscle. The protein inhibits Ca2+-ATPase in unphosphorylated state. The protein is a key regulator of cardiac diastolic function.

Table 3 shows the detailed description of the mutations in phospholamban gene. Seven mutations—two in the 5' flanking region, two in exon 1 and three in the intron1 region (Figure 1 (a-f)). Transition T/G in 4887 nucleotide regions of 5' flanking region was observed in two HCM probands with four affected family members and also in one dilated cardiomyopathic proband with no affected relatives. 15511-15512 insertion T was observed in one dilated cardiomyopathic proband with no affected family members.

Description of Familial Condition

4887(T/G) mutation:

In the pedigree of the H9 proband (male, 21years) (Figure 2), the proband's father and his two uncles died young of sudden cardiac arrest. The younger brother of the proband's father has an affected son. The mutation was in heterozygotic state and it is not observed in unaffected.

In the pedigree of H10 proband (Figure 3), the T to G transition was observed in two family members The H10 proband (Male, age: 41years) had an affected offspring who was deceased subsequently to this study. The proband's parents are consanguineous and his mother died of cardiac arrest. The proband's brother had also carried this mutation and his daughter died unexpectedly at the age of 18 years.

15512 ins T mutation:

The intronic mutation in PLN gene was observed in one dilated cardiomyopathy patient and in his family members (Figure 4). The D15 proband (Male, age: 37 years) who carried this mutation has an affected father (66 years). The proband's father's brother died of sudden cardiac arrest at the age of 22 years. The mutation in their family members were in heterozygotic state and not found in unaffected.

Angiotensin-1-Converting Enzyme Gene Polymorphism

The present study reports on the molecular screening of a population of 109 unrelated index patients and 100 controls. Mutational screening was performed in one modifier gene Angiotensin-1-converting enzyme (ACE) i.e., zinc metallopeptidase widely distributed on the surface of endothelial and epithelial cells (27). When in demand, renin activity leads to the conversion of angiotensinogen to angiotensin I. ACE then converts angiotensin I to angiotensin II, which have been implicated in the modulation of cardiac growth (28). The human ACE gene is located on chromosome 17q23 and includes 26 exons. Polymorphism involving the presence (insertion I/I) or absence (deletion D/D) of a 287-basepair sequence of DNA in intron 16 of this modifier gene, encoding for ACE with differences in plasma ACE levels is examined in Cardiomyopathy patients (29). Table 4

illustrates variation in the genotype and allele frequency of the patient and control. Most notably the deletion homozygotes found to be higher in the patients. Also, the percent of heterozygote varied significantly among the two groups. Similarly, the deletion allele frequency was considerably higher in patients about 60% than controls (44%). The chi square value in patients and controls was 0.109 and 1.148 respectively. The genotypes DD vs ID, DD vs II, ID vs II, DD + ID vs II, DD vs ID + II and D vs I was taken for the odds ratio comparison. All the odds ratio values were higher than the threshold value of 1. The odds ratio was highest for the genotype DD vs II (3.82) with a x2 value of 10.59. This was followed by DD + ID vs II and ID vs II genotypes having an odds ratio of 2.79 (χ 2 =8.60) and 2.27 (χ 2=4.48) respectively. The DD vs ID genotype comparison had an odds ratio of 0.60 (χ 2 =1.94). It should be noted that the χ 2 value is taken to evaluate the significance of the genotypes. Patients with D allele tend to be a higher risk and modify the disease pattern when compared with I allele. The odds ratio was found out to be 1.14 with a $\chi 2$ value 12.09. In Table 5 the chi square and the odds ratio values were calculated to prove the significance of the genotype of patients and reference to the control.

308

307

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

309310

311

312

313

314

DISCUSSION

Cardiomyopathies are diseases of the heart muscle and a cause of concern. They exhibit a wide spectrum in disease onset, manifestation as well as in progression (30). Significant differences were observed for age and sex ratio between control and patients with

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

cardiomyopathy. Mean age of diagnosis was higher in the patient data of the present study than in studies of HCM and DCM previously reported (31,32). This may be due to mutation carriers screened in a predictive setting represent an asymptomatic subgroup within the total population of affected. Besides age, gender was an important cofactor in the clinical manifestation of HCM and DCM (33). The cardiomyopathy patients of the present study were characterized with significant increase in atrial natriuretic peptide and brain natriuretic peptide, which were correlated with left ventricular ejection fraction, mean pulmonary arterial pressure and pulmonary artery wedge pressure. Present data provides evidence that ANP and BNP are the best indicators for heart failure in cardiomyopathy patients. An elevated mean diastolic blood pressure (81.41 ± 4.76) and systolic blood pressure (125.0 ± 9.17) were observed in cardiomyopathy patient's data of the present study. A higher diastolic and systolic blood pressure has been observed in Caucasians (34), Chinese (35) and Japanese (36) origin. Phospholamban is an inhibitor of endogenous sarcoplasmic reticulum calcium ATPase in dephosphorylated condition. It plays a regulatory role in the calcium handling during the process of cardiac contraction/relaxation. Mutations in this gene shown to associate with elevated cytosol calcium concentration. Phospholamban is phosphorylated by protein kinase A to increase the reuptake of calcium into sarcoplasmic reticulum (37,38,39). Besides dilated cardiomyopathy though this is the first report to show Phospholamban gene mutation associated with hypertrophic cardiomyopathy, none of the all identified mutations falls neither within the coding region nor at conserved domain. Similar to this study there are few other studies had shown flanking regions and promoter variants of PLN associated with DCM/heart failure and HCM (40, 41). Alternatively, there are reports

