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Humanities, Delhi Engineering College, Faridabad-NCR (DELHI), HR-INDIA, PIN-121001; 

ak.research.ph@gmail.com. 

ABSTRACT: The long-standing mathematical problem, the Riemann Hypothesis, states that all 

nontrivial zeros of the Riemann zeta function ζ(s) lie on the line Re(s) =1/2. This study examines the 

computational methods used to determine nontrivial zeros, such as ½ + 14.13472514i, ½ + 

21.02203964i, ½ + 25.01085758i, and others of ζ(s).The analysis finds that these methods are derived 

from the equation ξ(s) =(s/2) (s-1) (π)-s/2 Γ(s/2) ζ(s), by assuming that zeros of functions ζ(s) and ξ(s) 

are identical. However, the graphical examination of the locations of zeros of both functions, suggests 

this assumption is incorrect, rendering the computational methods flawed. Consequently, the widely 

accepted zeros computed using these methods, might not actually be zeros of ζ(s). In addition, the 

formula for the number of zeros N(T) on the line s=1/2 in a specific interval [0, T], based on the same 

assumption is also invalid. The study offers a new perspective on the Riemann Hypothesis by 

highlighting potential flaws in existing methods used for computing zeros of ζ(s). This finding could 

contribute to ongoing efforts to resolve the hypothesis. 

Keywords: Riemann Zeta function; Xi Function; Nontrivial zeros; Riemann Hypothesis 

 

1. Introduction 

Bernhard Riemann [1] in his research report (1859) introduced two functions, the Riemann’s zeta 

function, ( )ζ s and the Xi function ( )ξ t defined as:   

( ) ( )
=1

ζ = 1/ ns

n

s


  = +s σ it , ,σ t           (1)    

                         

( ) ( ) ( ) ( )- /2ξ = / 2 -1 π ζst s s s , =1/ 2+s it           (2) 

                                    

The definition (2) is the original definition of the function ξ  derived by Riemann himself. However, 

in mathematics literature, authors [2], [3], and others use the definition:  

 

( ) ( ) ( ) ( ) ( )- /2ξ = / 2 / 2-1 -1 π ζss s s s s          (3) 

There exists a similar kind of relation between Dirichlet Eta function ( )s  and ( )ζ s  given by 

( ) ( ) ( )1= 1 2 ζss s−−
            (4) 
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About the locations of zeros (nontrivial) of function ( )ζ +σ it , Riemann proposed a conjecture known 

as the Riemann Hypothesis “All nontrivial zeros of the function; ( )ζ s lie on the line 1/ 2σ = .”  

Riemann also proposed, the formula for the total number of zeros ( )N T of function ( )ξ t or 

concurrently of ( )ζ s , situated on the line 1/ 2σ = , in a specific interval 0 < < Tt  given by 

( ) ( ) ( )eN T T / 2π log T / 2π 1 −             (5) 

The above formula was proved by Van Mangoldt [4] in 1905, now is known as the Riemann-Mangoldt 

formula has the form;  

( ) ( ) ( )eN T T / 2π log T / 2π 1 7 / 8 − +           (6) 

The Authors [5] also derived above formula from Argument principle of Complex Analysis, 

assuming that zeros of functions ( )ξ s and ( )ζ s are identical. 

Table 1 shows the number of zeros ( )N T computed by some leading authors on the line 1/ 2σ =

in specific intervals  0,T . Remarkably, zeros computed by these all authors are ½ + 14.13472514i, ½ 

+ 21.02203964i, ½ + 25.01085758i, and others, but with different accuracy of decimal places. 

Table 1. The number of zeros of the function ( )ζ s computed by leading authors: 

Author Year Range of height (0 < t < T) Number of zeros N(T) 

B. Riemann [1] 1959 T≤ 26 3 

J.P. Gram [6] 1903 T≤ 50 10 

R. J. Backlund [7] 1914 T≤  210 79 

J.I. Hutchinson [8] 1925 T≤  300.468 138 

E.C. Titchmarsh [9] 1935 T≤  1468 1,041 

A.M. Turing [10] 

D. H. Lehmer[11] 

1953 

1956 

T≤  25735.93 

T≤  9878.910 

1,104 

10,000 

N.A. Meller [12] 1958 T≤ 4735 35,337 

R.S. Lehman [13] 1966 T≤  170571.36 250,000 

R.P. Brent [14] 1979 T≤  32,585,736.4 75,000,000 

J. van de Lune, H. J. J. te 

Riele, D.T. Winter [15] 

 

