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Abstract: Confocal scanning images of rocks play a crucial role in petroleum geology and 

hydrocarbon exploration, as they can reveal the internal microstructure of rocks with high resolution. 

This capability is of significant importance for enhancing the understanding of hydrocarbon storage, 

migration capacity, and production prediction. However, traditional two-dimensional images are 

unable to comprehensively depict the complex internal structures of rocks, which limits the accurate 

understanding of rock physical properties and geological processes. Therefore, this paper focuses on 

the three-dimensional (3D) reconstruction of confocal rock images. Firstly, a series of two-

dimensional images containing rich microstructural information is obtained through confocal 

scanning. Subsequently, a preliminary 3D point cloud is constructed using voxelization methods, 

followed by triangular meshing. The surface reconstruction is achieved using the greedy projection 

triangulation method, extracting the 3D surface model of the rock. To enhance the realism of the 

model, texture mapping techniques are employed to project the color information from the original 

images onto the 3D model. Through comprehensive evaluation of the accuracy, stability, and 

visualization effects of the reconstructed model, experimental results demonstrate that the proposed 

method excels in terms of modeling precision, completeness, visual effects, and processing time. The 

reconstruction accuracy reaches 85%, with a geometric error of 0.05 millimeters, proving its 

effectiveness and feasibility. 

Keywords: Confocal, 3D reconstruction; greedy projection triangulation reconstruction 

 

1. Introduction 

With the continuous development of China's industrial economy, petroleum, as a crucial 

industrial resource, plays an increasingly vital role in production [1]. In petroleum geological 

exploration and development, the parameter analysis and quantitative calculation of reservoir pore 

structures are of paramount importance for studying the physical properties of rocks, fluid migration 

patterns, and enhancing the efficiency of hydrocarbon reservoir development [2]. In recent years, 

methods focusing on the analysis of grain size and pore characteristics based on rock images have 

been widely applied in the geological field. Through precise analysis of pore characteristics and grain 

morphology between rock particles, a deeper understanding of the rock properties, reservoir 

parameters, and fluid characteristics of underground reservoirs can be achieved, thereby effectively 

improving the waterflood development efficiency of oilfields and significantly increasing oil 

recovery rates [3]. As the key medium for hydrocarbon storage and migration, the internal pore 

structure of rocks is complex and intricate, resembling a labyrinth, which directly determines the 

storage capacity and flow efficiency of hydrocarbons. Therefore, in-depth exploration of the 

microstructural characteristics of rocks, especially grain size and pore features, has become a core 

approach to revealing rock attributes and estimating reservoir performance. This not only aids in 

optimizing hydrocarbon field development strategies but also provides essential theoretical and 
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technical support for the efficient exploitation of hydrocarbon resources, holding significant scientific 

and practical value. 

Currently, methods for three-dimensional (3D) reconstruction of rocks can be broadly divided 

into two categories: one is 3D digital rock reconstruction based on physical experiments, and the 

other is 3D digital rock reconstruction based on numerical methods. The physical experiment-based 

3D digital rock reconstruction method involves directly acquiring the 3D structural data of rock cores 

using high-precision instruments [4]. Physical experiment methods include 2D thin-section stacking 

imaging [5], X-ray computed tomography (CT) scanning [6], and focused ion beam scanning [7]. The 

core principle relies on high-precision instruments (such as high-power optical microscopes, 

scanning electron microscopes, or CT imaging devices) to obtain 2D slice images of rocks, followed 

by 3D reconstruction based on depth information recorded during the scanning process, thereby 

generating a complete 3D digital rock model. However, such methods can only achieve single 

observations of the 2D surface of samples. Focused ion beam technology may introduce damage due 

to changes in the physical morphology of the sample surface during grinding, thereby affecting 

observation accuracy. Nanoscale CT scanning technology faces the contradiction between resolution 

and image size, making it difficult to simultaneously achieve high resolution and large-scale imaging, 

necessitating a trade-off between imaging volume and resolution. Additionally, acquiring 3D pore 

structure images through physical experiment methods not only requires high-end equipment but is 

also costly, limiting its widespread application in industrial settings. 

The numerical reconstruction-based 3D digital rock reconstruction first obtains actual 3D digital 

rock data as training samples, then maps the information in the images to the distribution 

characteristics of rock images in the training samples through mathematical modeling, and finally 

converts the 2D information into 3D information based on the mapping to reconstruct the 3D digital 

rock [8]. Currently, common numerical reconstruction methods include Gaussian field method [9,10], 

simulated annealing method [11], multiple-point geostatistics [12,13], and Markov chain Monte Carlo 

method [14]. However, the Gaussian field method cannot address the issue of poor connectivity in 

reconstructed digital rocks; the simulated annealing method is susceptible to modeling constraints, 

and as the number of constraints increases, the reconstruction process slows down, leading to chaotic 

rock pore structures [15,16]; multiple-point geostatistics assumes that rock samples have similar 

structural characteristics in different directions, making it less effective for samples with strong 

anisotropy, and requires hard data constraints in advance [17]; the Markov chain Monte Carlo 

method is less suitable for samples with strong heterogeneity [18]. 

