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Article 

Detection and Clustering of Urban Form Typologies 
with Machine Learning: Insights into Thessaloniki's 
Urban Planning and Evolution 
Aristotelis Vartholomaios  

University of Thessaly, Department of Planning and Regional Development; avartholomaios@uth.gr; Tel.: (+30) 
24210 74452 

Abstract: Advances in Machine Learning (ML) present new opportunities to systematically analyze 
the spatial complexity of urban form. This study presents a proof-of-concept for an interpretable 
methodological framework for clustering urban typologies. The methodology employs the Getis-Ord 
Gi* spatial autocorrelation metric as positional information to encourage the creation of spatially 
homogenous clusters. Clustering is performed using UMAP, a non-linear dimensionality reduction 
algorithm along with BIRCH, a scalable unsupervised clustering algorithm. The method utilizes 17 
morphological indicators that capture urban form attributes at the block, plot and building scale. The 
proposed framework is pilot tested on the metropolitan area of Thessaloniki, Greece, revealing 14 
distinct urban typologies that are organized into 5 families with similar characteristics. The typologies 
reveal, in an almost Conzenian fashion, patterns of urban development that are rooted in the city’s 
modern history. Results are validated both quantitatively with performance indicators and 
qualitatively using aerial imagery and established knowledge on Thessaloniki’s urban planning and 
evolution. 

Keywords: urban form; urban morphology; urban typology; unsupervised clustering; UMAP; 
BIRCH; machine learning; spatial autocorrelation; urban planning 
 

1. Introduction 

Urban typologies serve as an analytical lens through which we understand the spatial structure 
and the complex sociocultural, economic and environmental dimensions of urban landscapes [1]. The 
typological approach is historically rooted in qualitative studies whether perceptual-aesthetic [2,3], 
typo-morphological [4,5] or historico-geographical [6,7]. However, as Batty [8] argues, the scientific 
understanding of cities requires a shift towards quantitative methods of urban experimentation to 
validate prior empirical knowledge. This need has spurred a quantitative shift in urban analytics [9] 
and morphometrics [10] that is now being accelerated by advancements in Machine Learning (ML) 
and Artificial Intelligence (AI). 

The present study contributes to the field of ML-driven urban analytics by developing and pilot-
testing a scalable and interpretable method of unsupervised urban form typological clustering. The 
method innovates by integrating local spatial autocorrelation with two ML techniques: (i) Uniform 
Manifold Approximation and Projection (UMAP) for non-linear dimensionality reduction [11] and 
(ii) Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) for clustering [12]. The 
study employs the plot as the basic spatial unit, enabling significant analytical granularity while 
integrating land property geometry into the clustering process.  

The method utilizes 17 morphological indicators at the building, plot and urban tissue scales, 
quantifying shape, orientation, density, openness, network integration and vegetation coverage. It is 
applied to the metropolitan area of Thessaloniki, Greece where over 85,000 plots are systematically 
analyzed and clustered. Results are validated ad-hoc using satellite images and findings from 
previous qualitative studies of its urban form. Although the method requires careful fine-tuning of 
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model parameters, it manages to capture the variance of urban form, while remaining interpretable. 
Thus, the method has the capacity to provide quantitative insights to urban form evolution and 
ultimately inform urban planning, design and governance.  

1.1. Clustering Urban Form with ML  

Relatively recent reviews highlight the untapped potential of ML applications in morphological 
studies, including the clustering and classification of urban types [13,14].  Unsupervised clustering 
techniques like k-means, Gaussian Mixture Models (GMMs), Hierarchical Clustering and density-
based methods like DBSCAN and HDBSCAN have been applied in urban form studies [15–22], albeit 
with limitations. For example, k-means assumes spherical equal-sized clusters [23], GMMs 
presuppose Gaussian distributions [24] while Hierarchical Clustering and DBSCAN do not scale well 
without optimizations [25,26]. HDBSCAN, while scalable and able to identify clusters of different 
shapes and sizes, may struggle with fuzzy cluster boundaries or homogenous densities [27]. 

Furthermore, all clustering algorithms become less effective for high-dimensional data due to 
the curse of dimensionality [28]. In such cases dimensionality reduction is often applied before 
clustering. Techniques include the Principal Component Analysis (PCA), t-SNE, UMAP and various 
Autoencoders based on Neural Network (NN) architectures [29,30].  PCA is quick, easy to use and 
interpretable, but can only perform linear reduction (ibid). t-SNE is geared towards 2D and 3D 
visualizations of non-linear relationships (ibid). Autoencoders, though powerful, require significant 
computational resources and time to design, optimize, train and validate while being notoriously 
harder to interpret (ibid).  

To address these challenges, the study adopts an UMAP-BIRCH workflow. UMAP builds a 
fuzzy graph in high-dimensional space to encode relationships probabilistically and then creates a 
similar graph in low-dimensional (latent) space and aligns it with the original using gradient descent 
to preserve local and global structures [11]. BIRCH is then applied on the latent space. BIRCH excels 
in unsupervised clustering of big data with diverse cluster sizes and densities, using a Clustering 
Feature (CF) tree to organize data hierarchically and obtain more representative cluster centroids 
[12]. The proposed workflow excels at disentangling the complex, high-dimensional structure of 
urban form data while being relatively simple to implement and addressing computational and 
scalability challenges. 

Additionally, the method needs to account for the spatial variability of urban form indicators 
which is crucial for detecting homogenous regions. Location in clustering and classification 
algorithms is often encoded using geographical coordinates, placenames, pixel coordinates (in the 
case of images) and graphs (if topology is important). Techniques such as spatially constrained 
clustering, graph-based clustering , Spatial Multiresolution Analysis (e.g., AMOEBA) [31–33]  make 
use of such positional information. However, this study follows a different density-based approach 
where the relative concentration of similar values is considered more important than absolute 
location. This is achieved by calculating the Getis-Ord Gi* local spatial autocorrelation statistic for all 
indicators to guide clustering. This approach results in more homogenous clusters where hotspots 
and coldspots are detected. 

