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Abstract: Sea star wasting disease (SSWD) is a condition that has affected asteroids for over 120
years, yet mechanistic understanding of wasting etiology remains elusive. We investigated
temporal virome variation in two Pisaster ochraceus specimens that wasted in the absence of external
stimuli and two specimens that did not experience SSWD for the duration of our study, and
compared viromes of wasting lesion margin tissues to both artificial scar margins and grossly
normal tissues over time. Global assembly of all SSWD-affected tissue libraries resulted in 45 viral
genome fragments represented in >1 library. Genome fragments mostly matched densoviruses and
picornaviruses with fewer matching nodaviruses, narnaviruses and sobemoviruses. Picornavirus-
like and densovirus-like genome fragments were most similar to viral genomes recovered in
metagenomic study of other marine invertebrates. Read recruitment revealed only 2 picornavirus-
like genome fragments that recruited from only SSWD-affected specimens, but neither was unique
to wasting lesions. Wasting lesion margin reads recruited to a greater number of viral genotypes
(i.e. richness) than did either scar tissue and grossly normal tissue reads. Taken together, these data
suggest that no single viral genome fragment was associated with SSWD. Rather, wasting lesion
margins may generally support viral proliferation.
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1. Introduction

Sea star wasting disease (SSWD) describes a condition that has affected Asteroidea since at least
1898 [1] and is associated with periodic mass mortality, most recently as 2013-2014 [2]. The disease is
pathognomic (i.e. has no distinguishing signs), where grossly abnormal specimens experience loss of
turgor, abnormal limb twisting, epidermal lesions, body wall erosion, limb autotomy and in some
cases death (reviewed in [3]). The cause of SSWD is currently unknown. Early work suggested
association with a densovirus (the Asteroid ambidensovirus-1 [AaV-1]; also referred to as the “Sea
Star associated Densovirus” [SSaDV]), and experiments which challenged healthy specimens with
filtered tissue homogenates generated some SSWD signs [2, 4]. However, subsequent work found
that densoviruses, including AaV-1 / SSaDV, occur in diverse asteroid taxa globally [5, 6], and are
highly prevalent within communities inhabiting the northeast Pacific [6] and northwest Atlantic [7]
oceans. Recent investigations suggest that wasting response of asteroids to tissue homogenate
challenge could generate via non-pathogenic means (i.e. through organic matter enrichment resulting
in suboxic conditions through heterotrophic respiration) [8]. Other proposed mechanisms of wasting,
including repeated [9] and monotonic [10] temperature excursion, high pCO:2 conditions [11], and
low precipitation [5] have been hypothesized to influence SSWD. SSWD is not associated with any
eukaryotic microorganism nor bacterium [4, 5 12-14]. Microbiome studies during wasting
progression suggest a progressive enrichment of copiotrophic bacteria on surfaces and within tissues
[8, 12, 14] but none appear distinct only to affected specimens.

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202010.0171.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2020 doi:10.20944/preprints202010.0171.v1

RNA virome studies of SSWD to date have focused on snapshots of viral diversity comparing
grossly normal to wasting affected specimens. For example, comparisons of RNA viral composition
between disease states in Pycnopodia helianthoides found no RNA viral family consistently associated
with SSWD-affected specimens that were absent from grossly normal individuals [2]. Similarly, RNA
metavirome surveys of wasting Pisaster ochraceus discovered several candidate RNA viral genotypes
[5]. However, subsequent qPCR studies and read recruitment of these genotypes failed to yield
significant association with disease [4]. Hence, while RNA viruses occur in grossly normal
echinoderm specimens and wasting-affected asteroid specimens, their potential roles in SSWD
etiology are poorly resolved.