With the development of deep learning, Mosser et al. [19] introduced deep convolutional 

generative adversarial networks (DC-GAN) into 3D digital rock reconstruction, leveraging 3D 

convolution to learn the 3D distribution of data and achieving good reconstruction results on the 

Berea sandstone dataset. However, 3D convolution operations in such methods demand significant 

computational resources, and the models face issues of instability and convergence difficulties during 

training. Additionally, DC-GAN requires large amounts of data for training, and the high cost of 

obtaining rock thin-section data limits the practical application and promotion of this method. 

In summary, while physical experiment-based 3D digital rock reconstruction methods offer high 

precision, they are expensive and complex. In contrast, 2D slice-based 3D digital rock random 

reconstruction methods are cost-effective and easy to implement but suffer from lower precision and 

coarser reconstruction results, leaving room for improvement. Compared to traditional random 

reconstruction methods, generative adversarial network-based 3D digital rock reconstruction shows 

improved results but still faces challenges such as unstable model training and convergence 

difficulties. Moreover, existing methods fall short in handling rocks with complex pore structures 

and strong heterogeneity, resulting in poor pore connectivity. 

Therefore, to address these issues, this paper proposes a 3D rock reconstruction technique based 

on confocal scanning images. Confocal imaging technology can provide high-resolution image data, 

accurately capturing the microstructural details of rocks, particularly suitable for studying complex 

pore structures. Additionally, this technology resolves the issue of discontinuous imaging in 
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traditional methods through sequential slice stacking, enabling more complete 3D structural 

reconstruction. Furthermore, confocal imaging technology offers higher computational efficiency 

and precision in 3D reconstruction, accurately reflecting pore connectivity and microstructural 

features, providing a reliable foundation for rock physical property simulation and reservoir 

parameter analysis. This method involves collecting rock samples and acquiring images under a 

confocal microscope. The original images are preprocessed, and techniques such as point cloud 

generation and greedy projection triangulation are used to construct and post-process the 3D model. 

Performance is enhanced through improved registration, optimized scanning, and denoising 

algorithms. Finally, the method is tested for accuracy, stability, and visualization effects, providing 

technical and theoretical support for the study of rock microstructures in fields such as geological 

exploration. 

2. Preparation Three-Dimensional Reconstruction Process 

This study collected a series of confocal images that provide high-resolution views of rock 

surfaces. The three-dimensional (3D) reconstruction process is illustrated in Figure 1. After acquiring 

the raw image data, the preprocessing stage is initiated, which enhances image quality and lays a 

solid foundation for subsequent 3D reconstruction. Firstly, the color images are converted into 

grayscale images, which simplifies the processing of image data while preserving essential texture 

information of the rock surfaces. Next, histogram equalization is applied to optimize image contrast, 

making different regions of the rock surface more distinguishable. To further improve the visual 

quality of the images, adaptive histogram equalization is employed. This technique adjusts 

enhancement parameters based on the local characteristics of the image, thereby enhancing contrast 

while avoiding distortion caused by over-enhancement. Finally, mean filtering is implemented to 

eliminate noise in the images. This filtering method reduces salt-and-pepper noise by calculating the 

average value of each pixel and its neighboring region and replacing the original pixel value with 

this average. Using the processed images, a 3D point cloud is generated. With the point cloud data 

obtained, the greedy projection triangulation algorithm is applied to process the data. This algorithm 

involves mapping the point cloud onto a two-dimensional plane and performing triangulation on 

this basis, effectively transforming discrete points into a continuous 3D surface.  
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Figure 1. D Reconstruction System. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 April 2025 doi:10.20944/preprints202504.2007.v1

https://doi.org/10.20944/preprints202504.2007.v1


 4 of 18 

 

3. Acquisition and Preprocessing of Confocal Scanning Rock Images 

3.1. Acquisition of Confocal Scanningrock Images 

As shown in Figure 2, the Leica TCS SP5 II laser scanning confocal microscope was used in this 

study to acquire rock images. This equipment consists of several key components, including the light 

source, stage, optical microscope, computer, and the entire optical system. Below are the detailed 

specifications of the microscope: 

1.Light Source: 

The microscope is equipped with four independent excitation channels, covering a spectral 

range from 400 nm to 800 nm. The specific laser wavelengths are listed in Table 1. In this experiment, 

the laser wavelength was set to 488 nm. 

Table 1. Laser Wavelength Range. 

