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Abstract: Advances in Machine Learning (ML) present new opportunities to systematically analyze
the spatial complexity of urban form. This study presents a proof-of-concept for an interpretable
methodological framework for clustering urban typologies. The methodology employs the Getis-Ord
Gi* spatial autocorrelation metric as positional information to encourage the creation of spatially
homogenous clusters. Clustering is performed using UMAP, a non-linear dimensionality reduction
algorithm along with BIRCH, a scalable unsupervised clustering algorithm. The method utilizes 17
morphological indicators that capture urban form attributes at the block, plot and building scale. The
proposed framework is pilot tested on the metropolitan area of Thessaloniki, Greece, revealing 14
distinct urban typologies that are organized into 5 families with similar characteristics. The typologies
reveal, in an almost Conzenian fashion, patterns of urban development that are rooted in the city’s
modern history. Results are validated both quantitatively with performance indicators and
qualitatively using aerial imagery and established knowledge on Thessaloniki’s urban planning and
evolution.

Keywords: urban form; urban morphology; urban typology; unsupervised clustering; UMAP;
BIRCH; machine learning; spatial autocorrelation; urban planning

1. Introduction

Urban typologies serve as an analytical lens through which we understand the spatial structure
and the complex sociocultural, economic and environmental dimensions of urban landscapes [1]. The
typological approach is historically rooted in qualitative studies whether perceptual-aesthetic [2,3],
typo-morphological [4,5] or historico-geographical [6,7]. However, as Batty [8] argues, the scientific
understanding of cities requires a shift towards quantitative methods of urban experimentation to
validate prior empirical knowledge. This need has spurred a quantitative shift in urban analytics [9]
and morphometrics [10] that is now being accelerated by advancements in Machine Learning (ML)
and Artificial Intelligence (AI).

The present study contributes to the field of ML-driven urban analytics by developing and pilot-
testing a scalable and interpretable method of unsupervised urban form typological clustering. The
method innovates by integrating local spatial autocorrelation with two ML techniques: (i) Uniform
Manifold Approximation and Projection (UMAP) for non-linear dimensionality reduction [11] and
(ii) Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) for clustering [12]. The
study employs the plot as the basic spatial unit, enabling significant analytical granularity while
integrating land property geometry into the clustering process.

The method utilizes 17 morphological indicators at the building, plot and urban tissue scales,
quantifying shape, orientation, density, openness, network integration and vegetation coverage. It is
applied to the metropolitan area of Thessaloniki, Greece where over 85,000 plots are systematically
analyzed and clustered. Results are validated ad-hoc using satellite images and findings from
previous qualitative studies of its urban form. Although the method requires careful fine-tuning of
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model parameters, it manages to capture the variance of urban form, while remaining interpretable.
Thus, the method has the capacity to provide quantitative insights to urban form evolution and
ultimately inform urban planning, design and governance.

1.1. Clustering Urban Form with ML

Relatively recent reviews highlight the untapped potential of ML applications in morphological
studies, including the clustering and classification of urban types [13,14]. Unsupervised clustering
techniques like k-means, Gaussian Mixture Models (GMMs), Hierarchical Clustering and density-
based methods like DBSCAN and HDBSCAN have been applied in urban form studies [15-22], albeit
with limitations. For example, k-means assumes spherical equal-sized clusters [23], GMMs
presuppose Gaussian distributions [24] while Hierarchical Clustering and DBSCAN do not scale well
without optimizations [25,26]. HDBSCAN, while scalable and able to identify clusters of different
shapes and sizes, may struggle with fuzzy cluster boundaries or homogenous densities [27].

Furthermore, all clustering algorithms become less effective for high-dimensional data due to
the curse of dimensionality [28]. In such cases dimensionality reduction is often applied before
clustering. Techniques include the Principal Component Analysis (PCA), t-SNE, UMAP and various
Autoencoders based on Neural Network (NN) architectures [29,30]. PCA is quick, easy to use and
interpretable, but can only perform linear reduction (ibid). t-SNE is geared towards 2D and 3D
visualizations of non-linear relationships (ibid). Autoencoders, though powerful, require significant
computational resources and time to design, optimize, train and validate while being notoriously
harder to interpret (ibid).

To address these challenges, the study adopts an UMAP-BIRCH workflow. UMAP builds a
fuzzy graph in high-dimensional space to encode relationships probabilistically and then creates a
similar graph in low-dimensional (latent) space and aligns it with the original using gradient descent
to preserve local and global structures [11]. BIRCH is then applied on the latent space. BIRCH excels
in unsupervised clustering of big data with diverse cluster sizes and densities, using a Clustering
Feature (CF) tree to organize data hierarchically and obtain more representative cluster centroids
[12]. The proposed workflow excels at disentangling the complex, high-dimensional structure of
urban form data while being relatively simple to implement and addressing computational and
scalability challenges.