1986 

 

T≤ 545439823.215 

 

1,500,000,001 

Gourdon, Xavier [16] 2004 T≤ 2381374874120.45508 1013 

M. Odlyzko [17] 1992 T≤ 2.×1020 1.75×108 

Dave Platt, Tim Trudgian [18] 2020 T≤ 3 000 175 332 800 12 363 153 437 138 

 

Since 1959, there have been many but unsuccessful attempts to resolve the Riemann hypothesis. One 

such attempt has been- computing zeros of ( )ζ s on the line 1/ 2σ = in a specific interval 0 T t , 

and concludes that the Riemann hypothesis is valid (true) up to height T. The other theoretical 

attempt to prove the Riemann hypothesis has been to show at least one zero existing on a line

σ 1/ n= ,  1,2n − in the interval ( ) ( )0,1/ 2 1/ 2,1 . However, so far this attempt could not 

produce any marked result. 

 

Methods used for Computing of Zeros of Function ( )ζ s :  

So far, the methods used by authors [1] to [18], and others to compute zeros of ( )ζ s are derived 

from equations (3) and (4) as the case employed. Case I: the solutions of equation (3) for =1/ 2+s it

are the zeros of ( )ξ s , and ( ) ( )ξ = 0 ζ = 0s s . Case II (used rarely): the solutions of equation (4) 
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for are the zeros of ( )s , and ( ) ( )= 0 ζ = 0s s . All the methods determine the zeros of ( )ζ s

using an associated function ( )Z t , derived from equation (3), as follows:  

 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( )  ( )
( ) 

( )

- /2

log /2-1 - /2

Re log ( /2))-1 Im log ( /2))-1-1/4 2 - /2

ξ 1/ 2 + = / 2 / 2 -1 -1 π ζ , 1/ 2

= e π ( -1) / 2 ζ

= e π -1/ 4 / 2 e π ζ 1/ 2 +

s

s s

s s it

it s s s s s = +it

s s s

-t it

  

  

      
      



 (7) 

Since on the line ( )Re =1/ 2s  or t-axis, the function ( )ξ s  is real-valued, therefore, at the location of 

every zero, the function ( )ξ 1/ 2+it changes its sign. Since, the first factor of the product on the 

right is a negative real number, therefore, the sign of ( )ξ 1/ 2+it is opposite that of the second 

factor. In addition, the sign change of function ( )ξ 1/ 2+it  occurs when there is a change in the sign 

of the second factor. This second factor, that reveals a zero of ( )ξ 1/ 2+it or that of ( )ζ 1/ 2+it is 

termed the ( )Z t function. For computing zeros of ( )ζ s , J.P. Gram, G.H. Hardy, and B. Riemann 

perceived function ( )Z t  in different ways as follows: 

Gram Law [7]: 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

-i
ζ 1/ 2 + i e Z

= Z cos Z sin

Imζ 1/ 2 + i = -Z sinθ

θ t
t t

t θ t i t t

t t t

=

−           (8) 

Here, ( ) ( ) ( ) ( )= / 2 log / 2π -1 - π / 8 +1/ 48θ t t t t   .At a zero, the function ( )ζ 1/ 2+it changes its 

sign that depends on the changes of sign of ( )Z t , and at point ( ) = πθ t n  right side of equation (7) 

is zeros. This point is termed as the Gram point. In Gram’s Method, a zero ( )1/ 2s +it= exists at a 

point between two consecutive gram points.  

Hardy Method: G.H. hardy [19] defines function ( )Z t as: 

( ) ( )( )Z = ζ 1/ 2+ii tt e t
  

Here, ( ) ( ) ( )= Im log 1/ 4 + it / 2 - / 2 log π πθ t t n    

Riemann–Siegel Formula: 

( ) ( )( ) ( )( ) ( )

( )( ) ( )

[ ] [ ]
1/2+ 1/2-( ) ( ) 1/4

1 1

[ ]
1/2 1/4

1

Z = 1/ n 1/ n

= 2 cos log / , 2π

x x
it iti t i t

n n

x

n

t e e O t

θ t n n O t x= t /

− −

= =

− −

=

+ +

− +

 


 

Riemann computed first three zeros of ( )ζ s using above formula. Carl Ludwig Siegel [20] in 1932 

traced this formula in Riemann’s work.  