1.2. The Plot as Elementary Spatial Unit 

The selection of an elementary spatial unit is often determined by the scale and granularity of 
the typological study. Spatial units in previous studies range from entire cities [34] and districts [35]  
to urban blocks [36], plots [37] and finally buildings [38]. An alternative to using urban elements as 
geographical units is to apply spatial discretization methods, such as Voronoi tessellation from 
building footprints [15,39,40], gridding [18,41,42] or elastic urban “morpho-blocks” [43]. 

This study adopts the plot as the elementary spatial unit, as it represents the smallest cadastral 
subdivision of land and reflects an important interaction between land ownership and urban form. 
Plot configurations often reflect underlying socio-economic dynamics and historical circumstances, 
development pressures and formal urban planning processes, as well as adaptations to an ever-
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evolving urban landscape [5,44]. Moreover, plot boundaries are systematically surveyed and 
recorded in property management systems, making them geometrically and topologically reliable for 
subsequent quantitative studies. 

Plots as elementary units, however, have caveats too. Firstly, they are not indivisible units of 
urban form [45]. A large plot, for example, may mask the internal heterogeneity of urban forms within 
it. Secondly, where land is communal or ownership is concentrated to very few public or private 
hands, the concept of the plot as a spatial unit loses its meaning. Finally, plots are topologically 
connected only to their immediate neighbors inside each block, which prevents more complex spatial 
calculations. For the above reasons the study proceeds by: (i) filtering out certain plot categories that 
do not fit the “conventional” definition of plot (e.g. streets and other large transportation 
infrastructure like railways and highways, forested lands, large public spaces, archaeological sites, 
active or ex-military installations, public utilities) and (ii) applying Voronoi tessellation using plot 
centroids (Figure 1). The latter creates a fully connected topology which is essential for correct 
calculation of spatial weights during autocorrelation. 

 

Figure 1. Example of Voronoi tessellation using plot centroids. 

1.3. Urban Form Indicators 

Urban morphometrics utilize quantitative indicators that capture the spatial complexity of cities. 
These often describe gradients between polarities: compactness and openness, density and sprawl, 
order and entropy, centers and peripheries, perceptions of high or low quality and safety, the artificial 
and the natural [21,46–50]. Fleischmann et al. [15] provide a systematic classification of urban form 
indicators into six categories (dimension, shape, spatial distribution, intensity, connectivity and 
diversity) and three conceptual scales (small, medium, large). While research efforts push towards 
standardizing indicators for global applications [48], their selection ultimately depends on the study’s 
objective, the scale of analysis and geographic extents as well as the urban context and data 
availability.  

The present study utilizes a set of 17 urban form indicators that span across all six suggested 
aforementioned categories. These are organized by urban element: (i) plot, (ii) building and (iii) urban 
tissue indicators (Table 1) and describe plot, building and urban block size, shape and orientation, 
vegetation and building coverage, openness and exposure of buildings and spaces, street network 
integration, building completion date and roof type. 
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Table 1. Plot indicators. 

Plot Area (𝑨𝒑𝒍𝒐𝒕, in m²) 

Smaller plots are usually found in urban land, 

while larger plots are characteristic of peri-urban 

and special uses. Calculated from plot boundary 

vertices using Gauss’ formula (shoelace method) 

Error! Reference source not found.). 

𝐴௣௟௢௧ =  
1

2
ฬ෍ (𝑥௜𝑦௜ାଵ − 𝑦௜𝑦𝑥௜ାଵ)

௡

௜ୀଵ
ฬ 

(1) 

where 𝑥௜, 𝑦௜ coordinates of vertex i, n the number of 

plot vertices. 

 

Rectangularity (𝑹) 

Quantifies how closely the shape of a plot 

resembles a rectangle by comparing its area (𝐴௣௟௢௧) 

to the area of its Minimum Bounding Rectangle 

(𝐴ெ஻ோ ). A value of 𝑅 = 1  corresponds to perfect 

rectangle, indicating a formal plot subdivision 

process (2). 

𝑅 =  
𝐴௣௟௢௧

𝐴ெ஻ோ
, 0 < 𝑅 < 1 

(2) 
 

Plot Fractal Dimension (𝑭𝑫𝒑𝒍𝒐𝒕) 

Captures the complexity of plot boundaries, 

reflecting how boundary length increases with 

area. For simple shapes, the fractal dimension 

approaches 1, while more complex boundaries 

yield higher values. A simplified calculation 

method is used here (3). 

where 𝑃 the plot perimeter 

𝐹𝐷௣௟௢௧ =  
log(𝑃)

log൫𝐴௣௟௢௧൯
 

(3) 

Normalized Plot Orientation (𝑶𝒑𝒍𝒐𝒕) 

Differentiates between cardinally (Oplot ≈ 0) or 

intercardinally (Oplot ≈ 1) oriented plots. Cardinal 

orientations are associated with a street grid that 

runs along the North-South (N-S) and East-West 

(E-W) axes and intercardinal orientations with a 

NE-SW and SE-NW oriented grid (4). 

𝑂௣௟௢௧ = |cos(𝐴𝑧)| 

(4) 

where 𝐴𝑧 is the azimuth of the longest side of the 

plot’s MBR, measured clockwise from true North. 

Mean Plot NDVI (NDVIplot) 

Calculated via zonal statistics on plot features 

buffered at 10m to account for neighboring 

vegetation (e.g. street trees) Error! Reference 

source not found.). 

𝑁𝐷𝑉𝐼௣௟௢௧ =
∑ 𝑁𝐷𝑉𝐼௣௣∈ୠ୳୤୤ୣ୰

𝑛௕௨௙௙௘௥
 

(5) 

where 𝑁𝐷𝑉𝐼௣ is the NDVI value of each pixel 𝑝 and 

𝑛௕௨௙௙௘௥  the total number of pixels inside the buffered 

plot. 
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Table 2. Building indicators. 

Building footprint area (𝑨𝒃𝒍𝒅, in m²) 

Calculated from building footprint vertices 

using Gauss’ formula (shoelace method). 

Same as Error! Reference source not found.) (𝐴௕௟ௗ 

substituting 𝐴௣௟௢௧) 

 

Mean Building Height (𝑯𝒎𝒆𝒂𝒏) 

Calculated from an Urban Atlas + Global 

Human Settlements Layer building height 

composite raster using zonal statistics (6). 

