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Abstract: Confocal scanning images of rocks play a crucial role in petroleum geology and
hydrocarbon exploration, as they can reveal the internal microstructure of rocks with high resolution.
This capability is of significant importance for enhancing the understanding of hydrocarbon storage,
migration capacity, and production prediction. However, traditional two-dimensional images are
unable to comprehensively depict the complex internal structures of rocks, which limits the accurate
understanding of rock physical properties and geological processes. Therefore, this paper focuses on
the three-dimensional (3D) reconstruction of confocal rock images. Firstly, a series of two-
dimensional images containing rich microstructural information is obtained through confocal
scanning. Subsequently, a preliminary 3D point cloud is constructed using voxelization methods,
followed by triangular meshing. The surface reconstruction is achieved using the greedy projection
triangulation method, extracting the 3D surface model of the rock. To enhance the realism of the
model, texture mapping techniques are employed to project the color information from the original
images onto the 3D model. Through comprehensive evaluation of the accuracy, stability, and
visualization effects of the reconstructed model, experimental results demonstrate that the proposed
method excels in terms of modeling precision, completeness, visual effects, and processing time. The
reconstruction accuracy reaches 85%, with a geometric error of 0.05 millimeters, proving its
effectiveness and feasibility.

Keywords: Confocal, 3D reconstruction; greedy projection triangulation reconstruction

1. Introduction

With the continuous development of China's industrial economy, petroleum, as a crucial
industrial resource, plays an increasingly vital role in production [1]. In petroleum geological
exploration and development, the parameter analysis and quantitative calculation of reservoir pore
structures are of paramount importance for studying the physical properties of rocks, fluid migration
patterns, and enhancing the efficiency of hydrocarbon reservoir development [2]. In recent years,
methods focusing on the analysis of grain size and pore characteristics based on rock images have
been widely applied in the geological field. Through precise analysis of pore characteristics and grain
morphology between rock particles, a deeper understanding of the rock properties, reservoir
parameters, and fluid characteristics of underground reservoirs can be achieved, thereby effectively
improving the waterflood development efficiency of oilfields and significantly increasing oil
recovery rates [3]. As the key medium for hydrocarbon storage and migration, the internal pore
structure of rocks is complex and intricate, resembling a labyrinth, which directly determines the
storage capacity and flow efficiency of hydrocarbons. Therefore, in-depth exploration of the
microstructural characteristics of rocks, especially grain size and pore features, has become a core
approach to revealing rock attributes and estimating reservoir performance. This not only aids in
optimizing hydrocarbon field development strategies but also provides essential theoretical and
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technical support for the efficient exploitation of hydrocarbon resources, holding significant scientific
and practical value.

Currently, methods for three-dimensional (3D) reconstruction of rocks can be broadly divided
into two categories: one is 3D digital rock reconstruction based on physical experiments, and the
other is 3D digital rock reconstruction based on numerical methods. The physical experiment-based
3D digital rock reconstruction method involves directly acquiring the 3D structural data of rock cores
using high-precision instruments [4]. Physical experiment methods include 2D thin-section stacking
imaging [5], X-ray computed tomography (CT) scanning [6], and focused ion beam scanning [7]. The
core principle relies on high-precision instruments (such as high-power optical microscopes,
scanning electron microscopes, or CT imaging devices) to obtain 2D slice images of rocks, followed
by 3D reconstruction based on depth information recorded during the scanning process, thereby
generating a complete 3D digital rock model. However, such methods can only achieve single
observations of the 2D surface of samples. Focused ion beam technology may introduce damage due
to changes in the physical morphology of the sample surface during grinding, thereby affecting
observation accuracy. Nanoscale CT scanning technology faces the contradiction between resolution
and image size, making it difficult to simultaneously achieve high resolution and large-scale imaging,
necessitating a trade-off between imaging volume and resolution. Additionally, acquiring 3D pore
structure images through physical experiment methods not only requires high-end equipment but is
also costly, limiting its widespread application in industrial settings.

The numerical reconstruction-based 3D digital rock reconstruction first obtains actual 3D digital
rock data as training samples, then maps the information in the images to the distribution
characteristics of rock images in the training samples through mathematical modeling, and finally
converts the 2D information into 3D information based on the mapping to reconstruct the 3D digital
rock [8]. Currently, common numerical reconstruction methods include Gaussian field method [9,10],
simulated annealing method [11], multiple-point geostatistics [12,13], and Markov chain Monte Carlo
method [14]. However, the Gaussian field method cannot address the issue of poor connectivity in
reconstructed digital rocks; the simulated annealing method is susceptible to modeling constraints,
and as the number of constraints increases, the reconstruction process slows down, leading to chaotic
rock pore structures [15,16]; multiple-point geostatistics assumes that rock samples have similar
structural characteristics in different directions, making it less effective for samples with strong
anisotropy, and requires hard data constraints in advance [17]; the Markov chain Monte Carlo
method is less suitable for samples with strong heterogeneity [18].