To further examine the role of viruses in SSWD, we observed time-course progression of wasting
in Pisaster ochraceus during a concurrent study in which specimens wasted in the absence of external
stimuli [8]. Histopathologic findings of SSWD indicate that affected body wall tissues experienced
ulceration, cleft formation and coelomocyte aggregation, along with necrosis and body wall
degradation [2, 4, 13, 14]. We focused our study on body wall lesions, since these are the most
conspicuous sign of SSWD, were the least subject to observer bias (c.f. deflation, limb curling), and
lesions generally precede limb autotomy or body wall erosion. We hypothesized that viral etiologic
agents would be would be present in wasting lesion margins, but absent in grossly normal tissues
well away from lesions on the same individual, and absent in asteroid specimens that remained
grossly normal during our study. Furthermore, we hypothesized that any SSWD-associated viral
agent would be absent in physical scar margins in either SSWD-affected or grossly normal specimens,
since these may be viruses that replicate during wound healing (c.f. cause pathogenesis). Our results
demonstrate that there were no viral genome fragments which recruited reads only from wasting
lesion margins in SSWD-affected asteroid specimens (i.e. all wasting lesion genome fragments also
recruited reads from scar tissue or control tissues). Rather, we found a progressive enrichment of
viral genotypes that recruited sequence reads in lesion margins over time in comparison to artificial
scar and grossly normal tissues, suggesting their prominence in prior metaviromic surveys may have
been independent of potential pathology.

2. Materials and Methods

Survey Design: Longitudinal survey of sea star wasting microbial ecology was performed in July
— August 2018 and reported in separate studies focusing on associated bacteria [8]. We collected six
Pisaster ochraceus specimens (mean mass 290 + 54 g and ray length 11.2 = 0.9 cm) from the intertidal zone
at Davenport, CA (37°1'19”N, 122°12'56”W) on 19 July 2018, which were transported in insulated
coolers to the Long Marine Laboratory at UC Santa Cruz and housed in flow-through aquaria indoors
in individual containers. After 48 h acclimation, a small scar (~ 5 mm long) was made on a single ray of
each specimen using a sterile 4 mm biopsy punch. Individual asteroids were monitored daily for the
presence of lesions (which were defined as non-focal loss of epidermal tissues revealing the underlying
body wall; see Fig. 1). After 72 h, artificial scar margin tissues (~ 3mm x 2mm) were collected using
sterile 4mm biopsy punches. New artificial scars were made on adjacent rays each day, and sampled
after each 24 h period. When wasting lesions were observed (the first wasting lesion was observed at
96 h), their margins were sampled following the same approach, and grossly normal tissues well away
(> 1cm) from the lesion collected at the same time for comparison. A photographic summary of natural
and wasting lesions is provided in Fig. 2. All tissue samples were placed into sterile 1.2 mL cryovials
and immediately frozen in liquid N2 or in a -80°C freezer.
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Figure 1. Gross examination of SSWD lesion on a Pisaster ochraceus specimen retrieved from
Davenport, CA at the time of sampling for this survey. A = grossly normal tissue; B = lesion margin;
C =lesion (underlying body wall tissues); D = papula and pedicellaria; E = paxilla (spine).
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Figure 2. Gross changes in Pisaster ochraceus observed in specimens used in viral metagenome
analyses over time, and detail (indicated by arrows) of wasting lesion and artificial scars sampled.

Viral Metagenome Preparation: We focused viral metagenomic analyses around four specimens -
two that developed wasting lesions and died during the experiment (hereafter referred to as “SSWD-
affected”), and two that remained grossly normal during the experiment (Table 1). Initial samples
(taken at 0 h) were prepared for viral metagenomics from all four specimens. Viral metagenomes from
SSWD-affected specimens were prepared from wasting lesion margin, artificial scar margin, and
control tissue samples away from artificial scars and wasting lesions at the time of lesion genesis (96
and 288 h for wasting-affected specimens # 1 and #2, respectively). In addition, viral metagenomes were
prepared from wasting lesion margin samples taken from the SSWD-affected specimens at the time of
death. Viral metagenomes were prepared from the two grossly-normal specimens at 0 h, and at 432 h
from artificial scar margin tissues and tissue samples collected away from artificial scars.

Table 1. Viral metagenomics library characteristics for Pisaster ochraceus wasting temporal assay.
Control = grossly normal tissue; Scar = artificial scar margin; Lesion = wasting lesion margin.

