Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

Article

User Authentication and Authorization Framework in IoT
Protocols

Hasan Al-Refai and Ali Ahmad Alawneh

1. Faculty of IT-Department of CSIS, Philadelphia University; halrefai@philadelphia.edu.jo
2. Faculty of IT-Department of MIS, Philadelphia University
Correspondence: aalawneh@philadelphia.edu.jo

Abstract

The Internet of Things (10T) has become one of the most attractive domains nowadays. It works by creating a
special network between physical devices such as vehicles, home equipment, and other items. In recent days,
the common technologies of communication such as Wi-Fi and 2G/3G/4G cellular are insufficient for the 10T
networks because they are designed to serve appliances with immense processing capabilities such as laptops
and PCs. Moreover, most of these technologies are centralized and use an existing infrastructure. Currently, the
new communication technologies such as Z-Wave, 6LowPAN, and Thread are dedicated to the 10T and have
been developed to meet its requirements. These technologies can handle many factors such as range, data
requirements, security, power demands, and battery life. Nevertheless, the security issues in 0T systems have
major concerns and matters because vulnerabilities in such systems may result in fatal catastrophes. In this paper,
an enhanced loT security framework for authentication and authorization is proposed and implemented to protect
the 10T protocols from different types of attacks such as man-in-the-middle attack, reply attack, and brute force
attack. The proposed framework combines an enhanced token authentication that has identity verification
capabilities and a new sender verification mechanism on the 10T device side based on time stamp, which in turn
can mitigate the need for local identity verification methods in lIoT devices. The proposed loT security
framework is tested using security analysis with different types of attacks compared with previous related
frameworks. The analysis shows the high capability of the proposed framework to protect 10T networks against
many types of attacks compared with current available security frameworks. Finally, the proposed framework
is developed using

Keywords: Internet of Things; security protocol; authentication; authorization; networks

1. Introduction

Kevin Ashton introduced the term Internet of Things (IoT) in 1999. Since then, it has been growing rapidly, and
the number of installed 10T devices is expected to reach 38.6 billion at the end of 2025 according to Statista
(Statista, 2021). Another statistic shows that the number of loT-connected devices in 2017 was around 20 billion,
and it will be about 22 billion in 2018 and more than double in 2025 (Statista, 2021). 10T is defined as a network
of physical objects (sensors, actuators) that interact with one another to perform special tasks while maintaining
connectivity to Internet services to obtain stationary control and monitoring over the Internet (connect humans
with devices). The Internet is not only a network of computers but has evolved into a network of devices of all
type and sizes, vehicles, smartphones, home appliances, toys, cameras, medical instruments and industrial
systems, animals, people, and buildings that are all connected, communicating, and sharing information based
on stipulated protocols to achieve smart reorganizations, positioning, tracing, safety and control, and even
personal real-time online monitoring (De Donno et al., 2019). 10T can be classified into three categories, namely,
people to people, people to machine, and machine to machine (M2M), all interacting through the Internet. loT
conforms to a paradigm that considers pervasive presence in the environment of various things or objects that

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202208.0188.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

through wireless and wired connections and unique addressing schemes can interact with one another and
cooperate with other things or objects to create new applications and services to reach common goals. In this
context, the research and development challenges to creating a smart world are enormous. The importance of
I0T can be revealed by its wide range of applications, such as smart cities, smart workplaces, smart industries,
smart cars, and smart homes. The 10T environment consists of a considerable number of smart devices such as
sensors, actuators, and microcontrollers connected via different means of network communication such as
wireless and wired networks. Smart devices inside 10T can connect, transfer information, and decide on behalf
of people in a world where the real, the digital, and the virtual are converging to create smart environments that
make energy, transport, cities, and many other areas more intelligent. 10T is characterized by real-world small
things that are widely distributed and have limited storage and processing capacity, which involve concerns
regarding reliability, performance, security, and privacy. However, cloud computing is considered the backbone
of 10T technology because it relies on the Internet, can be accessed from everywhere, and has unlimited
capabilities in terms of storage and processing power. 10T devices are required to perform the heavy task and
statistical analysis of the gathered data in such cloud computing infrastructure. Cloud computing brings along a
new cycle of development of the Internet. On this basis, cloud computing eliminates many limitations. With
cloud computing, people will not be constrained by physical resources anymore. On the contrary, they can use
the Internet anywhere and at any time (Song et al., 2011). Thus, a novel IT paradigm in which the cloud and the
IoT are two complementary technologies merged expectedly to disrupt current and future smart services
(Pawani, A. et al., 2018), and this merged technology or the new paradigm is called Cloud loT. 10T also uses
the cloud by exporting cloud services that can deliver services to users and allow them to control the loT
environment.

The concept of cloud computing has emerged widely in the past years because of the nature that facilitates the
fast deployment of solution and services. However, the immense data transfer between cloud services and human
applications revile high-priority demands for securing transmission protocols. Therefore, much research was
conducted to overcome the available security issues in terms of user authentication and authorization processes
in the Internet protocols used in the cloud services. (Choudhury et al., 2011) proposed a user authentication
framework to prevent many types of attacks such as man-in-the-middle attack, impersonation attack, and
phishing attack. Those attacks can access the server, damage it, or steal important information between users
and servers. (Hasan Al-Refai et al., 2020) proposed an enhancement for the user authentication framework built
by (Choudhury et al., 2011), but their work still had shortcomings. This research investigates the issues in the
available security frameworks related to loT protocols in terms of applicability and security levels, and proposes
an enhanced security framework adapted for 10T devices based on token authentication technology and
fingerprint (FP). The two main purposes of the proposed framework are to deliver a framework that understands
the needs of 10T devices such as minimizing computational load and memory usage over 10T devices due to
their capabilities from hardware design view such as limited memory and low processing power and to deliver
the best practice security framework that overcomes the security issues and attacks available on the 10T protocols
such as (man-in-the-middle attack, replay attack) by enhancing the registration, authentication, and authorization
phases, and adding FP in the registration and authentication phase combined with token that contains information
from the 10T device itself.

1.2 Research Context

This paper studies and analyzes the security needs for 10T protocols while communicating with cloud services
over the Internet in terms of authentication and authorization schemas. loT proposes new challenges over the
cloud network due to its open architecture behavior. Moreover, standard security criteria used in the cloud
network are not fit to be implemented by 10T protocols because they add extra load over the network, which
uses very limited resources such as low memory, power consumption constraints, and limited CPU processing
capabilities. Owing to those reasons, 10T protocols were created and concentrated on allowing 10T devices to
communicate with one another and cloud services with the least power consumption and the fastest end-to-end

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

packet delay. Therefore, 10T protocols did not contain solid standards for security implementations. Despite
several efforts from loT manufacturers to inject security features into their products, most of the implementations
were not mature enough to protect the 1oT networks and devices from attacks. Moreover, most of the loT
products did not consider the security factor, which led to serious harms due to different types of attacks over
0T networks (Deogirikar & Vidhate, 2017). This paper studies the different types of attacks and their effect on
the 10T network to provide enhanced user authentication and authorization security framework for 10T protocols.
This work proposes an enhanced framework of the one proposed by (Hasan Al-Refai et al., 2020), which
overcomes the weakness points related to the IoT security preaches. One of the most important issues that
appeared in the previous frameworks is token implementation over a session, which can be easily grabbed and
used by a third party (i.e., attacker) using man-in-the-middle attack. This work also investigates the special needs
of 10T devices in terms of low memory usage and low computation power. The previous security frameworks
did not address such platforms and applied a very heavy load to the processor and the memory of devices to
achieve high-security levels for user authentication and authorization. Cloud computing security itself is the set
of control-based technologies and policies designed to adhere to regulatory compliance rules and protect the
information, data applications, and infrastructure associated with cloud computing use. Different researchers
developed cloud computing and merged it with many security protocols such as (Internet Protocol Security,
Secure Shell Protocol, TLS, and ACE). All these protocols enhance the privacy of cloud computing to make it
more secure from the attacker. Nevertheless, cloud security protocols do not suit the 10T technology because of
their high complexity. Hence, many 10T protocols such as “Thread protocol and Z wave protocol” were
proposed. Unfortunately, no security standard was adopted in these protocols. Therefore, this paper aims to
present a standard security framework for 10T protocols, which allows 0T protocols to overcome the security
issues available in loT, such as authentication and authorization breaches —considering the low power
consumption, CPU processing, and memory limitations of 10T devices.