𝐻௠௘௔௡ =
∑ ℎ௣௣∈௉௟௢௧

𝑛௉
 

(6) 

where ℎ௣ is the building height value of pixel 𝑝 belonging 

to the 𝑃𝑙𝑜𝑡 and 𝑛௉ is the total number of pixels within the 

𝑃𝑙𝑜𝑡. 

Floor Area Ratio (𝑭𝑨𝑹) 

Calculated from plot geometries, building 

footprints and mean heights. Assumes a floor 

height of 3.5m (7). 
𝐹𝐴𝑅 =

𝐴௕௟ௗ  ×  
𝐻௠௘௔௡
𝐻௙௟௢௢௥

𝐴௣௟௢௧
 

(7) 

where 𝐻௙௟௢௢௥ is the mean floor height. 

Plot Coverage (Cplot, in %) 

Measures the proportion of a plot occupied by 

building footprints. High coverage indicates 

dense urban development, while zero 

coverage vacant plots (8). 

𝐶௣௟௢௧ =
𝐴௙௢௢௧௣௥௜௡௧

𝐴௣௟௢௧
× 100 

(8) 

where 𝐴௙௢௢௧௣௥௜௡௧ is the building footprint area. 

Building Fractal Dimension (𝑭𝑫𝒃𝒍𝒅) 

Similarly to 𝐹𝐷௣௟௢௧, 𝐹𝐷௕௟ௗ describes building 

shape complexity. 

Same as (3) (𝐹𝐷௕௟ௗ substituting 𝐹𝐷௣௟௢௧) 

Exposed perimeter ratio (𝑷𝒆𝒙𝒑𝒐𝒔𝒆𝒅) 

The ratio of exposed building perimeter to 

total perimeter. Ranges from 0 to 1, with the 

former indicating a building whose walls fully 

attach to other buildings and the latter a fully 

detached building. Building envelope 

exposure is linked to energy performance and 

the urban microclimate (9). 

 

𝑃௘௫௣௢௦௘ௗ =
𝑃௧௢௧௔௟ − 𝑃௖௢௠௠௢௡

𝑃௧௢௧௔௟
 

(9) 

where 𝑃௧௢௧௔௟ is the building total perimeter length and 

𝑃௖௢௠௠௢௡  the length of common boundaries with other 

buildings. 

Normalized Building orientation (𝑶𝒃𝒍𝒅) 
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Differentiates between cardinally and 

intercardinally oriented buildings in the same 

way as 𝑂௣௟௢௧ does for plots. 

Same as (4) (𝑂௕௟ௗ substitutes 𝑂௣௟௢௧) 

Table 3. Urban tissue indicators. 

Urban Block Area (𝑨𝒃𝒍𝒐𝒄𝒌, m²) 

Smaller block sizes typically correspond to 

denser, more walkable urban cores or older 

urban tissues where historic development 

processes favored fine-grained subdivisions. 

Block area is passed to all plots that belong to 

each urban block. 

Same as Error! Reference source not found.) (𝐴௕௟௢௖௞ 

substitutes 𝐴௣௟௢௧) 

Mean building completion year (𝑫𝒂𝒕𝒆𝒎𝒆𝒂𝒏) 

Calculated from ELSTAT 2011 census data 

aggregated at the urban block scale and 

reported as number of buildings per time 

period (e.g. before 1919, 1919 - 1945, 1945-1960, 

1960 - 1970... 2006 – 2011). 𝐷𝑎𝑡𝑒௠௘௔௡ is passed 

to all plots belonging to their respective urban 

block (10). 

𝐷𝑎𝑡𝑒௠௘௔௡ =
∑ 𝑛௜ ∙ 𝑇௜௜

∑ 𝑛௜௜
 

(10) 

where 𝑛௜ is the number of buildings erected during period 

𝑖, 𝑇௜ the median year of each period 𝑖. 

Sloped Roof Percentage per Urban Block (𝑹𝒔𝒍𝒐𝒑𝒆, %) 

Calculated from ELSTAT 2011 census data 

aggregated at the urban block scale and 

reported as number of buildings per roof type. 

Most sloped roofs are tiled in the case study. 

𝑅௦௟௢௣௘ is passed to all plots belonging to their 

respective urban block ( 11). 

 

𝑅௦௟௢௣௘ =
∑ 𝑛௦

∑ 𝑛௜௜
× 100 

( 11) 

where 𝑛௦ is the number of sloped roofs. 

Mean Normalized Angular Integration (𝑵𝑨𝑰𝑵𝒎𝒆𝒂𝒏) 
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An important space syntax measure for 

assessing network integration [51]. Here local 

integration is calculated using a maximum 

radius of 200m to highlight local centers. 

Results are then interpolated with IDW to 

create a raster surface. Mean NAIN is 

calculated on plot geometries, buffered by 10m 

to account for proximity ( 12). 

𝑁𝐴𝐼𝑁௠௘௔௡ =
∑ 𝑁𝐴𝐼𝑁௣௜௫௘௟௣௜௫௘௟௦∈௕௨௙௙௘௥

𝑛௕௨௙௙௘௥  
 

( 12) 

where 𝑁𝐴𝐼𝑁௣௜௫௘௟  is a NAIN pixel value and 𝑛௕௨௙௙௘௥  the 

number of pixels within the plot buffer. 

Mean Sky View Factor (𝑺𝑽𝑭𝒎𝒆𝒂𝒏) 

Quantifies the proportion of sky visible from a 

given point. Values range from 0 (fully 

obstructed) to 1 (fully open). Influences 

daylighting, microclimate and perception of 

openness.  Calculated using r.skyview on an 

urban DSM generated from building and 

terrain height data. Mean SVF is calculated on 

plot features and buffered by 10m ( 13). 

𝑆𝑉𝐹௠௘௔௡ =
∑ 𝑆𝑉𝐹௣௜௫௘௟௣௜௫௘௟௦∈௕௨௙௙௘௥

𝑛௕௨௙௙௘௥
 

( 13) 

where 𝑆𝑉𝐹௣௜௫௘௟ the SVF value at each pixel and 𝑛௕௨௙௙௘௥  

the number of pixels inside the buffered plot. 