With the development of deep learning, Mosser et al. [19] introduced deep convolutional
generative adversarial networks (DC-GAN) into 3D digital rock reconstruction, leveraging 3D
convolution to learn the 3D distribution of data and achieving good reconstruction results on the
Berea sandstone dataset. However, 3D convolution operations in such methods demand significant
computational resources, and the models face issues of instability and convergence difficulties during
training. Additionally, DC-GAN requires large amounts of data for training, and the high cost of
obtaining rock thin-section data limits the practical application and promotion of this method.

In summary, while physical experiment-based 3D digital rock reconstruction methods offer high
precision, they are expensive and complex. In contrast, 2D slice-based 3D digital rock random
reconstruction methods are cost-effective and easy to implement but suffer from lower precision and
coarser reconstruction results, leaving room for improvement. Compared to traditional random
reconstruction methods, generative adversarial network-based 3D digital rock reconstruction shows
improved results but still faces challenges such as unstable model training and convergence
difficulties. Moreover, existing methods fall short in handling rocks with complex pore structures
and strong heterogeneity, resulting in poor pore connectivity.

Therefore, to address these issues, this paper proposes a 3D rock reconstruction technique based
on confocal scanning images. Confocal imaging technology can provide high-resolution image data,
accurately capturing the microstructural details of rocks, particularly suitable for studying complex
pore structures. Additionally, this technology resolves the issue of discontinuous imaging in
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traditional methods through sequential slice stacking, enabling more complete 3D structural
reconstruction. Furthermore, confocal imaging technology offers higher computational efficiency
and precision in 3D reconstruction, accurately reflecting pore connectivity and microstructural
features, providing a reliable foundation for rock physical property simulation and reservoir
parameter analysis. This method involves collecting rock samples and acquiring images under a
confocal microscope. The original images are preprocessed, and techniques such as point cloud
generation and greedy projection triangulation are used to construct and post-process the 3D model.
Performance is enhanced through improved registration, optimized scanning, and denoising
algorithms. Finally, the method is tested for accuracy, stability, and visualization effects, providing
technical and theoretical support for the study of rock microstructures in fields such as geological
exploration.

2. Preparation Three-Dimensional Reconstruction Process

This study collected a series of confocal images that provide high-resolution views of rock
surfaces. The three-dimensional (3D) reconstruction process is illustrated in Figure 1. After acquiring
the raw image data, the preprocessing stage is initiated, which enhances image quality and lays a
solid foundation for subsequent 3D reconstruction. Firstly, the color images are converted into
grayscale images, which simplifies the processing of image data while preserving essential texture
information of the rock surfaces. Next, histogram equalization is applied to optimize image contrast,
making different regions of the rock surface more distinguishable. To further improve the visual
quality of the images, adaptive histogram equalization is employed. This technique adjusts
enhancement parameters based on the local characteristics of the image, thereby enhancing contrast
while avoiding distortion caused by over-enhancement. Finally, mean filtering is implemented to
eliminate noise in the images. This filtering method reduces salt-and-pepper noise by calculating the
average value of each pixel and its neighboring region and replacing the original pixel value with
this average. Using the processed images, a 3D point cloud is generated. With the point cloud data
obtained, the greedy projection triangulation algorithm is applied to process the data. This algorithm
involves mapping the point cloud onto a two-dimensional plane and performing triangulation on
this basis, effectively transforming discrete points into a continuous 3D surface.
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Figure 1. D Reconstruction System.
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3. Acquisition and Preprocessing of Confocal Scanning Rock Images

3.1. Acquisition of Confocal Scanningrock Images

As shown in Figure 2, the Leica TCS SP5 II laser scanning confocal microscope was used in this
study to acquire rock images. This equipment consists of several key components, including the light
source, stage, optical microscope, computer, and the entire optical system. Below are the detailed
specifications of the microscope:

1.Light Source:

The microscope is equipped with four independent excitation channels, covering a spectral
range from 400 nm to 800 nm. The specific laser wavelengths are listed in Table 1. In this experiment,
the laser wavelength was set to 488 nm.

Table 1. Laser Wavelength Range.