Additionally, the method needs to account for the spatial variability of urban form indicators
which is crucial for detecting homogenous regions. Location in clustering and classification
algorithms is often encoded using geographical coordinates, placenames, pixel coordinates (in the
case of images) and graphs (if topology is important). Techniques such as spatially constrained
clustering, graph-based clustering , Spatial Multiresolution Analysis (e.g., AMOEBA) [31-33] make
use of such positional information. However, this study follows a different density-based approach
where the relative concentration of similar values is considered more important than absolute
location. This is achieved by calculating the Getis-Ord Gi* local spatial autocorrelation statistic for all
indicators to guide clustering. This approach results in more homogenous clusters where hotspots
and coldspots are detected.

1.2. The Plot as Elementary Spatial Unit

The selection of an elementary spatial unit is often determined by the scale and granularity of
the typological study. Spatial units in previous studies range from entire cities [34] and districts [35]
to urban blocks [36], plots [37] and finally buildings [38]. An alternative to using urban elements as
geographical units is to apply spatial discretization methods, such as Voronoi tessellation from
building footprints [15,39,40], gridding [18,41,42] or elastic urban “morpho-blocks” [43].

This study adopts the plot as the elementary spatial unit, as it represents the smallest cadastral
subdivision of land and reflects an important interaction between land ownership and urban form.
Plot configurations often reflect underlying socio-economic dynamics and historical circumstances,
development pressures and formal urban planning processes, as well as adaptations to an ever-
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evolving urban landscape [5,44]. Moreover, plot boundaries are systematically surveyed and
recorded in property management systems, making them geometrically and topologically reliable for
subsequent quantitative studies.

Plots as elementary units, however, have caveats too. Firstly, they are not indivisible units of
urban form [45]. A large plot, for example, may mask the internal heterogeneity of urban forms within
it. Secondly, where land is communal or ownership is concentrated to very few public or private
hands, the concept of the plot as a spatial unit loses its meaning. Finally, plots are topologically
connected only to their immediate neighbors inside each block, which prevents more complex spatial
calculations. For the above reasons the study proceeds by: (i) filtering out certain plot categories that
do not fit the “conventional” definition of plot (e.g. streets and other large transportation
infrastructure like railways and highways, forested lands, large public spaces, archaeological sites,
active or ex-military installations, public utilities) and (ii) applying Voronoi tessellation using plot
centroids (Figure 1). The latter creates a fully connected topology which is essential for correct
calculation of spatial weights during autocorrelation.

ey * 231 _* 1

Plot Boundaries

| . —— Voronoi Bouudaries\
*  Centroids

O s0
o L]

Figure 1. Example of Voronoi tessellation using plot centroids.

1.3. Urban Form Indicators

Urban morphometrics utilize quantitative indicators that capture the spatial complexity of cities.
These often describe gradients between polarities: compactness and openness, density and sprawl,
order and entropy, centers and peripheries, perceptions of high or low quality and safety, the artificial
and the natural [21,46-50]. Fleischmann et al. [15] provide a systematic classification of urban form
indicators into six categories (dimension, shape, spatial distribution, intensity, connectivity and
diversity) and three conceptual scales (small, medium, large). While research efforts push towards
standardizing indicators for global applications [48], their selection ultimately depends on the study’s
objective, the scale of analysis and geographic extents as well as the urban context and data
availability.

The present study utilizes a set of 17 urban form indicators that span across all six suggested
aforementioned categories. These are organized by urban element: (i) plot, (ii) building and (iii) urban
tissue indicators (Table 1) and describe plot, building and urban block size, shape and orientation,
vegetation and building coverage, openness and exposure of buildings and spaces, street network
integration, building completion date and roof type.
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Table 1. Plot indicators.

Plot Area (4,0, in m?)

Smaller plots are usually found in urban land,
while larger plots are characteristic of peri-urban
and special uses. Calculated from plot boundary
vertices using Gauss’ formula (shoelace method)

Error! Reference source not found.).

Rectangularity (R)

1 n
Apior = §| § ) 1(xi}’i+1 = Vi¥Xis1)
i=

)
where X;, y; coordinates of vertex i, n the number of

plot vertices.

Quantifies how closely the shape of a plot
resembles a rectangle by comparing its area (Ap;¢)
to the area of its Minimum Bounding Rectangle
(Ampr)- A value of R =1 corresponds to perfect
rectangle, indicating a formal plot subdivision

process (2).

Plot Fractal Dimension (FDp,,)

Captures the complexity of plot boundaries,
reflecting how boundary length increases with
area. For simple shapes, the fractal dimension
approaches 1, while more complex boundaries
yield higher values. A simplified calculation

method is used here (3).

Normalized Plot Orientation (0,;,,)

A
R=-2" 0<Rr<1
MBR
2)
log(P
FDypor = _log(P)
lOg(Aplot)

®)

where P the plot perimeter

Differentiates between cardinally (Opet = 0) or
intercardinally (Opit = 1) oriented plots. Cardinal
orientations are associated with a street grid that
runs along the North-South (N-S) and East-West
(E-W) axes and intercardinal orientations with a

NE-SW and SE-NW oriented grid (4).

Mean Plot NDVI (NDVI;ior)

Opiot = |cos(4z)|

)
where Az is the azimuth of the longest side of the

plot’s MBR, measured clockwise from true North.

Calculated via zonal statistics on plot features
buffered at 10m to account for neighboring
vegetation (e.g. street trees) Error! Reference

source not found.).

