
Article Not peer-reviewed version

E-Polis: Gamifying Sociological Surveys

Through Serious Games – a Data

Analysis Approach Applied to Multiple-

Choice Question Responses Datasets

Alexandros Gazis * and Eleftheria Katsiri

Posted Date: 27 May 2025

doi: 10.20944/preprints202505.2089.v1

Keywords: serious digital games; gamification; sociological surveys; political opinions; youth engagement;

middleware architecture; data analysis; training; serious game; serious digital game middleware

architectures; education serious games; game development

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1500064

Article

E-Polis: Gamifying Sociological Surveys Through
Serious Games—a Data Analysis Approach Applied
to Multiple-Choice Question Responses Datasets
Alexandros Gazis * and Eleftheria Katsiri

Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace,
67100 Xanthi, Greece
* Correspondence: agazis@ee.duth.gr

Abstract: E-polis is a serious digital game designed to gamify sociological surveys studying young
people’s political opinions. In this platform game, players navigate a digital world, encountering
quests posing sociological questions. Players’ answers shape the city-game world, altering building
structures based on their choices. E-polis is a serious game, not a government simulation, aiming to
understand players’ behaviors and opinions thus we do not train the players but rather understand
them and help them visualize their choices in shaping a city’s future. Also, it is noticed that no correct
or incorrect answers apply. Moreover, our game utilizes a novel middleware architecture for
development, diverging from typical asset-prefab-scene and script segregation. This article presents
the data layer of our game’s middleware, specifically focusing on data analysis based on respondents’
gameplay answers. E-polis represents an innovative approach to gamifying sociological research,
providing a unique platform for gathering and analyzing data on political opinions among youth
and contributing to the broader field of serious games.

Keywords: serious digital games; gamification; sociological surveys; political opinions; youth
engagement; middleware architecture; data analysis; training; serious game; serious digital game
middleware architectures; education serious games; game development

1. Introduction

E-polis represents an innovative approach to conducting sociological surveys, taking the form
of a digital game designed to engage participants in navigating a virtual city, [1]. The game's structure
involves completing a predetermined set of quests, which serve as pathways to advance to higher
levels or conclude the gaming experience. These quests are meticulously crafted by political scientists
and public administration officers affiliated with the National and Kapodistrian University of Athens
(NKUA), [1]. The scenarios and questions presented in the game cover a broad spectrum of political
profiles, spanning from the right to the left wing. In Figures 1 and 2 we illustrate the actual gameplay
of the first level of our game:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 32

Figure 1. The first level of our game is where in this view we can see the graphics.

Figure 2. The first level of our game is from a different view.

It is essential to note that E-polis falls under the category of serious games, where the primary
objective is to leverage the entertainment aspects inherent in digital games to encourage active
participation. As an educational game, E-polis currently lacks a scoring system, and there is no
specific time frame imposed for completing each level or scene. The emphasis remains on utilizing
the engaging nature of digital games to stimulate participants' involvement, [2], in the sociological
survey presented within the gaming environment, [3]. A key emphasis is placed on delving into the
transformative potential inherent in the imaginative and utopian thoughts of young people. Notably,
the project introduces a groundbreaking element by creating a digital environment in the form of a
video game. This innovative approach allows for the examination of players' reactions and
preferences under simulated conditions. The utilization of digital games as methodological tools for
social research introduces fresh, transdisciplinary approaches to the field. The analysis of digital
worlds, where participants freely engage with social and political issues unbound by physical reality,
yields valuable investigative data. This signifies a departure from traditional research methodologies,
providing a deeper understanding of how individuals respond to and interact with simulated
scenarios within the context of the E-polis project, [4].

 Building upon our prior study, [5], we propose the adoption of a novel middleware for the
development of a digital game that emphasizes a targeted didactic or pedagogic approach. In the
context of our discussion, middleware is defined as an abstract software entity designed to integrate
various components and functionalities within software systems. Specifically, our middleware
recommendation entails the following separation of concerns, [5]:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 32

 Functional Tasks Integration (Platform Layer):
The Platform layer primarily handles the actual gameplay, distinct from the utilization of

available hardware and the creation of executable files for various platforms and operating systems.
It ensures the seamless integration of functional tasks within the game.
 Process Coordination (Engine Layer):

The Engine layer, encompassing suggested scene transition mechanisms, is where we pinpoint
the coordination of different services and common engine procedures. It incorporates scene
management, navigation, rendering, physics, and other modules and components vital to the game's
engine functionality.
 Endpoint Provision (Game Layer):

The Game layer, central to the focus of this article, specifically addresses the data analysis aspect.
This layer is responsible for providing necessary services unique to each game, such as character
controls and actual gameplay mechanics related to navigation, quests, and overall gameplay
dynamics.
 Separation of Concerns (Application Layer):

The Application layer, this aspect involves defining the game object hierarchy and its tight
connection with scripts. It serves as a means for user interface input handling and network
communication endpoints between the player and the game engine. The Application layer ensures a
clear separation of concerns, contributing to a well-structured and maintainable system.

Furthermore, aside from the game's entertainment and educational aspects, a noteworthy
technical innovation lies in our approach to transitioning between different scenes or levels using the
lazy loading technique, [6,7]. This method aims to optimize the necessary computing resources for
playing our game by dynamically managing the loading of graphics based on the player's navigation
and field of view, [1].

To illustrate, when a player is oriented towards the north, we selectively load only the
corresponding part of the game, employing threads to efficiently offload graphics from memory for
the current level. The primary objective is to minimize resource consumption and enhance
performance during gameplay, [1]. An essential design decision involves limiting the game to a
singular light source – the sun. This choice, excluding additional rays, is intentional due to the
resource-intensive nature of rendering and shading processes during both gameplay and the final
scene rendering. This streamlined approach ensures a focused and optimized use of computational
resources throughout the gaming experience and when constructing the ultimate scene of the game.

 Regarding the theoretical innovation embedded in our game, beyond the middleware layer, we
have introduced a "do not repeat yourself" (DRY) approach, [5], in both front-end and back-end
operations during game development. Additionally, we have elucidated how to leverage a pre-
existing game engine, Unity, to build upon and expand functionality, [8–10].

In this article, our focus extends beyond presenting the actual game or each layer's functionality.
Instead, it centres on the data layer, specifically emphasizing the analysis – the data transformation
part – of the serious game named E-polis. The subsequent sections will detail the provided questions
and the rationale behind constructing a database with various types of questions based on
sociological profiles. We will then delve into the Python programming language scripts and
algorithms employed to generate dummy data, as actual data is restricted due to GDPR, and the
game is still in its developmental phase. Notably, the axis of our analysis is presented in Greek,
aligning with the final deliverable intended for submission in the Greek language to the Hellenic
Foundation of Research and Innovation (HFRI)1.

In conclusion, we summarize our findings, emphasizing that this initial analysis serves as a
validation tool for the ground truth, analytically checking and validating specific quality traits or

1 Hellenic Foundation of Research and Innovation (HFRI). Homepage. HFRI Website 2024. Available online:
https://www.elidek.gr/en/homepage (accessed on 19 May 2025).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 32

behaviours exhibited by participants. The outcomes of this research will contribute valuable insights
to the ongoing development of the E-polis serious game.

2. Related Works

2.1. Brief Literature Review

A serious game is a game whose primary design and focus are to educate, train, or raise
awareness, rather than entertain players. This means that its design principles centre around using
interactive elements to achieve objectives beyond entertainment, typically related to training
individuals or helping them learn. As such, these games incorporate elements of gamification but are
usually not highly competitive and do not force correct or incorrect answers on players, though they
can include a points or reward system, [11–13].

The purpose of an educational -serious- game is to provide a simple, engaging experience that
does not require extensive computer resources or complex graphics and animations, [14,15].
Educational games, such as the one discussed here, typically prioritize gameplay and learning
outcomes over high-end visuals or sophisticated rendering mechanisms, [16–19]. While there are
numerous game engines available, each with its strengths and weaknesses, many serious games in
recent literature utilize pre-existing solutions, [20–23], simple Web-based frameworks, [24,25], or
cloud-hosted solutions, [26–28], making them lightweight and easy to deploy.

The key consideration in such educational games is the gameplay itself, [29,30]. Specifically,
whether the game demands live, quick, and interactive player engagement or a more relaxed
approach, where players mainly read text dialogues and select answers, [31,32]. The recent trend has
been to use JavaScript frameworks or convert the game into a WebGL version, as it is important to
quickly develop a prototype for immediate play and then iterate on its features based on player
feedback, [33–37].

The digital game industry follows a Rapid Application Development (RAD) approach, which
emphasizes fast feedback from players rather than focusing on a fixed release plan for features. This
iterative approach allows for the release of multiple updates, each focused on enhancing quality and
adding new features throughout the development process. Prototypes are created based on user
design requirements and refined continuously as player interaction shapes the game's development.
This method ensures the creation of agile, flexible, and scalable applications, [38–41].

The E-polis digital serious game discussed in this article stands out due to its unique research
focus and comprehensive multimethodological approach, [1]. Rather than simply investigating
young people's attitudes toward socio-political matters, [42–44], our digital game approach takes it a
step further by actively encouraging participants to reconstruct their interests in political
involvement, engage in debates around existing or proposed institutions, and imagine alternative
forms of collective organization, [45,46]. This approach contributes to a redefinition of the concept of
democracy, emphasizing the transformative potential inherent in young people's imaginative and
utopian thoughts, [47–49]. This kind of project introduces a groundbreaking element by creating a
virtual environment in the form of a video game, allowing for the examination of players' reactions
and preferences under simulated conditions. The use of digital games as methodological tools in
social research introduces fresh, transdisciplinary approaches to the field. By analyzing digital worlds
where participants freely engage with social and political issues unbound by physical reality, the
project generates valuable data and offers a deeper understanding of how individuals respond to and
interact with simulated scenarios, [50–53].

As such it is important to promote the adoption of a novel middleware for the development of
a digital game that focuses on a targeted didactic or pedagogical approach, [54,55]. This means that
the term middleware, in this context, is defined as an abstract software entity designed to integrate
various components and functionalities within software systems. Unlike monolithic applications, the
proposed middleware does not operate as a singular entity but rather amalgamates distinct tasks and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 32

processes. It offers essential endpoints and a separation of concerns for each layer, ensuring seamless
communication between them. This approach results in a modular and well-organized system, [56].