Laser Wavelength
405 Diode 405nm
Argon 458nm,475nm,488nm,514nm
HeNe 543 543nm
DPS 561 561nm
HeNe 633 633nm
2.0bjective Lens:

The confocal microscope is equipped with three objective lenses with different parameters, as
detailed in Table 2. The selection of the objective lens is determined based on the specific
requirements of the sample.

Table 2. Objective Lens Parameters.

Magnification Numerical Aperture
10 0.3
20 0.5
40 0.85

3.Scanning Parameters:
The frequency options for image scanning include 100Hz, 200Hz, and 400Hz, while the image
resolution offers several options such as 512 x 512, 1024 x 1024, 2048 x 2048, etc.

Figure 2. Laser Scanning Confocal Microscope.
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This study utilizes confocal microscopy to capture transmission, light, and heavy images of
existing samples, aiming to reveal the internal microstructure and compositional distribution of the
samples. As shown in Figures 3-5, the images are divided into three types: transmission images, light
images, and heavy images.

Transmission images are formed by transmitted light, which can display the overall structure
and mineral distribution of the rock samples. For thin-section samples, transmission images can
clearly show the transparency, color, and texture characteristics of minerals, aiding in the
identification of mineral types and their spatial distribution. Light images are formed by reflected or
scattered light, typically using shorter wavelengths for imaging. These images can highlight the
surface morphology, mineral boundaries, and micro-cracks of the rock samples. Heavy images are
formed by fluorescence or nonlinear optical effects, usually using longer wavelengths for imaging.
For rock samples, heavy images can display the fluorescence characteristics of specific minerals or
deep structural information.

In summary, for rock samples, transmission images, light images, and heavy images provide
different information from the perspectives of overall structure, surface morphology, and deep
features, respectively. Transmission images are suitable for mineral identification and overall
structural analysis, light images are suitable for surface feature and microstructure studies, and heavy
images can be used for fluorescent mineral identification and deep structural analysis. The combined

use of these images can provide comprehensive microscopic information support for this study.
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Figure 4. light image.
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Figure 5. heavy image.

3.2. Contrast Enhancement and Dataset Preparation

Confocal images are often affected by laser scattering, detector noise, and sample fluorescence
background during acquisition, leading to reduced image quality, diminished feature contrast, and
potential geometric distortions. These factors not only compromise the clarity and accuracy of the
images but also increase the difficulty of subsequent analysis. Therefore, preprocessing becomes a
crucial step to improve image quality, enhance feature contrast, reduce noise interference, correct
geometric distortions, and adapt to subsequent analysis algorithms. Through preprocessing
techniques such as denoising, contrast enhancement, and geometric correction, images can be made
clearer and features more prominent, thereby providing a more reliable data foundation for
subsequent quantitative analysis and feature extraction, ensuring the accuracy and reliability of the
research results.

3.2.1. Histogram Equalization

This study employs the histogram equalization algorithm [20] to enhance the contrast of confocal
images. The histogram equalization algorithm can increase the contrast between pores and the
background in confocal images, enabling better differentiation between pore and background
regions. Equalization is achieved by first calculating the cumulative gray histogram based on the gray
histogram, and then establishing a mapping relationship between the input image and the output
image based on the relationship between the gray histogram and the cumulative gray histogram. The
mapping relationship is expressed by Equation (1).

2 hist, (k)

- h*w
In the equation, N and W represent the height and width of the image, O represents the output
pixel, and hist, (k) represents the number of pixels with a gray value of k in the image's gray

*256 -1 1)

histogram. The operational steps are as follows:

(1) Calculate the gray histogram.

(2) Compute the cumulative gray histogram.

(3) Derive the mapping relationship based on steps (1) and (2), and finally output the gray pixel
values.

The processing effects are illustrated in Figures 6-8.
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Figure 8. Comparison between the source image and the image after equalization processing.

3.2.2. Dataset Creation

A rock cylinder with a height of 10 cm and a diameter of 2.5 cm was scanned to produce 397
slices. After histogram equalization processing, a total of 397 contrast-enhanced rock images were
obtained. Each rock image has a resolution of 753x753 pixels, including 99 heavy images, 99 light
images, and 99 transmission images. These images were sequentially numbered from 0 to 396.