Zpebuffer NDVIp
NDVly, = =222 —F

Npu ffer
®)
where NDVI, is the NDVI value of each pixel p and

Npusfer the total number of pixels inside the buffered

plot.

doi:10.20944/preprints202504.1515.v1
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Table 2. Building indicators.

Building footprint area (44, in m?)

Calculated from building footprint vertices Same as Error! Reference source not found.) (4,4

using Gauss’ formula (shoelace method). substituting Apo¢)

Mean Building Height (H ;,0q,)

Calculated from an Urban Atlas + Global Ypepiot hp

Hmean -
Human Settlements Layer building height np

composite raster using zonal statistics (6). (6)

where h, is the building height value of pixel p belonging
to the Plot and np is the total number of pixels within the
Plot.
Floor Area Ratio (FAR)

Calculated from plot geometries, building H
Abld X Hmean
footprints and mean heights. Assumes a floor FAR = — Jtoor
A
height of 3.5m (7). plot
)

where Hfyor is the mean floor height.

Plot Coverage (Cylot, in %)

Measures the proportion of a plot occupied by Afootprint
Cptor =~ 2 x 100
building footprints. High coverage indicates plot
dense urban development, while zero (8)
coverage vacant plots (8). where Afootprine is the building footprint area.

Building Fractal Dimension (FDp;4)

Similarly to FDp;¢, FDpjq describes building Same as (3) (FDpyq substituting FDpo¢)

shape complexity.

Exposed perimeter ratio (Pxposea)

The ratio of exposed building perimeter to Prcposed = Piotar — Peommon

total perimeter. Ranges from 0 to 1, with the Protal

former indicating a building whose walls fully )

attach to other buildings and the latter a fully where Pyoq; is the building total perimeter length and

detached  building.  Building envelope Prommon the length of common boundaries with other
buildings.

exposure is linked to energy performance and

the urban microclimate (9).

Normalized Building orientation (0p;4)
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Differentiates  between cardinally and

intercardinally oriented buildings in the same

way as Opo does for plots.

Same as (4) (Opyq substitutes Op;o)

Table 3. Urban tissue indicators.

Urban Block Area (Ap;0ck, M2

Smaller block sizes typically correspond to
denser, more walkable urban cores or older
urban tissues where historic development
processes favored fine-grained subdivisions.
Block area is passed to all plots that belong to

each urban block.

Mean building completion year (Date,,cq;,)

Same as Error! Reference source not found.) (4,;0ck

substitutes Ap;,¢)

Calculated from ELSTAT 2011 census data Yin - T;
Dateyean =

aggregated at the urban block scale and Zin

reported as number of buildings per time (10)

period (e.g. before 1919, 1919 - 1945, 1945-1960,
1960 - 1970... 2006 — 2011). Datepeq, is passed
to all plots belonging to their respective urban

block (10).

Sloped Roof Percentage per Urban Block (Rg,pe, %)

where n; is the number of buildings erected during period

i, T; the median year of each period i.

Calculated from ELSTAT 2011 census data Retope
aggregated at the urban block scale and
reported as number of buildings per roof type.
Most sloped roofs are tiled in the case study. where n is
Rsiope is passed to all plots belonging to their

respective urban block ( 11).

Mean Normalized Angular Integration (NAIN ;,04,)

Xng

=o—x100

Xin
(11)

the number of sloped roofs.
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An important space syntax measure for Lpixetsebuffer NAINyixer
NAINeqn =

assessing network integration [51]. Here local Mbuffer

integration is calculated using a maximum (12)

radius of 200m to highlight local centers. where NAIN, ;. is a NAIN pixel value and npy,sfer the
Results are then interpolated with IDW to number of pixels within the plot buffer.

create a raster surface. Mean NAIN is

calculated on plot geometries, buffered by 10m

to account for proximity (12).

Mean Sky View Factor (SVF eqn)

Quantifies the proportion of sky visible from a SVE,... = Ypixeisebuffer SV Fpixel

given point. Values range from 0 (fully Mouffer

obstructed) to 1 (fully open). Influences (13)

daylighting, microclimate and perception of =~ Where SVFpiy, the SVF value at each pixel and nyyyser
openness. Calculated using r.skyview on an the number of pixels inside the buffered plot.

urban DSM generated from building and
terrain height data. Mean SVF is calculated on
plot features and buffered by 10m ( 13).

1.4. The Study Area

The study focuses on the metropolitan area of Thessaloniki, Greece (¢=40°39’, A=22°54"), a
Mediterranean city with a well-documented history of urban transformations that encompasses
several Municipalities (Figure 2). The city’s modern identity has largely been influenced by Ernest
Hébrard’s plan after the great fire of 1917. It is considered as a remarkable case of early 20t century
European urban planning that transformed the burned intra-muros city by introducing
monumentalism in the form of emblematic axes, squares and vistas, while preserving important
vernacular elements such as the “Ano Poli” (Upper City), the byzantine walls and the old city markets
[52-54]. The city was also marked by the influx of Greek refugees from Minor Asia and later internal
migration, dictating new urban extensions outside the historic center. Plans for new settlements and
neighborhoods were hastily drafted and implemented to accommodate the fire victims and refugees.
These often followed an undifferentiated grid pattern with little concern for existing landscape
features and future growth demand.