Laser Wavelength 

405 Diode 405nm 

Argon 458nm,475nm,488nm,514nm 

HeNe 543 543nm 

DPS 561 561nm 

HeNe 633 633nm 

2.Objective Lens: 

The confocal microscope is equipped with three objective lenses with different parameters, as 

detailed in Table 2. The selection of the objective lens is determined based on the specific 

requirements of the sample. 

Table 2. Objective Lens Parameters. 

Magnification Numerical Aperture 

10 0.3 

20 0.5 

40 0.85 

3.Scanning Parameters: 

The frequency options for image scanning include 100Hz, 200Hz, and 400Hz, while the image 

resolution offers several options such as 512 × 512, 1024 × 1024, 2048 × 2048, etc. 

 

Figure 2. Laser Scanning Confocal Microscope. 
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This study utilizes confocal microscopy to capture transmission, light, and heavy images of 

existing samples, aiming to reveal the internal microstructure and compositional distribution of the 

samples. As shown in Figures 3–5, the images are divided into three types: transmission images, light 

images, and heavy images. 

Transmission images are formed by transmitted light, which can display the overall structure 

and mineral distribution of the rock samples. For thin-section samples, transmission images can 

clearly show the transparency, color, and texture characteristics of minerals, aiding in the 

identification of mineral types and their spatial distribution. Light images are formed by reflected or 

scattered light, typically using shorter wavelengths for imaging. These images can highlight the 

surface morphology, mineral boundaries, and micro-cracks of the rock samples. Heavy images are 

formed by fluorescence or nonlinear optical effects, usually using longer wavelengths for imaging. 

For rock samples, heavy images can display the fluorescence characteristics of specific minerals or 

deep structural information. 

In summary, for rock samples, transmission images, light images, and heavy images provide 

different information from the perspectives of overall structure, surface morphology, and deep 

features, respectively. Transmission images are suitable for mineral identification and overall 

structural analysis, light images are suitable for surface feature and microstructure studies, and heavy 

images can be used for fluorescent mineral identification and deep structural analysis. The combined 

use of these images can provide comprehensive microscopic information support for this study. 

 

Figure 3. Transmission image. 

. 

Figure 4. light image. 
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Figure 5. heavy image. 

3.2. Contrast Enhancement and Dataset Preparation 

Confocal images are often affected by laser scattering, detector noise, and sample fluorescence 

background during acquisition, leading to reduced image quality, diminished feature contrast, and 

potential geometric distortions. These factors not only compromise the clarity and accuracy of the 

images but also increase the difficulty of subsequent analysis. Therefore, preprocessing becomes a 

crucial step to improve image quality, enhance feature contrast, reduce noise interference, correct 

geometric distortions, and adapt to subsequent analysis algorithms. Through preprocessing 

techniques such as denoising, contrast enhancement, and geometric correction, images can be made 

clearer and features more prominent, thereby providing a more reliable data foundation for 

subsequent quantitative analysis and feature extraction, ensuring the accuracy and reliability of the 

research results. 

3.2.1. Histogram Equalization 

This study employs the histogram equalization algorithm [20] to enhance the contrast of confocal 

images. The histogram equalization algorithm can increase the contrast between pores and the 

background in confocal images, enabling better differentiation between pore and background 

regions. Equalization is achieved by first calculating the cumulative gray histogram based on the gray 

histogram, and then establishing a mapping relationship between the input image and the output 

image based on the relationship between the gray histogram and the cumulative gray histogram. The 

mapping relationship is expressed by Equation (1). 

0
( )

*256 1
*

p

k I
hist k

O
h w

== −
                                     (1) 

In the equation, h and w represent the height and width of the image, O represents the output 

pixel, and ( )Ihist k represents the number of pixels with a gray value of k in the image's gray 

histogram. The operational steps are as follows: 

(1) Calculate the gray histogram. 

(2) Compute the cumulative gray histogram. 

(3) Derive the mapping relationship based on steps (1) and (2), and finally output the gray pixel 

values. 

The processing effects are illustrated in Figures 6–8. 
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Figure 6. Histogram of the source image. 

 

Figure 7. Histogram after equalization processing. 

 

Figure 8. Comparison between the source image and the image after equalization processing. 

3.2.2. Dataset Creation 

A rock cylinder with a height of 10 cm and a diameter of 2.5 cm was scanned to produce 397 

slices. After histogram equalization processing, a total of 397 contrast-enhanced rock images were 

obtained. Each rock image has a resolution of 753×753 pixels, including 99 heavy images, 99 light 

images, and 99 transmission images. These images were sequentially numbered from 0 to 396. 