1.4. The Study Area 

The study focuses on the metropolitan area of Thessaloniki, Greece (φ=40°39’, λ=22°54’), a 
Mediterranean city with a well-documented history of urban transformations that encompasses 
several Municipalities (Figure 2). The city’s modern identity has largely been influenced by Ernest 
Hébrard’s plan after the great fire of 1917. It is considered as a remarkable case of early 20th century 
European urban planning that transformed the burned intra-muros city by introducing 
monumentalism in the form of emblematic axes, squares and vistas, while preserving important 
vernacular elements such as the “Ano Poli” (Upper City), the byzantine walls and the old city markets 
[52–54]. The city was also marked by the influx of Greek refugees from Minor Asia and later internal 
migration, dictating new urban extensions outside the historic center. Plans for new settlements and 
neighborhoods were hastily drafted and implemented to accommodate the fire victims and refugees. 
These often followed an undifferentiated grid pattern with little concern for existing landscape 
features and future growth demand. 

Planning policies at the national and local level as well as socio-economic and cultural dynamics 
shaped the post-war urban fabric of Thessaloniki [55–57]. Housing demand in most cases was met by 
increasing permissible development without making the necessary adaptations to existing urban 
layouts and infrastructure. This issue was greater in areas developed before the 1980 planning 
reforms as plans were implemented in a fragmented and incremental manner. Before the reforms 
statutory planning had limited agency in plan implementation, plot readjustment and public lands 
acquisition. 
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Figure 2. Map of Municipality borders and mentioned placenames. Municipalities here correspond to the 
previous system of local governance as their borders match the extent of the metropolitan area more closely. 

These circumstances had a significant influence on the city’s character. Thessaloniki’s western 
neighborhoods faced significant challenges early on with informal housing, limited public spaces and 
higher FAR imposed on unsuitable urban layouts. In contrast, eastern neighborhoods like 
Karabournaki, Nea Krini and Ano Toumba witnessed densification from mid-1970’s onwards, 
allowing for plan revisions to partially adapt to increasing development pressures, while the upper 
economic classes were attracted mostly to eastern suburbs such as Pylaia, Thermi and Panorama. In 
the following decades the difference in environmental quality and density acted as a self-reinforcing 
mechanism of socioeconomic divide between a low and mid-income west and a mid to high-income 
east. Environmental studies highlight the lack of accessible green spaces [58,59], the worse air quality 
[60] and the higher Urban Heat Island (UHI) intensity in the western parts of the city [61].  

Finally, since the 1990s most of Thessaloniki’s peri-urban area has been a transitional space of 
urban sprawl and “big-box developments” as agricultural land is being replaced by retail and office 
parks, logistics centers, light industries, education and research, tourism and entertainment. 

2. Materials and Methods 

The proposed methodological framework is outlined below: 

 Pre-process data and calculate morphological indicators: As described in Section 1.3. 
 Perform spatial autocorrelation: Use Voronoi tessellation to create a fully connected topology 

from plot centroids (Figure 1). Calculate Getis-Ord Gi* statistics to identify hotspots and 
coldspots. 

 Prepare dataset for clustering: Merge morphological indicators and corresponding Gi* values 
into a unified datset. Normalize data in the (-1,1) range. 

 Apply UMAP and BIRCH: Tune UMAP hyperparameters to encourage cluster formation and 
separation in latent space. Cluster the UMAP latent space using BIRCH. 

 Clustering quality validation: Verify clustering separation, similarity and information loss using 
appropriate metrics.  

 Visualize and interpret results: Map the cluster distributions, chart and analyze cluster 
characteristics. Perform ad-hoc validation of results with findings of prior qualitative studies. 

The study employs several python libraries to achieve its goal, including OSMnx [62], Scikit-
learn [63] and PySAL/ESDA [64]. NAIN calculation is performed using QGIS Depthmap plugin and 
depthmapXnet 0.35 [65]. SVF calculation is performed with GRASS r.skyview [66]. Data sources, 
accuracy and pre-processing steps are summarized in Table 4. 
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Table 4. Data sources. 

Data Source Resolution/Accuracy Comments 

Plot geometries 

(89,171 plots) 

Hellenic Cadastre (HC) 

WFS service [67] 

According to HC standards, 

updated every 2 months. 

Referenced to GGRS87 

Datum. 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

Copernicus Land 

Monitoring Service [68] 

Derived from Sentinel-2 

images at a resolution of 10m 

– updated daily. 

Mean NDVI value 

calculated for 1 to 5 of 

June 2024, (month where 

peak vegetation growth 

coincides with little cloud 

cover) 

Building footprints 

and street network: 

OpenStreetMap [69] Estimated at 1.6m [70] Building footprint errors 

(e.g. overlapping, 

duplicates etc) were fixed 

manually. OSM street 

network was 

topologically checked, 

cleaned and simplified 

using OSMnx. 

Building heights Copernicus Urban 

Atlas (UA) [71] and 

Global Human 

Settlements Layer 

(GHSL) [72] 

UA: 10m / ±2.9m 

GHSL: 30m / ±6.6m  

IDW is applied (50m max 

range, 12 max neighbors) 

to fix UA data sparsity. 

UA data is then 

superimposed on GHSL 

creating a composite 

building height raster to 

cover study area extents. 

Elevation data EU-DEM [73] 30m / ±2.9m Used to generate urban 

DSM, by adding elevation 

values with composite 

building height raster 

values. 

Roof type and 

building date 

ELSTAT 2011 census 

data [74] 

Data aggregated at the urban 

block level 

Aggregated data is 

number of buildings per 

time period and roof type 

category 

2.1. Indicator Overview 

A first overview of the examined indicators is provided in the form of histograms (Figure 3) and 
the correlation matrix (Figure 4). Parameters like 𝐴௣௟௢௧ , 𝐴௕௟ௗ  , 𝐹𝐷௣௟௢௧  and 𝐹𝐷௕௟ௗ  exhibit highly 
skewed distributions  and are shown in logarithmic scale (Figure 3). 𝐻௠௘௔௡ , 𝑁𝐴𝐼𝑁௠௘௔௡  and 
𝐷𝑎𝑡𝑒௠௘௔௡  follow more gaussian distributions. In other indicators, the high frequency of extreme 
values often indicates a special condition. For example, a 𝐹𝐴𝑅 and a Cplot of zero or a 𝑆𝑉𝐹௠௘௔௡  near 
one indicate a vacant plot. In other cases, such as 𝑅௦௟௢௣௘  certain values may dominate the 
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distribution. These outliers contain useful information for the clustering process and should not be 
discarded as “noise” or gross errors.  