Planning policies at the national and local level as well as socio-economic and cultural dynamics
shaped the post-war urban fabric of Thessaloniki [55-57]. Housing demand in most cases was met by
increasing permissible development without making the necessary adaptations to existing urban
layouts and infrastructure. This issue was greater in areas developed before the 1980 planning
reforms as plans were implemented in a fragmented and incremental manner. Before the reforms
statutory planning had limited agency in plan implementation, plot readjustment and public lands
acquisition.
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Figure 2. Map of Municipality borders and mentioned placenames. Municipalities here correspond to the

previous system of local governance as their borders match the extent of the metropolitan area more closely.

These circumstances had a significant influence on the city’s character. Thessaloniki’s western
neighborhoods faced significant challenges early on with informal housing, limited public spaces and
higher FAR imposed on unsuitable urban layouts. In contrast, eastern neighborhoods like
Karabournaki, Nea Krini and Ano Toumba witnessed densification from mid-1970’s onwards,
allowing for plan revisions to partially adapt to increasing development pressures, while the upper
economic classes were attracted mostly to eastern suburbs such as Pylaia, Thermi and Panorama. In
the following decades the difference in environmental quality and density acted as a self-reinforcing
mechanism of socioeconomic divide between a low and mid-income west and a mid to high-income
east. Environmental studies highlight the lack of accessible green spaces [58,59], the worse air quality
[60] and the higher Urban Heat Island (UHI) intensity in the western parts of the city [61].

Finally, since the 1990s most of Thessaloniki’s peri-urban area has been a transitional space of
urban sprawl and “big-box developments” as agricultural land is being replaced by retail and office
parks, logistics centers, light industries, education and research, tourism and entertainment.

2. Materials and Methods

The proposed methodological framework is outlined below:

e  Pre-process data and calculate morphological indicators: As described in Section 1.3.

e  Perform spatial autocorrelation: Use Voronoi tessellation to create a fully connected topology
from plot centroids (Figure 1). Calculate Getis-Ord Gi* statistics to identify hotspots and
coldspots.

e  Prepare dataset for clustering: Merge morphological indicators and corresponding Gi* values
into a unified datset. Normalize data in the (-1,1) range.

e  Apply UMAP and BIRCH: Tune UMAP hyperparameters to encourage cluster formation and
separation in latent space. Cluster the UMAP latent space using BIRCH.

e  Clustering quality validation: Verify clustering separation, similarity and information loss using
appropriate metrics.

e Visualize and interpret results: Map the cluster distributions, chart and analyze cluster
characteristics. Perform ad-hoc validation of results with findings of prior qualitative studies.
The study employs several python libraries to achieve its goal, including OSMnx [62], Scikit-

learn [63] and PySAL/ESDA [64]. NAIN calculation is performed using QGIS Depthmap plugin and

depthmapXnet 0.35 [65]. SVF calculation is performed with GRASS r.skyview [66]. Data sources,

accuracy and pre-processing steps are summarized in Table 4.
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Table 4. Data sources.
Data Source Resolution/Accuracy Comments
Plot geometries Hellenic Cadastre (HC)  According to HC standards, Referenced to GGRS87
(89,171 plots) WES service [67] updated every 2 months. Datum.
Normalized Copernicus Land Derived from Sentinel-2 Mean NDVI value
Difference Monitoring Service [68] images at a resolution of 10m  calculated for 1 to 5 of

Vegetation Index

—updated daily.

June 2024, (month where

(NDVI) peak vegetation growth
coincides with little cloud
cover)

Building footprints ~ OpenStreetMap [69] Estimated at 1.6m [70] Building footprint errors

and street network:

(e.g. overlapping,
duplicates etc) were fixed
manually. OSM street
network was
topologically checked,

cleaned and simplified

using OSMnx.
Building heights Copernicus Urban UA: 10m / +2.9m IDW is applied (50m max
Atlas (UA) [71] and GHSL: 30m / +6.6m range, 12 max neighbors)
Global Human to fix UA data sparsity.
Settlements Layer UA data is then
(GHSL) [72] superimposed on GHSL

creating a composite
building height raster to

cover study area extents.

Elevation data

EU-DEM [73]

30m /+2.9m

Used to generate urban
DSM, by adding elevation

values with composite

building height raster
values.
Roof type and ELSTAT 2011 census Data aggregated at the urban ~ Aggregated data is
building date data [74] block level number of buildings per

time period and roof type

category

2.1. Indicator Overview

A first overview of the examined indicators is provided in the form of histograms (Figure 3) and
the correlation matrix (Figure 4). Parameters like A,ior, Apig - FDpior and FDpyq exhibit highly

skewed distributions

and are shown in logarithmic scale (Figure 3). Hpmean, NAINpeq, and

Dateeqn follow more gaussian distributions. In other indicators, the high frequency of extreme

values often indicates a special condition. For example, a FAR and a Gyt of zero or a SVF .4, near

one indicate a vacant plot. In other cases, such as Rg,p. certain values may dominate the
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distribution. These outliers contain useful information for the clustering process and should not be

discarded as “noise” or gross errors.