The number of zeros ( )N T  of function ( )ζ s on the line s=1/2 in a specific range 0 < < Tt is the 

number of times; the graph of function ( )Z t  intersects t-axis. Each point of intersection ( ),0zt  

produces a zero1/ 2 + zit . All the authors in Table-1 have computed zt , 1/ 2 + zit , and 1/ 2 + zit as 
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the zeros of functions ( )Z t , ( )ζ 1/ 2+ it , and ( )ξ 1/ 2+ it respectively. Thus, their calculations are 

based on the assumption that the functions ( )ξ s  and ( )ζ s have identical zeros.   

The main objective of this paper is to show that the assumption that zeros of functions ( )ξ s  and 

( )ζ s are identical, is incorrect; consequently, the computational methods derived from this 

assumption are flawed. Hence, the widely accepted zeros, such as ½ + 14.13472514i, ½ + 21.02203964i, 

½ + 25.01085758i, and others, computed through these flawed methods, cannot be zeros of function

( )ζ s . Additionally, the formula (5) to calculate the number of zeros ( )N T , based on the same 

assumption, is invalid for zeros of function ( )ζ s . 

 

2. Results 

Theorem I:  Let ( ) ( ) ( )1-η = 1- 2 ζxx x , x , ( ) ( )
11 1 1 1

η = - + - 1
1 2 3 n

n

x x x x
x

−
+ − + , and 

( )
1 1 1 1

ζ = + + + + +
1 2 3 nx x x x

x . Then functions ( )η x and ( )ζ x cannot have identical zeros. 

Illustration 1: Since, for 6x  , the value of each function is 1 . So, we consider three short forms 

of the functions ( )η x  and ( )ζ x  defined as:  

( ) ( )1-x

12comp.

1 1 1 1
η x = 1-2 + + + +

1 2 3 nx x x

 
 
 

, ( )
odd

1 1 1 1
η = - + - +

1 2 3 11x x x x
x , 

( )
even

1 1 1 1
η x = - + + -

1 2 3 12x x x x
, and ( )

1 1 1 1
ζ = + + + +

1 2 3 12x x x x
x  

,  

The graphs of functions ( )
comp.

η x , ( )
odd

η x ( )
even

η x ( )1-1- 2 x
, and ( )ζ x are shown in Fig.1 (a). As 

shown in this figure, for 6x  , ( )
comp.

η x (solid line) and ( )ζ x (point dotted line) are different 

functions. At an arbitrary point =14.135x , still different (graphs shown in inset), but their graphs 

are far separated parallel lines, that shows, functions ( )
comp.

η x and ( )ζ x never intersect at a point. 

Thus, the functions ( )
comp.

η x and ( )ζ x cannot have identical zeros. 

 

Fig.1. (a) Graphs of functions η(x) comp. and product functions, (b) Graphs of function f(x) and product functions. 
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Illustration 2: Consider a polynomial function ( )f x defined as: ( ) ( )( )2 2f = -1 - -3x x x x , x  . 

As shown in Fig. 1(b), graph of product function ( ) ( )( )2 2f = -1 - -3x x x x and factor function

( ) ( )2 - -3g x x x= intersects at x-axis, producing two zeros = -1.30278,2.30278x , and function f(x) and 

( ) ( )2 -1h x x=  intersects at x-axis producing two zeros = ±1x .  

Illustrations-1 and 2 show, when product function and its factor functions are polynomial functions, zeros of 

product function are identical to the zeros of factor functions [See Fig 1(b)]. However, when one of the factor 

functions, is a function defined by series, the product function and factor function cannot have identical zeros 

[See Fig 1(a)].  

Auxiliary Theorem II: The conclusion of equivalence of zeros of functions ( )ξ s and ( )ζ s from 

the definition: ( ) ( ) ( ) ( ) ( )- /2ξ = / 2 / 2-1 -1 π ζss s s s s  is incorrect.  

Illustration: We write functions ( ) ( ) ( ) ( )- /2/ 2 / 2 -1 -1 π x

m

m

x x x x  = , ( ) ( )nζ = 1/ x

n

x n


 and 

define the functions: ( ) ( ) ( ),ξ = ζm n m nx x x x . Since ( )6ζ 1n x  , for ease, we consider, 

( ) ( )
18

18

1

ζ 1/ n x

n

x
=

= .The first five ξ  -functions are;  

( ) ( )( )( ) ( )-s/2

1,18 18ξ / 2 / 2-1 -1 π ζx x x x x=
, 

( ) ( )( )( )( ) ( )-s/2

2,18 18ξ / 2 / 2-1 / 2-2 -1 π ζx x x x x x=
, 

( ) ( )( )( )( )( ) ( )-s/2

3,18 18ξ / 2 / 2-1 / 2-2 / 2-3 -1 π ζx x x x x x x=
 

( ) ( )( )( )( )( )( ) ( )-s/2

4,18 18ξ / 2 / 2-1 / 2-2 / 2-3 / 2-4 -1 π ζx x x x x x x x=
 

( ) ( )( )( )( )( )( )( ) ( )-s/2

5,18 18ξ / 2 / 2-1 / 2-2 / 2-3 / 2-4 / 2-5 -1 π ζx x x x x x x x x=
 

The graphs of product functions ( ),ξm n x  and factor functions ( )m x and ( )ζn x  are shown in Fig. 