4. Point Cloud Generation and Triangular Mesh Construction 

4.1. Rock Point Cloud Generation 

Point cloud generation is the process of transforming 2D image data acquired through confocal 

microscopy into a 3D discrete point set. During confocal scanning of rock samples, 2D images at 

different depth levels capture the structural information of the rock. By analyzing these images, the 

pixel positions of target structures (e.g., mineral grain boundaries, pore contours) are combined with 

the scanning parameters of the confocal microscope (e.g., scanning step size, coordinate system 

settings). Using spatial coordinate mapping algorithms, the 2D pixel coordinates are converted into 

3D spatial coordinates. 
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The 3D point cloud data structure is a digital model used to represent and capture objects or 

scenes in 3D space. This data structure consists of numerous discrete points distributed in a 3D 

Cartesian coordinate system. Each point explicitly records its precise spatial position, determined by 

the values of the x, y, and z axes. Additionally, these points may store auxiliary information, such as 

color data or reflection intensity values, providing a richer and more complete description of the 3D 

object or scene. 

4.2. Weight Rule Definition and Triangular Mesh Construction 

In the 3D reconstruction process, holes often appear in the generated mesh models due to 

insufficient sampling, data loss, or limitations of the reconstruction algorithms. These holes can 

negatively impact subsequent model analysis. Therefore, existing hole-filling techniques are applied 

to further stitch and repair the generated 3D pore models. Two critical steps in this process are 

defining appropriate weight rules and performing triangular mesh construction. Weight rules help 

determine the positions of newly generated vertices, while triangular mesh construction creates new 

faces to close the holes. 

4.2.1. Weight Rule Definition 

Weight rules aim to assign a weight to each vertex on the hole boundary. These weights are used 

to calculate the positions of new vertices added to fill the hole. Weights can be based on various 

factors, such as geometric features of the vertices (e.g., curvature, normal vectors), the length of 

boundary edges, and the area of adjacent faces. In the hole-filling process of 3D models, the definition 

of weight rules is crucial for determining the positions of newly generated vertices. These rules are 

typically set based on the geometric and topological characteristics of the hole boundary points, 

ensuring that the new vertices smoothly and naturally close the hole while preserving the overall 

geometric properties of the model. This study adopts geometric feature-based weight rules, which 

rely on vertex characteristics such as curvature, normal vectors, and edge length to reflect the 

influence of each vertex on the hole-filling shape. 

The curvature weight formula is shown in Equation (2), where ( )kw v is the curvature weight of 

the vertex v , 
( )K v

is the discrete Gaussian or mean curvature of the vertex, and k is the weight 

factor. 

( ) ( )k kw v K v=                                               (2) 

The normal vector difference weight formula is shown in Equation (3), where 
( )nw v

 is the 

weight of vertex v  based on the difference of normal vectors, 
( )N v

 is the unit normal vector of 

vertex, avgN
 is the average value of the normal vectors of the edge points of the hole, and rn is the 

weight factor. 

( ) (1 ( ) )n n avgw v N v N= −                                                (3) 

The distance weight formula is shown in Equation (4), which considers the distance from the 

vertex to the hole center or centroid, adjusting the influence of the vertex based on its position. 

( )d dw v v C=  −                                                      (4)
 

Among them, ( )dw v  is the distance weight of the vertex v , C is the centroid coordinate of the 

hole, and d is the weighting factor. 

The boundary edge length weight formula is shown in Equation (5), which emphasizes the 

influence of vertices adjacent to longer boundary edges on the hole shape. 
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( ) ( )l lw e L e=                                                      (5) 

This study comprehensively considers the above weight rules to determine the final weight of 

each vertex, as shown in Equation (6), balancing the impact of various geometric features on hole 

filling.Here, 
( )E v

represents the set of boundary edges adjacent to the vertex v , and 
( )w v

denotes 

the comprehensive weight of the vertex v . 

( )
( ) ( ) ( ) ( ) ( )k n d ne E v

w v w v w v w v w v


= + + +                    (6) 

In this way, the generation and positioning of new vertices during the hole-filling process can 

be more precisely controlled, thereby achieving better repair results and improved mesh quality. 

4.2.2. Triangulation 

In the process of 3D reconstruction, mesh models often exhibit holes due to insufficient 

sampling, data loss, or limitations in reconstruction algorithms, which can adversely affect 

subsequent model analysis. Therefore, existing hole-filling techniques are applied to further repair 

and suture the porous 3D model. During the hole-repairing process, two critical steps are defining 

appropriate weighting rules and performing triangulation. Weighting rules help determine the 

positions of newly generated vertices, while triangulation involves creating new triangular facets 

based on these vertices to close the holes. 

The objective of triangulation is to utilize the vertices along the hole boundary and potential 

newly generated vertices to construct triangular facets that seal the hole. This step requires careful 

consideration of facet quality to avoid distorted or excessively elongated triangles. Delaunay 

triangulation maximizes the minimum angle of triangles by satisfying the Delaunay condition: the 

circumcircle of any triangle contains no other points in its interior. This approach aims to maximize 

the minimum angle, thereby preventing narrow triangles and yielding high-quality meshes. 