Regarding correlations between metrics (Figure 4), the strongest is observed between Oyt and
O, indicating that building and plot orientations align for most of the dataset. SVFmean is strongly
positively correlated with NDVIyot, Pexposes, moderately with Apir and Awock and strongly negatively
correlated with Gyt and Hmean. These correlations are generally expected due to the urban-rural

density gradient.
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Figure 3. Histograms of the pre-processed indicators.
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Figure 4. Correlation matrix for the morphological indicators.
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2.2. Spatial Autocorrelation

Global autocorrelation is performed calculating Moran’s I (14) and local via Getis-Ord Gi*
statistics (15) [75]. Both require the calculation of spatial weights w;; between each i,j point pair. The
spatial weights matrix (w;;) was constructed using Queen contiguity, which defines neighbors based
on shared borders or vertices. Row-normalization was then applied to standardize the influence of
neighboring plots.

L EEw =N -7)
ZLZ]WL] Zi(yi - y)Z

(14)
where nis the total number of spatial units, wj the spatial weights between locations 7and j; y; y;the
values of the variable at /and jand ¥y the variable mean.
Gr = 2iWijY; _?ijij
L
2 15
S\/Zj wi = (Zwy) (19

n—1

where Y, S the variable’s mean and standard deviation respectively.

Moran’s I results reveal substantial global spatial autocorrelation across all examined indicators,
with the strongest observed in Hyeqn, SVFEnean, Abiocks Abiar  Opior and Opq and the weakest in R,
FDpioe and FDpyq (Error! Reference source not found.). The calculated Gi* values are then mapped,
revealing local hotspots and coldspots (Figures Al and A2).

Table 5. Global Moran'’s I calculation results for the morphological indicators.

Indicator Moran's_I
Apiot 0.54
R 0.33
FDpio¢ 0.43
Apiock 0.87
NDVlyiot 0.66
Cplot 0.53
Apia 0.80
FAR 0.65
Hpean 0.97
Oplot 0.81
SVEnean 0.85
NAINmean 0.77
Opia 0.81
FDpiq 0.38
Datepean 0.67
Rsiope 0.71

Pexposed 0.60
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2.3. UMAP+BIRCH Clustering

UMAP is applied on a “global” dataset comprising the morphological indicators and their
corresponding Gi* values. This allows clustering to equally consider information regarding the
magnitude and the spatial concentration of indicators. The dataset is then normalized in the (-1,1)
range to render data comparable to each other. UMAP has several key hyperparameters which are
tuned according to Table 5. The selection of canberra distance as a distance metric is due to its
sensitivity to differences in low-magnitude values. This is advantageous for clustering datasets where
smaller values often carry significant discriminatory power and helps in cluster seperation [76].
Canberra distance is calculated as following:

n
e =y 0
LTl + i

where x; and yi are the values of the feature 7 for points x and y;, and n is the total number of
features.

The number of UMAP components (i.e. the latent space dimensions) is determined by the
following criteria: (i) clustering is generally easier in low-dimensional spaces so the fewer the
components the better, (ii) components should ideally be orthogonal to each other (i.e. independent),
(iii) they should express complex data interactions that emerge within the dataset and (iv) the latent
space should demonstrate separation of clusters.

Adherence to criteria (ii) and (iii) is estimated by calculating the correlations between
components (Table 7, Table 8) and between each component and the 17 indicators (Figure 5). After
several test-runs the number was fixed to 3 components: UMAP 1 describes “informality” or
“vernacularity” as it indicates the complexity of plot and building shapes, building height and
prevalence of sloped roofs, often associated with suburban or vernacular settings (Figure 5). UMAP
2 describes the “urbanization gradient”, that is mostly related to density-based indicators. Finally,
UMAP 3 describes “directionality” as it is almost solely strongly related with both Opiorand Obia (Figure
5). For criterion (iv) it was found that the combination of canberra metric with increased
“neighborhood size” and “negative sample rate” generates more separated and distinct regions in
the latent space (Figure 6).

BIRCH is finally applied on UMAP components to cluster urban form types. BIRCH
hyperparameters (Table 6) were selected to encourage splitting into smaller subclusters before the
final agglomerative clustering step. For a threshold of 0.3, BIRCH generates 202 initial subclusters,
which are further aggregated to 14 in the final clustering step. The number of final clusters is selected
after several test-runs to strike balance between analytical granularity and interpretability, while
monitoring cluster persistence in the resulting latent space (Figure 7).

Table 5. Hyperparameter selection for UMAP.

Hyperparameter Use Value, Rationale
[default]

Number of components  Specifies the components (or 3, 2] Min. number of clusters
dimensions) of the resulting with meaningful variance
latent space and limited correlation

Neighborhood Size defines the size of the local 50, [15] Consider dataset size;
neighborhood used to estimate Favor moderately global
the UMAP manifold structure over local structure.