Library Specimen Name Date Tissue  Library Reads
Name Type Size Matching
(Reads) Viruses
SC1 SSWD-affected 1 22-Jul-18 Control 3,658,045 554,809
SC2 SSWD-affected 1 26-Jul-18 Scar 4,099,676 582,091
SC3 SSWD-affected 1 26-Jul-18 Control 3,592,838 597,395
SC4 SSWD-affected 1 26-Jul-18 Lesion 3,255,385 169,582
SC5 SSWD-affected 1 27-Jul-18 Lesion 3,443,200 871,889
SCé6 SSWD-affected 2 22-Jul-18 Control 4,948,712 1,007,543
SC7 SSWD-affected 2 04-Aug-18 Control 2,703,665 624,989
SC8 SSWD-affected 2 04-Aug-18 Scar 2,797,069 507,994
SC9 SSWD-affected 2 04-Aug-18 Lesion 3,678,615 1,306,746
SC10 SSWD-affected 2 06-Aug-18 Lesion 3,259,328 924,368
SC11 Grossly Normal 1 22-Jul-18 Control 2,954,408 2,349
SC12 Grossly Normal 1 09-Aug-18 Control 1,919,780 2,694
SC13 Grossly Normal 1 09-Aug-18 Scar 1,939,732 3,134
SC14 Grossly Normal 2 22-Jul-18 Control 3,273,980 3,851
SC15 Grossly Normal 2 09-Aug-18 Control 1,595,206 1,112
SC16 Grossly Normal 2 09-Aug-18 Scar 1,196,532 882

Tissue samples were prepared for viral metagenomics targeting RNA viruses as described
previously [15-17]. In addition to RNA viruses, we also examined densoviruses (i.e. ssSDNA) viruses
since they are also captured in libraries prepared using this approach [5]. Briefly, tissue samples were
homogenized in 2 mL of 0.02 um-filtered PBS by bead-beating (Zymo Bead Beaters), briefly centrifuged
at 3,000 x g for 30s to remove large particulate matter, and then filtered through 0.2 um filters
(Durapore) to remove cell debris. The resulting concentrate was treated with DNAse I (5 U; Thermo
Fisher Scientific), RNAse One (50 U; Promega) and Benzonase (250 U; Sigma-Aldrich) for 3 h at 37°C to
remove co-extracted free nucleic acids, before arresting enzyme activity with 50 uM virus-free EDTA.
Viral nucleic acids were extracted using the Zymo Viral RNA kit, before amplification using the
TransPlex Whole Transcriptome Amplification kit (Sigma Aldrich). Resulting products were
electrophoresed and quantified by Pico Green fluorescence. Samples were then submitted to
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Biotechnology Resource Center at Cornell University, where libraries were sequenced on 2 lanes of
INlumina MiSeq (2 x 250 bp paired-end) after TruSeq PCR-free library preparation. Sequence libraries
are available at NCBI under BioProject PRINA637333 and SRA accessions SRR11931172- SRR11931187.

Bioinformatic processing: Sequence libraries were initially trimmed for adapters and quality
(N<0.5). We used an assembly-read mapping approach to examine the presence and absence of viral
genome fragments between libraries. First, a global assembly of all 10 samples from SSWD-affected
specimens (Table 1) was performed using the CLC Genomics Workbench 4.0 (Qiagen) using a
minimum overlap of 0.5 and similarity of 0.8. The resulting contig spectra was aligned against several
boutique databases of RNA viruses, encompassing genomes and proteins of invertebrate viral groups,
by BLASTx and tBLASTx [18, 19] as described elsewhere [17]. Sequence matches against any of these
databases at an E-value<10-? were further aligned against the non-redundant (nr) library at NCBI by
BLASTX, and contigs discarded if they matched known bacterial or eukaryote proteins at a higher
percentage and lower E-value than viruses. The resulting contig spectra (here termed “viral genome
fragments”) were then subject to read recruitment independently across the 10 SSWD-affected
specimen libraries and the additional 6 libraries from grossly normal specimens. Viral genome
fragments that did not recruit reads from > 2 libraries or which recruited < 2 reads from libraries were
discarded from further analysis. Because we did not standardize template nucleic acid quantities nor
total viral abundance in amplification reactions, we were unable to gain quantitative insight into
representation during wasting progression [20]. Hence, our work focuses only on the presence of viral
genome fragments and their presence by read recruitment between viromes. Viral genome fragment
sequences are available at NCBI under accessions MW073776-MW(073820.

Statistical analyses: We analyzed the presence/absence of viral genome fragment recruits
between: grossly-normal and SSWD-affected specimens; between initial, wasting lesion, artificial scar,
and control tissues away from lesions/scars; and between timepoints on the same individual at the time
of lesion genesis and death by performing Fisher’s Exact test to address the hypothesis that the
recruitment to viral genome fragments in each specimen condition, tissue types, and sample time were
independent. The variation in read recruitment richness between tissue types (initial, grossly normal at
time of lesion genesis + conclusion of study, artificial scar at time of lesion genesis + conclusion of study,
and wasting lesion at time of genesis + death) was examined by performing pairwise Student’s t-tests
with Bonferroni correction to account for Type II error in multiple comparisons. All analyses were
performed in XLStat (AddinSoft GmBH).