The triangulation procedure is detailed as follows: 

New Vertex Generation: Compute the positions of new vertices based on weighting rules and 

the geometric characteristics of the hole. 

Vertex Aggregation: Combine the original vertices along the hole boundary with the newly 

generated vertices into a unified vertex set. 

Delaunay Triangulation: Apply Delaunay triangulation to the vertex set to generate new 

triangular facets. Verify the Delaunay condition by ensuring that no points lie within the circumcircle 

of any triangle. If a triangle violates this condition (i.e., its circumcircle contains other points), adjust 

the connections to enforce compliance. 

Facet Filtering: Select facets generated by Delaunay triangulation that are entirely confined 

within the hole region for repair. As illustrated in Figure 9, the resulting triangulation guarantees 

that no points reside within the circumcircle of any triangle, and this configuration achieves the 

maximum minimum angle among all possible triangulations. 

V         V          V  

(a)                           (b)                           (c) 

Figure 9. Delaunay Triangulation Diagram. 
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4.3. Mesh Subdivision and Optimization 

In the process of hole-filling for 3D models, mesh subdivision and optimization are two critical 

subsequent steps that enhance the mesh quality of the repaired regions and the overall geometric 

details of the model. These steps ensure that the repaired model is not only visually smooth and 

natural but also geometrically accurate. 

4.3.1. Mesh Subdivision 

Mesh subdivision is a technique used to increase mesh density and improve mesh distribution. 

It achieves this by adding more vertices and facets to the existing mesh. Commonly used subdivision 

methods include Loop subdivision and Catmull-Clark subdivision. Loop subdivision is particularly 

suitable for triangular meshes, where each subdivision divides every triangle into four new triangles, 

as illustrated in Figure 10. 

 

Figure 10. Mesh Subdivision Diagram. 

In this process, new vertices are added at the midpoint of each edge, and the positions of the 

original vertices are adjusted. Catmull-Clark subdivision, on the other hand, is suitable for 

quadrilateral meshes, where each subdivision divides every quadrilateral into four new 

quadrilaterals. Similar to Loop subdivision, this process also involves adding new vertices at the 

midpoints of edges and the centers of faces. Since the mesh model reconstructed using MC (Marching 

Cubes) is a triangular mesh, this paper employs Loop subdivision for mesh refinement. The Loop 

subdivision algorithm consists of two main steps: adding new vertices (midpoints of edges) and 

adjusting the positions of the original vertices. 

Adding New Vertices:For each edge, the average of the coordinates of its two endpoints is 

calculated to generate a new vertex (i.e., the midpoint of the edge). For each triangle, this results in 

the creation of three new vertices. 

Adjusting the Positions of Original Vertices:The new position of each original vertex is 

determined by a weighted average of its own position and the positions of its neighboring vertices. 

The weights for the vertices are calculated as shown in Equation (7). 

2

1 5 3 1 2
( ) cos

8 8 4
n

n n




   
= − +       

                                        (7) 

Here, n represents the degree of the vertex (i.e., the number of edges connected to the vertex), 

and 
( )n

denotes the weight assigned to the neighboring vertices when calculating the new position 

of the vertex. 

Finally, new triangular facets are generated using the original vertices and the newly added 

vertices. 

4.3.2. Mesh Optimization 
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Mesh optimization aims to improve the quality of the mesh by adjusting vertex positions, 

including reducing distorted triangles, increasing the size of the minimum angle, and more. Common 

mesh optimization methods include Laplacian smoothing and various energy minimization-based 

approaches. As shown in Table 3, a comparison is made between these two mesh optimization 

methods in terms of implementation complexity, computational cost, applicability, model feature 

preservation, and detail preservation. 

Table 3. Comparison of Two Mesh Optimization Methods. 

Feature Laplacian Smoothing Energy Minimization-Based Optimization 

Implementation 

Complexity 
Low High 

Computational 

Cost 
Low High 

Applicability Slightly irregular meshes Meshes with complex or special requirements 

Model Feature 

Preservation 
Poor Good 

Detail 

Preservation 
Poor Good 

From the comparative analysis, it is evident that for the pore reconstruction of confocal scanning 

rock images, the pore features are complex and intricate. To establish a more realistic rock pore 

model, this paper adopts energy minimization-based optimization for mesh refinement. 

Energy minimization-based optimization is an advanced mesh processing technique that 

improves mesh quality by minimizing an energy function defined on the mesh. This method can 

smooth the mesh while preserving important features and details of the model, making it suitable for 

scenarios requiring highly precise control over mesh quality. The energy function typically 

incorporates multiple geometric and topological constraints, reflecting the ideal state of the mesh. 

The optimization process involves defining one or more energy terms, each targeting a specific 

characteristic of the mesh. 

Area Uniformity: Aims to make the areas of all triangles in the mesh as similar as possible, 

reducing excessively large or small triangles. 