2.2. Questions Presented During Gameplay

The questions presented during each gameplay session are rooted in specific dilemmas. In this
context, as the player navigates the city, they encounter real-life scenarios, such as an altercation
between a homeless man and law enforcement officers. When the player approaches these incidents,
a pop-up message is triggered. A dialogue textbox appears, presenting a question and a set of
available responses. This mechanism is initiated using Unity's prefab functionality, [57], and is
activated when the player enters the collision range of the prefab object, [58,59].

Each response corresponds to a particular political behaviour. The .csv file provided by political
scientists specifies the location where each quest is designed to appear (e.g., city square, flea market)
and the potential outcomes. It's important to note that questions are not presented with correct or
incorrect options; instead, players are confronted with situations that require reflection and decision-
making. To complete a game level, players must answer all the questions provided, [1,5]. If the game
is stopped, exited, or interrupted in any way, meaning that the full range of answers for each question
is not available, those samples are not considered for analysis.

There are two types of questions, and based on the players’ answers, the graphics of our game
change accordingly. The first group of dilemmas can be categorized as follows (Political Philosophy
Dilemmas):
 Democratic Radicalism: Seeks societal transformation through democratic means.
 Critical Liberalism: Emphasizes social justice, and critiques traditional liberal thought.
 Depoliticization: Removes issues from the public sphere, exclusive to experts or elites.
 Conservatism: Emphasizes tradition, order, and stability.
 Authoritarianism: Strict control suppresses dissent in government.
 Nihilism: Rejects accepted aspects of human existence (knowledge, morality, etc.) represented by

the Greek slang word "kava."
The second group of dilemmas can be categorized into the following (International Relations

and Political Theory Dilemmas):
 Realism: Emphasizes power, national interest, and balance of power in international politics.
 Technocracy: Advocates rule by experts, particularly scientists and engineers.
 Cultural Reductionism: Believes cultural differences can be explained by a single factor like race,

ethnicity, or religion.
 Humanism: Emphasizes human reason, freedom, and dignity in philosophy and ethics.
 Meritocracy: Rewards based on ability and effort, not social class or background.
 Communalism: Political and economic system based on cooperation, mutual aid, and shared

resource ownership.

2.3. Research Questions

Both the actual game developed and the game middleware architecture expands upon existing
design principles to present a top-down approach for creating serious games (SGs) intended for data
collection on themes such as social justice, economic development, and the promotion of civic
engagement and critical thinking among youth. Positioned as a modern research tool, this SG enables
players to explore socio-political issues within a democratic context by reflecting on their in-game
decisions. It not only collects user responses and behavioural data but also captures individual
perspectives, decisions, and reactions concerning political involvement and societal operations. The
technical innovation introduced through this game includes a middleware architecture that
emphasizes modular software entities, behaviour, and interactions, structured through a clear
separation between platform, engine, game, and application layers. This design supports both front-
end and back-end development processes. Additionally, we propose a novel mechanism for scene
transitions inspired by the lazy loading method to improve gameplay responsiveness.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 32

From this foundation, our manuscript explores the following research questions:
1. How can modular middleware architectures improve the performance of serious games?

 Existing middleware often introduces computational overhead, affecting rendering and
simulations. We address this by decoupling front-end rendering from game logic and by
implementing a lightweight scene transition mechanism to enhance performance with
minimal memory usage.

 Our research considers how cloud gaming and AI-powered engines may further improve
middleware efficiency, proposing a contribution in the form of a modular, lightweight design
for better integration.

2. In what ways can serious games be optimized to collect behavioural data in real-time without
compromising system performance or user privacy?
 Traditional middleware is not tailored for real-time analytics. Our approach integrates real-

time event tracking and cloud-based storage using Firebase, ensuring both scalability and
minimal performance impact.

 The contribution lies in enabling secure and ethical behavioural data collection while
preserving player anonymity.

3. How can game middleware be designed for seamless cross-platform compatibility?
 Many middleware systems fail to support efficient deployment across platforms like PC,

mobile, WebGL, and VR. We address this by separating front-end and back-end processes,
allowing easy adaptation.

 This work contributes a platform-agnostic middleware design, suitable for integration with
multiple game engines and deployment environments.

3. Methodology

3.1. Game Resouces Used and Challenges

3.1.1. DB Tables

 Initially, after successfully opening and loading the .csv question structure into our algorithmic
system input, our focus shifted towards implementing a robust and agile solution—specifically,
exporting our data into a single database instance. Our initial approach involved creating a local
network within the development environment of the game and hosting a database on one of the local
computers in our lab. Several free and open-source software solutions, such as Xampp, were
considered for rapid prototyping and development. Xampp offered an inclusive framework,
providing both a server for hosting our database (Apache) and a graphical user interface
(PhpMyAdmin) for database interaction, [60]. However, integrating a connection with the Unity
game platform proved challenging, as Xampp's solution was primarily designed for web
applications.

Given Unity's usage of C# and the necessity to analyze and mine data using Python, and SQLite,
"a C-language library that implements a small, fast, self-contained, high-reliability, full-featured, SQL
database engine", [61] (version 3.39.22). After extracting the file, we added it to the Unity assets layer,
along with the necessary .dll files for the SQLite implementation on our local machine to efficiently
manage and analyze player data using external modules such as [62,63].

 Based on the information provided, during players' gameplay, we instantiate a script that
incorporates two functions for a database:
 Create Table Function: This function is designed to create a table with a specific structure to store

players' answers if it does not already exist. It ensures that the database is appropriately
configured to store the required information.

2 SQLite. SQLite Documentation 2025. Available online: https://www.sqlite.org (accessed on 20 May
2025).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 32

 Insert Into Function: The second function involves executing insert commands to add new rows
to one of the two tables based on the player's quests. This function is responsible for populating
the database with relevant data corresponding to the player's actions and choices during
gameplay.
Each function operates as a standalone solution by opening and closing a connection to the

database when invoked by the rest of our game. This modular approach ensures efficient and isolated
functionality. Whenever a significant action occurs in the game, we invoke the script, triggering the
execution of these functions, which in turn insert the necessary values into the respective database
tables. This systematic integration of the script with the game's mechanics enables seamless data
management and storage throughout the gameplay experience.

3.1.2. Software Specifications (Serious Game Engine Explained)

Firstly, when we started implementing our game, we needed to find a way for all players to
interact within the same scene exclusively through the objects in the environment. This meant the
multiplayer solution we chose had to be lightweight and avoid the need for complex systems. Since
players in our game do not communicate via chat or microphone and only influence each other’s
decisions through changes in the buildings caused by responses to dilemmas, we prioritized
simplicity and efficiency.

Given that our game’s graphical requirements are minimal, i.e., low-polygon city models and
low computational demand, we needed a quick and reliable network solution for rapid prototyping.
Consequently, we researched existing Unity multiplayer frameworks and found an abundance of
options, including:

We excluded simpler micro-frameworks like RakNet and WebSocketSharp, as well as remote
database solutions like Firebase, which rely on REST APIs for multiplayer interactions. Our focus
was on solutions specifically designed for Unity. While Firebase is popular in the C# community, its
primary use in Unity is for login systems rather than full-game logic. Similarly, RakNet is better
suited for resource-intensive games requiring high scalability, which doesn’t align with our needs.
WebSocketSharp, commonly used for low-latency applications, is often implemented in more
complex, high-performance games.

Based on our requirements, we initially focused on three lightweight options that offered easy
setup and scalability for our demo prototype: NetCode for Game Objects, Photon, and Mirror. After
evaluating these, we found Photon and Mirror to be the most straightforward to integrate and use.
Both are free and highly reliable for indie and AAA game development. In our opinion, Photon is
better suited for small-scale games due to its built-in chat rooms and lobby system, while Mirror is
more appropriate for large-scale multiplayer games with extensive tools for scalability.

Ultimately, we selected Photon because of its comprehensive documentation, active community,
and support for future scalability. Photon provided the necessary tools to handle more users, increase
complexity, and extend game features over time.

Our multiplayer implementation involved servers, clients, dedicated servers, and host servers.
Specifically, a server acts as an instance of the game that all players connect to for shared gameplay.
It manages various aspects, such as storing responses to dilemmas and transmitting data back to
clients. Clients, on the other hand, are instances of the game running on individual devices,
connecting to the server over a local or online network.

The server can either be a dedicated server or a host server. A dedicated server runs solely to
manage connections and data, while a host server doubles as a player and a server. In our game, the
server computer also allows users to play the game, making it a host server responsible for storing
information and initializing the lobby.

For multiplayer games in Unity, the server must spawn game objects and synchronize changes
across all players’ instances. When the server spawns game objects, it ensures all connected clients
replicate these objects. The spawning system manages the lifecycle of the objects and synchronizes
their states. Photon handles this by associating each player’s connection with a unique game object,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 32

ensuring only the respective player can directly modify their object. All changes are synchronized
across the network, so the game world remains consistent for all players.

In Photon, the concept of “authority” determines control over game objects. By default, the
server holds authority over all game objects, except for player-specific objects, which are managed
with “local authority.”

In our configuration, we used a host server and implemented a lobby menu at game startup.
Players can create or join a room, enabling multiplayer functionality. Once all clients press the ready
button, the host server starts the game. Each room supports up to six players, including the host, to
maintain optimal performance and network responsiveness. Testing revealed that exceeding six
players caused throttling in CPU performance and network response times.

To evaluate multiplayer features, we created multiple builds of the project to test functionality
across devices. Using Photon, all builds must share the same ID to initialize properly. Thus, we
focused on creating executable (.exe) files for x86 Windows systems and conducted tests on Windows
10 and 11 devices, as well as touchscreen tablets running Windows. These tests confirmed the game
operated smoothly.

This workflow significantly expedited development, as we focused on optimizing the game for
Windows. However, we plan to expand the project to Android and iOS architectures, enabling the
game to run on Unix systems. This will allow us to package the game as an APK or VR application
in the future with minimal adjustments.

As such, to play the game, the only resource needed is a computer device with an Internet
connection to log into our multiplayer game.