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

that show no associations (42,43). It is possible that PLN gene mutations can express at a lower level leading to a smaller pathogenic effect during sixth decade of life in these individuals. Contrastingly two familial cases showed mutation of PLN (4887 T/G) possibly decrease the transcriptional activity of promoter and associated with hypertrophic cardiomyopathy. The mutation that is located near the promoter region has been defined as the fragment with maximal transcriptional activity (44). The increase or the decrease in phospholamban activity due to the disruption around the promoter region can lead to cardiomyopathy (41). Some carriers do not exhibit clinical conditions and mutation may be due to other genetic and environmental factors. This study concludes that PLN gene mutations are not frequent cause of hypertrophic or dilated cardiomyopathy in Indian population. Although similar data were lacking, it was observed that Indians show a greater variation and this may be due to the polymorphism in ACE gene (modifier gene). Further, role of a dual peptide system viz., brain, and atrial natriuretic peptides in sodium balance and blood pressure regulation in those patients cannot be ruled out (45). Angiotensin-1-converting enzyme gene insertion/deletion (I/D) polymorphism is considered as an important modifier gene, which may influence the clinical phenotype of the cardiovascular disorders (46). The present data revealed that the frequencies of the DD genotype and D allele were significantly higher in patients compared with controls, and were associated with increased risk of HCM and DCM. Furthermore, regression analysis revealed that the genotypes DD and D allele were independent risk factors for these cardiomyopathies in Indian population. Patients with the DD genotype had the highest odds ratio of disease susceptibility and the subjects with II genotype have a lower risk of developing

cardiomyopathies that may possibly through a cardio protective effect. The D allele compared with I allele has more than 25 percent increased risk to cardiomyopathy. On comparison, the prevalence of D allele in the present study (Indian population) was slightly higher (about 60%) than Tunisian and Turkish populations (47,48). Association of DD genotype / D allele with HCM and DCM have been reporting in many studies (49,50) and the polymorphism considered as a modifier gene marker to cardiomyopathy. The DD genotype was also found to be associated with hypertension, restenosis, diabetes and myocardial infarction (51,52). However, absences of association (53,54) or influencing the cardiac phenotype (55) were reported in few other studies. These variations were partly accounted for ethnicity of the patients and to the sampling of the patients (56, 57).

CONCLUSION:

Among the two types of cardiomyopathies; dilated cardiomyopathy (73%) was found to be most predominant, whereas hypertrophic cardiomyopathy accounts for 27%. In general, increased male predominance (73%) was observed in both the types of cardiomyopathies. Familial occurrence was in 24% of the patients, parental consanguinity was 14% and 30% had family history of sudden cardiac death. Diastolic blood pressure of the cardiomyopathy patients was significant (p<0.05) than the systolic blood pressure and heart rate. Also, they were characterized with higher Atrial Natriuretic Peptide and Brain Natriuretic Peptide (p<0.001). Contrastingly co-morbid factors and other enzymes did not show much influence between patients and control subjects. Mutation screening of phospholamban gene revealed two transitions (4880 C/T, 4887 T/G) in 5' flanking region. Among them 4887 T/G transition was inherited in a hypertrophic cardiomyopathy

patient's family. Two transitions (5073 T/G, 5076 A/T) in exon 1 and two transitions (15507 C/G, 15516 T/C) and an insertion (15512 T ins) in intron 1 were observed. Mutations located near to the promoter region have been defined as the fragment with maximal transcriptional activity. Mutations of this gene cause inherited dilated cardiomyopathy with refractory congestive heart failure. The protein is involved in blood circulation, and calcium ion transportation. No mutations occurred in the coding region of this gene so there is no change in the protein sequence consequently. Mutations located close to the promotor region have been defined as the fragment with maximal transcriptional activity. The increase or decrease in phospholamban activity due to the disruption around the promoter region can lead to cardiomyopathy. No mutations were observed in control subjects. Further, the deletion allele frequency of angiotensin-1- converting enzyme was considerably higher in cardiomyopathy patients (61.5%) than the control subjects (44%).