Edge Length Uniformity: Seeks to make the lengths of all edges in the mesh as consistent as 

possible, avoiding elongated triangles. 

Angle Optimization: Targets maximizing the minimum angle in the mesh to improve the shape 

quality of triangles. 

Shape Preservation: Minimizes shape changes between the original and optimized meshes, 

particularly at feature edges and sharp regions. 

The energy function E is typically expressed as a weighted sum of the above energy terms: 

area edge angle shapeE E E YE E  = + + +                                   (8) 

where , ,  and area edge angle shapeE E E E shaperepresent the energy terms for area uniformity, edge length 

uniformity, angle optimization, and shape preservation, respectively. The weights , ,  and Y  

balance the influence of each term. 

Optimization Process 

1.Initialization: Start with the original mesh and compute the current values of its energy terms. 

2.Iterative Optimization: Use mathematical optimization techniques to adjust the positions of 

mesh vertices, minimizing the energy function E. 
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3.Termination Condition: Stop the optimization process when the change in the energy function 

falls below a predefined threshold or when the number of iterations reaches a preset limit. 

4.4. Greedy Projection Triangulation Reconstruction Algorithm 

The greedy projection triangulation algorithm [21] employs Delaunay triangulation to construct 

a complete target model. Compared to the Poisson reconstruction algorithm, which can generate a 

target model but often lacks detailed features due to excessive smoothing and may introduce 

unnecessary redundant surfaces, the greedy projection triangulation algorithm offers a more 

balanced approach. Additionally, while the Marching Cubes reconstruction algorithm may miss fine 

details and generate excessive lines and faces, leading to redundancy and potential holes that degrade 

reconstruction quality, the greedy projection triangulation algorithm addresses these limitations. 

Therefore, this paper adopts the greedy projection triangulation strategy and provides a detailed 

explanation of the algorithm in the following sections. 

The greedy projection triangulation algorithm is advantageous due to its simplicity and 

efficiency, enabling rapid generation of an approximate 3D model from point cloud data. However, 

the method may not always produce optimal triangulation results because it seeks only local optima 

at each step, potentially overlooking global geometric properties. Moreover, in certain scenarios, such 

as sparse or noisy point clouds, the algorithm may generate low-quality triangles. To enhance 

robustness and reconstruction quality, researchers often integrate additional techniques, such as local 

feature analysis, point cloud simplification, and advanced triangulation strategies. These 

improvements enable the greedy projection triangulation algorithm to provide effective 3D 

reconstruction solutions across various applications. 

In the k-d tree-based nearest neighbor search algorithm, for any point q in the input point cloud 

dataset, the algorithm efficiently identifies its k nearest neighbors using the k-d tree structure, thereby 

defining a local neighborhood. Based on the search results, the point cloud data is categorized into 

different types, such as boundary points, free points, completed points, and edge points. 

Subsequently, a projection plane is constructed using point q and its k nearest neighbors, and the 

neighboring points are mapped onto this 2D plane. 

For any point q in the input point cloud dataset and its neighboring points, there exists a 

mapping relationship from 3D space to a 2D tangent plane. Specifically, each neighboring point can 

be uniquely projected onto the tangent plane passing through point q, forming a one-to-one mapping. 

Using the normal estimation method in the greedy projection triangulation algorithm, the 

approximate normal vector of each point can be calculated, and the tangent plane can be determined 

via the plane equation. Assuming the normal vector of a point ),, 0000 zyxN（  is m=(A,B,C) and 

point N(x,y,z) lies on the tangent plane of 0N , the tangent plane can be expressed as Equation (9): 

0 0 0( ) ( ) ( ) 0A x x B y y C z z− + − + − =
                    

  (9) 

By applying a projection matrix, the 3D point cloud data can be mapped onto a 2D slice plane. 

Through translation and rotation operations, the projection of the point cloud data on the 2D slice 

plane can be obtained. The projection matrix MT  is given by Equation (10): 

M c x yT T R R =  
                                    (10) 

where: 

CT  is the translation matrix: 

0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1

cT

x y z

 
 
 =
 
 
 
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xR  is the rotation matrix around the x-axis by angle α: 

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

xR
 

 

 
 
 =
 −
 
 

 

yR
 

is the rotation matrix around the y-axis by angle θ: 

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

yR

 

 

− 
 
 =
 
 
 

 

Using these formulas, the projection of any point ),,( iii zyxq  onto its tangent  plane  can 

be calculated as shown in Equation (11): 

   , , ,1 , , ,1
T

i i i M i i ix y z T x y z
     =                            (11) 

When applying the greedy projection triangulation algorithm to triangulate planar point cloud 

data, the algorithm selects locally optimal points as expansion seeds, maps the point cloud step-by-

step into 3D space based on projection relationships, and iterates until surface reconstruction is 

complete. The specific steps are as follows: 

1. Randomly select a point from the point cloud data as the initial seed point.  

2. Use the k-d tree to perform a nearest neighbor search, connecting the seed point to its nearest 

neighbors to form an initial edge.  