3.1.3. Technical Challenges and Solutions

Middleware plays a foundational role in serious game development by bridging core engine
functions, user interaction, and data management. However, existing middleware solutions often
rely on monolithic or tightly coupled designs that are not suggested for real-time performance. These
legacy architectures introduce computational overhead during rendering and physics simulations,
limiting responsiveness. To address this, our middleware uses a more modular structure that
separates front-end rendering from game logic execution, enabling more efficient resource allocation
and performance optimization. We also implement a lightweight scene transition mechanism that
supports dynamic content updates without consuming excessive memory—an important
consideration for resource-limited environments such as mobile or browser-based games.

Beyond performance, a major gap in conventional middleware lies in the handling of
behavioural data. While many serious games collect player interaction logs, traditional middleware
does not support real-time analytics or scalable data storage. Our approach integrates real-time event
tracking and cloud-based storage via Firebase, enabling the secure, anonymous collection and
analysis of player decisions.

Scalability remains another critical limitation of existing middleware frameworks, particularly
in multiplayer or data-intensive environments. Traditional client-server architectures restrict real-
time responsiveness, as clients must send explicit requests before receiving server responses. Our
middleware replaces this model with an event-driven architecture inspired by IoT systems, treating
each player interaction as a continuous data stream. This shift enables decentralized, asynchronous
communication, reducing latency and supporting seamless synchronization across clients. It also
allows for dynamic scene updates without constant back-and-forth communication with a central
server.

In terms of adaptive gameplay, most middleware solutions collect behavioural data passively
but do not act on it in real time. Our middleware overcomes this by treating the game as an intelligent
data-generating system. We incorporate adaptive architectural principles, using behavioural data to
modify game scenes dynamically. This is achieved through AI-driven procedural content generation,
enabling personalized experiences and greater player immersion.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 32

Finally, conventional engines such as Unity lack built-in support for scalable database
integration. Our middleware addresses this by incorporating principles from large-scale IoT
architecture, enabling seamless integration with external databases for efficient player data storage
and retrieval. By combining modular design, real-time data streaming, adaptive scene control, and
cloud-native scalability, our middleware provides a comprehensive solution for the next generation
of serious games, aligning with the demands of both developers and data-driven gameplay
environments.

3.2. Algorithms and Rationale of E-Polis Digital Game

Each function of the digital game operates independently, opening and closing a database
connection whenever invoked by the game. This modular approach ensures efficiency and isolation.
Whenever a significant in-game action occurs, the script is triggered, executing these functions to
insert the necessary values into the appropriate database tables. This seamless integration between
the script and the game's mechanics enables efficient data management and storage throughout
gameplay.

3.2.1. Scene Transition Mechanism

The scene transition mechanism in E-Polis is responsible for creating a dynamic and interactive
game environment where player choices influence and shape the game world's structure. As such, it
generates a responsive and evolving environment. Unlike conventional static games, it modifies the
game world in real time based on user input, accommodating up to six players per room in
multiplayer mode.

3.2.2. Initial Algorithm for Scene Transition Using Prefab Collisions

In the early stages of our game's development, scene transitions were managed using a prefab-
based collision detection system. Specifically, this technique relied on placing invisible player-trigger
zones throughout the game world. When the player enters one of these zones, a question or dilemma
will be triggered. This mechanism served as the core interaction for advancing the player through the
game, as it linked physical navigation with actual decision-making. The system was designed not
only to ensure that players encountered specific scenarios in a randomized sequence—requiring them
to complete or respond to as many as possible within a given timeframe—but also to integrate the
player’s navigation with the evolving state of the game world based on their decisions.

In this section, we present a top-down overview of how this system functioned, its purpose, and
how it laid the foundation for more advanced rendering and logic using the Unity game engine.
 Core principle:

o Detects when a player enters a specific area.
o Presents a dilemma (question) that the player must respond to.
o Records the player’s choice and adjusts game world variables.

 Purpose of implementation:
o Used to trigger dilemmas based on player movement to a prefix game world space (road).
o Ensures game progression only occurs when questions are answered.
o Enables real-time interaction with the game environment variables.

 How the system works:
o When a player enters a prefab area, the algorithm activates a pop-up containing a question

(dilemma).
o Player selection updates the game world variables and stores their response for analysis.
o The dilemma does not disappear when answered, the player is moved outside of the trigger

area to see the results of his/her choice and can re-enter and re-answer.
 Pseudocode Presentation:

def on_player_enter_area(player, prefab_area):

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 32

 if player.position in prefab_area:

 dilemma = get_dilemma(prefab_area)

 display_dilemma(dilemma)

 response = player.respond_to_dilemma()

 store_response(player.id, dilemma.id, response)

 update_scene_state(dilemma, response)

This was later expanded to use graphic rendering algorithms instead of prefabs.
Similarly, to improve scalability and visual immersion, the initial prefab-based collision system

was later expanded to incorporate dynamic rendering algorithms. This transition enabled more
flexible and visually coherent scene changes by leveraging Unity’s real-time rendering capabilities.
The algorithm for the Advanced Scene Transition with Dynamic Rendering was designed as follows:
 Core principle:

o Implements real-time changes to game graphics based on player decisions.
o Unlike the previous approach, pre-rendered objects are modified dynamically.

 Purpose of implementation:
o Enhances the visual part of our game by allowing players to construct the city’s layout based

on their responses.
o Avoids the limitations of prefabs by using modular rendering techniques.

 How the system works:
o Each building starts as a disabled object.
o If the player selects a response, the algorithm modifies the object properties (e.g., texture,

shape).
o It ensures a persistent world transformation, where choices have consequences for the

outcome of the city blueprint and design.
 Pseudocode Presentation:

def update_scene(player_choice):

 for object in scene_objects:

 if is_affected_by_choice(object, player_choice):

 modify_object_properties(object, player_choice)

 render_updated_scene()

3.2.3. Player Decision Processing Algorithm

The main goal of the E-polis platform was to capture and process player decisions to support
the fundamental research objectives of the game. Since each decision reflects potential sociopolitical
or urban design preferences, a complex back-end system was required to orchestrate all related
processes, including the collection, storage, and organization of information for later analysis. This
algorithm was implemented to ensure the integrity of recorded responses while simultaneously
preserving essential metadata, such as timestamps and player positions. This structured approach
provided a viable solution for enabling the future use of gameplay data in research-oriented statistical
tools and for integration into machine learning data pipelines.

The following breakdown outlines the rationale behind our algorithm, its architecture, and how
it supports both real-time and persistent logging during daily gameplay sessions as well as future
analytical needs.
 Core principle:

o Collects and logs player responses in a structured format (but as unstructured data).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 32

o Ensures consistency and integrity in response collection (definitions of wrong execution and
try-catch blocks for failures and errors during db communication or server authentication).

 Purpose of implementation:
o Supports sociological and political research by mapping player choices to categories.
o Enables researchers to analyze trends and decision patterns.

 How the system works:
o Each player response was initially stored in a structured CSV file and then expanded this

operation and stored in a remote DB repository in Brussels (Firebase).
o Metadata such as time taken to answer, player position, and scene details are recorded.
o These data points can later be processed using statistical clustering and machine learning

models.
 Pseudocode Presentation:

def log_player_decision(player_id, dilemma_id, response):

 timestamp = get_current_time()

 log_entry =

 f"{player_id},{dilemma_id},{response},{timestamp}"

 write_to_RemoteDB("player_responses.Db", log_entry)

This method is significant for data collection, as it allows tracking of urban design preferences
based on in-game decisions.

3.2.4. Distributed Player State Synchronization Algorithm

For our system to advance from single to multiplayer functionality and enable a shared urban
development experience in the game world, it became necessary to synchronize game states across
different users and, consequently, different electronic devices. The distributed synchronization
algorithm enabled real-time data exchange between all participants, ensuring that the city
transformations triggered by one player were instantly reflected to all other players by updating the
variables of their environments. Firebase was chosen as the cloud infrastructure due to its scalability,
simplicity, and responsiveness. This system guaranteed a consistent multiplayer experience, allowing
players to collaboratively shape the city space while at the same time maintaining data accuracy and
avoiding conflicts. As such, this section presents the logic, communication flow, and technical
implementation of this synchronization mechanism within the multiplayer mode of our game.
 Core principle:

o Synchronizes game state across multiple players in real-time.
o Uses Firebase cloud storage to ensure consistency in game state.

 Purpose of implementation:
o Allows multiple players to influence the same city without inconsistencies.
o Prevents data loss by storing results remotely.

 How the system works:
o Player actions and choices are broadcast to Firebase.
o Other players receive live updates reflecting new game conditions (changes in city structure).
o Ensures that all participants experience the same urban transformation process.

 Pseudocode Presentation:
def sync_state_to_cloud(player_id, game_state):

 firebase.update(f"game_states/{player_id}", game_state)

def retrieve_state_from_cloud(player_id):

 return firebase.get(f"game_states/{player_id}")

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 32

Multiplayer synchronization is critical in E-Polis to ensure all players experience the same
evolving city.

3.2.5. Endgame Consensus-Based Voting Algorithm

At the end of each game session, the players are given the opportunity to evaluate the outcome
of their collective decisions through a final voting process. This means that a special feature exists in
the E-polis game, as it allows the players to understand public sentiment in a simulated urban
planning scenario. This feature, i.e., the voting algorithm, not only aggregates individual opinions
but also conceals the outcome from the players to prevent bias in their reflections on their choices. As
such, whether playing solo or in multiplayer mode, this mechanism provides a structured yet non-
intrusive way to gather feedback on the final city design.

In the following section, we provide in detail the steps to collect, rank, and preserve the endgame
evaluations.
 Core principle:

o Aggregates player votes on the final city structure.
o Uses a weighted ranking system to determine overall satisfaction.

 Purpose of implementation:
o Allows players to reflect on the collective decisions made during gameplay(single player=1

player or else multiplayer 2 to 6 players per room).
o Provides researchers with insights into public preferences regarding urban planning.

 How the system works:
o Each player submits a final vote (like, dislike, neutral).
o Votes are aggregated and stored in Firebase.
o The final consensus rating is not displayed in the endgame summary so as not to affect the

players’ decisions and perception of the final structure of the city.