This paper aims to propose an enhanced security framework for 10T protocols that overcomes the weakness of

the previous frameworks in terms of attack vulnerabilities and process power utilization as follows:

« Identity information is added to the generated tokens to allow cloud services to verify the sender (Client, loT
device) identity and prevent stolen tokens from being used by attackers because stolen tokens sent by the
attacker will have identity information that is different from the attacker request identity.

o All heavy processing to be performed on the cloud servers are relayed to reduce the load on the IoT devices
by generating most of the encryption keys (public key [PK] and private key [PrK]) on the cloud services.
Moreover, most of the checking mechanisms and token generation are implemented on the cloud side. 10T
devices only need to handle a simple preshared key encryption mechanism.

« A time stamp (TS) is added to each request or response from the cloud service to the 10T device only, which
eliminates reply attacks to be done on 10T devices. l0T devices only use tokens to authenticate themselves on
cloud services and cannot authenticate the server request using the token mechanism because it will add an
immense load over the 10T devices. Therefore, the proposed security framework applies a special mechanism
for requests and responses sent from the server side to the 10T devices by using preshared key data encryption
to encrypt the sent data combined with a TS that restricts the hackers from using reply attack over IoT protocols
to control 10T devices.

e The 10T registration phase with the FP authentication method by authorized clients to allow them to add new
loT devices securely and prevent other attackers from adding their own malicious 10T devices is added.

« A software tool for the proposed security framework that simulates all the framework phases to define a core
software that can be integrated later inside 10T protocols is developed.

2. Related Work

This section investigates the main previously proposed frameworks and then compares them with our proposed
work.

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

(Trnka and Cerny, 2016) presented a method for managing 10T device authentication and authorization rules
that relies on a central identity store. Every device has a registered account in the identity store to confirm its
identity against any device and application in the network. The method also provides scalability over the
authorization rules because it allows central management for multiple 10T devices and services based on group
policies. Token-based authentication is used inside the central identity store to enable fast data access. The
results show a low time consumption for the authentication phase. However, this method used no means of data
encryption, which allows different types of attacks, such as man-in-the-middle attacks and phishing attacks.
Moreover, the token is not protected from being stolen. Moreover, the central identity store requires all the
tokens to be verified directly through it, which disables the local token authentication from the service provider
side and leads to extra time delay through the request—response procedures.

(Polat, H. et al., 2017) proposed new security authentication procedures based on a combination of token and
machine ID authentication. They developed the proposed security authentication model to allow secure
transmission of data for loT M2M platforms. The new model leveraged the One-M2M model into the Database
server, web service server, and web client server to allow the full support of Internet protocols and increase
M2M scalability while decreasing system complexity by using Restful web services as a communication
protocol because it supported the data structure of JSON. The NoSQL database was used for the database server.
Finally, token-based authentication was used as a stateless authentication and authorization method to handle
machine and human access requests. However, the presented M2M model lacked data encryption, which induced
high levels of security breaches such as man-in-the-middle attack and phishing attack. Moreover, tokens were
not secured from stealing through antiforgery mechanisms, which made the proposed security model open to
reply attacks.

(Sciancalepore et al., 2017) presented a framework to solve the traditional approaches already adopted for web
and cloud applications that cannot be used directly. Most require large computational and bandwidth capabilities
(that cannot be reached with restricted devices) and provide low interoperability versus standardized
communication protocols for 1oT. The proposed work provided access control functions to the resources to
which the IoT is exposed by using existing, widely accepted, and open standards and their proper alignment.
The primary component of the OAuth-loT framework was the gateway, which deals with the following: The
first process is collecting the information produced by restricted devices through recently standardized
lightweight protocols in the IETF context. The second process is monitoring permission requests provided by
party applications through the well-known OAuth 2.0. The third process is supporting various symbolic formats
to handle application authentication and authorization properly. The final stage of the system process is
temporarily storing data collection. The limitation of this work is that it did not evaluate various scenarios in
which the owners of the resources are not online or not identifiable with the client, whether the number of owners
is one, two, or more. Table 1 summarizes the most substantial previous security frameworks related to the
proposed loT security framework and their used techniques.

(Claeys et al., 2018) presented the 10T security framework for authentication and authorization. The framework
was designed over OAuth 1.0, a model combined with a light version of the ACE security standard. The security
framework also presented a new self-securing token that contains security keys for identity verification using a
technique called Proof of Possession (PoP). The PoP method was used with the accompanying long-term replay
window value maintained by the authorization server that allowed it to increment a special counter inside the
token for each new fresh token request for each client. This approach eliminated stolen token reuse attacks. The
proposed framework also conducted a new method for authentication and authorization between devices with
indirect connection criteria through proxy servers. The results showed a high demand for IoT devices during the
token generation and authentication phase due to asymmetric encryption, but the framework was very secure
over different types of attacks.

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

However, the framework allowed local token authentication between 10T devices, which added high processing
and energy demand over the loT devices. Moreover, no biometric verification for the users was conducted,
which may lead to brute force attacks.

(Oh, Kim, and Cho, 2019) presented an access control framework that uses OAuth 2.0. However, the main use
of OAuth 2.0 is protecting the user-specific domain and role-based access control to protect resources in the
domain. Specifically, the authors expanded OAuth 2.0 to release an Interoperable Access Token (1AT) that acted
as a global connectivity range through the 10T platforms by utilizing multiple pairs of clients’ credentials. After
testing the interoperability scenario using IAT on the implementation results, they came out from implementing
the proposed framework (Mobius), which is one of the M2M-based 10T and FIRMWARE. The framework
showed a good result by rapidly determining if the user can access the domain with a token. Moreover, the role-
related permissions were easily managed by administrators in the client-specific domain. The drawbacks of this
paper were that the framework cannot work in a dynamic environment; it only can work in a static environment.
The second drawback was that the framework had no mechanism for protecting against stolen token attack.

Section 5.2 discusses in detail the comparison between previous works and the proposed work.

3. Enhanced User Authentication and Authorization Framework

This work investigates the issues in the available security frameworks related to IoT protocols in terms of
applicability and security levels, and proposes an enhanced security framework adapted for loT devices based
on enhanced token authentication technology and FP. The enhanced token adds two new features to the regular
token. The first one is for identity verification, whereas the second one allows fast authorization through the
token directly. The two main purposes of the proposed framework are to deliver a framework that understands
the needs of IoT devices such as minimizing the computational load and memory usage over the 10T devices
due to their capabilities from the hardware design view, limited memory, and low processing power, and the
best practice security levels that overcome the security issues and attacks available on the loT protocols such as
man-in-the-middle attack and replay attack. This approach enhances the registration, authentication, and
authorization phases by adding the FP in the registration and authentication phases combined with the token that
contains information from the loT device itself.

Regular authentication between 10T network devices uses (user name and password) as the key for accessing
the network, which may be the default data as (admin, admin), comes with most devices. Such authentication
type may lead to authentication key exposures; this can be explained depending on the login issuer. The
following table presents the a list of acronyms used in this work.