3. Calculate the point closest to this edge and construct the first triangle.  

4. Continue finding the point closest to any edge of the existing triangles and generate new 

triangles iteratively.  

5. Repeat the above steps until all points are incorporated, forming a complete topological 

structure. The algorithm terminates at this stage,as illustrated in Figure 11. 

 

 

 

 

 

 

 

 

 

 

Figure 11. Local Projection Diagram of k-Nearest Neighbors. 

This diagram illustrates the distribution of data points in the feature space, revealing clustering 

patterns, potential groupings, and outliers. In the k-nearest neighbor graph, the contribution of 

different features to data point classification or clustering can be evaluated. Features that better 

separate data points exhibit clearer distinctions in the graph. The diagram also shows local density, 

with higher-density regions indicating concentrated data points and lower-density regions indicating 

dispersion. For high-dimensional datasets, the local projection diagram of k-nearest neighbors 

visualizes the local structure of the data in a lower-dimensional space, aiding in understanding 

intrinsic relationships within the data. 
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Start

Read point cloud data

Create a search tree and estimate 

normals, storing them in normals

Connect the XYZ 3D coordinate fields of 

the point cloud with the normal fields

Perform meshing processing

Initialize the greedy projection triangulation 

object and set the parameters

Perform 3D reconstruction of the point cloud, 

display the results, and save them as a mesh image

End

 

Figure 12. Flowchart of Greedy Projection Triangulation. 

4.5. 3D Reconstruction Results 

Multiple tests were conducted based on the greedy projection triangulation reconstruction 

algorithm, ultimately achieving 3D reconstruction. Its core concept involves projecting point cloud 

data onto a 2D plane, performing triangulation on this plane to generate triangular facets, and 

subsequently constructing a 3D model. 

The algorithm accepts a point cloud dataset as input, where each point contains its 3D spatial 

coordinates. Normals are estimated for each point in the cloud to determine the optimal projection 

direction. A k-d tree or other spatial indexing structure accelerates the search for nearest neighbors 

in the point cloud. For each point, neighboring points within its local neighborhood are projected 

onto a 2D plane based on its normal direction. A triangulation process is then applied to the projected 

points to form triangular facets. The reconstruction results are illustrated in Figures 13 and 14. 

 

Figure 13. 3D Reconstruction Results from Different Perspectives. 

Post-reconstruction, the model can be enhanced with texture mapping, where real-world image 

details are applied to the 3D model. This significantly improves visual realism and enables more 

accurate simulation of light-surface interactions during rendering, yielding higher-quality 

visualization results. 

 

Figure 14. Texture-Mapped 3D Reconstruction. 
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Texture mapping allows the use of lower-resolution geometric models while enhancing visual 

fidelity through high-resolution textures. This approach reduces computational load and storage 

requirements without compromising visual quality. 

The algorithm demonstrates robust performance in reconstructing complex geometries while 

maintaining computational efficiency, making it suitable for applications requiring rapid and 

accurate 3D modeling from point cloud data. 

4.6. Experiment and Analysis 

4.6.1. Evaluation Metrics 

To comprehensively evaluate the 3D reconstruction results of confocal scanning rock images, we 

employ four metrics: Reconstruction Accuracy (RA), Model Completeness (MC), Processing Time 

(PT), and Geometric Error (GE). Reconstruction Accuracy quantifies the similarity between the 

generated 3D model and the actual object. Model Completeness assesses whether the reconstructed 

3D model fully captures the structural integrity of the original object. Processing Time measures the 

total computational duration from image acquisition to the generation of the 3D model. Geometric 

Error calculates the spatial deviation between the reconstructed model and the ground-truth 

geometry. These metrics collectively provide a multi-dimensional evaluation framework to 

rigorously analyze the quality and accuracy of the reconstructed models. 

The mathematical formulations of these metrics are defined in Equations (12), (13), (14), and (15): 

1
1

100%

n i

i
i

d

D
RA

n

=

 
− 

 = 


                                    (12) 

100%m

a

N
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N
=                                               (13) 

   

       

Data acquisition Preprocessing Point Cloud Generation

Triangulation Optimization

PT t t t
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+ + +                        
(14) 
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1

n

ii
d

GE
n

==


                                             (15) 

4.6.2. Experimental Results and Analysis 

As shown in Table 4, in the three-dimensional modeling experiments based on confocal images 

for shale samples, the average reconstruction accuracy was found to be approximately 82% after 

extensive comparative analysis of a large amount of data. In regions of the shale sample where pores 

are relatively large and regularly distributed, the reconstruction accuracy could reach around 85%. 

This is attributed to the accurate coordinate transformation during point cloud generation, which 

relies on the pixel position information and scanning parameters of the confocal images. 