 Pseudocode Presentation:

 def calculate_final_votes(votes):

 total_votes = len(votes)

 positive = sum(1 for v in votes if v == "like")

 negative = sum(1 for v in votes if v == "dislike")

 other = sum(1 for v in votes if v == "other")

 consensus_score = [positive,negative,other]

 return consensus_score
The final voting mechanism allows players to rate the final city layout based on collective

choices.

3.2.6. Game Workflow Algorithm

The final game workflow algorithm serves as the framework, i.e., the middleware layer that ties
together the various subsystems of the E-polis game. This middleware workflow is responsible for
maintaining continuity of operation between dilemmas, logging decisions, updating the city
structure, and managing transitions through different phases of the gameplay. Importantly, this
system ensures that no information is missed and that all player interactions are attributed correctly,
whether this is the timestamp of an event or the event process itself. Moreover, it integrates cloud-
based storage solutions and session tracking for robust multiplayer functionality. As such, this
section explains how the workflow algorithm coordinates player input, system responses, and
persistent data handling, and thus enables a seamless, research-ready gameplay experience.

 Core principle:

o Ensures player interactions and decisions are stored in real-time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 32

o Maintenance of accurate record of each player’s responses and voting preferences.
o Game state updates from building structures to scene transition to the final voting view from

the above view.

 Purpose of implementation:

o To log and store players' responses to dilemmas.
o To track the game’s progress and maintain session consistency.
o To preserve final voting results and the evolving city structure for later evaluation and

analysis.
o To ensure data integrity and persistence remote database repository, preventing data loss.

 How the system works:

o The player submits an answer to an in-game dilemma.
o The system captures key metadata:

 Player ID (Unique identifier).
 Dilemma ID (Question being answered).
 Selected Answer (Choice made by the player).
 Timestamp (When the decision was recorded).
 Game Room (The session the player is part of).

o The system constructs a database entry with this information.
o The data is stored in Firebase (a cloud-based game).
o If necessary, the system updates the game state based on the recorded response.

4. Results

In this section, we provide a detailed overview of the Python scripts and data-cleaning methods
utilized in the development of our game. The process begins with the importation of the given .csv
file, parsing it using the panda's library, and subsequently creating the two necessary tables for our
database based on the categorized dilemmas explained in the previous section.

For a more comprehensive explanation and to facilitate future researchers, we have created a
.ipynb file—a Python notebook (also known as a Jupyter notebook), [63]. This notebook contains the
code, execution results, required libraries, and all other settings incorporated into our project to
ensure correct execution. The file is available upon request to the corresponding author. It's important
to note that we chose the .ipynb format over a .py file (plain text Python file) to enhance readability
and ease of replication of results, as the notebook includes both code and execution outcomes, [64,65].

Furthermore, it is highlighted that in subsequent sections, we will introduce an analysis based
on dummy data. Due to the software phase of the game and GDPR restrictions, we are unable to
provide actual gameplay data without proper authorization, [66,67]. The data provided enhances the
practicality of presenting the analysis while adhering to data protection regulations.

4.1. Step 1: Import Python Library components

In the development of our game and the associated analysis, we utilized several Python libraries
for various tasks. Here's an overview of the key libraries incorporated into our project:
 Pandas: Used for data handling and manipulation of data frames (tabular data structures) for

ETL (Extract, Transform, Load) operations on the provided .csv files containing questions and
quests3.

 SQLite3: Employed to define the database library (SQLite) for database interactions. This includes
creating tables and performing CRUD (Create, Read, Update, Delete) operations4.

3 Pandas. Pandas Documentation 2025. Available online: https://pandas.pydata.org/ (accessed on 19 May 2025).

4 Python Software Foundation. SQLite3 Documentation. Python Software Foundation 2025. Available online:
https://docs.python.org/3/library/sqlite3.html (accessed on 19 May 2025).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 14 of 32

 NumPy: Utilized for mathematical calculations and data analysis, providing functionality for
defining and performing operations with arrays and matrices. It plays a crucial role in conducting
mathematical operations on our game data5.

 Matplotlib: Used to create plots and charts representing players' answers. Matplotlib is a versatile
plotting library that supports a wide range of visualization types6.

 Plotly Express: Similar to Matplotlib, Plotly Express extends our visualization capabilities,
offering an extensive set of creative and interactive visualizations, especially for scatter plots. It
provides additional features like annotations and legends on figures7.

 Warnings: We employed "warnings.simplefilter(action='ignore', category=FutureWarning)" to
suppress warnings during the execution of the Jupyter Notebook. This ensures a smoother
execution flow and helps in handling errors and messages more efficiently8.

 Time: Used to generate timestamps from the local work machine's execution time. Timestamps
are incorporated into the generated output files of our tests, providing a temporal reference for
analysis9.
These libraries collectively contribute to the efficiency and functionality of our game

development and subsequent data analysis, enabling a seamless workflow in handling, processing,
and visualizing the game data.

4.2. Step 2: Parse the Csv, Analyze Data, Create Db Tables

In handling a given CSV file, such as "data.xls," following discussions with the team delivering
the dilemmas, we meticulously review the document's specific columns. Precisely, guided by the
provided input, we establish a structured arrangement of rows and columns for every identified
dilemma group, as outlined in our case study input. Subsequently, we proceed to formulate the
concrete foundation of our database.

Each set of questions, derived from distinct Excel column groups, prompts the creation of a
dedicated table. To achieve this, three tailored functions have been devised to execute specific
processes. These functions facilitate the seamless scanning, extraction, and construction of tables in
alignment with the unique requirements of each dilemma group. This methodical approach ensures
the systematic organization and incorporation of the received dilemmas into our database,
contributing to the overall coherence and effectiveness of the data management processes:
 create_table function accepts a data frame, selects specific rows and columns, and uses an existing

DataFrame to perform the selection. Subsequently, it employs the iloc method to extract the
chosen rows and columns from the original DataFrame, resetting the index of the new DataFrame
to start from zero.

 create_table_diag function rearranges data into a diagonal pattern to generate a new DataFrame.
While similar to create_table, this function creates a distinct data structure. It assembles a new
DataFrame from an existing one by organizing the data diagonally. To achieve this, the function
calculates the dimensions of the original DataFrame (N, M), forms a list of column names for the
new DataFrame (including original column names and diagonal column names), and populates
the table with zero values except for the diagonal entries.

5 NumPy. 2025. Available online: https://numpy.org/ (accessed on 19 May 2025).
6 Matplotlib. 2025. Available online: https://matplotlib.org/ (accessed on 19 May 2025).

7 Plotly Express. 2025. Available online: https://plotly.com/python/plotly-express/ (accessed on 19 May 2025).
8 Python Software Foundation. Python Warnings. 2025. Available online:
https://docs.python.org/3/library/warnings.html (accessed on 19 May 2025).
9 Python Software Foundation. Python Time. Time command 2025. Available online:
https://docs.python.org/3/library/time.html (accessed on 19 May 2025).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 15 of 32

 create_db function takes two DataFrames and stores them in an SQLite database with two tables.
Initially, it establishes a connection to the SQLite database. Subsequently, it utilizes the to_sql
method to save the two DataFrames to the database.

4.2.1. Example of the actual dataset with player’s dilemmas

In Figures 3 and 4, we present an actual representation of the tables created based on this step
for each scenario within the dilemmas group (the answers are in Greek):

Figure 3. Actual representation of the table of the Db for the first group of dilemmas (Political Philosophy
Dilemmas).

Figure 4. Actual representation of the table of the Db for the second group of dilemmas (International Relations
and Political Theory Dilemmas).

4.2.2. Example of the Actual Dataset with Player’s Dilemmas in a Diagonal Pattern

Similarly, in Figures 5 and 6, if we switch the structure of our database to have the answers to
specific venues stored along the diagonal of our table, the resulting structure would be as follows
(the answers are in Greek):

Figure 5. Actual representation of the diagonal table of the Db for the first group of dilemmas (Political
Philosophy Dilemmas).

Figure 6. Actual representation of the diagonal table of the Db for the second group of dilemmas (International
Relations and Political Theory Dilemmas).

This data structure is not currently in use, but we have created it for future reference by other
teams in the research project. Specifically, data scientists may utilize it as a one-hot encoding in case
the questions change or expand, implying an ordinal relationship. In this setup, instead of having 0
or 1, we have placed the answer for each dilemma group along the diagonal. Additionally, this data
can be linked with the player's position or the level (scene) structures (buildings, etc.). This linkage
allows it to be associated with specific coordinates that alter the structure of the buildings and game
objects, thereby simulating the user experience and dynamically changing the player's position and
graphics throughout the gameplay.

4.3. Step 3: Analyzing Data and Export DB Data

Table 1 within our database encompasses a diverse set of questions, each accompanied by six
answer options that collectively represent a broad spectrum of potential responses. In contrast, Table
2 focuses on a more specific set of questions, each paired with the same six answer options of different

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 16 of 32

profiling, providing a targeted assessment tool. During gameplay, player responses are stored in our
database.

As the data is categorical, statistical measures like averages or standard deviations are
inapplicable. Our focus shifts to visualizing and comparing the data to gain insights into response
distribution and patterns within the answer options. This approach offers a comprehensive
understanding of the data's characteristics, guiding future research.

To facilitate this, we've created the save_answer function, tailored to store survey data in a
SQLite database. It takes four parameters: array (data to be saved), questions (column names), table
(defaults to 1, specifying the table number), and n (an optional additional identifier).

The function converts the array into a pandas DataFrame using specified column names. It
generates a timestamp string, creating a unique filename for the SQLite database. The connection to
the SQLite database is established using this filename. The resulting output is a SQLite database file
with a filename format like “Db1Table{table}{n}{timestr}.sqlite” or “Db1Table{table}_{timestr}.sqlite”
if n is not provided. This database contains a table named “answer” with the survey data. The same
methodology is applied to the second data structure with dilemmas arranged in a diagonal pattern.

4.4. Step 4: Visualizing Responder’s Data

In this section, upon completion of all available quests by the player, we generate insightful
graphs to comprehend their profile and behaviour. As presented in Figure 7, the phone booth in each
level enables the player to advance to the next level or conclude the game, and to reach it he/she must
have answered all available questions.