Availability of data and materials:

All data relevant to the findings are available in this paper. We are bound by the participant consent which precludes data deposition in repositories. Further non-identifiable data is available upon request to **Dr. N. Gnana Veera Subhashini**

(dr.ngvsubhashini@bcgrc.com)

Funding

- This work was Self-funded.
- 405 All data generated or analyzed during this study are included in this published article.

406 Authors' contributions

GVS, MJ, BSL, EC and KMC made substantial contributions to conception and design of the experiments, or to acquisition, analysis, or interpretation of the data; GVS, EC and KMC were involved in drafting or critically revising the manuscript for important intellectual content; BSL and GVS gave final approval of the version to be published. All authors agree to be accountable for all aspects of the work, and will ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript.

Consent for publication

- The authors declare that they have received consent from study subjects/Participants for
- 416 publication.

407

408

409

410

411

412

413

414

420

417 Competing interests

- The authors declare that they have no competing interests in relation to this manuscript
- 419 or this study.

421 **REFERENCES**:

- 1 Towbin, Jeffrey A. "Inherited Cardiomyopathies." Circulation Journal, vol. 78, no. 10,
- 423 2014, pp. 2347–2356., doi:10.1253/circj.cj-14-0893
- 424 2 Maron, B J. "Contemporary Considerations for Risk Stratification, Sudden Death and
- 425 Prevention in Hypertrophic Cardiomyopathy." *Heart*, vol. 89, no. 9, 2003, pp. 977–978.,
- 426 doi:10.1136/heart.89.9.977.
- 427 3 Jacoby, D., and W. J. Mckenna. "Genetics of Inherited Cardiomyopathy." *European*
- 428 *Heart Journal*, vol. 33, no. 3, 2011, pp. 296–304., doi:10.1093/eurheartj/ehr260.

- 429 4 Vinten-Johansen, Jakob, et al. "Inflammation, Proinflammatory Mediators and
- 430 Myocardial Ischemiaâ Reperfusion Injury." Hematology/Oncology Clinics of North
- 431 *America*, vol. 21, no. 1, 2007, pp. 123–145., doi:10.1016/j.hoc.2006.11.010.
- 432 5 Codd MB, Sugrue DD, Gersh BJ. Epidemiology of idiopathic dilated and hypertrophic
- cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984.
- 434 Circulation. 1989; 80(3):564-72.
- 435 6 Maron BJ, Wolfson JK, Epstein SE, Roberts WC. Intramural ("small vessel") coronary
- artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986; 8(3):545-57
- 7 Schwartz. W.M; Louis M Bell Jr., Peter M Bingham; Esther K Chung
- et al., The 5-Minute Pediatric Consult, Fifth Edition, Lippincott Williams & Wilkins, March
- 439 2008; ISBN 0-7817-7577-9
- 440 8 Hershberger, Ray E, et al. "Clinical and Genetic Issues in Dilated Cardiomyopathy: A
- Review for Genetics Professionals." *Genetics in Medicine*, vol. 12, no. 11, 2010, pp. 655–
- 442 667., doi:10.1097/gim.0b013e3181f2481f.
- 9. Meyer, Sven, et al. "Sex Differences in Cardiomyopathies." *European Journal of Heart*
- 444 Failure, Wiley-Blackwell, 16 Jan. 2014, onlinelibrary.wiley.com/doi/10.1002/ejhf.15/full.
- 10. Maron BJ, Wolfson JK, Epstein SE, Roberts WC. Intramural ("small vessel") coronary
- artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986; 8(3):545-57
- 11. McMurray, John J. V., et al. "Baseline Characteristics and Treatment of Patients in
- 448 Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and
- 449 Morbidity in Heart Failure Trial (PARADIGM-HF)." European Journal of Heart Failure,
- Wiley-Blackwell, 3 June 2014, onlinelibrary.wiley.com/doi/10.1002/ejhf.115/abstract.