List of Acronyms

Acronyms Description
C Client (User) of the loT
CD Client data (FP, CN, CP, and RII)
FP Fingerprint
CN Client name
CP Client password
RII Requester Identity information (MAC, IP, and browser version)
T Terminal (laptop, mobile phone, tablet)

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

PK Public key

PrK Private key

SK Shared key

CA Client authorization level

ED Token expiration date
I0TRI 10T requester identity information (MAC, IP)
1oTD l0T data (1oTID, 10TP)
10TID 10T device identity
IoTP loT device password
TEK Token encryption key

TS Time stamp

3.1 Client Login via Terminal

In this scenario, the user enters the user name and password via terminal (such as PC, tablet, or mobile) to access
the loT-connected devices through cloud services to collect data or send a command for a specific device. Even
if the protocol is encrypted, if the messages are intercepted by a hacker, then the hacker can easily resend the
same messages to the 10T network to perform the same commands, which may lead to an immense damage to
the devices. Moreover, the 10T network needs to create a session for the logged users to verify them, which in
turn creates a load on the devices’ memories.

3.1.1 10T Device to Cloud Service over the 10T Network

This method is the same as the client login, but in this case, the 10T device tries to control others or obtain some
information to perform dependent actions. The same scenario appears because the connection can be intercepted,
and the sent messages can be regenerated between devices.

However, in this case, creating the session has a greater effect because it stays on the 10T network until the
device is shut down or the connection is closed, which leads to extra memory usage on each device.

The enhanced security framework consists of seven main phases:

Cloud service initiation phase

Client registration phase

Client login phase

l0T registration phase

IoT login phase

loT to cloud server data transmission

Cloud server to 10T data transmission

NookrwdE

3.1.2 Cloud Service Initiation Phase

In this phase, the cloud service repairs itself to receive the requests and data transactions from the clients and
the 10T devices by generating the asymmetric keys (PK and PrK) to prevent the client’s credentials from being
stolen. Moreover, this phase generates the symmetric token encryption key (TEK), which is used only by the
cloud service to generate the encrypted tokens and decrypt them in the validation. The generated keys are
refreshed in a constant time based on the expiration time of the token assigned by the cloud service administrator
to increase the security level of the encryption key by eliminating crypto analysis attacks.

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

Using this mechanism in the proposed loT security framework allows the cryptographic keys to be generated
only once and used for all requests in other phases. This mechanism reduces the overall process time needed to
generate separate keys for different clients and 10T devices. This phase is mainly adopted by the proposed
framework to reduce the response time from the server side to the clients and the 10T devices. Different types
of encryptions (symmetric, asymmetric) are used to eliminate different types of attacks such as man-in-the-
middle attack, reply attack, and brute force attack. Even though asymmetric encryption is considered heavy and
time consuming, it is mandatorily used in the presented security framework. As illustrated by the sequence
diagrams in Figures 4 (Step 3.1), 5 (Step 3.2), and 7 (Step 3.1), the asymmetric key PK is used only once to
prevent the client and 10T credentials during transmission to the server from being stolen and reused by hackers
because the preshared key, SK, can be stolen if used instead of PK in the mentioned steps. This step is performed
to achieve the first and second problem statements. However, asymmetric encryption over the 10T devices in
the proposed security framework is only used once and restricted to the encryption only, which minimizes the
load of using asymmetric encryption because generating the keys and decrypting the data are the cloud server’s
responsibility.

3.1.3 Client Registration Phase

The client starts the handshake by sending a registration request to the server, and the server replies to the client
with an asymmetric PK. The registration phase starts by requesting the user to enter the user name and password,
with valid conditions such as (password length, number and character combinations, and uppercase with special
characters’ combination). After successful input, the framework asks the user to enter three valid FPs, using the
FP reader attached to the client device. Next, the terminal uses the hash function to sign the submitted data,
encrypts all the entered data with the hash code using the PK, and sends them to the server. The server decrypts
the data using the PrK, stores them as user account record with the requested permissions, and replies to the
client that the registration is finished successfully.

On the one hand, the hash function is used in this phase to sign the transmitted data to prevent data from being
manipulated or changed by hackers using man-in-the-middle attack, as shown in Figures 1 (Step 5), 2 (Step 5),
and 4 (Step 5). On the other hand, FP biometric authentication is performed to prevent brute force attacks, as
shown in Figures 4 (Step 3) and 5 (Step 3) because it eliminates the automatic user name and password
generation tools from having a successful authentication on the cloud service. Other mechanisms to defend
against brute force attacks include using captcha code. However, it does not completely prevent the attacks from
being applied, especially for brute force attacks that use artificial intelligent recognition systems such as optical
character recognition (OCR). Therefore, using biometric verification in the proposed security framework is the
best choice to prevent such attack types. Encryption is also added in this phase to secure the transmitted data
and prevent them from being exposed through man-in-the-middle attack, as mentioned in Figure 4 (Step 3.1).
Figure 1 shows the sequence diagram for the registration phase in the proposed security 10T framework.

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

==
1: C—T Registration Request

| | N
2: Send PK

1.1: T - S Registration Request

2.2: T — C Request CD 21:8-T: Pk

3 c~TCD il 3.1:T — S Enc Pk (CD, h(CD)) L
L ba.
:| 4: dec (CD,h(CD))
alt
1= . 5: Check h({CD) Validity
IF Invalid h{CD)
5.1: 8 — T Invalid CD
5.2: T — C Invalid Registration <
Elge
6: Check RIl Validity
IF invalid RII
6.1: S—T: Invalid RIl
6.2: T — C Invalid Registration Else
4
7: Save CN,CP, FP
7.1: S— T Registration Done
7.2: T-- C Registration Done

= [

T | |

Figure 1 Sequence Diagram of Client Registration Phase

The steps of the client registration sequence diagram are illustrated below:
1- The client sends a registration request through the terminal device (i.e., laptop/mobile):
C—T: Registration Request
1.1- The terminal sends the request to the cloud server:
T—S: Registration Request
2- The server receives the request and sends PK.
2.1- The server sends (PK) to terminal and requests CD:
S—T: (PK)
2.2- Through the terminal, the client asks to insert CD.
3- The client inserts CD.
3.1- The terminal computes (CD,h (CD)) and sends them to the server:
T—S:Enc x(CD, h (CD))
4- The server decrypts (CD, h (CD)) and starts to check h (CD), RII validity.
5- The server checks h (CD) validity.
5.1- IF h (CD) is invalid.
S—T: Invalid CD
5.2- Through the terminal to client Invalid Registration.
T—C: Invalid Registration
6- Checks RII Validity.
6.1-1F RII Invalid.
S—T: Invalid RII.
6.2 - Through the terminal to client Invalid Registration.
T—C: Invalid Registration

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

7- The server saves CN, CP, and FP.

7.1- The server sends Registration Done to the terminal:
S—T: Registration Done.

7.2- Through the terminal to client Registration Done:
T—C: Registration Done.

The main purpose of the client registration phase is not only to add the client into the authenticated pool but also
to prevent the client information from being stolen using man-in-the-middle attack. This step is performed by
sending the user information through a secure tunnel and encrypting the information using asymmetric
encryption. Moreover, the registration phase applies identity verification based on the Requester Identity
Information (RI1I) sent by the terminal to verify the client identity and eliminate the reply attack. The usage of
the biometric authentication also removes the possibility of having brute force attacks. The framework also uses
the hashing mechanism to eliminate data changes and manipulation by hackers.

3.1.4 Client Login Phase

This phase is implemented to ensure that the user name, password, and FP information transmitted by the client
are not compromised by any type of attacks while they are sent to the server through the network and to secure
the data transmitted later between the clients and the server. Thus, the security framework uses asymmetric
cryptography techniques based on PKs and PrKSs because it prevents the PrK, which is needed to decrypt the
data, from being shared over the network, as shown in Figure 2 (Steps 2 to 4). However, the complexity of
asymmetric encryption is very high due to the long process required to generate PKs and PrKSs. The encryption
and decryption of the algorithm is time consuming, and it is not the best way to handle data transmission over
slow networks such as 10T networks. Hence, the security framework uses asymmetric key generation only in
the cloud service initiation phase periodically based on the expiration time of the token. In addition, the
asymmetric encryption/decryption in the login phase is only used in the first step to exchange the user credentials
with the preshared encryption key (i.e., session key, shared key [SK]).