4. Point Cloud Generation and Triangular Mesh Construction

4.1. Rock Point Cloud Generation

Point cloud generation is the process of transforming 2D image data acquired through confocal
microscopy into a 3D discrete point set. During confocal scanning of rock samples, 2D images at
different depth levels capture the structural information of the rock. By analyzing these images, the
pixel positions of target structures (e.g., mineral grain boundaries, pore contours) are combined with
the scanning parameters of the confocal microscope (e.g., scanning step size, coordinate system
settings). Using spatial coordinate mapping algorithms, the 2D pixel coordinates are converted into
3D spatial coordinates.
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The 3D point cloud data structure is a digital model used to represent and capture objects or
scenes in 3D space. This data structure consists of numerous discrete points distributed in a 3D
Cartesian coordinate system. Each point explicitly records its precise spatial position, determined by
the values of the x, y, and z axes. Additionally, these points may store auxiliary information, such as
color data or reflection intensity values, providing a richer and more complete description of the 3D
object or scene.

4.2. Weight Rule Definition and Triangular Mesh Construction

In the 3D reconstruction process, holes often appear in the generated mesh models due to
insufficient sampling, data loss, or limitations of the reconstruction algorithms. These holes can
negatively impact subsequent model analysis. Therefore, existing hole-filling techniques are applied
to further stitch and repair the generated 3D pore models. Two critical steps in this process are
defining appropriate weight rules and performing triangular mesh construction. Weight rules help
determine the positions of newly generated vertices, while triangular mesh construction creates new
faces to close the holes.

4.2.1. Weight Rule Definition

Weight rules aim to assign a weight to each vertex on the hole boundary. These weights are used
to calculate the positions of new vertices added to fill the hole. Weights can be based on various
factors, such as geometric features of the vertices (e.g., curvature, normal vectors), the length of
boundary edges, and the area of adjacent faces. In the hole-filling process of 3D models, the definition
of weight rules is crucial for determining the positions of newly generated vertices. These rules are
typically set based on the geometric and topological characteristics of the hole boundary points,
ensuring that the new vertices smoothly and naturally close the hole while preserving the overall
geometric properties of the model. This study adopts geometric feature-based weight rules, which
rely on vertex characteristics such as curvature, normal vectors, and edge length to reflect the
influence of each vertex on the hole-filling shape.

The curvature weight formula is shown in Equation (2), where W (V) is the curvature weight of

K(Vv). . . . .
the vertex v, ( )15 the discrete Gaussian or mean curvature of the vertex, and A is the weight
factor.

w, (V) = 4 - K(V) @

The normal vector difference weight formula is shown in Equation (3), where W (V) is the

N (V)

weight of vertex vV based on the difference of normal vectors, is the unit normal vector of

N
vertex, 9 is the average value of the normal vectors of the edge points of the hole, and rn is the
weight factor.

W, (V) = ﬂ’n (1_ N (V) ' Navg) 3

The distance weight formula is shown in Equation (4), which considers the distance from the
vertex to the hole center or centroid, adjusting the influence of the vertex based on its position.

w,(V)=4,-v-C (4)

Among them, W, (V) is the distance weight of the vertexv, C is the centroid coordinate of the
hole, and A, is the weighting factor.

The boundary edge length weight formula is shown in Equation (5), which emphasizes the
influence of vertices adjacent to longer boundary edges on the hole shape.
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w,(e) =4 -L(e) ©)

This study comprehensively considers the above weight rules to determine the final weight of
each vertex, as shown in Equation (6), balancing the impact of various geometric features on hole

E(v)

filling.Here, represents the set of boundary edges adjacent to the vertex vV, and w(v) denotes

the comprehensive weight of the vertex V .
W(Y) = W, (v) 4 W, (V) (1) + 3w, (V) ©

In this way, the generation and positioning of new vertices during the hole-filling process can
be more precisely controlled, thereby achieving better repair results and improved mesh quality.

4.2.2. Triangulation

In the process of 3D reconstruction, mesh models often exhibit holes due to insufficient
sampling, data loss, or limitations in reconstruction algorithms, which can adversely affect
subsequent model analysis. Therefore, existing hole-filling techniques are applied to further repair
and suture the porous 3D model. During the hole-repairing process, two critical steps are defining
appropriate weighting rules and performing triangulation. Weighting rules help determine the
positions of newly generated vertices, while triangulation involves creating new triangular facets
based on these vertices to close the holes.

The objective of triangulation is to utilize the vertices along the hole boundary and potential
newly generated vertices to construct triangular facets that seal the hole. This step requires careful
consideration of facet quality to avoid distorted or excessively elongated triangles. Delaunay
triangulation maximizes the minimum angle of triangles by satisfying the Delaunay condition: the
circumcircle of any triangle contains no other points in its interior. This approach aims to maximize
the minimum ang]le, thereby preventing narrow triangles and yielding high-quality meshes.