- 451 12. Bui, A L, et al. "Epidemiology and Risk Profile of Heart Failure." *Nature Reviews*.
- 452 Cardiology., U.S. National Library of Medicine, Jan. 2011,
- 453 <u>www.ncbi.nlm.nih.gov/pubmed/21060326</u>.
- 13. Oxenoid, K., Chou, J. J. The structure of phospholamban pentamer reveals a channel-
- like architecture in membranes. Proc. Nat. Acad. Sci. 2005; 102: 10870-10875
- 456 14. McTiernan, C. F., Frye, C. S., Lemster, B. H., Kinder, E. A., Ogletree-Hughes, M. L.,
- 457 Moravec, C. S., Feldman, A. M. The human phospholamban gene: structure and
- 458 expression. J. Molec. Cell Cardiol. 1999; 31: 679-692
- 459 15. MacLennan, D.H., Kranias, E.G. Phospholamban: a crucial regulator of cardiac
- 460 contractility. Nat Rev Mol Cell Biol 2003; 4: 566-577.
- 461 16. Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, Kranias EG,
- 462 MacLennan DH, Seidman JG, Seidman CE. Dilated cardiomyopathy and heart failure
- caused by a mutation in phospholamban. Science, 2003; 299:1410-1413.
- 464 17. Eric. "Susceptibility Genes and Modifiers for Cardiac Arrhythmias | Cardiovascular
- Research | Oxford Academic." *OUP Academic*, Oxford University Press, 15 Aug. 2005,
- 466 academic.oup.com/cardiovascres/article/67/3/397/505703/Susceptibility-genes-and-
- 467 modifiers-for-cardiac.
- 468 18. Fatkin1, Diane, and Christine E. Seidman4. "Diane Fatkin." Cold Spring Harbor
- 469 Perspectives in Medicine, 1 Jan. 1970,
- 470 perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a021063.
- 471 19. Marian, AJ. "Modifier Genes for Hypertrophic Cardiomyopathy." Current Opinion in
- 472 *Cardiology*, europepmc.org/articles/PMC2775140.

- 473 20. Rudnicki, Michael, and Gert Mayer. "Significance of Genetic Polymorphisms of the
- 474 Reninâ Angiotensinâ Aldosterone System in Cardiovascular and Renal
- 475 Disease." *Pharmacogenomics*, vol. 10, no. 3, 2009, pp. 463–476.,
- 476 doi:10.2217/14622416.10.3.463.
- 21. Charron P, Komajda M. Are we ready for pharmacogenomics in heart failure? Eur J
- 478 Pharmacol. 2001; 417:1-9
- 479 22. Heribert Schunkert, Hans-Werner Hense, Stephan R et al., "Association between a
- 480 Deletion Polymorphism of the Angiotensin-Converting-Enzyme Gene and Left Ventricular
- 481 Hypertrophy NEJM." New England Journal of Medicine,
- 482 <u>www.nejm.org/doi/10.1056/NEJM199406093302302</u>.
- 23. Lahiri DK, Schnabel B. DNA isolation by a rapid method from human blood samples:
- 484 effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality.
- 485 Biochem Genet. 1993; 31: 321–328.
- 486 24. Susumu Minamisawa, Yoji Sato, Yuriko Tatsuguchi, Tomofumi Fujino, Shinichiro
- 487 Imamura, Yoshio Uetsuka, Makoto Nakazawa and Rumiko Matsuoka. Mutation of the
- 488 phospholamban promoter associated with hypertrophic cardiomyopathy Biochemical and
- 489 Biophysical Research Communications. 2003; 304.
- 490 25. Rigat, B., Hubert, C., Alhenc-Gelas, F et al., An insertion/deletion polymorphism in
- 491 the angiotension I-converting enzyme gene accounting for half the variance of serum
- 492 enzyme levels. J. Clin. Invest., 1990; 86, 1343–1346.
- 493 26. Zhang, Ling, et al. "Interaction of Angiotensin I-Converting Enzyme Insertion-Deletion
- 494 Polymorphism and Daily Salt Intake Influences Hypertension in Japanese

- 495 Men." Hypertension Research, vol. 29, no. 10, 2006, pp. 751–758.,
- 496 doi:10.1291/hypres.29.751.
- 497 27. RÃcken, Christoph, et al. "The Gene Polymorphism of the Angiotensin I-Converting
- 498 Enzyme Correlates with Tumor Size and Patient Survival in Colorectal Cancer
- 499 Patients." *Neoplasia*, vol. 9, no. 9, 2007, pp. 716–722., doi:10.1593/neo.07418.
- 500 28. Sparks, Matthew A., et al. "Classical Renin-Angiotensin System in Kidney
- 501 Physiology." Comprehensive Physiology, 2014, pp. 1201–1228.,
- 502 doi:10.1002/cphy.c130040.
- 29. Leońska-Duniec, A, et al. *Biology of Sport*, Institute of Sport in Warsaw, Sept. 2016,
- 504 www.ncbi.nlm.nih.gov/pmc/articles/PMC4993135/.
- 505 30. Sisakian, Hamayak. "Cardiomyopathies: Evolution of Pathogenesis Concepts and
- 506 Potential for New Therapies." World Journal of Cardiology, Baishideng Publishing Group
- 507 Inc., 26 June 2014, www.wignet.com/1949-8462/full/v6/i6/478.htm.
- 31. Elliott PM et al. Sudden death in hypertrophic cardiomyopathy: identification of high
- 509 risk patients. J Am Coll Cardiol. 2000; 36: 2212–2218
- 510 32. Biagini E et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy:
- 511 prevalence, incidence, risk factors, and prognostic implications in pediatric and adult
- 512 patients. J Am Coll Cardiol. 2005; 46: 1543–1550
- 33. Christiaans I, Erwin Birnie, Irene M. van Langen et al, The yield of risk stratification
- for sudden cardiac death inhypertrophic cardiomyopathy myosin-binding protein C gene
- 515 mutation carriers: focus on predictive screening. Eur Heart J. 2010; 31 (7): 842-848.
- 34. Rossi A, Cicoira M, Golia G, Anselmi M, Zardini P. Mitral regurgitation and left