Minimum Distance Influences point density 0,[0.1] As suggested for clustering

tasks [77].
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Metric Determines how distances are 'canberra’, Encourages cluster

calculated [euclidean] separation.
Negative Sample Rate the number of negative samples 25, [5] Encourages cluster

used per positive sample in separation. Scaled

gradient descent according to neighborhood

size.
Table 6. Hyperparameter selection for BIRCH.
Hyperparameter Use Value, Rationale
[default]

Threshold Determines the maximum 0.3, [0.5] Encourage creation of
radius of subclusters in the CF smaller subclusters.
tree. Lower values encourage
splitting into many small
clusters

Branching Factor Controls the maximum number 30, [50] Encourage creation of
of children nodes per non-leaf smaller subclusters.
node in the CF tree.

Number of Clusters User-specified number of 14, [3] Balance analytical
clusters for final agglomerative granularity and
clustering step. interpretability within the

study

Table 7. Correlation matrix of UMAP components.

Correlation with
UMAP1 UMAP 2 UMAP 3
-0.26

Component

0.16

UMAP 2 0.00
UMAP 3 -0.26
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Figure 5. Morphological indicators and UMAP components correlation matrix.
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10

Figure 6. Spatial distribution of UMAP components.
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Figure 7. Birch Clusters in UMAP Latent Space. Cluster coloring and coding is explained in the Results section.

2.4. Clustering Evaluation

Unsupervised clustering can be challenging to validate in absence of “ground truth” labelled
data. The lack of labels means that clustering quality must be benchmarked indirectly, using
performance metrics that evaluate aspects, such as cluster interpretability, cohesion and separation.
This section compares three different scenarios to demonstrate methodological effectiveness: (i)
clustering with Gi* values and selected UMAP+BIRCH hyperparameters, (ii) clustering without Gi*
values and (iii) clustering with Gi* values and default hyperparameters. Three complementary
metrics are employed to measure cluster quality: Silhouette Score [78], Jensen-Shannon (JS)
Divergence [79], and Information Bottleneck Ratio (IBR) [80].

Silhouette score measures cluster cohesion in relation to distance from other clusters, with higher

scores indicating better quality:
(17)

b - ald)
SO = (@b @)
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where a(i): The average distance of point i to all other points in the same cluster and b(i) the
average distance of point i to all points in the nearest neighboring cluster.

JS divergence quantifies cluster distinctness (or drift). It measures dissimilarity with zero
indicating identical distributions:

1 1 (18)
JS Divergence(P, Q) = EDKL(PlM) + EDKL(Q|M)

where P and Q: probability distributions (e.g., feature histograms of two clusters), M their
average, Dg;(P|M) the Kullback-Leibler (KL) divergence: D, (P|Q) = Y;P(i) log% , which
measures how much P differs from M. and Dy, (Q|M) the KL divergence for Q and M.

IBR measures information loss from the original dataset, with a value of one indicating no loss:

1 (19)
IBR — 725:1 H(Cy)
~ H(DD)

where H(Cy) the entropy of cluster k, calculated as: H(Cy) = — Z?=k1 pilogp;, (p; is the
probability of point i in cluster k and n; is the number of points in cluster k) and H(D) the entropy
of the entire dataset, calculated similarly to H(C).

The calculated metrics for the three scenarios are shown in Table 8. The first scenario, which is
what is applied in this study, achieves the best overall performance as it demonstrates a moderate
Silhouette Score and higher JS-Divergence and IBR, indicating more distinct clusters and greater
retention of information. Attempting clustering without Gi* values produces worse results, while
using default hyperparameters yields even poorer clusters. It can be observed that even in the “best”
case of scenario 1, clusters are not fully separated (as indicated by the Silhouette Score and visually
confirmed by Figure 7.

Table 8. Comparison of cluster quality metrics between the three scenarios.

metric with Gi* values and without Gi* values and with Gi* values and
selected selected default hyperparameters
hyperparameters hyperparameters
Silhouette Score 0.53 0.42 0.32
JS Divergence 4.72 4.02 3.65
IBR 0.90 0.87 0.81

What these metrics fail to describe is the cluster homogeneity in the actual geographical space.
This can be confirmed visually by comparing the mapped clusters when Gi* values are used and
when they aren’t. It can be seen (Figure 8) that the use of Gi* values indeed results in more spatially
homogenous clusters.
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Figure 8. Differences in cluster geographical homogeneity when Gi* values are included in the dataset (left) and

when they are not (right). Cluster colors are randomized.

3. Results

This section presents and analyses the 14 resulting clusters, which are organized into 5 families
with similar characteristics (Table 9). The mean Gi* values are charted for each cluster (Figure 9 and
Figure 10) to better understand the inter-cluster differences in spatial concentrations of the analyzed
indicators. Finally, the resulting typological map (

Figure 11) is interpreted by aerial imagery of urban tissue samples (Appendix: Table) and
findings from previous studies (Section 1.4).

A first observation is that the method captures in an almost Conzenian fashion the patterns of
urban form that have been the product of the case study city’s historical evolution. Cluster HD1 is
exclusive to the “intra-muros” historic city center. Within it, cluster VE1 detects the vernacular “Ano
Poli” and “Ladadika” districts and cluster VE2 the old city markets, which constitute important
elements of the city’s urban heritage and identity. Cluster HD2 defines several high-density local
centers outside the historic center that share similar morphological characteristics. Clusters PU1-4
describe peri-urban developments. PU1 focuses on vacant plots and lowrise detached buildings, PU2
and PU3 on suburbs with the latter having a more compact grid and smaller plots with less
vegetation. PU4 is about industrial warehouses and newer “big-box” developments that continue to
shape the peri-urban space since the 1990s.