Regarding correlations between metrics (Figure 4), the strongest is observed between Oplot and 
Obld, indicating that building and plot orientations align for most of the dataset. SVFmean is strongly 
positively correlated with NDVIplot, Pexposed, moderately with Aplot and Ablock and strongly negatively 
correlated with Cplot and Hmean. These correlations are generally expected due to the urban-rural 
density gradient. 

 

Figure 3. Histograms of the pre-processed indicators. 

 

Figure 4. Correlation matrix for the morphological indicators. 
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2.2. Spatial Autocorrelation 

Global autocorrelation is performed calculating Moran’s I (14) and local via Getis-Ord Gi* 
statistics (15) [75]. Both require the calculation of spatial weights 𝑤௜௝ between each i,j point pair. The 
spatial weights matrix (𝑤௜௝) was constructed using Queen contiguity, which defines neighbors based 
on shared borders or vertices. Row-normalization was then applied to standardize the influence of 
neighboring plots. 

𝐼 =
𝑛

𝛴௜𝛴௝𝑤௜௝

𝛴௜𝛴௝𝑤௜௝(𝑦௜ − 𝑦ത)൫𝑦௝ − 𝑦ത൯

𝛴௜(𝑦௜ − 𝑦ത)ଶ
 (14) 

where n is the total number of spatial units, wij the spatial weights between locations i and j, yi, yj the 
values of the variable at i and j and 𝑦ത the variable mean. 

𝐺௜
∗ =

∑ 𝑤௜௝𝑦௝௝ − 𝑌 ∑ 𝑤௜௝௝

𝑆ඨ∑ 𝑤௜௝
ଶ

௝ − ൫∑ 𝑤௜௝௝ ൯
ଶ

𝑛 − 1

 
(15) 

where 𝑌, 𝑆 the variable’s mean and standard deviation respectively. 
Moran’s I results reveal substantial global spatial autocorrelation across all examined indicators, 

with the strongest observed in 𝐻௠௘௔௡ , 𝑆𝑉𝐹௠௘௔௡, 𝐴௕௟௢௖௞ , 𝐴௕௟ௗ,  𝑂௣௟௢௧  and 𝑂௕௟ௗ  and the weakest in 𝑅,  
𝐹𝐷௣௟௢௧ and 𝐹𝐷௕௟ௗ (Error! Reference source not found.). The calculated Gi* values are then mapped, 
revealing local hotspots and coldspots (Figures A1 and A2).  

Table 5. Global Moran’s I calculation results for the morphological indicators. 

Indicator Moran's_I 

𝐴௣௟௢௧ 0.54 

𝑅 0.33 

𝐹𝐷௣௟௢௧ 0.43 

𝐴௕௟௢௖௞  0.87 

NDVIplot 0.66 

Cplot 0.53 

𝐴௕௟ௗ 0.80 

FAR 0.65 

𝐻௠௘௔௡ 0.97 

Oplot 0.81 

𝑆𝑉𝐹௠௘௔௡ 0.85 

NAINmean 0.77 

𝑂௕௟ௗ 0.81 

𝐹𝐷௕௟ௗ 0.38 

𝐷𝑎𝑡𝑒௠௘௔௡ 0.67 

𝑅௦௟௢௣௘ 0.71 

𝑃௘௫௣௢௦௘ௗ  0.60 
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2.3. UMAP+BIRCH Clustering 

UMAP is applied on a “global” dataset comprising the morphological indicators and their 
corresponding Gi* values. This allows clustering to equally consider information regarding the 
magnitude and the spatial concentration of indicators. The dataset is then normalized in the (-1,1) 
range to render data comparable to each other.  UMAP has several key hyperparameters which are 
tuned according to Table 5. The selection of canberra distance as a distance metric is due to its 
sensitivity to differences in low-magnitude values. This is advantageous for clustering datasets where 
smaller values often carry significant discriminatory power and helps in cluster seperation [76]. 
Canberra distance is calculated as following: 

𝑑(𝑥, 𝑦) = ෍
|𝑥௜ − 𝑦௜|

|𝑥௜| + |𝑦௜|

௡

௜ୀଵ

 (16) 
 

where xi and yi are the values of the feature i for points x and y, and n is the total number of 
features. 

The number of UMAP components (i.e. the latent space dimensions) is determined by the 
following criteria: (i) clustering is generally easier in low-dimensional spaces so the fewer the 
components the better, (ii) components should ideally be orthogonal to each other (i.e. independent), 
(iii) they should express complex data interactions that emerge within the dataset and (iv) the latent 
space should demonstrate separation of clusters. 

Adherence to criteria (ii) and (iii) is estimated by calculating the correlations between 
components (Table 7, Table 8) and between each component and the 17 indicators (Figure 5). After 
several test-runs the number was fixed to 3 components: UMAP 1 describes “informality” or 
“vernacularity” as it indicates the complexity of plot and building shapes, building height and 
prevalence of sloped roofs, often associated with suburban or vernacular settings (Figure 5). UMAP 
2 describes the “urbanization gradient”, that is mostly related to density-based indicators. Finally, 
UMAP 3 describes “directionality” as it is almost solely strongly related with both Oplot and Obld (Figure 
5). For criterion (iv) it was found that the combination of canberra metric with increased 
“neighborhood size” and “negative sample rate” generates more separated and distinct regions in 
the latent space (Figure 6).  

BIRCH is finally applied on UMAP components to cluster urban form types. BIRCH 
hyperparameters (Table 6) were selected to encourage splitting into smaller subclusters before the 
final agglomerative clustering step. For a threshold of 0.3, BIRCH generates 202 initial subclusters, 
which are further aggregated to 14 in the final clustering step. The number of final clusters is selected 
after several test-runs to strike balance between analytical granularity and interpretability, while 
monitoring cluster persistence in the resulting latent space (Figure 7). 