- ventricular diastolic dysfunction similarly affects mitral and pulmonary vein flow Doppler
- 518 parameters: the advantage of end-diastolic markers. J Am Soc Echocardiogr. 2001;
- 519 14(6):562-8.
- 35. Fung DC, Yu B, Littlejohn T, Trent RJ. An online locus-specific mutation database for
- familial hypertrophic cardiomyopathy. Hum Mutat. 1999; 14: 326-32.
- 36. Sugimoto K, Katsuya T, Ohkubo T, Hozawa A et al, Association between angiotensin
- 523 II type 1 receptor gene polymorphism and essential hypertension: the Ohasama Study.
- 524 Hypertens Res. 2004; 27(8):551-6.
- 525 37. Kranias EG, Bers DM. Calcium and cardiomyopathies. Subcell Biochem, 2007; 45:
- 526 **523 537**.
- 38. Traaseth NJ, et al. Structural and dynamic basis of phospholamban and sarcolipin
- inhibition of ca(2+)-ATPase. Biochemistry. 2008; 47:3–13.
- 39. Vafiadaki E, Demetrios A. Arvanitis, Stamatis N. Pagakis, Vasiliki Papalouka, Despina
- 530 Sanoudou, Aikaterini Kontrogianni-Konstantopoulos and Evangelia G. Kranias. The Anti-
- 531 apoptotic Protein HAX-1 Interacts with SERCA2 and Regulates Its Protein Levels to
- 532 Promote Cell Survival. Mol. Biol. Cell. 2009; vol. 20 no. 1 306-318.
- 533 40. Medin M, Hermida-Prieto M, Monserrat L, Laredo R, Rodriguez-Rey JC, Fernandez
- 534 X, Castro-Beiras A.Mutational screening of phospholamban gene in hypertrophic and
- idiopathic dilated cardiomyopathy and functional study of the PLN -42 C>G mutation. Eur
- 536 J Heart Fail. 2007; Jan; 9(1): 37-43.
- 41. Haghighi K, Chen G, Sato Y, Fan GC, He S, Kolokathis F, Pater L, Paraskevaidis I,
- Jones WK, Dorn GW 2nd, Kremastinos DT, Kranias EG. A human phospholamban

- 539 promoter polymorphism in dilated cardiomyopathy alters transcriptional regulation by
- 540 glucocorticoids. Hum Mutat. 2008; (5):640-7.
- 42. Kalemi T, Efthimiadis G, Zioutas D, Lambropoulos A, Mitakidou A, Giannakoulas G,
- Vassilikos V, Karvounis H, Kotsis A, Parharidis G and Louridas G. Phospholamban gene
- 543 mutations are not associated with hypertrophic cardiomyopathy in a Northern Greek
- 544 population. Biochem Genet. 2005; 43(11-12):637-42
- 545 43. Santos GB Diogo, Alessandra Medeiros, Patrícia C Brum, José G Mill, Alfredo J
- 546 Mansur, José E Krieger and Alexandre C Pereira. No evidence for an association
- 547 between the 36A>C phospholamban gene polymorphism and a worse prognosis in heart
- failure. BMC Cardiovasc Disord. 2009; 9: 33.
- 549 44. Simmerman, H. K. B., and L. R. Jones. Phospholamban: protein structure,
- mechanism of action, and role in cardiac function. Physiol. Rev. 1998; 78:921–947
- 45. Buckley MG, Markandu ND, Sagnella GA, MacGregor GA. Brain and atrial natriuretic
- 552 peptides: a dual peptide system of potential importance in sodium balance and blood
- pressure regulation in patients with essential hypertension. J Hypertens. 1994; 27:809-
- 554 13.
- 46. Candy GP, Skudicky D, Mueller UK, Woodiwiss AJ et al., Association of left ventricular
- 556 systolic performance and cavity size with angiotensin-converting enzyme genotype in
- idiopathic dilated cardiomyopathy. Am J Cardiol. 1999; 83: 740-4.