Figure 7. The exit from each level of our game is performed via going in the phonebooth where for the player to
reach it he/she must have answered all available quests.

The following figures consist of histograms, (Figures 8 and 9) corresponding to each group and
polar "spider" plots, commonly known as radar plots (Figures 10 and 11) where the answers are in
Greek. Specifically, if we study Figure 9 and the histogram plots of these data, the distribution
suggests that certain ideologies, e.g. Realism and Humanism, are more intuitively selected, possibly
because their descriptions resonate more clearly or appear less extreme to players, thus helping us
track and monitor a design bias.

Similarly, in regards to Figure 11, the symmetry or asymmetry of the spider plots allows us to
detect ideological polarization or openness in a player's profile, with spiked axes indicating strong
leaning and flat ones suggesting neutrality or indecision. Similarly, Figure 12 provides a reference for
validating the effectiveness of the questions posed, i.e. a uniform spread suggests neutrality whereas
a skewed distribution may imply a persuasive or biased pattern.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 17 of 32

Figure 8. Indicative Histogram plot for the first group of dilemmas (Political Philosophy Dilemmas).

The exit from each level of our game is performed via going in the phonebooth where for the
player to reach it he/she must have answered all available quests.

Figure 9. Indicative Histogram plot for the second group of dilemmas (International Relations and Political
Theory Dilemmas).

Figure 10. Indicative Polar “spider” plot for the first group of dilemmas (Political Philosophy Dilemmas).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 18 of 32

Figure 11. Indicative Polar “spider” plot for the second group of dilemmas (International Relations and Political
Theory Dilemmas).

The stack bar illustrations of our study are presented in Figures 12 and 13 below (the answers
are in Greek). In these Figures, the x-axis represents the different questions from your survey, labelled
as “Q1”, “Q2”, and so on. The y-axis represents the count of responses for each answer option. The
text annotations on each cell represent the count of responses for each answer option of each question
(response distribution). As such, avoidance of specific ideologies, such as Cultural Reductionism,
may reflect either a conscious distancing from controversial views or a lack of clarity in how these
options are presented.

Figure 12. Indicative Stack bars for the first group of dilemmas (Political Philosophy Dilemmas). Specifically, the
blue colour represents Democratic Radicalism (ΔΗΜΟΚΡΑΤΙΚΟΣ ΡΙΖΟΣΠΑΣΤΙΣΜΟΣ), the orange represents
Critical Liberalism (ΚΡΙΤΙΚΟΣ ΦΙΛΕΛΕΥΘΕΡΙΣΜΟΣ), the green represents Depoliticization
(ΑΠΟΠΟΛΙΤΙΚΟΤΗΤΑ), the red represents Conservatism (ΣΥΝΤΗΡΗΤΙΣΜΟΣ), the purple represents
Authoritarianism (ΑΥΤΑΡΧΙΣΜΟΣ), and the brown represents Other/Unclassified (ΚΑΒΑ).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 19 of 32

Figure 13. Indicative Stack bars for the second group of dilemmas (International Relations and Political Theory
Dilemmas). Specifically, the blue colour represents Realism (ΡΕΑΛΙΣΜΟΣ), the orange represents Technocracy
(ΤΕΧΝΟΚΡΑΤΙΑ), the green represents Cultural Reductionism (ΠΟΛΙΤΙΣΜΙΚΟΣ ΑΝΑΓΩΓΙΣΜΟΣ), the red
represents Humanism (ΑΝΘΡΩΠΙΣΜΟΣ), the purple represents Meritocracy (ΑΞΙΟΚΡΑΤΙΑ), and the brown
represents Communitarianism (ΚΟΙΝΟΤΙΣΜΟΣ).

Similarly, the heatmap illustrations based on the same datasets of the previous images are
presented in Figures 14 and 15 below (the answers are in Greek). In these figures, the x-axis represents
the questions (“Q1”, “Q2”, etc.), and the y-axis represents the response categories. The text
annotations on each cell represent the count of responses for each category of each question. As such,
the sparsity in some cells of the heatmap is important as it may point to cognitive fatigue or reduced
motivation in later-stage questions, suggesting a potential need for enhancing the overall
gamification experience (adaptive pacing or periodic gameplay breaks).

Figure 14. Indicative heatmap graph for the first group of dilemmas (Political Philosophy Dilemmas).
Specifically, the first line represents Democratic Radicalism (ΔΗΜΟΚΡΑΤΙΚΟΣ ΡΙΖΟΣΠΑΣΤΙΣΜΟΣ), the
second line represents Critical Liberalism (ΚΡΙΤΙΚΟΣ ΦΙΛΕΛΕΥΘΕΡΙΣΜΟΣ), the third line represents
Depoliticization (ΑΠΟΠΟΛΙΤΙΚΟΤΗΤΑ), the fourth line represents Conservatism (ΣΥΝΤΗΡΗΤΙΣΜΟΣ), the
fifth line represents Authoritarianism (ΑΥΤΑΡΧΙΣΜΟΣ), and the sixth line represents Other/Unclassified
(ΚΑΒΑ).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 20 of 32

Figure 15. Indicative heatmap graph for the second group of dilemmas (International Relations and Political
Theory Dilemmas). Specifically, the first line represents Realism (ΡΕΑΛΙΣΜΟΣ), the second line represents
Technocracy (ΤΕΧΝΟΚΡΑΤΙΑ), the third line represents Cultural Reductionism (ΠΟΛΙΤΙΚΟΣ
ΑΝΑΓΩΓΙΣΜΟΣ), the fourth line represents Humanism (ΑΝΘΡΩΠΙΣΜΟΣ), the fifth line represents
Meritocracy (ΑΞΙΟΚΡΑΤΙΑ), and the sixth line represents Communitarianism (ΚΟΙΝΟΤΙΣΜΟΣ).

4.5. Step 5: Validate the Ground Truth of our Results: PCA Analysis

Moreover, based on the above, for a dataset, we have generated data responses to perform a
detailed PCA analysis and then attempted to cluster the data using K-means and other algorithms.
Based on our data analysis, a common method to determine the optimal number of components is
the “Elbow Method,” which involves plotting the explained variance ratio and selecting the number
of components at the elbow point. However, in our case, we set the number of components to 3 for
visualization purposes, although our code calculates all the necessary priority values.

For example, to fit PCA on scaled data, we plotted the cumulative summation of the explained
variance in Figure 16. Then, we applied our PCA, i.e., transformed the data to reduce the number of
components to 3, to print our results to the console, visualize them, and understand them more easily.
Specifically, we used K-means clustering and agglomerative clustering algorithms, as suggested by
the scikit-learn Python package documentation, and extracted the results shown for K-means
clustering in Figures 16–20. It is noted that the clustering patterns in PCA 2D and 3D views support
the hypothesis that players fall into latent behavioural groups, offering a quantitative basis for later
classification models or personalization strategies.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 21 of 32

Figure 16. PCA Cumulative Summation of the Explained Variance.

Figure 17. Clustering representation using Kmeans for the dataset samples in 3d.

Figure 18. Clustering representation using Kmeans for the dataset samples in 2d.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 22 of 32

Figure 19. Clustering representation using Agglomerative for the dataset samples in 3d.

Figure 20. Clustering representation using Agglomerative for the dataset samples in 2d.

5. Discussion

5.1. Data Analysis

The analysis of the dataset used showcased recurring patterns, deviations, and simulated
behavioural traits reflecting how players might respond to sociopolitical dilemmas in real simulated
scenarios. Beginning with the histogram plots for the Political Philosophy Dilemmas (Figure 8), a
clear dominance of Democratic Radicalism (blue) and Critical Liberalism (brown) emerged across
most questions, suggesting that the dummy respondents were designed to reflect a progressive
stance, often aligned with youth demographics in real-world surveys. Similarly, in Figure 9,
visualizing responses to the International Relations and Political Theory Dilemmas, preferences were
concentrated on Realism (blue) and Humanism (red), reflecting pragmatic yet ethically inclined
profiles. These preferences were reinforced in the corresponding polar (spider) plots (Figures 10 and
11), suggesting a stronger alignment or repeated selection.

Beyond dominant patterns, several anomalies were also observed. In the stacked bar charts
(Figures 12 and 13), these ideologies suggest a societal avoidance of these extreme or marginalized
positions. The heatmaps (Figures 14 and 15) reveal sparse or missing data points, particularly around
questions Q7 to Q10, suggesting either reduced engagement with late-stage dilemmas or fatigue in

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 23 of 32

longer-game- sessions. If replicated with another dataset of more players or taking into account a
study of players from different age or cultural backgrounds, these trends could imply difficulty in
answering complex or abstract questions toward the end.

In terms of player behaviour traits, Figures 10 and 11 demonstrate two distinct profiles: high
polarization, favouring one ideology across all dilemmas, forming skewed radar plots, and balanced
or exploratory patterns, creating circular or flower-like spider plots. These signatures could classify
users into categories like “ideologically consistent,” “deliberative,” or “experimental.” The stacked
bar plots (Figures 12 and 13) show clustering of preferences by question, implying that certain
questions consistently evoke specific answers, likely due to question framing or scenario context.

In addition, it is worth mentioning that each figure not only visualizes the preferences and
tendencies of players but also reveals insights into the decision-making process. For instance, the
histogram plots (Figures 8 and 9) can be used as a means to suggest an ideological distribution, or
even a comparison overview framework thus highlighting potential biases toward ideologies.
Similarly, the polar plots (Figures 10 and 11) reinforce this by spatially clustering ideologies, offering
a quick visual representation of ideological coherence. Meanwhile, the stacked bar charts (Figures 12
and 13) reveal how individual questions align with particular ideologies, thus implying either strong
contextual framing or inherent ideological triggers in the questions themselves. Lastly, it is noted that
the heatmaps (Figures 14 and 15) are particularly useful for spotting underrepresented choices and
engagement gaps across the timeline of gameplay, which can inform revisions in question ordering
or user interface to reduce fatigue and abandonment.