Clusters CM1-3 describe mostly residential neighborhoods with midrises arranged in
progressively denser configurations. An interesting observation is that CM1 covers mostly mid-
income neighborhoods in both eastern and western Thessaloniki, while CM3 -the most compact
variant- is almost exclusively found in western neighborhoods. Clusters ML1-3 describe mixes of
midrise and lowrise buildings in different spatial arrangements. ML1 and ML2 are both exclusively
found in western Thessaloniki. ML1 includes some of the poorest neighborhoods, such as
“Dendropotamos”. ML2 is mostly found in the lower (Kato) Evosmos area and is characterized by
narrow streets and minimal public spaces and vegetation. In contrast, ML3 is exclusive to eastern
mid to high-income areas, such as “Konstantinoupolitika” and “Pylaia” with more openness and
greenery.

The typology map (

Figure 11) highlights many of the old cores of neighborhoods outside the intra-muros city that
were developed as a response to urgent historical needs for housing in the first half of the twentieth
century. A tight, regular and undifferentiated grid is often the characteristic of the old cores of
Efkarpia (PU3), Kordelio (HD2), Ilioupoli (CM3), Ampelokipoi-Menemeni (CM3), Neapoli
(HD2/ML2) Ano and Kato Toumba (CM1, CM2) and Kalamaria (CM1, HD2). While these areas
belong to different clusters, their common characteristics make them stand out from the rest of the
urban tissue. These findings are confirmed by historical aerial photographs (Figure 12) from the 1945-
1960 dataset of the Hellenic Cadastre [81]. During the development boom of the 1960s and 1970s these
older cores were eventually absorbed into the metropolitan urban tissue, yet the original grid and
plot pattern is still evident today.

Overall, western Thessaloniki comprises a fragmented landscape of denser and in some cases
chaotic urban typologies with little vegetation and open space (e.g. ML1, ML2, CM2). This is largely
due to the lack of an overarching development vision and the limited role of statutory urban planning
during a period of rapid post-war growth. This geographic distribution of typologies aligns with
observations from previous studies on Thessaloniki’s urban form and socioeconomic discrepancies
between lower to mid-income western neighborhoods and mid to high-income eastern
neighborhoods (Section 1.4). It can only be hypothesized that over time urban form might have had
a reinforcing effect in increasing these discrepancies.
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Family Clusters Characteristics Example locations
Exclusively found in the historic city center. Historic city center
Characterized by tall buildings arranged in
HD1 compact configurations, small plots with minimal
vegetation on a mostly intercardinal grid.
High-density
Evosmos and Kordelio
urban core
(west), Nea Paralia,
Similar to HD1, with the main exceptions being a
Charilaou, Papafeio,
HD2 more integrated (i.e. dense and regular) and
Kalamaria center,
cardinally oriented grid.
Triandria and Kato
Toumba (east)
Sparse configurations of low detached buildings City outskirts, both east
on large plots or vacant plots, minimal urban and west
PU1 integration, high openness and significant
vegetation coverage.
Panorama, Pylaia and
Mostly suburban residential development on large  Agios Ioannis (east),
PU2
plots with plenty of vegetation. Pefka and Efkarpia
Peri-urban
(west).
development
Suburban cores characterized by compact Pylaia (east), Efkarpia
— arrangements of low buildings, smaller and more (west), parts of Sykies
irregular plots than PU2 with moderate vegetation
coverage.
Newer “big box” developments on large plots, City outskirts both east
PU4 such as warehouses, exhibitions, retail parks, and west.
health and education campuses.
Ano Toumba,
Midrise buildings, moderately low sky openness, Karabournaki, Nea Krini
cM1
strong network integration, rectangular plotsand  (east) and Terspithea,
intercardinal grid orientation. parts of Kordelio and
Sykies (west)
Compact Similar to CM1, characterized by more compact Part of Ano Toumba
CM2
midrises building arrangements and non-rectangular plot (east), parts of Sykies
shapes. and Neapoli (west)
Exclusive to western
Very tight arrangements of midrises with minimal
neighborhoods (Neapoli,
CM3 vegetation. Small plot and block sizes forming a

highly integrated intercardinal grid.