- 47. Rai TS, Dhandapany PS, Ahluwalia TS et al. ACE I/D polymorphism in Indian patients
- with hypertrophic and dilated cardiomyopathy. Molecular and cellular biochemistry 2008;
- 560 311(1-2): 67-72.
- 48. Mahjoub S, Mehri S, Bousaada R, Ouarda F, Zaroui A et al, Association of ACE I/D
- 562 polymorphism in Tunisian patients with dilated cardiomyopathy. Journal of Renin-
- Angiotensin-Aldosterone System. 2010 vol. 11 no. 3 187-191.
- 49. Raynolds MV, Bristow MR, Bush EW, Abraham WT et al, Angiotensin-converting
- 565 enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy.
- 566 Lancet. 1993; 342:1073–1075.
- 567 50. Kawaguchi H. Angiotensin-converting enzyme and angiotensinogen gene
- polymorphism in hypertrophic cardiomyopathy. Exp Clin Cardiol. 2003; 8(3): 155–159.
- 569 51. Dzau, V. J. Cell biology and genetics of angiotensin in cardiovascular disease. J.
- 570 Hypertens. 1994; 12, 3-10.
- 571 52. Gardemann, A., Fink, M., Sticker, J., Nguyen, Q. D., Humme, J., Katz, N et al., ACE
- 572 I/D polymorphism: presence of the ACE D allele increases the risk of coronary artery
- 573 disease in younger individuals. Atherosclerosis. 1998; 139, 153-159.
- 574 53. Montgomery HE, Keeling PJ, Goldman JH, Humphries SE, Talmud PJ, McKenna WJ.
- 575 Lack of association between the insertion/deletion polymorphism of the angiotensin
- 576 converting enzyme gene and idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1995;
- *577* **25:1627-1631**.
- 578 54. Yamada Y, Ichihara S, Fujimura T, Yokota M. Lack of association of polymorphisms
- of the angiotensin converting enzyme and angiotensinogen genes with nonfamilial
- 580 hypertrophic or dilated cardiomyopathy. Am J Hypertens 1997; 10: 921-928.

- 581 55. Mahjoub S, Mehri S, Bousaada R, et al. Association of ACE I/D polymorphism in
- 582 Tunisian patients with dilated cardiomyopathy. Journal of the Renin-Angiotensin-
- 583 Aldosterone system. 2011; 11(3): 187-191.
- 584 56. Wang, P., Zou, Y., Fu, C. Y., Zhou, X., Hui, R. MYBPC3 polymorphism is a modifier
- 585 for expression of cardiac hypertrophy in patients with hypertrophic cardiomyopathy.
- 586 Biochem. Biophys. Res. Commun. 2005; 329: 796-799.
- 587 57. Pfohl, M., Koch, M., Prescod, S., Haase, K. K., Haring, H. U. and Karsch, K. R.
- 588 Angiotensin I- converting enzyme gene polymorphism, coronary artery disease and
- myocardial infarction. An angiographic ally controlled study. Eur. Heart J. 1999; 20, 1318-
- 590 1325.

593

594

591

Table 1. Baseline, Hemodynamic and Biochemical Characteristics

Characteristics	Cases n=109	Control	Cases vs Control P	
		n=100	value	
Age, Yrs	37.22 ± 12.43	40 ± 12.65	0.111	
Gender			ı	
Male, n	73	52	0.034*	
Female, n	36	48		
Parental Consanguinity, n	15(13.76)	9	0.386	
(%)				
BMI (kg/m2)	24.65 ± 4.08	23.76 ± 3.33	0.085	

BSA (m2)	1.79 ± 0.17	1.84 ± 0.75	0.515
Sys BP (mmHg)	125.0 ± 9.17	120.0 ± 14	0.003*
Dys BP(mmHg)	81.41 ± 4.76	78.0 ± 10.0	0.002*
Heart Rate (beats/min)	74.06 ± 4.08	72.3 ± 4.5	0.004*
Familial status, n (%)	26(23.85)		
F/H of SCD, n (%)	33(30.28)		
NYHA			
Class I, II, n %)	37(33.94)		
Class III, IV, n (%)	72 (66.06)		
ANP (pg/ml))	130.21 ±	21.9 ±17.6	<0.001
	24.67		
BNP (pg/ml)	110.36	8.12 ± 8.08	<0.001
	±110.12		
CpK ≥ 37U/L, n (%)	26(23.85)	21	0.74
SGOT ≥ 13U/L, n (%)	35(32.11)	20	0.059
SGPT ≥ 17U/L, n (%)	32(29.36)	30	1
Glucose (mg/dl))	96.16 ± 8.0	95 ± 7	0.265
Urea (mg/dl)	27.36 ± 2.29	27.92 ± 4.12	0.232
Creatinine (mg/dl)	0.90 ± 0.32	0.84 ± 0.19	0.098
HTN, n (%)	31(28.44)	17	0.07
DM, n (%)	39(35.78)	27	0.183
Obesity, n (%)	22(20.18)	21	1

Current ad Ex-Smokers, n		64(58.72)	72	0.059	
(%)					
Current	and	Ex-	54(49.54)	56	0.406
Alcoholics, n (%)					

Data shown as Mean ± Standard deviation or number or number (%) F/H of SCD- Family history of sudden cardiac death, BMI- Body mass index, BSA- Body surface area, sys BP, Dys BP systolic, diastolic blood pressure, NYHA- New York heart association functional class, ANPAtrial natriuretic peptide, BNP- Brain natriuretic peptide, CpK-Creatine phosphokinase, SGOTSerum Aspartate transaminase, SGPT- Serum alanine transaminase, HTN- Hypertension, DMDiabetes Mellitus. P value is probability of chisquare with one degree of freedom of genotype frequencies in control and case datasets. *Pvalue<0.05, ** Pvalue<0.01, *** Pvalue<0.001.