2(a), 2(b), 2(c), and 2(d). 

In Fig. 2(a), curves of functions ( )1,18ξ x and ( )1 x meet at points (6.36708, 0.97524), (0, 0), (1, 

0), and (2, 0). These functions have common zero at x= 0, 1, and 2. However, the graphs of functions 

( )1,18ξ x and ( )18ζ x nor of functions ( )18ζ x and ( )1 x intersect. 

 

Fig. 2(a): Graphs of functions ξ 1, 18(x), Λ1(x), and ζ18(x). 
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In Fig. 2(b), graphs of functions ( )2,18ξ x and ( )2 x intersect at points (5.96503, 0.96597), (0,0), (0,1), 

(0,2), and (0,4), so have common zeros at x=0,1, 2 and 4. Graphs of functions ( )2,18ξ x  and ( )18ζ x

meet at two points (6.06193, 1.01657), (13.56908, 1.00008), but these points do not produce zero/s of 

either function ( )ξ x  or ( )ζ x . 

  

 

Fig. 2 (b): Graphs of functions ξ 2, 18(x), Λ2(x), and ζ18(x). 

In Fig. 2(c), the number of factors of function ( )3 x is increased. The functions ( )3,18ξ x and 

( )3 x start overlapping, and the functions ( )3,18ξ x and ( )3 x share five zeros at x= 0, 1, 2, 4, and 

6. The function ( )3,18ξ x  shares points (7.29841, 1.006734), (20.07938, 1.000001 with function ( )18ζ x . 

However, these points do not produce zero/s of either function. The function ( )3 x shares points 

(7.30521, 1.0067), and (20.07938, 1.000001), with ( )18ζ x  but these points are of no use in this study. 

 

Fig. 2 (c): Graphs of functions ξ 3, 18(x), Λ3(x), and ζ18(x). 

In Fig. 2(d), on increasing the number of factors of function ( )4 x  further, functions ( )4,18ξ x and 

( )4 x overlap and share six zeros at x= 0, 1, 2, 4, 6 and 8. The combine function of functions ( )4,18ξ x

and ( )4 x shares points (8.78883, 1.002331) and (26.92861, 1) with the function ( )18ζ x . That shows 

the functions ( )ξ x  and ( )ζ x  may intersect at most at two points on the line ( )ζ 1x =  or these 

functions have only two zeros on the line ( )ζ 1x = . 
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Fig. 2(d): Graphs of functions ξ 4, 18(x), Λ4(x), and ζ18(x). 

3. Discussion  

The illustrations-1, 2 of auxiliary Theorems I; clearly differentiate behaviors of a product function and 

its factor functions regarding zeros of the type of functions: (i) when both; the product functions and 

factor functions are polynomial functions (of real variable) –  in this case zeros of factor functions 

coincide with zeros of product functions. Riemann (1859) used this characteristic of real polynomial 

functions to the equation ( ) ( )ξ = ( )ζs s s  to find zeros of function ( )ζ s . Later subsequent 

authors also used to derive the function Z(t). As shown graphically in illustration-1, this application 

is flawed and so the methods derived from this perception. 

Moreover, the function ( )ζ s  is the function of complex variable defined by a series that 

cannot be treated like a polynomial function when verify its zero. For example; if x a= is a zero of 

function ( )ζ x , then ( )ζ 0a  ; rather, ( )
1 1 1

ζ 0
1 2 3a a a

a
 

= + + + → 
 

. Further, the illustration-2 

of auxiliary Theorems II, clearly shows that in case of ( ) ( )ξ = ( )ζx x x , if zeros of ( )ξ s and ( )ζ s  

have identical zeros 1 2, ,a a  (say), then the function ( )ζ x should be a polynomial function, and 

that could be written as: ( ) ( ) ( ) ( )1 2 2ζ x x a x a x a= −  −  −  . However, function ( )ζ x

cannot be written in this factor form because the product on the right do not form a series. Thus, if 

one assumes that zeros of function ( )ξ x and ( )ζ x are identical, then both function must be 

polynomials of real or complex variable. Further, the functions ( )ξ x and ( )ζ x can have at most 

two zeros that lie on the line ( )ζ 1x = . But, the authors listed in Table 1, have computed zeros count 

up to 2010 or more. The question is: From where did so many zeros originate? The answer is simple; 

the methods employed for computing zeros are flawed or since there exist more than two zeros of

( )ζ s , therefore, they (zeros) should be independent of function ( )ξ s  or the function ( )ξ s  should 

have different form. 