The triangulation procedure is detailed as follows:

New Vertex Generation: Compute the positions of new vertices based on weighting rules and
the geometric characteristics of the hole.

Vertex Aggregation: Combine the original vertices along the hole boundary with the newly
generated vertices into a unified vertex set.

Delaunay Triangulation: Apply Delaunay triangulation to the vertex set to generate new
triangular facets. Verify the Delaunay condition by ensuring that no points lie within the circumcircle
of any triangle. If a triangle violates this condition (i.e., its circumcircle contains other points), adjust
the connections to enforce compliance.

Facet Filtering: Select facets generated by Delaunay triangulation that are entirely confined
within the hole region for repair. As illustrated in Figure 9, the resulting triangulation guarantees
that no points reside within the circumcircle of any triangle, and this configuration achieves the
maximum minimum angle among all possible triangulations.

(@) (b) (c)

Figure 9. Delaunay Triangulation Diagram.
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4.3. Mesh Subdivision and Optimization

In the process of hole-filling for 3D models, mesh subdivision and optimization are two critical
subsequent steps that enhance the mesh quality of the repaired regions and the overall geometric
details of the model. These steps ensure that the repaired model is not only visually smooth and
natural but also geometrically accurate.

4.3.1. Mesh Subdivision

Mesh subdivision is a technique used to increase mesh density and improve mesh distribution.
It achieves this by adding more vertices and facets to the existing mesh. Commonly used subdivision
methods include Loop subdivision and Catmull-Clark subdivision. Loop subdivision is particularly
suitable for triangular meshes, where each subdivision divides every triangle into four new triangles,
as illustrated in Figure 10.

Figure 10. Mesh Subdivision Diagram.

In this process, new vertices are added at the midpoint of each edge, and the positions of the
original vertices are adjusted. Catmull-Clark subdivision, on the other hand, is suitable for
quadrilateral meshes, where each subdivision divides every quadrilateral into four new
quadrilaterals. Similar to Loop subdivision, this process also involves adding new vertices at the
midpoints of edges and the centers of faces. Since the mesh model reconstructed using MC (Marching
Cubes) is a triangular mesh, this paper employs Loop subdivision for mesh refinement. The Loop
subdivision algorithm consists of two main steps: adding new vertices (midpoints of edges) and
adjusting the positions of the original vertices.

Adding New Vertices:For each edge, the average of the coordinates of its two endpoints is
calculated to generate a new vertex (i.e., the midpoint of the edge). For each triangle, this results in
the creation of three new vertices.

Adjusting the Positions of Original Vertices:The new position of each original vertex is
determined by a weighted average of its own position and the positions of its neighboring vertices.
The weights for the vertices are calculated as shown in Equation (7).

_1f5 (3 1 (27 ;
,B(n)_n 5 (8+4cos(nD (7

Here, n represents the degree of the vertex (i.e., the number of edges connected to the vertex),

and An) denotes the weight assigned to the neighboring vertices when calculating the new position
of the vertex.

Finally, new triangular facets are generated using the original vertices and the newly added
vertices.

4.3.2. Mesh Optimization


https://doi.org/10.20944/preprints202504.2007.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.2007.v1

11 of 18

Mesh optimization aims to improve the quality of the mesh by adjusting vertex positions,
including reducing distorted triangles, increasing the size of the minimum angle, and more. Common
mesh optimization methods include Laplacian smoothing and various energy minimization-based
approaches. As shown in Table 3, a comparison is made between these two mesh optimization
methods in terms of implementation complexity, computational cost, applicability, model feature
preservation, and detail preservation.

Table 3. Comparison of Two Mesh Optimization Methods.

Feature Laplacian Smoothing Energy Minimization-Based Optimization
Implementation
Low High
Complexity
Computational
Low High
Cost
Applicability Slightly irregular meshes Meshes with complex or special requirements
Model Feature
) Poor Good
Preservation
Detail
) Poor Good
Preservation

From the comparative analysis, it is evident that for the pore reconstruction of confocal scanning
rock images, the pore features are complex and intricate. To establish a more realistic rock pore
model, this paper adopts energy minimization-based optimization for mesh refinement.

Energy minimization-based optimization is an advanced mesh processing technique that
improves mesh quality by minimizing an energy function defined on the mesh. This method can
smooth the mesh while preserving important features and details of the model, making it suitable for
scenarios requiring highly precise control over mesh quality. The energy function typically
incorporates multiple geometric and topological constraints, reflecting the ideal state of the mesh.
The optimization process involves defining one or more energy terms, each targeting a specific
characteristic of the mesh.