Table 2 Clinical characteristics of Patients and control

Characteristics	DCM	HCM	Control
	n=80+47=127	n=29+23=52	n=100
LVESD(mm)	46.0 ± 6***	26 ± 7***	31 ± 5
LVEDD(mm)	71.5 ± 2***	69 ± 7***	52 ± 3
LVEF (%)	65 ± 6***	36 ± 7***	53 ± 7
FS (%)	39 ± 7**	38 ± 8	36 ± 7
IVST(mm)	18 ± 6***	11 ± 3***	8 ± 2

PWT(mm)	22 ± 5***	12 ± 2***	8 ± 2
LVMI (gm/m2)	106 ± 25***	106 ± 49***	61 ± 30
LV Volume/mass	0.77 ± 0.6***	0.18 ± 0.1***	0.30± 0.07
ratio (mL/gm)			
LVESV (ml)	127 ± 61***	38 ± 17*	32 ± 11
LVEDV (ml)	179 ± 7***	103 ± 37*	86 ± 24
LVOT	96 (75.59) **	39 (75)	57
gradient >20mmHg,			
n (%)			
E/A ratio	1.7 ± 1.1*	1.4 ± 0.9	1.3 ± 1
IVPG (mmHg)	1.1 ± 0.3***	1.4 ± 0.6*	1.6 ± 0.4
LAVI (ml/m2)	38 ± 14***	30 ± 9***	18 ± 7
QRS width (ms)	145 ± 11***	106 ± 14***	91 ± 16
PR (ms)	112 ± 11***	101 ± 9***	126 ± 8
Max QTc (ms)	434 ± 24***	455 ± 26***	400 ± 25

Data shown as Mean ± Standard deviation or number (%) LVESD- Left Ventricular End systolic diameter, LVEDD-Left ventricular end diastolic diameter, LVEF- Left ventricular ejection fraction, FS- Fractional shortening, IVST- Inter ventricular septal thickness, PWT-Posterior wall thickness, LVMI- Left ventricular mass index, LAVI- Left atrial volume index, LVOT- Left ventricular outflow tract, E/A ratio- early-to-late transmitral flow velocity, IVPG-Intraventricular pressure gradient. P value is probability of chi-square with one degree of

- 615 freedom of genotype frequencies in control and case datasets. *Pvalue≤ 0.05, ** Pvalue<
- 616 0.01, *** Pvalue< 0.001.

618

Table 3: Observed Nucleotide Changes in Phospholamban Gene

Nucleotide changes	Loci	Disease type	Familial case
4880 C/T	5' flanking region	DCM	No
4887 T/G	5' flanking region	HCM	Yes
5073 T/G	Exon1	DCM	No .
5076 A/T	Exon1	DCM	No
15507 C/G	Intron1	DCM	No
15512 ins T	Intron1	DCM	Yes
15516 T/C	Intron1	DCM	.No

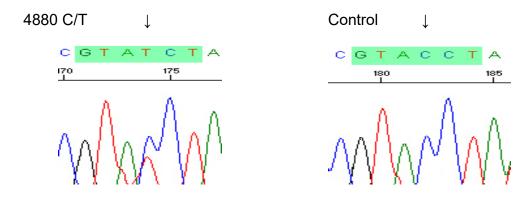
620 Table 4. Alu ACE1 Genotype and Allele frequencies in control and Patients with

621 cardiomyopathy

Subject	Genotype			Allele Frequencies		x ²
	II	ID	DD	1	D	
Control	34	44	22	0.56	0.44	1.148
Patients	17	50	42	0.385	0.615	0.109

Table 5. Frequency distribution of Alu ACE1 Genotype and allele frequency in

625 Control and Patients of cardiomyopathy


Case Vs	ж ²	Р	ODDs	95 % CI	
Control		value	Ratio		
ID vs DD	1.9358	0.1641	0.6	0.309 1.147	
DD vs II	10.589	0.0011	3.82	1.754 8.311	
ID vs II	4.4768	0.0344	2.27	1.118 4.619	
DD + ID vs II	8.6037	0.0034	2.79	1.437 5.408	
DD vs ID + II	5.9538	0.0147	2.22	1.207 4.092	
D vs I	12.088	0.0005	1.14	0.773 1.687	

The present study investigates the association of spectrum of clinical symptoms and the epidemiological variables like age, sex, familial status, and parental consanguinity. The current study also evaluates Angiotensin-1-Converting Enzyme gene polymorphism and its role as a marker / modifier in Cardiomyopathy.