3. Results and Discussion

Our temporal survey of virome composition during SSWD progression further advances
understanding that echinoderms, including asymptomatic individuals, harbor rich viral assemblages
but that there is little association between specific viral genotypes and wasting signs [5, 6]. Specimens
that wasted in our survey experienced loss of turgor, followed by the appearance of epidermal
lesions. Microscopic investigation (Fig. 1) showed that these were due to loss of epidermal tissues
exposing the underlying body wall. Grossly, lesion margins were unremarkable and were not
melanized. Between the time of first lesion appearance and animal death, SSWD-affected specimen
#2 autotomized a ray, while SSWD-affected specimen #1 experienced body wall erosions that allowed
internal organs (presumably pyloric caeca) to protrude. Wasting lesions were not grossly distinct to
artificial scars (Fig. 2).

3.1 Description of viruses recovered in viral metagenomes

Viral metagenomes prepared from 16 samples (Table 1) generated a total of 48,316,171 reads.
Assembly of the 10 SSWD-affected specimen libraries (35,436,533 reads) resulted in 96,778 contigs.
Of these, only 48 matched RNA or densoviral viral proteins or genomes by BLAST alignment (i.e.
viral genome fragments). Next, we recruited these against each of the 10 symptomatic libraries
separately, as well as to 6 asymptomatic specimen libraries. Fourty-five contigs recruited against >1
library, suggesting that most viruses inhabiting asteroid tissues are cosmopolitan between
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individuals within the Pisaster ochraceus population at the time of sampling. Viral contigs meeting
these criteria were mostly similar to Picornavirales (n =19 contigs), with fewer matches to Piccovirales
(Parvoviridae; Densovirinae; n = 18 contigs), Nodamuvirales (Nodaviridae; n = 6 contigs), Wolframvirales
(Narnaviridae; n =1 contig) and Sobelivirales (Solemoviridae; n =1 contig).

Picornaviruses (+ssRNA) feature prominently in most host-associated virome surveys [21-32]
and are ubiquitous in marine plankton as free particles [33-39]. Of the 19 picornairus-like genome
fragments recovered in this survey, 9 matched most closely to dicistroviruses (Dicistroviridae), 2 to
bacillarnaviruses (Marnaviridae), and 1 to caliciviruses (Caliciviridae) by BLASTx (Fig. 3). Furthermore,
contigs clustered with iflaviruses (Iflaviridae; contig 91247) and marnaviruses (Marnaviridae; contig
12092) by phylogenetic analyses (Fig. 4). Picornavirus-like genome fragments mostly matched viral
genomes recovered from transcriptomic surveys of marine invertebrates (mollusks and crustacea)
[21,40] and picoeukaryotes [41]. Picornaviruses have been previously recovered from asteroids [2,
5] and holothurians [17]. Since several genome fragments recovered in this survey matched most
closely picornaviruses recovered from protists[41], it is possible that they were associated with
protozoa associated with wasting tissues. Previous work has revealed the presence of presumably
fungal viruses and a wide richness of protistan rRNAs in metagenomes prepared from material
purified from < 0.2 um filtered tissue homogenates [17]. Picornaviruses have been recovered in
stressed marine metazoa [42, 43], cause mortality in protists (e.g. diatom viruses [44, 45]) and disease
in marine arthropods (e.g. Taura syndrome virus [46]). However, the wide diversity of picornaviruses
recovered from grossly normal specimens in field surveys [21] suggests that their role in disease,
especially in mass mortality settings, is unclear for most hosts.
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Figure 3. Maps of contiguous sequences matching Picornavirales recovered in this survey of Pisaster
ochraceus. Contigs were annotated based on BLASTx (e-value < 1 x 10?%) against the non-redundant
database at NCBI. The color of arrows (open reading frames) indicates the taxonomic identity of their
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Figure 4. Phylogenetic representations of Picornavirales-like genome fragments recovered from
Pisaster ochraceus. The trees were constructed based on a 98 amino acid (A) and 193 amino acid (D-E)
alignment of the RNA dependent RNA polymerase gene, a 187 amino acid alignment of the rhv-like
capsid domain (B) and a 160 amino acid alignment of the RNA helicase domain (C) and performed
separately for overlapping regions including best matches at NCBI. Trees were constructed by
Neighbor Joining and based on Jukes-Cantor distance. Bootstrap values > 50% (based on 1000
iterations) are indicated above nodes. The host identity is indicated by symbols next to branch labels.
An additional phylogenetic representations of each tree based on maximum likelihood is presented

in Supplemental Fig. 2.