Ilioupoli, Ampelokipoi-

Menemeni)
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Mixed building heights, small irregular plots with

Fringe areas between

clusters, concentrated

ML1
an intercardinal orientation and lack of vegetation. =~ around Dentropotamos
and Policnhi (west).
Mixed - e Mostly found in Kato
Similar to ML1, with significantly more compact
midrises and L . . Evosmos and Neapoli
ML2 arrangements of buildings, little vegetation and a
lowrises (west)
strong cardinal grid orientation.
Mix of detached lowrises and midrises with more =~ Mostly found in
ML3 openness and vegetation than ML1 and ML2, Konstantinoupolitika
arranged in a compact intercardinal grid. and Pylaia core
Areas with predominant sloped roofs, irregular Ano Poli and Ladadika
VE1 plot shapes, older buildings and low street districts
Vernacular integration.
tissue Unique to the historic markets of Thessaloniki: Old Markets
VE2 compact configurations of very small plots,
minimal vegetation, and old lowrise buildings.
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Figure 9. Cluster profiles based on mean Gi* values.
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Figure 10. Cluster profiles based on mean Gi* values (continued).
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Figure 11. Clustered urban form typologies. Basemap by Esri, DeLorme and NAVTEQ [82].
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Figure 12. Historic aerial photos of eastern (left) and western (right) neighborhoods of Thessaloniki in the first
half of twentieth century [81].

4. Discussion

The results indicate that the selection of the plot as the basic spatial analysis unit was appropriate
for the case study city. Yet, as the method was not tested in cities with non-plot-based urbanist
traditions, the question of global applicability remains open. In an effort to address the shortcomings
of the plot as a geographical unit, filtering and Voronoi tessellation had to be performed. It is likely
that a more generalized approach will require a more robust form of spatial discretization, such as
the “enclosed tessellation cells” suggested by Fleischmann and Arribas-Bel [45]. Another
disadvantage of the proposed workflow is the difficulty in incorporating categorical data. A possible
workaround might be the use of ensemble clustering, using different methods for categorical and
numerical data.

The findings also support the idea of using the Gi* statistic to perform a more spatially aware
clustering, leading to more spatially homogenous clusters. Many of the selected morphological
indicators describe the variability of density across the urban-rural gradient (UMAP component 2),
while they struggle to identify more complex spatial configurations, rhythms and patterns except for
informality/vernacularity and grid directionality (components 1 and 3). It is also unclear whether
different urban contexts might require a different set of indicators. Consequently, the question of
indicator robustness also remains open. In any case, the proposed ML methodology is both modular
and interpretable, enabling a greater degree of control of the process and its results, in contrast to
more elaborate ML methods such as Deep Neural Networks.

While the method captures broad spatial patterns and some distinct micro-clusters, it also results
in misidentifications. For example, the university campus and the HELEXPO convention center lie
within the city center and contain some tall buildings, yet they are placed in the peri-urban family of
clusters. This misclustering was persistent, irrespective of hyperparameter tuning during test-runs.
The suburban cluster PU2 includes both the upper-class Panorama and areas of older informal
development at the edge of Polichni. The monumental axis of Aristotelous Square is not detected.
Cluster non-detection and misidentification can be attributed to several reasons such as: (i)
limitations of selected morphological indicators, (ii) error propagation from utilized datasets, (iii)
ecological fallacy where large plots may include more than one cluster of urban typologies and (iv)
absence of pre-labeled data that might be used in a supervised or semi-supervised approach.

Despite these methodological shortcomings, an advantage of this method is the creation of a
meaningful “latent space representation” of emergent urban form qualities via UMAP. There is no
direct way to measure qualities such as “informality” or “urbanization”, yet a representation of these
complex notions can be constructed from simpler morphometric indicators in a non-supervised
manner as this study demonstrates. Perhaps future studies can expand upon this idea of latent
representations of city form and function, to systematically analyze urban complexities.
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5. Conclusions

This study presents a novel methodology for unsupervised urban typology clustering,
integrating spatial autocorrelation and ML. The method utilizes UMAP for constructing a low-
dimensional representation of 17 morphological indicators and their respective spatial concentration
information in the form of Gi* values. Then BIRCH is applied on the compressed “latent space” to
generate a map of 14 urban typologies. The methodology is applied to the metropolitan area of
Thessaloniki, Greece. The study utilizes the plot as the fundamental spatial unit of analysis,
employing appropriate filtering and Voronoi tessellation to partially address its shortcomings.

The resulting typological map reveals a hierarchy of urban forms that have evolved throughout
the last century and until today under the influence of historic circumstances, regulatory frameworks,
socio-economic forces and political decisions. The emergent clusters align and further verify
quantitatively the key findings of previous qualitative studies of the city’s historic urban
development and form. Methodologically, however, the chosen workflow is not an algorithmic
panacea as questions remain open regarding the global applicability and the appropriateness of the
plot as a spatial reference unit. These can be answered only within the scope of a broader study, as
the current is limited to proof-of-concept.

Ultimately, the study invites reflection on both the potential and the limitations of data-driven
urban morphometrics, especially in the case of unsupervised tasks. Informed use of the proposed
methodological framework can deepen our understanding of urban form, as long as results are cross
validated with prior knowledge obtained through qualitative methods. This limitation of the
unsupervised approach underscores the need for a methodological paradigm shift -one that bridges
the richness of qualitative urban form studies with the computational rigor of ML and Al.
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Appendix A
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Figure A1. Hotspots and coldspots according to Gi* statistic.
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Figure A2. Hotspots and coldspots according to Gi* statistic (continued).
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Appendix B

Table B1. Examples of clustered urban form types [83].

HD1 (Historic Center) HD2 (Nea Paralia) PU1 (Pylaia outskirts)
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VE1 (Ano Poli) VE2 (Kapani Market)
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