The client login phase starts by sending the login request to the cloud service. The cloud service then replies to
the request with the generated PK. The client submits his credentials (user name, password, and FP) in the
terminal. The terminal then generates a preshared key (SK) and uses hashing function on the submitted
credentials and the generated preshared key. Then, the PK received from the cloud server is used to encrypt the
client credentials, the SK, and the hash code. Next, the encrypted data are sent to the cloud server. The hash
code is used to detect any manipulation in data by a hacker during their transmission over the 10T network, as
shown in Figure 5 (Step 5). After that, the cloud server receives the encrypted data and decrypts them using its
PrK. Later, it authenticates the user name, password, and finger stamp. In case of a valid login, the cloud server
generates the token using the client information and the TEK key, and sends it back to the client. The token
generation is completely taken by the server starting from generating a payload string of data that contain client
name, client authorization level, token expiration date, the RII, and preshared key. The generated payload string
is then signed using a hash function. The generated payload string and the hash code are encrypted after that
using the TEK key. Later, the final encrypted data are sent back to the client and stored in its memory as a token.
The token is sent over the network without encrypting it using the SK key generated by the terminal because it
is secured by itself using the TEK key. Moreover, the token cannot be reused by hackers because it contains
identity verification information. The procedure of this phase is as follows (Figure 2):

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

1: C—T Login Request

|
. 1.1: T — S Login Request
2: Send PK

2.2: T - C Request CD 2.1: S—~T: Pk

3:C—-TCD

-1
g |

:I 3.1: Generate SK

3.2: T — 5 Enc PK (CD,SK, h(CD,SK))

4: dec PrK{CD,h(CD, ...

alt ke
= IF Invalid h{CD) I 5: Check h(CD) Validity

5.1: 5 — Tlnvalid CD

52 T — Clnvalid Login

6: Check RII Validity

IF inwvalid Rl

6.1: S—T: Invalid RIl

6.2. T — CInvalid Login Else

IF Wrong CN, CP, FP Data
7.1: S— TlInvalid Login

7: Compare CHN, CP, FP with
Registration Record

7.2: T— C Invalid Login [
Else
&: Generate Token Enc
8.1: S5—T: valid Login (Token) TEK(SK.CN,ED.CA,RII
8.2: T - C valid Login Bl h{SK,CN,ED,CA, RII))

1 ¥
| 1
] 1
1 1
| |
1 1
I

Figure 2: Client Login Phase Sequence Diagrdm

The steps of the client login sequence diagram are illustrated below:

1- The client sends a login request through his terminal (laptop/mobile):

C—T: Login Request
1.1- The terminal sends the request to the cloud server:

T—S: Login Request

2- The server receives the request and generates and sends PK.

2.1- The server sends (PK) to terminal and requests CD:

S—T: (PK)

2.2- Through terminal, the client asks to insert CD.

3- The client inserts CD.

3.1- The terminal computes (SK).

3.2- The terminal generates (CD, SK, h (CD, SK)) and sends them to the server:
T—S:Enc (CD, SKh (CD, SK))

4- The server decrypts (CD, SK, h (CD, SK)) and starts to check h (CD), RII validity.

5- The server checks h (CD)validity.

5.1- IF h (CD)Invalid.

S—T: Invalid CD

5.2- Through the terminal to client Invalid Login:

10

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

T—C: Invalid Login
6- Checks RII validity.
6.1-1F RII Invalid.
S—T: Invalid RII.
6.2 - Through the terminal to client Invalid Login:
T—C: Invalid Login
7- The server compares CN, CP, and FP with Registration Record.
7.1- IF wrong, CN, CP, FP Data.
S—T: Invalid Login.
7.2- Through the terminal to client Invalid Login:
T—C: Invalid Login
8- The server generates TEK.
8.1 The server generates Enc TEK (SK, CN, ED, CA, RIl,) h (SK, CN, ED, CA, RII))
8.2- The server sends Login Done to the terminal with the token:
S—T: valid Login (Token)
8.3- Through the terminal to client Login Done:
T—C: Valid Login.

The main purpose of the Client Login Phase is to prevent the loT network from unauthenticated login breaches
using man-in-the-middle attack by securing the user credential information using asymmetric encryption.
Moreover, this phase protects the client authentication from being hacked using stolen tokens because of the
identity verification mechanism. Furthermore, it prevents reply attacks due to encrypted RIl data.

3.1.5 10T Registration Phase

After a successful login (authentication) of the client through the framework to the cloud server, the client can
send the 0T register request and submit all the needed information such as 10T ID, password, and IoT device-
related information such as MAC address. The submitted IoT device information are then encrypted by the
terminal using the preshared key (SK), which is used to protect the data from being compromised using man-in-
the-middle attack, as shown in Figure 6 (Step 2.1). The terminal then sends the encrypted data with the
authentication token to the cloud service. The framework then verifies the sender client token validity and the
received 10T information, and saves the new registered I0T device information. Figure 3 shows the sequence
diagram for the 10T registration phase.

11

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

e
1: C— T Login Process

1 [

H | 1.1: T — S Login Process

:

21:T - 5 Reg-Req Enc SK (IOTD) , Token

1.2: 5 — T Login Done

! 1.3: T - C Login Done

2: C— T1OT Reg-Req l1OTD , Token

[
|l

i 3: Validate Token (Hash code)

alt T
IF Invalid Token 4: Dec (1O0TD)
5.1: § — T Invalid Token I S5: Validate (RIl, CA, ED)
-
52: T — C Invalid Token
-
6.1: S — T 10T Registration Done :l 6: Save (10T ID, IOTP)

=]

6.2: T — C IOT Registration Done |r

|
\7 7: C— 1OT Save IOTD
|

S ———————1

"
[

Figure 3: 10T Registration Phase Sequence Diagram
The procedure for this phase is illustrated as follows:

1- The client sends Login Process through his terminal (laptop/mobile):
C—T: Login Process
1.1- The terminal sends the request to the cloud server:
T—S. Login Process

1.2- The server receives the request and sends Login Done through the terminal to the client:
S—T: Login Done.

1.3 Terminal to Client Login Done:

T—C: Login Done

2- Client to the Terminal 10T Registration Request with, loT Data, and Token:
C—T: IoT Reg-Req (10T Data, Token)

2.1 Through Terminal to the cloud server Registration Request with SK for loTData, TOKEN:

T—S: Enc SK (IoT Data), Token.
3- The server Validate Token (Hash Code).
4- The server Decrypt 10TD.
5- The server Validate (RII, CA, ED).
5.1 IF Invalid Token:

S—T: Invalid Token.
5.2 Through the terminal to the client Invalid Token:
T—C: Invalid Token.

6- The server saves (I0TID, I0TP)

6.1 The server sends loT Registration Done to the terminal:

S—T: IoT Registration Done.

6.2 Through the terminal to the client loT Registration Done:

T—C: IoT Registration Done.

7- Through the client to the 10T Device, save loT Data:

C—IoT: Save IoTD.

12

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

The main purpose of the IoT registration phase is to protect the 0T network from malicious 10T devices injected
by hackers who may affect the whole network operation. Moreover, this phase prevents the IoT device’s
credentials from being stolen using attacking techniques such as man-in-the-middle attack and reply attacks.
Stealing the 10T device credentials may lead to severe damages depending on the operation type of the loT
device.

3.1.6 10T Login Phase

After the client’s successful registration of the 10T device, the 10T device sends a login request to the server.
The server replies to the 10T device by sending its PK, which is used to prevent man-in-the-middle attack in
earlier login stages, as shown in Figure 7 (Step 3.1). Then, a unique SK is generated on the side of the lIoT
device, which will be used later for securing data transactions between the 10T device and the cloud service
using light simple encryption mechanism, as shown in Figures 7 (Steps 3 to 3.1), 8 (Step 1), and 9 (Steps 2 to
2.1). After that, the 10T device sends encrypted (1o0TD, 10TRI, SK h (IoTD, SK, I0TRI)) to the cloud service.
The server checks the validation of the (h (IoTD, SK, 10TRI)). This stage ensures that the data have not been
changed by hackers using man-in-the-middle attack, as shown in Figure 7 (Step 5). The cloud service then
responds to the 10T device with invalid login if the h (1oTD) is invalid. Otherwise, the server checks the
validation of the I0RT]; if it is invalid, the server responds with invalid login to the 10T device. Next, the cloud
service compares the 10T ID and the 10TP data. If 10T ID and the 10TP data are incorrect, the server responds
with invalid login. Otherwise, the server responds to the IoT device with a valid login (token) encrypted with
the TEK encryption key. Figure 4 shows the sequence diagram of the 1oT login phase.