Collectively, these visualizations and their embedded patterns highlight the analytical potential
of the E-polis framework. Given a better or better dataset of participants, the layered
representations—histograms, radar plots, stacked bars, and heatmaps can offer a robust foundation
for interpreting sociopolitical behaviour. The anomalies, when intentionally generated, provide a
sandbox for testing edge cases and refining data collection and analytical accuracy in future
gameplay with real participants. The suggested statistical analysis visualization can either be used to
explain a session of gameplays by players of specific characteristics or used as a means to validate
the ground truth of classification by other games/activities/questionnaires or even AI tools used to
determine their -the players- properties.

These visualization tools act as real-time feedback mechanisms that enhance the final design of
serious games. For developers and social scientists alike, observing and monitoring players’ response
distributions through heatmaps or stacked bar charts is important, as it may indicate patterns of
cognitive overload or help adjust difficulty levels and narrative pacing to improve the gamification
experience. Additionally, comparative analysis across different demographic groups can reveal how
sociopolitical backgrounds influence navigation through ideologically charged dilemmas. In this
way, the game's tools serve as a mirror of broader social tendencies—revealing not only player
preferences but also feelings of discomfort, confusion, or disengagement. Therefore, extending these
visualizations with additional layers—such as time spent per question—could enhance the
interpretability and utility of the data layer within the middleware structure. In future iterations,
these visual features could assist in the real-time adaptation of our game. This means that it can be
used as a tool to guide the placement or sequencing of dilemmas to maintain player engagement and
maximize data quality.

5.2. Limitations

5.2.1. Game Middleware – Large-scale architectural design

The game middleware solutions also have critical limitations, mainly the lack of scalable data
management, the inability to adapt to user behaviour dynamically and the constraints of the
traditional client-server model in game development operations. Many game middleware
frameworks are not designed for large-scale, multiplayer environments, where significant amounts
of player-generated data must not only be collected, analyzed, and stored but also used to shape the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 24 of 32

game world and player choices. Traditional game engines primarily focus on rendering and physics
simulations, offering neither a structured data-handling system nor built-in mechanisms for
integrating external databases (e.g., Unity, one of the most widely used game engines, supports C#
but lacks out-of-the-box integration for common databases like Microsoft SQL Server or MySQL).

Our game middleware approach addresses this limitation by applying IoT middleware
principles to game development. Specifically, our game middleware treats player interactions as real-
time data streams, similar to sensor networks. This allows for dynamic scene management and
efficient storage of player data, making the game both scalable and data-driven.

5.2.2. Game Middleware – Adaptive architectural design principles

Regarding adaptation to user data points, most game middleware solutions rarely incorporate
adaptive mechanisms based on player behaviour. They merely collect user interactions but fail to
utilize them dynamically, for instance, for real-time scene modifications or personalized content
delivery.

To address this, our middleware integrates a smart scene transition mechanism, which adapts
game content dynamically based on player-generated data. This means that the proposed game
development middleware treats the game as a data-producing smart sensor, enabling AI-driven
procedural content generation that enhances player immersion and engagement.

5.2.3. Game Middleware – Traditional synchronous client-server communication

Nowadays, the features of a traditional client-server, request-response model are relatively
limited. This is the case because clients may only send data after they submit their request to the
server. This situation limits developers in terms of creating dynamic applications.

Our game middleware approach addresses this issue by implementing event-driven
communication rather than relying on synchronous requests. This means that instead of requiring
clients to explicitly send requests before receiving data, our middleware treats each player and their
interactions as part of a sensor network with a unified real-time data stream. This allows for
continuous data exchange and instantaneous state synchronization, making it more suitable for
dynamic multiplayer environments.

Lastly, this feature is further supported by our smart scene transition mechanism, which
dynamically adapts game content based on real-time player behaviour without requiring constant
back-and-forth communication with a centralized server. By leveraging decentralized processing
techniques, our system optimizes latency, ensuring that gameplay remains seamless and responsive,
even under heavy computational loads.

5.2.4. IoT & Game Middleware – Security & Service Management in IoT SOA Middleware

One of the key issues in a game middleware layer that supports multiplayer is ensuring that
communication, access control, and service management are effectively handled within a Service-
Oriented Architecture (SOA). Traditional middleware solutions often focus on persistent client-
server connections but lack a structured approach for authorizing access to different middleware
layers, modules, services, and components. Moreover, middleware must act as a secure data
transmission layer, managing encrypted communication (e.g., SSL Handshakes) and diagnosing
system failures while maintaining low latency and high availability. Without these features,
middleware fails to fully integrate security, reliability, and real-time communication, making it
vulnerable to unauthorized access, inefficient service distribution, and limited scalability in multi-
device environments.

Our middleware addresses these issues three-fold:
 Extends a SOA-based communication layer by treating players and their interactions as (real-

time) data streams, similar to sensor networks.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 25 of 32

 Instead of traditional client-server connections, ensures event-driven synchronization between
game instances, dynamically managing service requests and state transitions without requiring
continuous polling.

 Introduces a smart scene transition mechanism that ensures data is securely transmitted and
validated before affecting game state changes, thus preventing unauthorized client
manipulations.

6. Conclusions

 Our game development process and various layers have been extensively discussed in other
works. Therefore, we have focused our efforts on elucidating the Game layer, which is responsible
for the actual game and from which we gather valuable data points. The study primarily concentrates
on outlining a preliminary analysis and the creation of a database from players' gameplay. It provides
a detailed top-down approach to extracting data from a CSV, structuring it for loading into a
database, and subsequently visualizing the data. Additionally, we propose a diagonal-shaped tabular
format that can serve as a one-hot encoding structure in a neural network. This format can also be
utilized to establish a grid of points between the values of the diagonal and the actual game object
coordinates. This enables dynamic changes to the game graphics during runtime, adjusting player
and graphic elements' positions on a set grid or terrain.

As such, the data visualization and dimensionality reduction presented in Figures 8 through 20
offer some preliminary but meaningful insight into player behaviour throughout the game and, most
importantly, their political choices, thus revealing their orientation within a serious game
environment. The histogram plots (Figures 8 and 9) depict the frequency distribution of the players’
responses for each category, revealing biases toward particular ideologies (e.g., higher prevalence of
selection under democratic radicalism or technocracy) and also showcasing the diversity and
uniformity of player perspectives from different sociopolitical contexts.

As such, the polar spider plots (Figures 10 and 11) that were presented assist in our
understanding by spatially distributing the same categorical data around a central axis, allowing for
an intuitive comparison of our six study political profiles. The resulting plot geometry—whether
balanced, skewed, or spiked—offers a visual fingerprint of the political mindset we situate in this
manuscript. Similarly, stacked bar charts and heatmaps (Figures 12–15) showcase aggregated
responses, not as individual item-level response distributions but to suggest actual population-level
tendencies. For example, a dominant presence of certain colours across different questions indicates
a recurring ideological leaning or cognitive bias embedded in the population or a preset dataset.

Similarly, the heatmaps provide a compact summary of frequency intensities, highlighting
which responses track ideological clustering and determining the sociopolitical richness of the
dataset studied. As a result, we conclude our research using PCA and clustering results (Figures 16–
20) to provide a quantitative dimension to these qualitative visualizations. Analytically, by reducing
the high-dimensional response space to three components, PCA enables efficient comparison of
variance across game users. The scatter plots and cumulative explained variance help illustrate the
formation of clear user clusters using both K-means and agglomerative methods. This means that
these clusters may suggest distinguishable sociopolitical profiles among players, and their
underlying ideological variables can be used for future and potential classification, interaction, and
voting outcomes.

Looking ahead, the authors aspire that this analysis of the steps and the elucidation of how this
layer mines and visualizes data based on a CSV file will aid future researchers, especially those
specializing in social surveys. For future endeavours, it is imperative to test and evaluate whether
the envisioned addition of Virtual Reality (VR) elements to the game influences players' actions. It
would be intriguing to observe players engaging with and without VR goggles to discern potential
behavioural changes. Similarly, one can use this data as a means to provide AI to implement the
potential for typological classification, decision patterns, and, based on scene interaction and in-game
behaviour, voting outcomes. In this regard, the data pipeline—from response recording to statistical

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 26 of 32

clustering—demonstrates, to the best of our knowledge, a strong potential for empirical
psychological exploration through serious game frameworks. It is crucial to acknowledge that this
analysis is not definitive but rather serves as a method to explore certain quality attributes or validate
aspects of deep data analysis, acting as a means to validate the ground truth method.

Supplementary Materials: Not applicable.

Author Contributions: Both authors made significant contributions to this work. A.G. and E.K. conceived and
designed the experiments. A.G. coded the application; was responsible for the investigation, methodology,
software, validation, visualization, writing the original draft, and reviewing and editing resources; and carried
out the simulation and the optimization and writing of—original draft. E.K. contributed to the conceptualization,
investigation, methodology, project administration, resources, software, supervision, validation, visualization,
review, and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Hellenic Foundation of Research and Innovation (H.F.R.I.), in the
context of the “1st Call for H.F.R.I. (http://www.elidek.gr) Research Projects to Support Faculty Members &
Researchers and Procure HighValue Research Equipment” (Project Number: 2617).

Data Availability Statement: The data presented in this study are available on request from the corresponding
author.

Acknowledgements: The authors would like to thank Mr. Gerasimos Kouzelis for providing the research outline
of this project and Mr. Orestis Didi for his overall assistance and expertise on the topic.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Game Workflow Pseudocode Presentation

The final voting mechanism allows players to rate the final city layout based on collective choices
as presented in the pseudocode below:
import time

import firebase_admin

from firebase_admin import credentials, db

Firebase Authentication Setup

 def initialize_firebase():

 """Initializes Firebase connection using service account

credentials. Ensures secure authentication and access to the

database. """

 cred =

credentials.Certificate("path/to/serviceAccountKey.json")

 firebase_admin.initialize_app(cred, {

 'databaseURL': 'https://our-

database-name.firebaseio.com/'

 })

 print("Firebase initialized successfully.")