Table 5. Hyperparameter selection for UMAP. 

Hyperparameter Use Value, 

[default] 

Rationale 

Number of components  Specifies the components (or 

dimensions) of the resulting 

latent space 

3, [2] Min. number of clusters 

with meaningful variance 

and limited correlation 

Neighborhood Size defines the size of the local 

neighborhood used to estimate 

the UMAP manifold structure 

50, [15] Consider dataset size; 

Favor moderately global 

over local structure. 

Minimum Distance Influences point density 0, [0.1] As suggested for clustering 

tasks [77]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 April 2025 doi:10.20944/preprints202504.1515.v1

https://doi.org/10.20944/preprints202504.1515.v1


 13 of 30 

 

Metric  Determines how distances are 

calculated 

'canberra', 

[euclidean] 

Encourages cluster 

separation. 

Negative Sample Rate the number of negative samples 

used per positive sample in 

gradient descent 

25, [5] Encourages cluster 

separation. Scaled 

according to neighborhood 

size. 

Table 6. Hyperparameter selection for BIRCH. 

Hyperparameter Use Value, 

[default] 

Rationale 

Threshold Determines the maximum 

radius of subclusters in the CF 

tree. Lower values encourage 

splitting into many small 

clusters 

0.3, [0.5] Encourage creation of 

smaller subclusters. 

Branching Factor Controls the maximum number 

of children nodes per non-leaf 

node in the CF tree. 

30, [50] Encourage creation of 

smaller subclusters. 

Number of Clusters User-specified number of 

clusters for final agglomerative 

clustering step. 

14, [3] Balance analytical 

granularity and 

interpretability within the 

study 

Table 7. Correlation matrix of UMAP components. 

Component 
Correlation with 

 UMAP 1 UMAP 2 UMAP 3 

UMAP 1 1 0.16 -0.26 

UMAP 2 0.16 1 0.00 

UMAP 3 -0.26 0.00 1 

 

Figure 5. Morphological indicators and UMAP components correlation matrix. 
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Figure 6. Spatial distribution of UMAP components. 

 

Figure 7. Birch Clusters in UMAP Latent Space. Cluster coloring and coding is explained in the Results section. 

2.4. Clustering Evaluation 

Unsupervised clustering can be challenging to validate in absence of “ground truth” labelled 
data. The lack of labels means that clustering quality must be benchmarked indirectly, using 
performance metrics that evaluate aspects, such as cluster interpretability, cohesion and separation. 
This section compares three different scenarios to demonstrate methodological effectiveness: (i) 
clustering with Gi* values and selected UMAP+BIRCH hyperparameters, (ii) clustering without Gi* 
values and (iii) clustering with Gi* values and default hyperparameters. Three complementary 
metrics are employed to measure cluster quality: Silhouette Score [78], Jensen-Shannon (JS) 
Divergence [79], and Information Bottleneck Ratio (IBR) [80]. 

Silhouette score measures cluster cohesion in relation to distance from other clusters, with higher 
scores indicating better quality:  

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max൫𝑎(𝑖), 𝑏(𝑖)൯
 

(17) 
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where 𝑎(𝑖): The average distance of point i to all other points in the same cluster and 𝑏(𝑖) the 
average distance of point i to all points in the nearest neighboring cluster. 

JS divergence quantifies cluster distinctness (or drift). It measures dissimilarity with zero 
indicating identical distributions: 

𝐽𝑆 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑃, 𝑄) =
1

2
𝐷௄௅(𝑃|𝑀) +

1

2
𝐷௄௅(𝑄|𝑀) 

(18) 

where 𝑃  and 𝑄 : probability distributions (e.g., feature histograms of two clusters), 𝑀  their 
average, 𝐷௄௅(𝑃|𝑀)  the Kullback-Leibler (KL) divergence: 𝐷௄௅(𝑃|𝑄) = ∑ 𝑃(𝑖)௜ log

௉(௜)

ொ(௜)
, which 

measures how much P differs from M. and 𝐷௄௅(𝑄|𝑀) the KL divergence for Q and M. 
IBR measures information loss from the original dataset, with a value of one indicating no loss:  

𝐼𝐵𝑅 =

1
𝐾

∑ 𝐻(𝐶௞)௄
௞ୀଵ

𝐻(𝐷)
 

(19) 

where 𝐻(𝐶௞)  the entropy of cluster k, calculated as: 𝐻(𝐶௞) = − ∑ 𝑝௜
௡ೖ
௜ୀଵ log 𝑝௜   ( 𝑝௜  is the 

probability of point i in cluster k and 𝑛௞ is the number of points in cluster k) and 𝐻(𝐷) the entropy 
of the entire dataset, calculated similarly to 𝐻(𝐶௞). 

The calculated metrics for the three scenarios are shown in Table 8. The first scenario, which is 
what is applied in this study, achieves the best overall performance as it demonstrates a moderate 
Silhouette Score and higher JS-Divergence and IBR, indicating more distinct clusters and greater 
retention of information. Attempting clustering without Gi* values produces worse results, while 
using default hyperparameters yields even poorer clusters. It can be observed that even in the “best” 
case of scenario 1, clusters are not fully separated (as indicated by the Silhouette Score and visually 
confirmed by Figure 7. 

Table 8. Comparison of cluster quality metrics between the three scenarios. 

metric with Gi* values and 

selected 

hyperparameters 

without Gi* values and 

selected 

hyperparameters 

with Gi* values and 

default hyperparameters 

Silhouette Score 0.53 0.42 0.32 

JS Divergence 4.72 4.02 3.65 

IBR 0.90 0.87 0.81 

What these metrics fail to describe is the cluster homogeneity in the actual geographical space. 
This can be confirmed visually by comparing the mapped clusters when Gi* values are used and 
when they aren’t. It can be seen (Figure 8) that the use of Gi* values indeed results in more spatially 
homogenous clusters. 
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Figure 8. Differences in cluster geographical homogeneity when Gi* values are included in the dataset (left) and 
when they are not (right). Cluster colors are randomized. 