13

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

- 1: 10T —+ S Login Request
2: Send PK
2.1: S— 10T: Pk
l
. T
‘—_l 3: Generate SK
3.1: 10T — S Enc PK (IOTD,SK,IOTRI h (IOTD,SK, IOTRI))
a
=
4: dec PrK({IOTD,SK,IOTRI h(lOTD, SK,IOTRI))
alt .
1 IF lmvalid h(10TD) :‘ 5: Check h(IOTD,SK,IOTRI) Validity

51: 5 - 10T Invalid Login

Else

6: Check IOTRI Validity
IF invalid IOTRIl

6.1: 5 - 10T Invalid Login

Else

IF Wrong 10T IP, IOTP Data 7: Compare 10T ID, IOT P,
' h i
7.1: 5 10T Invalid Login with Registration Record

Ele

8: Generate Token Enc
TEK(SK,IOT ID,ED,JOTRII

8.1: S — 10T valid Login (TOKEN) E BESIC.I0T D50, loth)

Figure 4: 10T login phase
The procedure for this phase is illustrated as follows:

1- The IoT device sends Login Request to the cloud server:
IoT Device — S: Login Request.

2- The server receives the request and generates PK and PrK:

S—IoT Device: Login Process.

2.1- The server sends (PK) to the loT device:
S—IoT Device: (PK)
3- The 10T device generates SK
3.1- Through loT device to cloud server with SK for (1oT Data, SK, I0TRI), h (IoT Data, SK, 10TRI).
4- The cloud server decrypts (loT Data, SK, 10TRI), h (1oT Data, SK, I0TRI).
5- The cloud server checks h (10T Data, SK, 10TRI) validity.
5.1 IF Invalid h (10TD), the server sends IoT Invalid Login to the 10T device:
S—1oT Device: Invalid Login
6- The cloud server checks the IoTRI Validity.
6.1 IF Invalid 10TRI, the cloud server sends Invalid Login to the 10T device.
7- The cloud server compares (1oTID, l10TP) with Registration Record.
7.1- IF wrong loTID, 10TP Data, the cloud server sends Invalid Login to the IoT Device.
8- The cloud server generates TEK (From Initiating Phase).
8.1- The cloud server generates Token Enc TEK (SK, I0TID, ED, 10TRI) h (SK, 10TID, ED, 10TRI)).

14

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

8.2- The cloud server sends Valid Login with Token to the 10T device.
S—1oT Device: Valid Login (Token).

The main purpose of the 10T device login phase is to protect the loT network from unauthenticated login
breaches using malicious loT device or man-in-the-middle attack by securing the 10T device credential
information using asymmetric encryption. Moreover, this phase prevents reply attacks using the identity
verification technique.

3.1.7 10T to Cloud Data Transmission

After authenticating the 10T device, the 10T device sends an encryption request to the server with preshared key
(SK) and token. The server then decrypts the token and checks the h (SK, 10TID, ED, 10TRI). If the h (SK,
IoTID, ED, IoTRI) is invalid, the server responds with invalid requests. Next, the server checks the validation
of the 10TRI; if it is invalid, the server responds with invalid request. The server then checks the validation of
ED. If it is invalid, the server responds with expired token. Lastly, the server decrypts (SK) data and sends a
response with encrypted SK (Response, TS). In the 10T device side, it decrypts SK (Response, TS) and checks
the validation of TS; if it is invalid, it ignores the response. Otherwise, it acts based on the response. Figure 5
shows the sequence diagram of the 10T to cloud data transmission.

o
i 1: 0T — 5 Enc SK|request), Token 1
= ™
i
1 1.1: Dec TEK (Token)
1 IF Iinwalid h(SK OTID, ED IOTRI)
]
i
] ..—_| 2: check hiSK.IOTID, ED JIOTRI)
i 21: 8 —= 10T Innvalid Resquest
: IF v lid (IOTRI)
| :l 2.2: check IOTRI Validty
1 2.3: 8 — 10T Invalid Request
i IF Invahd (1O0TRI)
i 2.4: check ED Validty
| 2.5: 8 — 10T Explred Token
: :l 3: Dec SK [Data)
:* 3.1: 8 — 10T Enc SK[{Response,TS)

4: Dec SK{Responsa, TS)

ait)

IF o alid

.
:l 4.1: chack TS Validity
]

4.2: lgnore the Responsa

:l 4.3: Take Action Based in response

Figure 5: 10T to Cloud Data Transmission

15

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

The procedure for this phase is illustrated as follows:

1- The loT device sends the encryption request with token to the cloud server:
10T Device — S: Enc SK (Request), Token
1.1- The server receives the request and decrypts using TEK (Token).
2- The server checks h (SK, 10TID, ED, 10TRI) validity.
2.1- IF Invalid h (SK, loTID, ED, 10TRI),
The cloud server sends Invalid Request to the 10T device:
S—l1oT Device: Invalid Request.
2.2- The cloud server checks (1o0TRI) validity.
2.3- IF Invalid (10TRI), the cloud server sends Invalid Request to the I0T device:
S—1oT Device: Invalid Request.
2.4- The cloud server checks ED validity.
2.5- IF Invalid ED, the cloud server sends Expired Token to the l0T device:
S—1oT Device: Expired Token.
3- The cloud server decrypts the data.
3.1- The cloud server sends encrypted response with TS to the 10T device:
S—IoT Device: Enc SK (Response, TS).
4- The 10T device decrypts the response with the TS and checks the validity.
4.1- The 10T device checks TS validity.
4.2- IF Invalid TS, the IoT Device rejects the response.
4.3- IF valid, act based on the response.

The main purpose of the 10T to cloud server data transmission phase is to protect the connection between the
loT device and the server from man-in-the-middle attack by securing the IoT device request information using
symmetric encryption and identity verification through the enhanced token, as shown in Figure 6 (Step 1).
Moreover, the reply attack is prevented in this phase by having token verification with RII. The TS in this phase
is defined as the real time of the cloud service when the response to the 10T device is sent. The TS used in this
phase protects the 10T device from being hacked using a reply attack without the need of a local authentication
method. This new mechanism leads to the reduction of the load over the 10T device, which solves the fourth
problem statement and enhances the 10T device performance in terms of response time and 10T network overall
end-to-end delay. Moreover, the cloud service does not need to save the special SK for each IoT device because
it depends on the token to obtain the SK.

3.1.8 Cloud Server to 10T Data Transmission

In this phase, the server sends a token request to the 10T device, and then the IoT device sends a response to the
server using the same token. This initial step of requesting the token allows the server to obtain the SK, which
is used in encrypting the sent data to the 10T device. The next step is for the server to send an encrypted request
with (TS) to the loT device. Then, the 10T device side decrypts (Request, TS) to check its validation; if it is
invalid, the 10T device checks the TS validation; otherwise, it ignores the request. Figure 6 shows the sequence
diagram of the server to 10T data transmission.

16

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

1Ot Device Server

I 1: S — 10T Request Token

1.1: OT — S Token

2: S — 10T Server Enc SK { Request, TS)

e
2.1: Dec SK{(Request, TS)

2.2: check TS WValidity

IF Inwvalid

alt

2.3: lgnore the Request

Els e

2. 4: Take Action Based On Request

S — .