It appears that the certain acceptance of ½ + 14.13472514i, ½ + 21.02203964i, ½ + 25.01085758i, 

and others as the zeros of function ( )ζ s might be prompted by fact that the number of computed 

zeros in certain interval is the same as that predicted by the formula for ( )N T . 
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In this article, in Theorem I, II, and illustrations 1, and 2 functions are considered of real variable but results 

are also valid for variable because s x iy= + ,x y can be written as 0s x i= +  . 

 

An interesting outcome of this study: From the illustration of auxiliary Theorem II, an 

interesting observation leads a new theorem in the “Theory of Functions Defined by a Series.” In the 

graphs, 2(a) to 2(d), we observe that the graph of product function ( )ξ x  intersects the graph of factor 

function ( )ζ x at points that lie on a line defined by the denominator of the largest term (here 1/1x) of 

the function ( )ζ x . The line is ( )ζ 1xx = . If we take this line as the zero-line (or x-axis) for the functions 

( )ξ x  and ( )ζ x , that results in a theorem with the statement: “The nontrivial zeros of a function 

defined by a series always lie on a line” This line likely to be parallel to x- axis or y-axis. Further, 

investigation is required. 

The invalidity of accepted zeros of ( )ζ s has occurred due to misinterpretation of the equation

( ) ( ) ( ) ( )- /2ξ = / 2 -1 π ζst s s s , =1/ 2+s it , as discussed above: If one uses the original definition 

(2) of the function ξ  and calculates zeros of ( )ζ s corresponding to arbitrary zeros of function 

( )ξ ,t t , then zeros of functions ( )ξ t and ( )ζ s are not only different but also lie on two 

mutually perpendicular lines, as shown in Fig. 3 (b).  

 

Fig. 3. Zeros of functions ξ (t) and ζ(s): (a) t is complex variable; (b) t is real variable. 

The zeros of functions ( )ξ t and ( )ζ s shown in Fig. 3 are calculated as: suppose t α iβ= + , as the 

root of ( )ξ t . Now, if we assume ( )ξ 0t = ( )ζ 0s =  then ( )1/ 2- +is β α= . However, the 

assumption ( ) ( )ξ 0 ζ 0t s=  = is invalid as in the illustrations of Theorem I. 

 

4. Conclusion 

 

The methods used for computing nontrivial zeros of function ( )ζ s are derived from assumption that 

the zeros of functions ξ  and ζ are identical. This assumption is incorrect, rendering the methods 

flawed. Because this assumption forms the basis for the derivation of function ( )Z t that is used to 

compute zeros of ( )ζ s by solving the equation ( )Z 0t = , therefore, the widely accepted zeros, such 

as ½ + 14.13472514i, ½ + 21.02203964i, and others cannot be conclusively accepted as zeros of the 

function ζ(s). In addition, the validity of the formula ( ) ( ) ( )eN T T / 2π log T / 2π 1 −    , derived 
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under the same assumption, is called into question. The root cause of these issues lies in a 

misinterpretation of the equation ( ) ( ) ( ) ( )- /2ξ = / 2 -1 π ζst s s s , =1/ 2+s it in which authors 

consider functions ζ and ξ as the function of same variable. This fundamental oversight in the 

methodology for computing the nontrivial zeros of ζ(s) could be a significant factor in why the 

Riemann Hypothesis remains unresolved. Addressing these flaws and reexamining the assumptions 

underlying Z(t) and N(T) is essential for advancing our understanding of the zeta function and 

resolving this long-standing conjecture. 

Additional Information:  

We propose the complex numbers, (1/2 +35.28748i), (1/2 + 51.67246i), (1/2 + 67.98489i), (1/2 + 71.51417i), 

(78.21896i), and (1/2 +83.77055i) as the only nontrivial zeros of the function ( )ζ s in the interval 0< t <100. 

Declaration:  

The Author does not have any compelling interest for writing this research article. 
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