Nodaviruses (+ssRNA) represent significant pathogens of marine vertebrates (reviewed in [47,
48]) and invertebrates [49] and are frequently recovered in grossly normal marine invertebrates [50-
53]. Six viral contigs matching most closely nodaviruses by BLASTx (Supplemental Fig. 1) were
recovered in our survey. Phylogenetic analyses placed these most similar to alphanodaviruses
recovered from cnidarians, nematodes and arthropods as part of transcriptomic viral discovery
efforts [21] (Fig. 5). Nodavirus-like genome fragments were identified in the asteroid Pycnopodia
helianthoides [2] and were present in wasting-affected Pisaster ochraceus libraries prepared from the
Olympic National Park in 2013 (NCBI BioProject SAMN15704856; tBLASTx e <1 x 10-%) [5], however
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were absent in a RNA viral metagenomic survey of holothurians [17]. Our observation of
alphanodavirus genome fragments in asteroids extend the known host range of the Nodamuuvirales.
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Figure 5. Phylogenetic representations of Nodamuvirales-like genome fragments recovered from

Pisaster ochraceus. The trees were constructed based on: a 234 amino acid alignment of the

methyltransferase domain (A); and a 101 amino acid (B-C) and 559 amino acid (D) alignments of the

RNA dependent RNA polymerase gene of the nodavirus RNA1 genome fragment including best

matches at NCBI. Trees were constructed by Neighbor Joining and based on Jukes-Cantor distance.
Bootstrap values > 50% (based on 1000 iterations) are indicated above nodes. The host identity is
indicated by symbols next to branch labels. An additional phylogenetic representation of each tree

based on maximum likelihood is presented in Supplemental Fig. 3.

Densoviruses (Piccovirales; Parvoviridae, ssSDNA) have been previously recovered from marine
arthropods (reviewed in [54, 55]), mollusks [56, 57], a tunicate [58] and echinoderms [2, 5-7].
Densoviruses are associated with mussel [57] and asteroid ([2] but see [6]) mass mortality. Contigs
matching densoviral proteins and genomes recovered in this survey bore primarily structural ORFs
and ORFs bearing the non-structural (NS; i.e. replication-associated protein) 1 regions, with fewer
NS2 and NS3 regions (Fig. 6). Genome fragments bearing both structural and non-structural regions
(n = 3) bore ambisense genome architecture, suggesting these belonged to the Ambidensovirus genus
to which almost all known marine invertebrate densoviruses belong [2, 6, 7, 56, 59]. Alignment of
structural (coat protein) placed detected densovirus genome fragments within the ambidensovirus

genus (Fig. 7). Importantly, we did not recover any genome fragment bearing > 85 % nucleotide

identity to Asteroid ambidensovirus 1 (i.e. SSaDV).
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Figure 6. Map of densovirus-like genome fragments recovered from Pisaster ochraceus from
Davenport, CA in July 2018. The length of contig is given by the solid black line running through open
reading frames (ORFs; indicated by arrows). The color of arrow indicates the top BLASTx match to
the non-redundant database at NCBI, and e-value of the match given above each ORF.
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Figure 7. Phylogenetic representations of Densovirinae-like genome fragments recovered from Pisaster
ochraceus. The trees were constructed based on: a 103 amino acid alignment of the structural (coat
protein) gene; a 83 amino acid of the non-structural 1 (NS1) gene; a 112 amino acid of the NS2 gene;
and a 111 amino acid of the NS3 gene. Phylogenetic representations include best matches by BLASTx
against the non-redundant database at NCBI. Trees were constructed by Neighbor Joining and based
on Jukes-Cantor distance. Bootstrap values > 50% (based on 1000 iterations) are indicated above
nodes. The host identity is indicated by symbols next to branch labels. An additional phylogenetic
representation of each tree based on maximum likelihood is presented in Supplemental Figs. 4.
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We also recovered two genome fragments matching a narnavirus (Behai narna-like virus 7 NCBI
APG77081.1; BLASTx against nr database e-value = 6 x 10-*) which was recovered from a razor shell
bivalve (presumably Pharidae [21]) and a sobemovirus (Solemoviridae; Rice Yellow Mottle Virus NCBI
CAES81305.1; BLASTx against nr database evalue = 1 x 10-%%) [60]. These likely represent viruses of
fungi and plants, respectively. Narnaviruses cause asymptomatic infections in fungi. In Rhizopus
microspores, narnaviruses promote sexual reproduction and suppress asexual reproduction in concert
with a third endosymbiotic member, the bacterium Mycetohabitans spp. [61]. Sobemoviruses cause a
wide range of plant diseases, including mottles and mosaics (reviewed in [62]). Both are unlikely to
infect echinoderm cells and instead likely infected microbiome constituents.