3. Results 

This section presents and analyses the 14 resulting clusters, which are organized into 5 families 
with similar characteristics (Table 9). The mean Gi* values are charted for each cluster (Figure 9 and 
Figure 10) to better understand the inter-cluster differences in spatial concentrations of the analyzed 
indicators. Finally, the resulting typological map ( 

Figure 11) is interpreted by aerial imagery of urban tissue samples (Appendix: Table) and 
findings from previous studies (Section 1.4). 

A first observation is that the method captures in an almost Conzenian fashion the patterns of 
urban form that have been the product of the case study city’s historical evolution. Cluster HD1 is 
exclusive to the “intra-muros” historic city center. Within it, cluster VE1 detects the vernacular “Ano 
Poli” and “Ladadika” districts and cluster VE2 the old city markets, which constitute important 
elements of the city’s urban heritage and identity. Cluster HD2 defines several high-density local 
centers outside the historic center that share similar morphological characteristics. Clusters PU1-4 
describe peri-urban developments. PU1 focuses on vacant plots and lowrise detached buildings, PU2 
and PU3 on suburbs with the latter having a more compact grid and smaller plots with less 
vegetation. PU4 is about industrial warehouses and newer “big-box” developments that continue to 
shape the peri-urban space since the 1990s. 

Clusters CM1-3 describe mostly residential neighborhoods with midrises arranged in 
progressively denser configurations. An interesting observation is that CM1 covers mostly mid-
income neighborhoods in both eastern and western Thessaloniki, while CM3 -the most compact 
variant- is almost exclusively found in western neighborhoods. Clusters ML1-3 describe mixes of 
midrise and lowrise buildings in different spatial arrangements. ML1 and ML2 are both exclusively 
found in western Thessaloniki. ML1 includes some of the poorest neighborhoods, such as 
“Dendropotamos”. ML2 is mostly found in the lower (Kato) Evosmos area and is characterized by 
narrow streets and minimal public spaces and vegetation. In contrast, ML3 is exclusive to eastern 
mid to high-income areas, such as “Konstantinoupolitika” and “Pylaia” with more openness and 
greenery.  

The typology map ( 
Figure 11) highlights many of the old cores of neighborhoods outside the intra-muros city that 

were developed as a response to urgent historical needs for housing in the first half of the twentieth 
century. A tight, regular and undifferentiated grid is often the characteristic of the old cores of 
Efkarpia (PU3), Kordelio (HD2), Illioupoli (CM3), Ampelokipoi-Menemeni (CM3), Neapoli 
(HD2/ML2) Ano and Kato Toumba (CM1, CM2) and Kalamaria (CM1, HD2). While these areas 
belong to different clusters, their common characteristics make them stand out from the rest of the 
urban tissue. These findings are confirmed by historical aerial photographs (Figure 12) from the 1945-
1960 dataset of the Hellenic Cadastre [81]. During the development boom of the 1960s and 1970s these 
older cores were eventually absorbed into the metropolitan urban tissue, yet the original grid and 
plot pattern is still evident today. 

Overall, western Thessaloniki comprises a fragmented landscape of denser and in some cases 
chaotic urban typologies with little vegetation and open space (e.g. ML1, ML2, CM2). This is largely 
due to the lack of an overarching development vision and the limited role of statutory urban planning 
during a period of rapid post-war growth. This geographic distribution of typologies aligns with 
observations from previous studies on Thessaloniki’s urban form and socioeconomic discrepancies 
between lower to mid-income western neighborhoods and mid to high-income eastern 
neighborhoods (Section 1.4). It can only be hypothesized that over time urban form might have had 
a reinforcing effect in increasing these discrepancies. 
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Table 9. Urban form types. 

Family Clusters Characteristics Example locations 

High-density 

urban core 

HD1 

Exclusively found in the historic city center. 

Characterized by tall buildings arranged in 

compact configurations, small plots with minimal 

vegetation on a mostly intercardinal grid. 

 

Historic city center 

HD2 

Similar to HD1, with the main exceptions being a 

more integrated (i.e. dense and regular) and 

cardinally oriented grid.   

Evosmos and Kordelio 

(west), Nea Paralia, 

Charilaou, Papafeio, 

Kalamaria center, 

Triandria and Kato 

Toumba (east) 

Peri-urban 

development 

 

PU1 

Sparse configurations of low detached buildings 

on large plots or vacant plots, minimal urban 

integration, high openness and significant 

vegetation coverage.  

City outskirts, both east 

and west  

PU2 
Mostly suburban residential development on large 

plots with plenty of vegetation. 

Panorama, Pylaia and 

Agios Ioannis (east), 

Pefka and Efkarpia 

(west). 

PU3 

Suburban cores characterized by compact 

arrangements of low buildings, smaller and more 

irregular plots than PU2 with moderate vegetation 

coverage. 

Pylaia (east), Efkarpia 

(west), parts of Sykies 

PU4 

Newer “big box” developments on large plots, 

such as warehouses, exhibitions, retail parks, 

health and education campuses. 

City outskirts both east 

and west. 

Compact 

midrises 

CM1 

 

Midrise buildings, moderately low sky openness, 

strong network integration, rectangular plots and 

intercardinal grid orientation. 

Ano Toumba, 

Karabournaki, Nea Krini 

(east) and Terspithea, 

parts of Kordelio and 

Sykies (west) 

CM2 

 

Similar to CM1, characterized by more compact 

building arrangements and non-rectangular plot 

shapes. 

Part of Ano Toumba 

(east), parts of Sykies 

and Neapoli (west) 

CM3 

Very tight arrangements of midrises with minimal 

vegetation. Small plot and block sizes forming a 

highly integrated intercardinal grid. 

Exclusive to western 

neighborhoods (Neapoli, 

Ilioupoli, Ampelokipoi-

Menemeni) 
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Mixed 

midrises and 

lowrises 

ML1 
Mixed building heights, small irregular plots with 

an intercardinal orientation and lack of vegetation. 

Fringe areas between 

clusters, concentrated 

around Dentropotamos 

and Policnhi (west). 