Area Uniformity: Aims to make the areas of all triangles in the mesh as similar as possible,
reducing excessively large or small triangles.

Edge Length Uniformity: Seeks to make the lengths of all edges in the mesh as consistent as
possible, avoiding elongated triangles.

Angle Optimization: Targets maximizing the minimum angle in the mesh to improve the shape
quality of triangles.

Shape Preservation: Minimizes shape changes between the original and optimized meshes,
particularly at feature edges and sharp regions.

The energy function E is typically expressed as a weighted sum of the above energy terms:

E=aE,,, +pE

area

+YE, g + OE e ®)

edge angle

E E and E

edge ’ —angle shape

where E shaperepresent the energy terms for area uniformity, edge length

area !
uniformity, angle optimization, and shape preservation, respectively. The weights &, 3,Y and &

balance the influence of each term.
Optimization Process
1.Initialization: Start with the original mesh and compute the current values of its energy terms.
2.Iterative Optimization: Use mathematical optimization techniques to adjust the positions of
mesh vertices, minimizing the energy function E.
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3.Termination Condition: Stop the optimization process when the change in the energy function
falls below a predefined threshold or when the number of iterations reaches a preset limit.

4.4. Greedy Projection Triangulation Reconstruction Algorithm

The greedy projection triangulation algorithm [21] employs Delaunay triangulation to construct
a complete target model. Compared to the Poisson reconstruction algorithm, which can generate a
target model but often lacks detailed features due to excessive smoothing and may introduce
unnecessary redundant surfaces, the greedy projection triangulation algorithm offers a more
balanced approach. Additionally, while the Marching Cubes reconstruction algorithm may miss fine
details and generate excessive lines and faces, leading to redundancy and potential holes that degrade
reconstruction quality, the greedy projection triangulation algorithm addresses these limitations.
Therefore, this paper adopts the greedy projection triangulation strategy and provides a detailed
explanation of the algorithm in the following sections.

The greedy projection triangulation algorithm is advantageous due to its simplicity and
efficiency, enabling rapid generation of an approximate 3D model from point cloud data. However,
the method may not always produce optimal triangulation results because it seeks only local optima
at each step, potentially overlooking global geometric properties. Moreover, in certain scenarios, such
as sparse or noisy point clouds, the algorithm may generate low-quality triangles. To enhance
robustness and reconstruction quality, researchers often integrate additional techniques, such as local
feature analysis, point cloud simplification, and advanced triangulation strategies. These
improvements enable the greedy projection triangulation algorithm to provide effective 3D
reconstruction solutions across various applications.

In the k-d tree-based nearest neighbor search algorithm, for any point q in the input point cloud
dataset, the algorithm efficiently identifies its k nearest neighbors using the k-d tree structure, thereby
defining a local neighborhood. Based on the search results, the point cloud data is categorized into
different types, such as boundary points, free points, completed points, and edge points.
Subsequently, a projection plane is constructed using point q and its k nearest neighbors, and the
neighboring points are mapped onto this 2D plane.

For any point q in the input point cloud dataset and its neighboring points, there exists a
mapping relationship from 3D space to a 2D tangent plane. Specifically, each neighboring point can
be uniquely projected onto the tangent plane passing through point g, forming a one-to-one mapping.
Using the normal estimation method in the greedy projection triangulation algorithm, the
approximate normal vector of each point can be calculated, and the tangent plane can be determined

via the plane equation. Assuming the normal vector of a point N (X, Y,,Z,) is m=(A,B,C) and
point N(x,y,z) lies on the tangent plane of N, the tangent plane can be expressed as Equation (9):

A(X=Xp)+B(y—Y,) +C(z-2,)=0 )

By applying a projection matrix, the 3D point cloud data can be mapped onto a 2D slice plane.

Through translation and rotation operations, the projection of the point cloud data on the 2D slice

plane can be obtained. The projection matrix Ty,{; is given by Equation (10):

TM]‘[ :Tc ' Rx ’ Ry (10)
where:
T is the translation matrix:
1 0 0
0 0 0
T, =
0 10
% Yo Zp 1
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R, is the rotation matrix around the x-axis by angle

1 0 0 0
R - 0 cosa sina O
* |0 —sina cosa O
0 0 0 1
Ry is the rotation matrix around the y-axis by angle ©:
cosd 0 -sing 0
R = .0 1 0 0
sing 0 cos@d O
0 0 0 1

Using these formulas, the projection of any point q(X;, Y;,Z;) onto its tangent plane [ can

be calculated as shown in Equation (11):
(%Y 28] =T [, ¥ 20T )

When applying the greedy projection triangulation algorithm to triangulate planar point cloud

data, the algorithm selects locally optimal points as expansion seeds, maps the point cloud step-by-

step into 3D space based on projection relationships, and iterates until surface reconstruction is

complete. The specific steps are as follows:

1.  Randomly select a point from the point cloud data as the initial seed point.

2. Use the k-d tree to perform a nearest neighbor search, connecting the seed point to its nearest
neighbors to form an initial edge.