3.2 Analysis of virome association with Sea Star Wasting Disease

Of 45 viral genome fragments recovered in this survey, all recruited reads from SSWD-affected
asteroids, but only 37 genome fragments recruited reads from grossly normal specimens (Fig. 8).
All but 3 of the 45 genome fragments recruited reads from all tissue types. Only two genome
fragments (contigs 12092 and 12093), both Picornavirales (putatively assigned to Marnaviridae and
Dicistroviridae) recruited reads only from SSWD-affected specimen libraries (Table 2). However, both
genome fragments did not uniquely recruit from wasting lesion margin libraries and also recruited
reads from artificial scar margin and control tissue libraries. Recruitment to nodavirus-like contig
91444 was significantly associated with wasting lesion margins (p = 0.019; Fisher’s Exact test), but
also recruited reads from artificial scar tissues in grossly normal star #1 at the survey conclusion (Tf).
Recruitment to contigs 88293 and 2401 (Densovirinae) and 12093 (Picornavirales) were significantly
associated with time of sampling (i.e. mostly present in later samples), but also recruited reads from
both grossly normal specimens and SSWD-affected specimens. Hence, our data do not support
association between any viral genome fragment recovered in this survey and SSWD since none was
unique to either wasting lesion margins or to SSWD-affected specimens.

The role of viruses in asteroid wasting etiology has been controversial. Early association between
the Sea Star Associated Densovirus (Asteroid ambidensovirus 1; AaV-1 [2]) was not supported by
subsequent work [5]. The discrepancy between studies was attributed to inaccurate primer design on
investigation outset (providing false positives as a result of a background of ambient densovirus
strains), the low numbers of individuals sampled, and presence of AaV-1 in asymptomatic
individuals. Further investigation of densoviruses in northwest Atlantic Ocean asteroids revealed the
presence of persistent infection by a related strain of AaV-1 (Asteroid ambidensovirus 2) [7], and
densoviruses have been recovered from asteroid tissue metagenome surveys elsewhere [5],
suggesting that densoviruses may be common constituents of the asteroid microbiome. Of the 19
densovirus genome fragments recovered in the survey presented in this work, all recruited reads
from >1 specimen, and 10 were detected in all 4 specimens. These results illustrate that densoviruses
may be cosmopolitan within Pisaster ochraceus populations.
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Figure 8. Heat map of viral contig read recruitment across all libraries in non-wasted and wasted
asteroids. Dark cells = viral contig recruited reads from library, white cells = viral contig did not recruit
reads from library. TO = initial sample, Ti = time of lesion formation, Tf = experiment terminaton. C =
grossly normal tissue, S = artificial scar tissue, L = wasting lesion margin. Phylogeny determined by
family-level assignment based on nearest relative match (BLASTx) against non-redundant (nt)
database at NCBL
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Table 2. Fisher’s exact test results for viral contigs comparing condition (SSWD-affected vs grossly
normal), sampling time (initial, time of lesion formation, time of death or experiment termination),
and sample tissue type (control, artificial scar, wasting lesion). Only contigs returning any
significant (p< 0.05) result are reported.

p-value
Contig # Condition Time Sample Type
Contig 82293 ns 0.05 ns
Contig 2401 ns 0.023 ns
Contig 12092 0.001 ns ns
Contig 12093 0.003 0.022 ns
Contig 91444 ns ns 0.019