Figure 6: Server to 10T Data Transmission

The procedure for this phase is illustrated as follows:

1- The cloud server asks the 10T device to send the token:
S— IoT Device: Request Token.
1.1- The loT device receives the request and sends his token to the cloud server.
2- The cloud server receives the token from the 10T device and sends the encrypted request to the loT
S— IoT Device: Enc SK (Request, TS).
2.1 The loT device decrypts the request.
2.2 Check TS validity.
2.2- IF Invalid TS,
2.3- The 10T device ignores the request.
2.4- Take action based on the request.

The main purpose of the 10T to cloud server data transmission phase is to protect the connection between the
0T device and the server from man-in-the-middle attack by securing the loT device request information using
symmetric encryption. Moreover, in this phase, the TS is used to protect the 10T device from being hacked using
a reply attack. The TS is used to replace the local authentication model needed by the 10T device to validate the
cloud service authentication and identity. This model can be explained by the fact that the cloud service is the
only platform that can decrypt the information inside the enhanced token. Therefore, the cloud server is the only
entity that can send encrypted data with the correct SK key related to each IoT device. Moreover, the encrypted
TS inside the sent packet by the server cannot be changed by hackers because changing it directly without
decryption will corrupt the TS leading to ignore the request by the 10T device finally.

4. Proposed Security Framework Defense over Man-in-the-Middle attack and Reply Attack Test Cases

17

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

The standard IoT protocols do not provide sufficient built-in security procedures (Wardana & Perdana, 2018)
such as data encryption or authentication even though in more mature protocol such as thread 10T protocol. The
later protocol, which is originally inherited from the Internet protocol suite, contains several simple security
procedures, but these protocols do not contain IoT device identity verification.

Figures 7 and 8 show different examples of 10T protocols to connect the client with the cloud server. In Figure
9, the client sends the login request with his client data (CD) to the cloud server without encryption to respond
to the client. However, in the case of interruption due to man-in-the-middle attack that presents a new connection
(hacker), in the connection between the client and the cloud server, the hacker receives the CD and sends it to
the cloud server to log in to the system as a client. Figure 10 shows another case, where the client sends the login
request with his data (CD) to the cloud server to respond to the client, but in this case, the data are encrypted. In
the man-in-the-middle attack, the hacker interrupts the connection and receives the packet from the client and
sends it as it is to the cloud server, and the cloud server responds to the hacker as a client.

Client Cloud Server
Original Connection

L N - rrrrr =
€ rrrrr -
| | Frrrrr -]
~ | Frrrrr =]
Ty -
R
O*S:'I}; New Connection .c_\f’\
=) L= .. o(\
Cres, Hacker N o
S ~SA T eSS
[> S s
- ST o
2o

Man In The Middle Attack

Figure 7: Man in the middle attack over standard 10T protocol without encryption

Client Cloud Server
Original Connection

_— —— .

s New Connection
=, = <
e, Hacker Ly

S 2 <5

Mram In The Middle Attack

Figure 8: Man in the middle attack over standard 10T protocol without encryption

18

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

The proposed framework shown in Figure 9 prevents man-in-the-middle attack by sending the login request
with encrypted (CD) and RII. Thus, if the attacker tries to steal the data and send them to the cloud server, the
attacker will not obtain access to the cloud because the RII is changed.

Cloud Server

Client

Hacker

Login request Enc (CD ,RIl) .
" cant steel the CD info o
. encrypted data

Hacker

Login request Enc (CD.RIl) Cant send the encrypted data

-
to get access
Identity information changed

Figure 9: Man in the middle attack defense over the proposed loT security protocol in the client login
phase

Figure 10 shows another type of attack, which is the reply attack. In this scenario, the cloud server sends a
specific action command to the IoT device to take a specific action. When sending the command, the attacker
captures the action command and waits for a specific time to resend the same action command to the I0T device
to corrupt the normal operation of the 10T device.

Cloud Server 10T Device
% Send Action Command /’:-__—:-.:\
e —_—
— . 1T

Capture the action .

command

Hiscker

. Send the same captured command
to corrupt the normal operation of

10T device

Figure 10: Reply attack over standard 10T protocol

19

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

Figure 11 shows how the proposed framework prevents the reply attack. The 10T device sends a token to the
cloud server based on a request from the cloud server. This token contains a shared (SK). The server then sends
an encrypted SK with the request and TS to the 10T device. The 10T device decrypts the SK and checks the
validation time of the TS by checking the sending time from the server. For example, if the sending time from
the server to the 10T device is two minutes, the 10T device will accept the request if the sending time is within
two minutes.

However, if the time is more than two minutes, the device will ignore it. The advantages of this approach are
preventing any request sent by the reply attacker and reducing the load on the I0T device by removing the local
identity verification and authentication procedures from the 10T device side.

Hacker 10T Dewvice
—
. =
—~—

Send the same captured action I Cant resend the action command -
command Encrypted time stamp Expired

Figure 11: Reply attack defense using the proposed 10T Security Framework in the daté transmission
phase

5. Results and Discussion: Security Analysis

In this section, the security requirements needed by the proposed IoT security framework to prevent attacks such
as reply attack, man-in-the-middle attack, and brute force attack are first investigated. Then, the proposed
framework is compared with other previous secure 10T frameworks.

5.1. Security Requirements

Replay Attack

A replay attack occurs when the attacker captures the requests and response packets between the clients, the 10T
devices, and the cloud services to repeat the request when the session is ended. The proposed framework includes
the enhanced token that contains an expiration date and identity verification information that eliminate such
attack. Moreover, on the 10T side, reply attacks cannot be established because the proposed security framework
deploys a smart authentication mechanism using a preshared key and customized TS, which prevents such attack
and reduces the load on the 10T device by cancelling the need for local authentication on 10T devices.

Man-in-the-Middle Attack

This attack is considered one of the most effective attacks because it is implemented by a hacker by intercepting
the communication between the clients, the 10T devices, and the cloud service. All sent requests and response
commands between 10T devices, clients, and cloud services are sent by the hacker itself, and this enables the
hacker to manipulate the requests by changing the data inside the requests, stealing the credentials, or even

20

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

stealing the tokens assigned with each request. The proposed l0T security framework can prevent such attacks
because the sent data on all framework phases are encrypted and cannot be compromised. Moreover, the identity
verification methods used by the proposed security framework disable the capability of reusing the intercepted
requests. In addition, data manipulations or changes in request information cannot be done because the sent
requests of the framework are signed using hash code, which allows the detection of any change in content.

Brute Force Attack

This attack uses user name and password generation tools that allow testing the large amount of credential
patterns in a limited time to obtain a valid guess of loT devices or client’s credentials. Despite defense
mechanisms such as the captcha code, which forces the clients to enter randomly generated patterns, the overall
complexity of the attack time increases. New mechanisms including smart artificial intelligence tools such as
OCR can break such protection mechanisms. The proposed security can defend from such attacks because it
uses the FP biometric verification method, which cannot be broken by brute force attacks. Moreover, the
framework has a special property that detects such attacks as a three-time login fail blocks the l0T device by its
MAC address until it is released by the administrator.

Stolen Token Attack

The reuse of stolen token can provide the hackers access privilege as the authenticated client or 10T device, and
this can lead to severe damage in a critical environment, such as loT networks. The proposed 0T security
framework prevents such attack type by using identity verification information injected inside the enhanced
token.

5.2. Comparative Analyses Between Different 10T Frameworks and the Proposed One

Table 1 compares previous 10T frameworks and the proposed one in terms of security techniques used and the
extra load added to the 10T devices.

Table 1 Security techniques used in the framework

Author Name
Testing Trnka | Polat, H.et | Sciancalepor | Claeyset | Oh,Kimand | A.alrefai Proposed
criteria and al eetal al Cho Framework
Cerny
Protect Token NO NO Yes Yes No No Yes
Verify cloud
service Yes Yes Yes Yes Yes No Yes
Identity
Use Time NO NO NO No No Yes Yes
Stamp
Optimize load
over loT NO Yes No No Yes NO Yes
devices
Use Blometric |\ NO NO No No Yes Yes
Verification
Use
Asymmetric NO NO Yes Yes No Yes Yes
Encryption

21

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

Use
symmetric NO NO Yes Yes Yes Yes Yes
encryption
Table 2 compares the different types of attack defense capability of previous 10T security frameworks and the
proposed one.