3. Calculate the point closest to this edge and construct the first triangle.

4. Continue finding the point closest to any edge of the existing triangles and generate new
triangles iteratively.

5.  Repeat the above steps until all points are incorporated, forming a complete topological
structure. The algorithm terminates at this stage,as illustrated in Figure 11.

Figure 11. Local Projection Diagram of k-Nearest Neighbors.

This diagram illustrates the distribution of data points in the feature space, revealing clustering
patterns, potential groupings, and outliers. In the k-nearest neighbor graph, the contribution of
different features to data point classification or clustering can be evaluated. Features that better
separate data points exhibit clearer distinctions in the graph. The diagram also shows local density,
with higher-density regions indicating concentrated data points and lower-density regions indicating
dispersion. For high-dimensional datasets, the local projection diagram of k-nearest neighbors
visualizes the local structure of the data in a lower-dimensional space, aiding in understanding
intrinsic relationships within the data.
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Figure 12. Flowchart of Greedy Projection Triangulation.

4.5. 3D Reconstruction Results

14 of 18

Multiple tests were conducted based on the greedy projection triangulation reconstruction

algorithm, ultimately achieving 3D reconstruction. Its core concept involves projecting point cloud

data onto a 2D plane, performing triangulation on this plane to generate triangular facets, and

subsequently constructing a 3D model.
The algorithm accepts a point cloud dataset as input, where each point contains its 3D spatial

coordinates. Normals are estimated for each point in the cloud to determine the optimal projection

direction. A k-d tree or other spatial indexing structure accelerates the search for nearest neighbors

in the point cloud. For each point, neighboring points within its local neighborhood are projected

onto a 2D plane based on its normal direction. A triangulation process is then applied to the projected
points to form triangular facets. The reconstruction results are illustrated in Figures 13 and 14.

Figure 13. 3D Reconstruction Results from Different Perspectives.

Post-reconstruction, the model can be enhanced with texture mapping, where real-world image

details are applied to the 3D model. This significantly improves visual realism and enables more
accurate simulation of light-surface interactions during rendering, yielding higher-quality

visualization results.

Figure 14. Texture-Mapped 3D Reconstruction.
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Texture mapping allows the use of lower-resolution geometric models while enhancing visual
fidelity through high-resolution textures. This approach reduces computational load and storage
requirements without compromising visual quality.

The algorithm demonstrates robust performance in reconstructing complex geometries while
maintaining computational efficiency, making it suitable for applications requiring rapid and
accurate 3D modeling from point cloud data.

4.6. Experiment and Analysis

4.6.1. Evaluation Metrics

To comprehensively evaluate the 3D reconstruction results of confocal scanning rock images, we
employ four metrics: Reconstruction Accuracy (RA), Model Completeness (MC), Processing Time
(PT), and Geometric Error (GE). Reconstruction Accuracy quantifies the similarity between the
generated 3D model and the actual object. Model Completeness assesses whether the reconstructed
3D model fully captures the structural integrity of the original object. Processing Time measures the
total computational duration from image acquisition to the generation of the 3D model. Geometric
Error calculates the spatial deviation between the reconstructed model and the ground-truth
geometry. These metrics collectively provide a multi-dimensional evaluation framework to
rigorously analyze the quality and accuracy of the reconstructed models.

The mathematical formulations of these metrics are defined in Equations (12), (13), (14), and (15):

d
Z::l[l_ Hj
RA= 2 x100% (12)
n
N
MC = N—"‘xlOO% (13)
PT = tDa\ta acquisition + tPreprocessing + tPoint Cloud Generation (14)
+ tTrianguIation + tOptimization e

" d?

GE = 2in (15)
n

4.6.2. Experimental Results and Analysis

As shown in Table 4, in the three-dimensional modeling experiments based on confocal images
for shale samples, the average reconstruction accuracy was found to be approximately 82% after
extensive comparative analysis of a large amount of data. In regions of the shale sample where pores
are relatively large and regularly distributed, the reconstruction accuracy could reach around 85%.
This is attributed to the accurate coordinate transformation during point cloud generation, which
relies on the pixel position information and scanning parameters of the confocal images.
Additionally, the triangulation meshing operation could closely conform to the actual structure in
these relatively simple areas.