Additionally, the triangulation meshing operation could closely conform to the actual structure in 

these relatively simple areas. 

Table 4. Three-dimensional modeling experiments based on confocal images. 

Evaluation Index 
Average 

Value 

Simple 

Region 
Complex Region 

Reconstruction Accuracy 82% 85% 78% 
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Evaluation Index 
Average 

Value 

Simple 

Region 
Complex Region 

Model Completeness 75% 80% 70% 

Processing Time (minutes) 3 2.5 3.5 

Geometric Error (mm) 0.05 0.05 0.1 

However, in areas where tiny pores and complex laminations intersect in the shale, the 

reconstruction accuracy significantly decreased to as low as 78%. This is mainly because the structure 

in these regions is extremely complex, and their features are not clearly and distinctly represented in 

the confocal images. This poses significant challenges to the subsequent feature extraction and model 

construction, resulting in a relatively large deviation between the model and the actual structure. 

Regarding model completeness, detailed assessment and statistics revealed an average 

completeness of about 75%. In regions of the shale sample where mineral grains are relatively 

concentrated and pore connectivity is good, the model completeness could exceed 80%, allowing for 

a clearer representation of the local rock structure. However, overall, due to the complex lamination 

structure of shale, the presence of numerous tiny pores and fractures, and frequent changes in 

mineral composition in some areas, information on these intricate structural features is lost during 

the image acquisition process. Subsequently, due to limitations of existing technology and 

algorithms, it is difficult to fully restore the lost information, resulting in the failure to adequately 

represent many small pore branches and fracture ends in the final model, which severely affects 

model completeness. 

In terms of processing time, thanks to efficient algorithm optimization and powerful 

computational support, the average processing time for this experiment was reduced to three 

minutes. During the image preprocessing stage, advanced fast denoising and adaptive contrast 

enhancement algorithms were employed, taking only about 30 seconds. These algorithms can quickly 

identify and remove noise from shale images while intelligently adjusting contrast based on local 

image features, providing high-quality images for subsequent processing in a very short time. 

The point cloud generation and triangulation process took approximately 1 minute and 30 

seconds. Despite the complex structure of shale, the improved spatial coordinate mapping algorithm 

and efficient triangulation techniques significantly increased data processing speed and reduced 

computational load. The mesh optimization and post-processing stage took about 1 minute, during 

which simplified but effective mesh optimization strategies were applied to quickly complete model 

post-processing while ensuring model quality. Even when dealing with more complex shale samples, 

the increase in processing time was relatively mild, representing a significant improvement over 

traditional methods. 

In terms of geometric error measurement, the least squares method was used to measure the 

geometric error between the model and the actual shale sample. The results showed an average 

geometric error of 0.05 mm. In most regions of the shale, the geometric error was relatively stable and 

low. However, in locally complex areas such as pore edges and lamination intersections, the 

geometric error increased significantly, with some regions exceeding 0.1 mm. This is due to the 

complex and variable geometry of these local regions, where existing modeling algorithms struggle 

to accurately calculate coordinates and construct models that fully match the actual conditions. 

Further in-depth research and algorithm improvement are needed to enhance the accuracy of the 

model in these critical areas. 

In summary, the three-dimensional modeling method based on confocal images for shale, as 

presented in this study, has achieved certain results but still faces many challenges. The complex 

structure of shale has led to significant limitations in existing methods in terms of reconstruction 
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accuracy and model completeness. Future work needs to actively explore more advanced image 

analysis and modeling algorithms to further enhance the ability to recognize and reconstruct tiny 

pores and complex lamination structures. While significant progress has been made in processing 

time, there is still room for further optimization, and more efficient algorithms and computational 

architectures can be explored. For geometric errors, especially those in locally complex areas, in-

depth research on algorithm improvement is necessary to enhance the model's precise representation 

of shale's microscopic geometric features, thereby providing more reliable three-dimensional models 

for geological research and oil and gas development related to shale. 

5. Conclusion 

This study proposes a three-dimensional reconstruction technique for rocks based on confocal 

scanning images, employing innovative methods in image preprocessing, point cloud generation 

triangular, meshing, and greedy projection triangulation reconstruction algorithms. In the image 

preprocessing stage, histogram equalization and other methods were used to improve image quality, 

providing a reliable data foundation for modeling. During the point cloud generation and triangular 

meshing processes, various weighting rules were combined to effectively repair holes and optimize 

mesh quality. Experimental validation demonstrated that the proposed method performs excellently 

in terms of modeling accuracy, completeness, visual effects, and processing time, with a 

reconstruction accuracy of 85% and a geometric error of 0.05 mm, proving its effectiveness and 

feasibility. This technique provides an effective solution for offering more valuable three-dimensional 

models of rock microstructures for geological exploration, oil and gas development, and other related 

fields. 
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