ML2 

Similar to ML1, with significantly more compact 

arrangements of buildings, little vegetation and a 

strong cardinal grid orientation. 

Mostly found in Kato 

Evosmos and Neapoli 

(west) 

ML3 

Mix of detached lowrises and midrises with more 

openness and vegetation than ML1 and ML2, 

arranged in a compact intercardinal grid. 

Mostly found in 

Konstantinoupolitika 

and Pylaia core 

Vernacular 

tissue 

VE1 

Areas with predominant sloped roofs, irregular 

plot shapes, older buildings and low street 

integration. 

Ano Poli and Ladadika 

districts 

VE2 

Unique to the historic markets of Thessaloniki: 

compact configurations of very small plots, 

minimal vegetation, and old lowrise buildings. 

Old Markets 

 

Figure 9. Cluster profiles based on mean Gi* values. 
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Figure 10. Cluster profiles based on mean Gi* values (continued). 
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Figure 11. Clustered urban form typologies. Basemap by Esri, DeLorme and NAVTEQ [82]. 
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Figure 12. Historic aerial photos of eastern (left) and western (right) neighborhoods of Thessaloniki in the first 
half of twentieth century [81]. 

4. Discussion 

The results indicate that the selection of the plot as the basic spatial analysis unit was appropriate 
for the case study city. Yet, as the method was not tested in cities with non-plot-based urbanist 
traditions, the question of global applicability remains open. In an effort to address the shortcomings 
of the plot as a geographical unit, filtering and Voronoi tessellation had to be performed. It is likely 
that a more generalized approach will require a more robust form of spatial discretization, such as 
the “enclosed tessellation cells” suggested by Fleischmann and Arribas-Bel [45]. Another 
disadvantage of the proposed workflow is the difficulty in incorporating categorical data. A possible 
workaround might be the use of ensemble clustering, using different methods for categorical and 
numerical data.  

The findings also support the idea of using the Gi* statistic to perform a more spatially aware 
clustering, leading to more spatially homogenous clusters. Many of the selected morphological 
indicators describe the variability of density across the urban-rural gradient (UMAP component 2), 
while they struggle to identify more complex spatial configurations, rhythms and patterns except for 
informality/vernacularity and grid directionality (components 1 and 3). It is also unclear whether 
different urban contexts might require a different set of indicators. Consequently, the question of 
indicator robustness also remains open. In any case, the proposed ML methodology is both modular 
and interpretable, enabling a greater degree of control of the process and its results, in contrast to 
more elaborate ML methods such as Deep Neural Networks. 

While the method captures broad spatial patterns and some distinct micro-clusters, it also results 
in misidentifications. For example, the university campus and the HELEXPO convention center lie 
within the city center and contain some tall buildings, yet they are placed in the peri-urban family of 
clusters. This misclustering was persistent, irrespective of hyperparameter tuning during test-runs. 
The suburban cluster PU2 includes both the upper-class Panorama and areas of older informal 
development at the edge of Polichni. The monumental axis of Aristotelous Square is not detected. 
Cluster non-detection and misidentification can be attributed to several reasons such as: (i) 
limitations of selected morphological indicators, (ii) error propagation from utilized datasets, (iii) 
ecological fallacy where large plots may include more than one cluster of urban typologies and (iv) 
absence of pre-labeled data that might be used in a supervised or semi-supervised approach. 

Despite these methodological shortcomings, an advantage of this method is the creation of a 
meaningful “latent space representation” of emergent urban form qualities via UMAP. There is no 
direct way to measure qualities such as “informality” or “urbanization”, yet a representation of these 
complex notions can be constructed from simpler morphometric indicators in a non-supervised 
manner as this study demonstrates. Perhaps future studies can expand upon this idea of latent 
representations of city form and function, to systematically analyze urban complexities.  
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5. Conclusions 

This study presents a novel methodology for unsupervised urban typology clustering, 
integrating spatial autocorrelation and ML. The method utilizes UMAP for constructing a low-
dimensional representation of 17 morphological indicators and their respective spatial concentration 
information in the form of Gi* values. Then BIRCH is applied on the compressed “latent space” to 
generate a map of 14 urban typologies. The methodology is applied to the metropolitan area of 
Thessaloniki, Greece. The study utilizes the plot as the fundamental spatial unit of analysis, 
employing appropriate filtering and Voronoi tessellation to partially address its shortcomings. 

The resulting typological map reveals a hierarchy of urban forms that have evolved throughout 
the last century and until today under the influence of historic circumstances, regulatory frameworks, 
socio-economic forces and political decisions. The emergent clusters align and further verify 
quantitatively the key findings of previous qualitative studies of the city’s historic urban 
development and form. Methodologically, however, the chosen workflow is not an algorithmic 
panacea as questions remain open regarding the global applicability and the appropriateness of the 
plot as a spatial reference unit. These can be answered only within the scope of a broader study, as 
the current is limited to proof-of-concept. 

Ultimately, the study invites reflection on both the potential and the limitations of data-driven 
urban morphometrics, especially in the case of unsupervised tasks. Informed use of the proposed 
methodological framework can deepen our understanding of urban form, as long as results are cross 
validated with prior knowledge obtained through qualitative methods. This limitation of the 
unsupervised approach underscores the need for a methodological paradigm shift -one that bridges 
the richness of qualitative urban form studies with the computational rigor of ML and AI. 
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Appendix A 

 

Figure A1. Hotspots and coldspots according to Gi* statistic. 
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Figure A2. Hotspots and coldspots according to Gi* statistic (continued). 
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Appendix B 

Table B1. Examples of clustered urban form types [83]. 

HD1 (Historic Center) 

 

HD2 (Nea Paralia) 

 

PU1 (Pylaia outskirts) 

 

PU 2 Panorama 

 

PU3 (Efkarpia) 

 

PU4 (Foinikas greater area) 

 

CM1 (Karabournaki) 

 

CM2 (Ano Toumba) 

 

CM3 (Sykies) 

 

ML1 (Dendropotamos) 

 

ML2 (lower Evosmos) 

 

ML3 (Konstantinoupolitika) 
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VE1 (Ano Poli) 

 

VE2 (Kapani Market) 
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