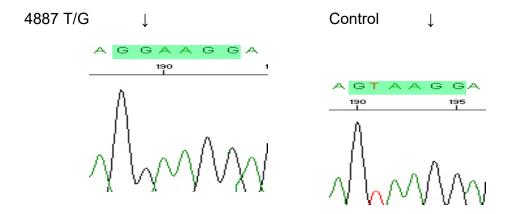
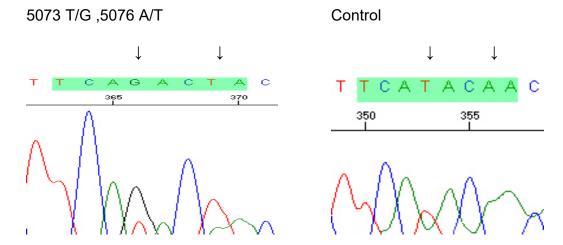
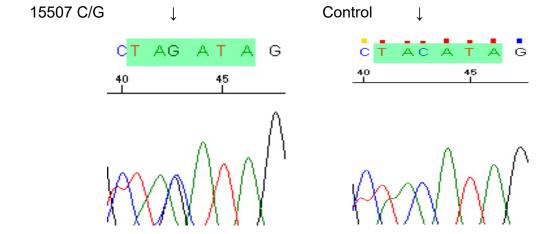
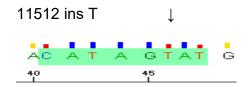
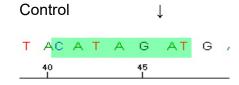

633

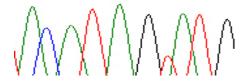
Figure 1: Chromatogram of Phospholamban Gene Mutation

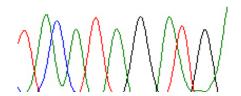

634 (a) Representative Chromatograms showing 4880 C/T


(b) Representative Chromatograms showing 4887 T/G

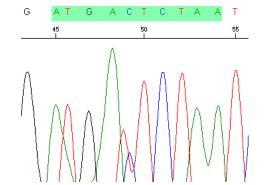

(C) Representative Chromatograms showing 5073 T/G, 5076 A/T

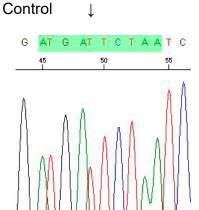



(d) Representative Chromatograms showing 15507 C/G



(e) Representative Chromatograms showing 15512 ins T





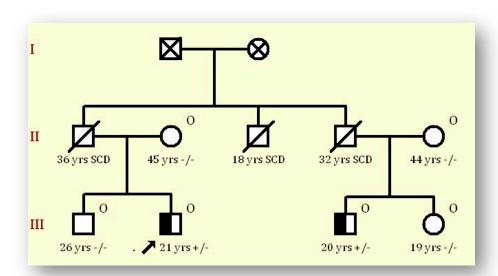
(f) Representative Chromatograms showing 15516 T/C

15516 T/C

638

635

636

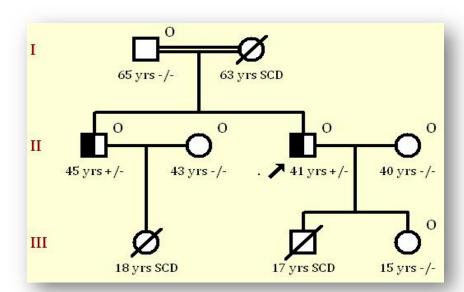

637

641

642

Figure 2: Pedigree of H9 proband with 4887 T→ G mutations in 5'flanking region of

PLN gene

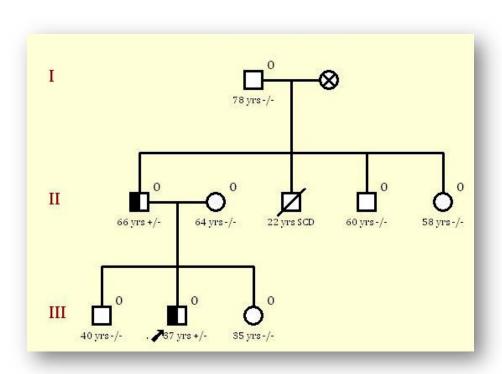


643

644

Figure 3: Pedigree of H10 proband with 4887 T→ G mutations in 5'flanking region

645 of PLN gene


Figure 4: Pedigree of D15 proband with 15512 ins T mutations in intron 1 of PLN

648 gene

649

647

650

Note: +/- presence of mutation in heterozygote state; -/- absence of mutation; \nearrow -

653 Proband;

651

o- Gene Sequenced; Age below each indicates age at investigation