Interestingly, the number of viral genome fragments recruiting from natural lesion libraries was
significantly greater (p<0.008, Student’s t-test, df = 4) than both artificial lesion and control (i.e. away
from lesions on SSWD-affected specimens) tissues (Fig. 10). Previous work has noted taxonomic
variation in host-associated viral communities in response to stress. For example, Laffy et al [63]
examined the impacts of thermal stress on the sponge Rhopaloiedes odorabile and observed the
proliferation of Calimoviruses and Retroviruses relative to controls. Additionally, Grasis et al [64]
noted that the greatest viral diversity was observed in heat-stressed Hydra spp. when compared to
controls. Vega Thurber et al. [65] noted an increase in herpesvirus-like sequences in stressed corals.
While it is tempting to ascribe this result to enhanced susceptibility to opportunistic pathogens in
compromised cells, it is more likely that our observation relates to factors affecting viral replication
of normally asymptomatic viral infections. Viral replication in affected tissues is a complex
interaction with intracellular properties and environmental cues. All viral groups detected in this
study, including the Densovirinae, replicate in actively dividing host cells. Hence, the increase in viral
richness in affected tissues, which were not grossly hyperplastic (i.e. did not display gross signs of
rapid cell division), is surprising. Wound repair would presumably be associated with an increase in
gene transcription in affected tissues, which in turn cause rapid replication of viruses in infected cells.
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Figure 9. Richness of viral genome fragments recruiting reads from SSWD-affected and grossly
normal tissues (+SE) in viral metagenomes prepared from P. ochraceus during temporal study of
wasting. Significance (a,b) determined by Student’s t-test (p<0.008, df=4 with Bonferroni correction
for 6 tests). TO = initial sample, Ti = time of first lesion appearance, Tf = experiment termination.
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Recently we observed that SSWD is associated with a proliferation of copiotrophic bacteria near
and on their respiratory surfaces, concomitant with and followed by the presence of facultative and
strictly anaerobic bacterial taxa [8]. Additionally, SSWD susceptibility correlates with morphological
features which influence surface boundary layer extent and respiratory demand compared to
theoretical diffusion, which taken together are evidence that wasting is associated with suboxic
conditions at the animal-water interface [8]. O2 tension in cells triggers production of many viruses
[66]. For example, flaviviruses and nucleocytoplasmic large DNA viruses use hypoxia inducible
factors (HIF; genetic switches and genes that activate under hypoxic conditions), to stimulate
production [67-72]. Hence, suboxic stress may influence the proliferation of viruses in SSWD-affected
asteroids.

The greater richness of viral genome fragments that recruited reads in SSWD-affected tissues
may also relate to the proportion of contaminating co-extracted host nucleic acids in SSWD-affected
and grossly normal specimens. Total extracted DNA quantities decrease in affected specimens [20].
Viral nucleic acids, which may be more protected from enzymatic decay within capsids than host
RNAs, may become more pronounced when host tissues degrade. Hence, viral nucleic acids may
recruit more regularly to viral genome fragments solely because they comprise a greater proportion
of virome sequence space.

4. Conclusions

Our results illustrate that both grossly normal and SSWD-affected asteroids are associated with
RNA viruses which are similar tot hose recovered in metagenomic and metatranscriptomic surveys
of marine invertebrates performed elsewhere. SSWD in Pisaster ochraceus is not associated with any
specific viral genotype detected in this survey. Rather, wasting is associated with an increased
richness of viral genome fragments recruiting reads in affected tissues, which may be due to factors
influencing their replication or due to the balance between host and viral RNA in tissues. This work
provides additional evidence that densoviruses, and particularly the Asteroid ambidensovirus 1 is
not consistently associated with sea star wasting, and emphasizes the lack of association more
generally between viruses and SSWD. Our work raises interesting questions about the influence of
extrinsic factors, e.g. processes driving non-infectious diseases, in influencing the replication and
perhaps pathology of viruses in marine diseases.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Nodavirus-
like genome fragment contig map, Figure S2: Phylogenetic reconstruction of Picornavirales-like genome
fragments by Maximum Likelihood, Figure S3: Phylogenetic reconstruction of Nodamuravirales-like genome
fragments by Maximum Likelihood, Figure S4: Phylogenetic reconstruction of Piccovirales-like genome
fragments by Maximum Likelihood.
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