Table 2 Attacks prevention comparison

Author Name
Attack . .
T ace T;:'Ja Polat, Sciancalepore | Claeys | Oh,Kim A.alrefai Proposed Framework
yp H.etal et al et al and Cho ' P
Cerny
Replay NO NO Yes Yes No No Yes
attack
Brute force Yes Yes No No No Yes Yes
attack
Man in the
Middle No No Yes Yes Yes Yes Yes
Attack
Phishing
Attack NO NO Yes Yes Yes Yes Yes
Token
Reuse No No Yes Yes No No Yes
attack

Table 3 illustrates the execution time overhead added on the 10T protocols for the types of cryptography methods
used in the proposed framework. The results show low overhead for the token validation and the symmetric
encryption/decryption processes, which means the proposed framework does not add high redundant
computational time because the rest of the processes are used in very low frequencies and performed on the
cloud service side.

Table 3 CRYPTOGRAPHIC OVERHEAD (MS)

CRYPTOGRAPHIC
Cryptography OVERHEAD (ms)
Criteria Proposed framework
Encrypt | Decrypt/Verify
/Sign
Symmetric
encryption (AES 0.062 0.132
128)
Asymmgtrlc 126 197
encryption
HASH (SHA 256) 0.322 NA
Token Generation 167 213

22

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

Key generation
(Server side) 690 Na
Key generation (AES
128) Client, 10T side % Na

5.3. Simulation Test Using the Developed Windows Application

A Windows application is developed to simulate the loT framework phases to test the attack prevention
performance and extract the execution time overhead, as shown in Table 3. Figure 15 shows the cloud server
simulation with the initiated PK and request received from the client side. Figure 12 shows the simulation
application receiving the request with the authentication token, the token validation, and the information
extracted from the token containing the authorization permissions.

[§8 Sexurity |

|
[swpserve_|
Poecrved aguest from dient Pubshe bey
S T OUMD DDy GG T LiaiM ICA TP T LA TyER0 I TDbHD uml vergons 1.0 encodingautf- 187>
. 2450 BOC PSR 20 30 2R 00 1000 0 A R 4 308 40 2008 oF BT L ERARREN N <RGAPar ameters i ncs s it e, w Lorg 200 1AM Schema-rstance ™
CMESTITIAR T JSARR Y TRES L 1 308 3 50 R Al PCRE TR0 8 0T SDADCES0A xmming e =it (wwrm 3, org 200 1/04 Schema ">
<Exponent »&JA8< Exponent >
chipguius vasbUBASTHLLCT IO/ eunlpCon SPEVMTT TS +iksvz balh
schiGgfuar
+ Dl SeCMInURLHE W Sor, v ShIMEST rViEnoavormviak LK SasiQdbe S
UM ANGREapTRACGE T OFolr CROOP Lk TG PR m0Q0E eEMBEINLZS
Viilatan Reml
(Uier Mame; h asan
Usar Prarmebion:
Token expaisry date: 080172020 11:55:82
Token Requeste B 192 1580, 145
E

Figure 1: Cloud service side of the proposed security framework simulation

Figure 13 shows the simulation of the client-side proposed framework operation. The simulation shows the
received PK, the registration phase, and the received token from the server after a successful login. The figure
also shows the requests generated by the framework to be sent to the cloud service.

23

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

il i i =
a7 Security Layer for I0T p:otnmE Ba.sed on Tﬂcens CI|em‘ B ba —— P — = — -
Select user to login Public Key from server 10T regesteration:
Client Name Passwards Flnger Print Permission <7xml version="1.0" encoding="utf-167>» 10T D:
I 13 Ad <RSAParameters xming:xsi="http: fwww,w3,0rg/200 1 XML Schema-nstance™
Ener " sming:xsd="http: /fwww w3.0rg/2001/XMLSchema">
<Exponent >AQAR< Expanent = Password:
<Modulus »vsisbUibVyHTNKUIZC Y10 /5 2beunZpOpn 5P SYMYI TS +kakeYz50Th
HGafuZAf Permission:
+Zd%CM2hURUApWacrL 3va/SbMERT 3ZirVikgowonviak 1KjSmalQabmyNavnf3
U3 AaGUnEaepTEAIQGhZOFollnj/CRDQP 1eKIGgYYRIOQQE J2wMBMEENLZ3 -
HFRGZHIDYC 1B hhkvDQpIW FR0ZBK coE SudRUhgl N3 +PrUbRWHCE0W QP TN Regester 107 device
Redved Token
ServerIP: 192.188.0,149 nhS7/KOUYMD

HOHDQtEyS 4G T UaMICE TPy Zhcl A7/ BE02A Db 4D
4 146650C45F 94862D 302EC0 100ASTIMBATF 430843 2266 1FT9BEG02 1 IE6RE8

Userlame: ammar EB2DCI0EY7 27548 244803 7F 89 16E 1 30F 31 209E AR TCBE 796926 2BC DA
DCA330A
Password: ***
FingerPrint: ***
Permission: Validate Token
[Reguest PK.] l Regester] l Login l
Generated Request Validation Responce
Validate_Token, nhS7/XOUYMD Welcome ammar
HDHDQtdyS4yGenTr UabM ICE TNV ZLigTAt7yBA0 241 TDb4HD Permetion is Admin

+, 2460504579486 2030 2EC0100A97043A 27 430349 2288 1F 795E
60212F6868E820C 30ES7275AB3F 24ABB 37F89 16E 13DF 316E200E
ARB7CET959262BCSDADCES20A

24

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

Figure 2 Client side of the proposed security framework simulation

As mentioned before, a Windows applications is developed to simulate the phases of the proposed security framework
and the methods and algorithms used inside each phase, test and evaluate the proposed security framework performance
through its normal operation, test the framework behavior against several attacks such as man-in-the-middle attack,
reply attack, and brute force attack, and verify the internal methods’ execution time and complexity.

The developed Windows application is split into two main categories. The first category is the server-side application,
which simulates all the operations inside each phase of the proposed security framework related to the cloud service
side. The second category is the client-side and the loT-side Windows application. The second category shows the
functions related to the client and the 0T side. Figure 14 shows the input and output diagram of the server-side Windows

application.

Output

Public Key

Generated Token
Encrypted requests
from Clients & IOT Server Side

devices Application Token Validation Result

Signed Token

Encrypted Response data

Figure 34: inputs and output diagram for the developed server-side 10T security framework

Figure 14 shows that the server-side application’s main functionality is to respond to any request coming from the client
and the 10T devices. The inputs of the server-side application are the received encrypted requests and the signed token,
whereas the outputs of the server-side application can be classified into the public encryption key from the server, the
generated token for the logged-in client or 10T device, the token validation result in case of validation failure, and the
encrypted response data or commands from the server side, combined with the TS.

The operation of the server-side application starts by implementing the first phase of the proposed loT security
framework, namely, generating the PK and PrKSs for initial data exchange with the clients and the 10T devices during
the registration and login stages. The application also generates the preshared key for encrypting the payload of the

token and an extra secret key for hash generation used in signing the encrypted payload inside the token.