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 27 of 32

 # Function to get current timestamp

 def get_current_timestamp():

 """Returns the current timestamp in a standard format."""

 return time.strftime('%Y-%m-%d %H:%M:%S')

 # Store player response in Firebase

 def store_player_answer(player_id, dilemma_id,

selected_answer, game_room, auth_token):

 """Stores the player's response securely in Firebase (param

player_id: Unique identifier for the player, param

dilemma_id: Unique identifier for the dilemma question, param

selected_answer: The player's chosen response, param

game_room: The game session the player is part of, param

auth_token: Authentication token for verifying user

access."""

 timestamp = get_current_timestamp()

 # Authenticate user session

 if not authenticate_player(player_id, auth_token):

 print(f"Authentication failed for Player {player_id}.

Data not stored.")

 return

 # Reference to Firebase game room answers

 ref =

 db.reference(f'game_rooms/{game_room}/player_answers')

 ref.push({

 'player_id': player_id,

 'dilemma_id': dilemma_id,

 'answer': selected_answer,

 'timestamp': timestamp

 })

 print(f"Stored response for Player {player_id} in Room

{game_room}")

 # Firebase Authentication Function

 def authenticate_player(player_id, auth_token):

 """Validates the player's authentication token before

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 28 of 32

storing data (where, param player_id: Unique identifier for

the player, param auth_token: Token issued for verifying

player authentication, return: Boolean indicating whether

authentication was successful."""

 auth_ref =

db.reference(f'authenticated_users/{player_id}')

 stored_token = auth_ref.get()

 if stored_token == auth_token:

 return True

 else:

 return False

 # Initialize Firebase Connection

 initialize_firebase()

 # Example Usage

 store_player_answer(player_id=12, dilemma_id=5,

selected_answer="Option A", game_room=2,

auth_token="valid_token_123")

 store_player_answer(player_id=15, dilemma_id=7,

selected_answer="Option C", game_room=3,

auth_token="invalid_token_456")

References
1. Gazis, A.; Katsiri, E. E-polis: An innovative and fun way to gamify sociological research with an educational

serious game – Game development middleware approach. Int. J. Educ. Inf. Technol. 2024, 18, 20–32.
https://doi.org/10.46300/9109.2024.18.3.

2. Park H.E. Designing engagement: Exploring affordances in freemium digital games. Technology in Society.
2025, 11, 102840. https://doi.org/10.1016/j.techsoc.2025.102840

3. Tene, T.; Vique López, D.F.; Valverde Aguirre, P.E.; Cabezas Oviedo, N.I.; Vacacela Gomez, C.; Bellucci, S.
A systematic review of serious games as tools for STEM education. Frontiers in Education 2025, 7, 10,
1432982. Frontiers Media SA. https://doi.org/10.3389/feduc.2025.1432982

4. Kouzelis, G. e-polis of the future: 1st Call for H.F.R.I. Research Projects to Support Faculty Members and
Researchers and Procure High-Value Research Equipment. H.F.R.I. Grant Project 2021. Available online:
https://www.elidek.gr/wp-content/uploads/2021/02/Κουζέλης-EN.pdf (accessed on 20 May 2025).

5. Haoyu, W.; Haili, Z. Basic design principles in software engineering. IEEE Fourth International Conference
on Computational and Information Sciences 2012, 1251-1254. https://doi.org/10.1109/ICCIS.2012.91

6. Alizadeh, A. Design and implementation of a web-based editor optimized for online gambling games. Aalto
Univ. Thesis 2022. Available online: https://aaltodoc.aalto.fi/handle/123456789/112844 (accessed on 20 May
2025).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 29 of 32

7. Möller Ehrnlund, B. Enriching the user experience of e-learning platforms using responsive design: A case
study. DIVA Portal 2021. Available online: https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1579007 (accessed on 20 May 2025).

8. Tran, C. Applying test-driven development in evaluating student projects. Doria Repository 2020. Available
online: https://www.doria.fi/handle/10024/176543 (accessed on 20 May 2025).

9. Filazzola, A.; Lortie, C.J. A call for clean code to effectively communicate science. Methods Ecol. Evol. 2022,
13, 2119–2128. https://doi.org/10.1111/2041-210X.13961.

10. Neutens, T.; Coolsaet, K.; Wyffels, F. Assessment of code, which aspects do teachers consider and how are
they valued? ACM Trans. Comput. Educ. 2022, 22, 1–27. https://doi.org/10.1145/3517133.

11. Motlagh, M.; Horcea-Milcu, A.I.; König, B. Discovering the potential of serious games for transformative
sustainability research. Discover Sustainability. 2025, 15, 6(1):30. https://doi.org/10.1007/s43621-024-00756-8

12. Katsantonis, M.N. From Pandemic Legacy to Serious Games: A Systematic Review of Cooperative Board
Games Under the Educational Perspective. European Journal of Education. 2025 ,60(1):e70048.
https://doi.org/10.1111/ejed.70048

13. Dernat, S.; Grillot, M.; Andreotti, F.; Martel, G. A sustainable game changer? Systematic review of serious
games used for agriculture and research agenda. Agricultural Systems. 2025,1;222:104178.
https://doi.org/10.1016/j.agsy.2024.104178

14. Zhao, D.; Muntean, C.H.; Chis, A.E.; Rozinaj, G.; Muntean, G.M. Game-based learning: Enhancing student
experience, knowledge gain, and usability in higher education programming courses. IEEE Transactions on
Education. 2022 10, 65(4):502-13. https://doi.org/10.1109/TE.2021.3136914

15. Isaeva, R.; Karasartova, N.; Dznunusnalieva, K.; Mirzoeva, K.; Mokliuk, M. Enhancing learning
effectiveness through adaptive learning platforms and emerging computer technologies in education.
Jurnal Ilmiah Ilmu Terapan Universitas Jambi. 2025, 16, 9(1):144-60. https://doi.org/10.22437/jiituj.v9i1.37967

16. Ding, A.C.; Yu, C.H. Serious game-based learning and learning by making games: Types of game-based
pedagogies and student gaming hours impact students' science learning outcomes. Computers & Education.
2024, 1, 218:105075. https://doi.org/10.1016/j.compedu.2024.105075

17. Gaurav, D.; Kaushik, Y.; Supraja, S.; Yadav, M.; Gupta, M.P.; Chaturvedi, M. Empirical study of adaptive
serious games in enhancing learning outcome. International Journal of Serious Games. 2022, 31, 9(2):27-42.
https://doi.org/10.17083/ijsg.v9i2.486

18. Triantafyllou, S.A.; Sapounidis, T. Game-based Learning approach and Serious Games to learn while you
play. IEEE World Engineering Education Conference (EDUNINE) 2023, 1-6. IEEE.
https://doi.org/10.1109/EDUNINE57531.2023.10102872

19. Furtado, L.S.; de Souza, R.F.; Lima, J.L.; Oliveira, S.R. Teaching method for software measurement process
based on gamification or serious games: a systematic review of the literature. International Journal of
Computer Games Technology. 2021, 2021(1), 8873997. https://doi.org/10.1155/2021/8873997

20. Sharif, K.H.; Ameen, S.Y. Game engines evaluation for serious game development in education.
International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2021, 1-6.
https://doi.org/10.23919/SoftCOM52868.2021.955905

21. Politowski, C.; Petrillo, F.; Montandon, J.E.; Valente, M.T.; Guéhéneuc, Y.G. Are game engines software
frameworks? A three-perspective study. Journal of Systems and Software. 2021, 1, 171:110846.
https://doi.org/10.1016/j.jss.2020.110846

22. Vohera, C.; Chheda, H.; Chouhan, D.; Desai, A.; Jain, V. Game engine architecture and comparative study
of different game engines. International Conference on Computing Communication and Networking Technologies
(ICCCNT), 2021 1-6. https://doi.org/10.1109/ICCCNT51525.2021.9579618

23. Coronado, E.; Itadera, S.; Ramirez-Alpizar, I.G. Integrating virtual, mixed, and augmented reality to
human–robot interaction applications using game engines: A brief review of accessible software tools and
frameworks. Applied Sciences. 2023, 1, 13(3):1292. https://doi.org/10.3390/app13031292

24. Salvador-Ullauri, L.; Acosta-Vargas, P.; Luján-Mora, S. Web-based serious games and accessibility: a
systematic literature review. Applied Sciences. 2020, 6, 10(21):7859. https://doi.org/10.3390/app10217859

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 30 of 32

25. Maskeliūnas, R.; Kulikajevas, A.; Blažauskas, T.; Damaševičius, R.; Swacha, J. An interactive serious mobile
game for supporting the learning of programming in javascript in the context of eco-friendly city
management. Computers. 2020, 17, 9(4):102. https://doi.org/10.3390/computers9040102

26. Alamri, A.; Hossain, A.M.; Hassan, M.M.; Hossain, S.M.; Alnuem, M.; Ahmed, T.D. A cloud-based
pervasive serious game framework to support obesity treatment. Computer Science and Information Systems.
2013, 10(3):1229-46. https://doi.org/10.2298/CSIS120717046A

27. Freire, M.; Serrano-Laguna, Á.; Manero I.B.; Martínez-Ortiz, I.; Moreno-Ger, P.; Fernández-Manjón, B.
Game learning analytics: Learning analytics for serious games. Learning, design, and technology: An
international compendium of theory, research, practice, and policy, 2023, 3475-3502. Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-17461-7_21

28. Carrascosa, M.; Bellalta, B. Cloud-gaming: Analysis of google stadia traffic. Computer Communications. 2022,
15, 188:99-116. https://doi.org/10.1016/j.comcom.2022.03.006

29. Papadimitriou, S.; Virvou, M. User-Player and Student Modeling in Personalized Educational Games: A
Literature Review. Artificial Intelligence—Based Games as Novel Holistic Educational Environments to Teach 21st
Century Skills. 2025, 21:63-94. https://doi.org/10.1007/978-3-031-77464-5_3

30. Katsantonis, M.N. From Pandemic Legacy to Serious Games: A Systematic Review of Cooperative Board
Games Under the Educational Perspective. European Journal of Education. 2025, 60(1):e70048.
https://doi.org/10.1111/ejed.70048

31. Reyes-de-Cózar, S.; Merino-Cajaraville, A. FABLE: A new horizon in digital learning and serious game
design. Media and Communication. 2025, 13, 13. https://doi.org/10.17645/mac.8647