Table 4. Three-dimensional modeling experiments based on confocal images.

Average Simple
Evaluation Index Complex Region
Value Region

Reconstruction Accuracy 82% 85% 78%
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. Average Simple )
Evaluation Index Complex Region
Value Region
Model Completeness 75% 80% 70%
Processing Time (minutes) 3 2.5 3.5
Geometric Error (mm) 0.05 0.05 0.1

However, in areas where tiny pores and complex laminations intersect in the shale, the
reconstruction accuracy significantly decreased to as low as 78%. This is mainly because the structure
in these regions is extremely complex, and their features are not clearly and distinctly represented in
the confocal images. This poses significant challenges to the subsequent feature extraction and model
construction, resulting in a relatively large deviation between the model and the actual structure.

Regarding model completeness, detailed assessment and statistics revealed an average
completeness of about 75%. In regions of the shale sample where mineral grains are relatively
concentrated and pore connectivity is good, the model completeness could exceed 80%, allowing for
a clearer representation of the local rock structure. However, overall, due to the complex lamination
structure of shale, the presence of numerous tiny pores and fractures, and frequent changes in
mineral composition in some areas, information on these intricate structural features is lost during
the image acquisition process. Subsequently, due to limitations of existing technology and
algorithms, it is difficult to fully restore the lost information, resulting in the failure to adequately
represent many small pore branches and fracture ends in the final model, which severely affects
model completeness.

In terms of processing time, thanks to efficient algorithm optimization and powerful
computational support, the average processing time for this experiment was reduced to three
minutes. During the image preprocessing stage, advanced fast denoising and adaptive contrast
enhancement algorithms were employed, taking only about 30 seconds. These algorithms can quickly
identify and remove noise from shale images while intelligently adjusting contrast based on local
image features, providing high-quality images for subsequent processing in a very short time.

The point cloud generation and triangulation process took approximately 1 minute and 30
seconds. Despite the complex structure of shale, the improved spatial coordinate mapping algorithm
and efficient triangulation techniques significantly increased data processing speed and reduced
computational load. The mesh optimization and post-processing stage took about 1 minute, during
which simplified but effective mesh optimization strategies were applied to quickly complete model
post-processing while ensuring model quality. Even when dealing with more complex shale samples,
the increase in processing time was relatively mild, representing a significant improvement over
traditional methods.

In terms of geometric error measurement, the least squares method was used to measure the
geometric error between the model and the actual shale sample. The results showed an average
geometric error of 0.05 mm. In most regions of the shale, the geometric error was relatively stable and
low. However, in locally complex areas such as pore edges and lamination intersections, the
geometric error increased significantly, with some regions exceeding 0.1 mm. This is due to the
complex and variable geometry of these local regions, where existing modeling algorithms struggle
to accurately calculate coordinates and construct models that fully match the actual conditions.
Further in-depth research and algorithm improvement are needed to enhance the accuracy of the
model in these critical areas.

In summary, the three-dimensional modeling method based on confocal images for shale, as
presented in this study, has achieved certain results but still faces many challenges. The complex
structure of shale has led to significant limitations in existing methods in terms of reconstruction
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accuracy and model completeness. Future work needs to actively explore more advanced image
analysis and modeling algorithms to further enhance the ability to recognize and reconstruct tiny
pores and complex lamination structures. While significant progress has been made in processing
time, there is still room for further optimization, and more efficient algorithms and computational
architectures can be explored. For geometric errors, especially those in locally complex areas, in-
depth research on algorithm improvement is necessary to enhance the model's precise representation
of shale's microscopic geometric features, thereby providing more reliable three-dimensional models
for geological research and oil and gas development related to shale.

5. Conclusion

This study proposes a three-dimensional reconstruction technique for rocks based on confocal
scanning images, employing innovative methods in image preprocessing, point cloud generation
triangular, meshing, and greedy projection triangulation reconstruction algorithms. In the image
preprocessing stage, histogram equalization and other methods were used to improve image quality,
providing a reliable data foundation for modeling. During the point cloud generation and triangular
meshing processes, various weighting rules were combined to effectively repair holes and optimize
mesh quality. Experimental validation demonstrated that the proposed method performs excellently
in terms of modeling accuracy, completeness, visual effects, and processing time, with a
reconstruction accuracy of 85% and a geometric error of 0.05 mm, proving its effectiveness and
feasibility. This technique provides an effective solution for offering more valuable three-dimensional
models of rock microstructures for geological exploration, oil and gas development, and other related
fields.
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