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

2 of 28

The PKs and PrKs are generated using the Rivest—-Shamir—Adleman asymmetric algorithm. Moreover, the symmetric
encryption algorithm used is the Advanced Encryption Standard (AES) 128-bit key. AES is used because it is much
more secure than the Data Encryption Standard (DES) or 3DES given that it uses a 128-bit key instead off 64 bit key in
DES. Moreover, the AES 128 is still a relatively considered lightweight encryption algorithm. In addition, SHA-512
cryptographic algorithm is used for hash code generation. The server-side application then initiates socket listeners to
start receiving requests from the client-side application or the 10T side application. Figure 15 shows the server-side

Windows application implementation.

ot Security Layer for IOT protocols Based on Tokens Senver

Start Server

Recived Request from dient Public key

| <?uml version="1.0" encoding="utf-16"7 =
<RSAParameters xmins:xsi="http: /fwww.w3.org/2001,XMLSchema-instance”
smins:xsd="http://www.w3.org/2001/XMLSchema” >
<Exponent:=AQAB </Exponent]

<Modulus >u2eiiqpCiXIScoMyrhsnRo 2EEgn/mzovjgiid OcBUHbxgFrZzvQ 7 fxljgh

a2CceXknBZi2ZZwT 1Briv\WPbLKgrm 1t 7twA 7 i
+wgViXFsRpNMIR.QE/SLhacVFOMOYSKmaSxHS HroR0YS felJiloeHoNSQpQE4Z9K

Validation Result

Figure 15: Cloud service side of the proposed security framework simulation.

6. Conclusion

In this paper, an enhanced 10T security framework for authentication and authorization is proposed and developed. The
lIoT security framework uses an enhanced token authentication method that expands the standard token by adding
identity verification information and authorization permission level inside the token payload data. The token payload is
then encrypted by the cloud service to prevent stolen token data from being compromised by hackers. The security
framework restricts the token validation only on the cloud service side only. The cloud server requests to the 10T devices
are authenticated using a smart technique based on an encrypted modified TS that reflects the real time of the request
sent from the cloud service to the 10T device. The TS is generated from the cloud service using the preshared key
received securely via asymmetric encryption from the IoT device during the login phase, which only exists inside the
encrypted payload data of the token. Therefore, it cannot be decrypted by anyone but the cloud service itself. The loT
device can validate any request by decrypting the received requests using its preshared key only using this technique.
Therefore, it ignores any misencrypted data using man-in-the-middle attack. Moreover, reply attacks using stolen
requests from the server will fail due to the TS embedded in the request that will be ignored if expired by the IoT device.

https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022 d0i:10.20944/preprints202208.0188.v1

30f28

The proposed protocol also uses FP biometric encryption to increase authentication security level and prevent brute
force attacks.

The framework is evaluated using a security analysis that justifies each property and defense technique used to prevent
the issues mentioned in the problem statement section, especially the types of attacks such as man-in- the-middle attack,
reply attack, and brute force attack. Another evaluation is conducted using a developed Windows application that
simulates the proposed loT security framework, which is used to calculate the time load added to the IoT protocols
because of the proposed framework. Moreover, real testing of attack types is deployed over the developed simulation to
test security framework security efficiency. The testing results show that the proposed security framework protects loT
protocols and networks from different types of attacks while adding a very low load over the 10T device.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References:

Choudhury, A. J., Kumar, P., Sain, M., Lim, H., & Hoon, J. L. (2011). A strong user authentication framework for cloud
computing. Proceedings - 2011 IEEE Asia-Pacific Services Computing Conference, APSCC 2011, 110-115.
https://doi.org/10.1109/APSCC.2011.14

Claeys, T., Rousseau, F., & Tourancheau, B. (2018). Securing Complex 10T Platforms with Token Based Access Control
and Authenticated Key Establishment. Proceedings - 2017 International Workshop on Secure Internet of Things, SloT
2017, 1-9. https://doi.org/10.1109/S10T.2017.00006

DE Donno M., KOEN TANGE , & NICOLA DRAGONI.(2019). Foundations and Evolution of Modern Computing
Paradigms: Cloud, 10T, Edge, and Fog. IEEE Access, Digital Object Identifier 10.1109/ACCESS.2019.2947652

Deogirikar, J., & Vidhate, A. (2017). Security attacks in 10T: A survey. Proceedings of the International Conference on
I0T in Social, Mobile, Analytics and Cloud, I-SMAC 2017, 32-37. https://doi.org/10.1109/I-SMAC.2017.8058363

H Al-Refai, A Al-Awneh, K Batiha, AA Ali, YME Rahman (2011). Efficient Routing Leach (Er-Leach) Enhanced On
Leach Protocol In Wireless Sensor Networks. International Journal of Academic Research 3 (3).

Hasan Al-Refai, Khaldoun Batiha, Ahmad M. Al-Refai. AN ENHANCED USER AUTHENTICATION
FRAMEWORK IN CLOUD COMPUTING. International Journal of Network Security & Its Applications (IINSA) Vol.
12, No.2, March 2020

H Al-Refai, A Alawneh, KA Jarah (2014). Enhanced model of Payment Phase for SET Protocol.
Citeseer.

H Al-Refai, A Alawneh, K Batiha (2014). A COMPARATIVE STUDY IN WIRELESS SENSOR NETWORKS.
International Journal of Wireless & Mobile Networks 6 (1), 61.

H Al-Refai, K Batiha, A Alwaneh, SB Hani (2014). Improved SPI Calculus for Reasoning on Cryptographic Protocols.
International Journal of Video&Image Processing and Network Security IJVIPNS.

Oh, S.R.,Kim, Y. G., & Cho, S. (2019). An interoperable access control framework for diverse loT platforms based on
oauth and role. Sensors (Switzerland), 19(8). https://doi.org/10.3390/s19081884

Pawani Porambage , Student Member, Jude Okwuibe, Student Member, IEEE, Madhusanka Liyanage, Member, IEEE,
Mika Ylianttila, Senior Member, IEEE, and Tarik Taleb , Senior Member, IEEE (2018). Survey on Multi-Access Edge
Computing for Internet of Things Realization. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20,
NO. 4, FOURTH QUARTER.

https://scholar.google.com/scholar?cluster=16433202370439535257&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=16433202370439535257&hl=en&oi=scholarr
https://scholar.google.com/citations?user=lIF0xtkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=QsmWq6UAAAAJ&hl=en&oi=sra
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.658.7218
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=QsmWq6UAAAAJ&cstart=20&pagesize=80&citation_for_view=QsmWq6UAAAAJ:LkGwnXOMwfcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=QsmWq6UAAAAJ&cstart=20&pagesize=80&citation_for_view=QsmWq6UAAAAJ:W7OEmFMy1HYC
https://doi.org/10.20944/preprints202208.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2022

d0i:10.20944/preprints202208.0188.v1

4 of 28

Polat, H., & Oyucu, S. (2017). Token-based authentication method for M2M platforms. Turkish Journal of Electrical
Engineering and Computer Sciences, 25(4), 2956-2967. https://doi.org/10.3906/elk-1608-6

Sciancalepore, S., Piro, G., Caldarola, D., Boggia, G., & Bianchi, G. (2017). OAuth-1oT: An access control framework
for the Internet of Things based on open standards. Proceedings - IEEE Symposium on Computers and Communications,
676—681. https://doi.org/10.1109/1SCC.2017.8024606

SA Aljawarneh, A Alawneh, R Jaradat (2017). Cloud security engineering: Early stages of SDLC. Future Generation
Computer Systems 74, 385-392.

Song, W., & Su, X. (2011). Review of Mobile cloud computing. 2011 IEEE 3rd International Conference on
Communication Software and Networks, ICCSN 2011, 1-4. https://doi.org/10.1109/ICCSN.2011.6014374

statista 2021. loTdevs.https://www.statista.com/statistics/471264/10T-number-of-connected-devices- worldwide/.
Accessed: 2021-21-4.

Trnka, M., & Cerny, T. (2017). Authentication and Authorization Rules Sharing for Internet of Things. Software
Networking, 2017(1), 35-52. https://doi.org/10.13052/jsn2445-9739.2017.003

Wardana, A. A., & Perdana, R. S. (2018). Access control on internet of things based on publish/subscribe using
authentication server and secure protocol. Proceedings of 2018 10th International Conference on Information
Technology and Electrical Engineering: Smart Technology for Better Society, ICITEE 2018, 118-123.
https://doi.org/10.1109/ICITEED.2018.8534855

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=QsmWq6UAAAAJ&citation_for_view=QsmWq6UAAAAJ:hqOjcs7Dif8C
https://doi.org/10.20944/preprints202208.0188.v1