32. Maxim, R.I.; Arnedo-Moreno, J. Identifying key principles and commonalities in digital serious game
design frameworks: Scoping review. JMIR Serious Games. 2025, 5, 13:e54075. https://doi.org/10.2196/54075

33. Gaspari, F.; Ioli, F.; Barbieri, F., Rivieri, C.; Dondi, M.; Pinto, L. Rediscovering cultural heritage sites by
interactive 3D exploration: A practical review of open-source WebGL tools. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. 2023, 24, 48:661-8.
https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-661-2023

34. Zhang, Z.; Xu, J.; Shen, X.; Zhao. H.; Niu, Y. WebGL-based virtual reality technology construction and
optimization. International Conference on Optics, Electronics, and Communication Engineering (OECE 2024),
2024, 12, 13395, 393-400. https://doi.org/10.1117/12.3048388

35. Han. Y.; Bi, W.; An, R.; Tian, D.; Yang, Q.; Ma, Y. GL2GPU: Accelerating WebGL Applications via Dynamic
API Translation to WebGPU. Proceedings of the ACM on Web Conference, 2025, 751-762.
https://doi.org/10.1145/3696410.3714785

36. Goukouni, B.Y.; Aamir, M.; Ali, W.; Dayo, Z.A.; Abro, W.A.; Ishfaq, M.; Yurong, G. Methods Tested to
Optimize the Performance of WebGL Applications. Sensing Technology: Proceedings of ICST, 2022, 339-354.
https://doi.org/10.1007/978-3-030-98886-9_27

37. Wang, X.; Tian, H.; Fang, J.; Zhang, H.; Zhang, T. Development and Optimization of a WebGL-Based
Mechanical Model Simulation Platform. International Conference on Mechanical Design and Simulation, 2024,
1365-1373. https://doi.org/10.1007/978-981-97-7887-4_120

38. Gananjaya, I.; Chandra, J.O.; Christanto, J.F.; Widianto, M.H.; Audrey, J. “A Lone Burglar” Stealth Game
Development Using Rapid Application Development. International Conference on Cybernetics and Intelligent
Systems (ICORIS), 2022, 1-5. https://doi.org/10.1109/ICORIS56080.2022.10031499

39. Shrestha, A.; Zuo, F.; Qian, G.; Rhee, J. A Survey and Insights on Modern Game Development Processes
for Software Engineering Education. International Conference on Software Engineering and Data Engineering,
2024, 65-84. https://doi.org/10.1007/978-3-031-75201-8_6

40. Roedavan, R.; Pratondo, A.; Pudjoatmodjo, B.; Siradj, Y. Adaptation atomic design method for rapid game
development model. IJAIT (International Journal of Applied Information Technology). 2020, 93-102.
https://doi.org/10.25124/ijait.v4i02.3658

41. Borg, M.; Garousi, V.; Mahmoud, A.; Olsson, T.; Stålberg, O. Video game development in a rush: A survey
of the global game jam participants. IEEE Transactions on Games. 2019, 11, 12(3):246-59.
https://doi.org/10.1109/TG.2019.2910248

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 31 of 32

42. Janakiraman, S.; Watson, S.L.; Watson, W.R.; Newby, T. Effectiveness of digital games in producing
environmentally friendly attitudes and behaviors: A mixed methods study. Computers & Education. 2021, 1,
160:104043. https://doi.org/10.1016/j.compedu.2020.104043

43. Janakiraman, S.; Watson, S.L.; Watson, W.R.; Shepardson, D.P. Exploring the influence of digital games on
environmental attitudes and behaviours based on the new ecological paradigm scale: a mixed-methods
study in India. Journal of Education for Sustainable Development. 2021 ,15(1):72-99.
https://doi.org/10.1177/0973408221997844

44. Liu, C.; Wang, Z.; Yang, Y.; Mao, P.; Tai, R.H.; Cai, Z.; Fan X. Do males have more favorable attitudes
towards digital game use than Females: A Meta-Analytic review. Children and Youth Services Review. 2024
1, 160:107550. https://doi.org/10.1016/j.nanoen.2020.104641 Dhiman, Dr. Bharat, Games as Tools for Social
Change Communication: A Critical Review (March 25, 2023). Global Media Journal, 21:61 (2023),
https://ssrn.com/abstract=4401202

45. Alfaro-Ponce, B.; Patiño, A.; Sanabria-Z, J. Components of computational thinking in citizen science games
and its contribution to reasoning for complexity through digital game-based learning: A framework
proposal. Cogent Education, 2023 31, 10(1):2191751. https://doi.org/10.1080/2331186X.2023.2191751

46. Liu, J.; Shadiev, R.; Cao, M. Effects of digital citizenship educational game on teenagers’ learning
achievement, motivation, cognitive load, and behavioral patterns. Education and Information Technologies.
2025, 14:1-54. https://doi.org/10.1007/s10639-025-13399-7

47. Farca, G. The concept of utopia in digital games. Playing Utopia: Futures in Digital Games. 2019, 7;10:99.
https://doi.org/10.1515/9783839450505-004

48. Polizzi, G. Internet users’ utopian/dystopian imaginaries of society in the digital age: Theorizing critical
digital literacy and civic engagement. New Media & Society. 2023, 25(6):1205-26.
https://doi.org/10.1177/14614448211018609

49. Coopilton, M. Critical game literacies and critical speculative imagination: A theoretical and conceptual
review. Gamevironments. 2022, 22(17):51. https://doi.org/10.48783/gameviron.v17i17.196

50. Thompson, M. Playing with the rules of the game: Social innovation for urban transformation. International
Journal of Urban and Regional Research. 2019, 43(6):1168-92. https://doi.org/10.1111/1468-2427.12663

51. Carvalho, V.M. Videogames as tools for social science history. The Historian. 2017,1, 79(4):794-819.
https://doi.org/10.1111/hisn.12674

52. Kara, N. A systematic review of the use of serious games in science education. Contemporary Educational
Technology. 2021 20, 13(2):ep295. https://doi.org/10.30935/cedtech/9608

53. Manzano-León, A.; Camacho-Lazarraga, P.; Guerrero, M.A.; Guerrero-Puerta, L.; Aguilar-Parra, J.M.;
Trigueros, R.; Alias, A. Between level up and game over: A systematic literature review of gamification in
education. Sustainability. 2021 19, 13(4):2247. https://doi.org/10.3390/su13042247

54. Mazzuca, L.; Garbugli, A.; Sabbioni, A.; Bujari, A.; Corradi, A. Towards a resource-aware middleware
support for distributed game engine design. Proceedings of the 2022 ACM Conference on Information
Technology for Social Good, 2022, 7, 409-413. https://doi.org/10.1145/3524458.3547126

55. Aslan, S., Balci, O. GAMED: digital educational game development methodology. Simulation. 2015,
91(4):307-19. https://doi.org/10.1177/0037549715572673

56. Ajayi, J.; Adetiba, E.; Ifijeh, A.H.; Abayomi, A.; Wejin, J. Thakur, S.; Moyo, S.; LogicHouse-v1: a digital
game-based learning tool for enhanced teaching of digital electronics in higher education institutions.
Cogent Engineering. 2024, 31, 11(1):2322814. https://doi.org/10.1080/23311916.2024.2322814

57. Sivalaya, G.; Mounika, B.; Sailasya, G.; Kumar, N.S. Implementation of augmented reality application using
Unity Engine deprived of prefab. J. Comput. Sci. Appl. 2020, 19, 20079–20082.
https://doi.org/10.47672/ajce.2028.

58. Tăbuşcă, A.; Coculescu, C.; Pirnau, M. General considerations regarding the development of games using
Unity technology. J. Inf. Syst. Oper. Manag. 2021, 15, 267–283. Available online:
http://www.rebe.rau.ro/RePEc/rau/jisomg/WI21/JISOM-WI21-A24.pdf (accessed on 20 May 2025).

59. Bucher, N. Introducing design patterns and best practices in Unity. Proc. SouthEast Conf. 2017, 243, 243–247.
https://doi.org/10.1145/3077286.3077322.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

 32 of 32

60. Friends, A. XAMPP Apache + MariaDB + PHP + Perl. Apache Friends 2023. Available online:
http://103.4.92.163/index.php/jobams/article/view/36 (accessed on 20 May 2025).

61. Gaffney, K.P.; Prammer, M.; Brasfield, L.; Hipp, D.R.; Kennedy, D.; Patel, J.M. SQLite: Past, present, and
future. Proc. VLDB Endow. 2022, 15, 3535–3547. https://doi.org/10.14778/3554821.3554842.

62. Yakubovich, M. Evaluating the potential of developing cross-platform mobile applications. Chalmers Univ.
Tech. Thesis 2013. Available online: https://odr.chalmers.se/items/c794ea11-d629-41b9-b6d6-cbd7f2265a0c
(accessed on 20 May 2025).

63. Pimentel, J.F.; Murta, L.; Braganholo, V.; Freire, J. A large-scale study about quality and reproducibility of
Jupyter notebooks. Proc. IEEE/ACM Int. Conf. Min. Softw. Repos. 2019, 16, 507–517.
https://doi.org/10.1109/MSR.2019.00077.

64. Wang, J.; Li, L.; Zeller, A. Better code, better sharing: On the need of analyzing Jupyter notebooks. Proc.
ACM/IEEE Int. Conf. Softw. Eng. 2020, 42, 53–56. https://doi.org/10.1145/3377816.3381724.

65. Cardoso, A.; Leitão, J.; Teixeira, C. Using the Jupyter Notebook as a tool to support the teaching and
learning processes in engineering courses. Proc. Int. Conf. Interact. Collab. Learn. 2019, 21, 227–236.
https://doi.org/10.1007/978-3-030-11935-5_22

66. Alhazmi, A.; AG Arachchilage, N. A serious game design framework for software developers to put GDPR
into practice. Proc. Int. Conf. Availab. Reliab. Secur. 2021, 16, 1–6. https://doi.org/10.1145/3465481.3470031.

67. Jost, P.; Lampert, M. Two years after: A scoping review of GDPR effects on serious games research ethics
reporting. Games Learn. Alliance Conf. 2020, 9, 372–385. https://doi.org/10.1007/978-3-030-63464-3_35.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2089.v1
http://creativecommons.org/licenses/by/4.0/

