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Abstract: Advancements in omics technologies have promoted the development of precision
oncology. Lineage plasticity, a hallmark of cancer, incorporates molecular and histological aspects.
Histological differentiation of adenocarcinoma, neuroendocrine, and squamous characteristics
occurs in different anatomic locations. Lung cancer, which is highly heterogeneous, encompasses
these differentiations, and therefore serves as a model for exploration. Data-driven understanding is
critical in cancer differentiation research, with the two major differentiation pathways, squamous and
neuroendocrine, supported by omics data. Here, genetic and non-genetic profiles are reviewed based
on patient datasets, and shareable molecular features are described. This paper mainly discusses
machine learning approaches to feature selection, where network modeling is effective for designing
programmable differentiation. All methods are presented within the context of cancer lineage
plasticity along with examples and hypotheses. It emphasizes that selected patient datasets combined
with methods will ultimately lead to actionable cancer lineage. Chances for clinical translation are in
the spotlight, including biomarkers, molecular subtypes, and targeted therapies.

Keywords: neuroendocrine; squamous; lung; machine learning; overview

Introduction & Background

Conventional cancer therapies target organs or tissues. However, the advent of precision
oncology has revolutionized treatment strategies through molecular targeting.[1] In theory, cancer
cells deceive normal cells through similar molecules, or manipulate normal cells via specific
molecules, i.e., any gene can potentially drive cancer. [2] Trans-differentiation pathways, including
neuroendocrine and squamous, are supported by omics data and extend beyond the cellular level.
[3] The concept of lineage plasticity, which merges molecular and histologic aspects, can guide drug
discovery. [4] Nonetheless, targeting oncogenic lineage-restricted transcription factors (TFs)
indiscriminately may lead to severe toxicity and failure to achieve desired tissue specificity. [5]

The accumulation of big data in cancer research has enabled the direct identification of lineage-
restricted molecules. Omics studies aim to identify molecular subtypes with biological significance,
revealing, for instance, distinct clusters of squamous carcinomas across different tissues. The TCGA
consortium's integration of 33 cancer types has facilitated cross-tissue analyses, exploring anatomical
systems and original lineages such as the pan-squamous phenotype. [6] Previous studies have
strongly demonstrated the molecular and cellular aspects of the pan-squamous phenotype. [7]

Unlike the well-documented pan-squamous phenotype, the neuroendocrine phenotype remains
relatively rare. Mechanisms underlying neuroendocrine phenotype lack consensus evidence and are
often described as systemic disorders. Current diagnosis of neuroendocrine neoplasms (NENSs) relies
heavily on neuroendocrine markers, predominantly hormones and bioactive peptides (e.g., CHGA
and SYP). Due to the occurrence of neuroendocrine phenotype in diverse anatomical locations, there
remains an unmet need for reliable biomarkers. Progress in this field hinges on developing
biomarkers through integrative approaches combining knowledge and omics analyses. [8,9]

The patient-centric model presents tailored opportunities to address rare diseases, a particularly
pressing challenge given the large population of China. Data from cell lines or animal models may
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not always translate directly to human contexts, highlighting the importance of focusing on patient-
derived data and utilizing machine learning with illustrative examples to generate initial hypotheses.
The structure of this paper is outlined in Figure 1. It is anticipated that data providing access to key
features will aid in the development of targeted therapies, and this mini-review aims to discuss the
methodologies and their application to relevant diseases.

Overview of "actionable cancer lineage”

Cancer lineage from a omics perspective
Collected omics data Machine learning [eed Computational biology [gmed Lineage therapeutics
(genomics, proteomics, ‘

transcriptomics, epigenomics)

Feature selection gl Statistical method Molecular classifier gmd Accommodated disease (e.g. CUPs)

Figure 1. Overview of the "actionable cancer lineage," encompassing sections on omics insights, machine

learning, and clinical applications. Cancer data can be used to identify lineage-related molecules as central hubs
through feature selection, providing a theoretical foundation for therapeutic strategies and disease

understanding. Abbreviation: CUP (cancer of unknown primary).

Review

Omics insights for neuroendocrine and squamous phenotypes

Currently, the characterization of the cancer genome, particularly with regard to coding gene
drivers, is well-established. [10,11] Two key frameworks—evolutionary shaping and tissue
specificity —have been highlighted in genomic studies. [5,10] This review focuses on shared
characteristics between neuroendocrine and squamous phenotypes. First, somatic mutations and
copy number variations were analyzed in parallel. Chromosome 3q amplification (such as TP63 and
SOX2) was a significant feature of the squamous lineage, and cell cycle dysregulation including TP53
and CDKN2A mutations was also prevalent. [7] Compared to the squamous lineage, NENSs are less
well understood. [8,9] Recently, NENs have been divided into neuroendocrine tumors (NETs) and
neuroendocrine carcinomas (NECs) based on the proliferative index, with point mutations showing
tissue-specificity in NETs. [5] MENT is the most significantly mutated gene in NETs, while TP53 and
RB1 are predominant drivers in NECs. [12-15] These results indicate that genetic events can drive
phenotypic changes and influence tumor evolution. [10] Meanwhile, the experimental literature
supported these mentioned driver mutations, which will not be expanded in detail here. Beyond
that, germline mutations are noteworthy in NETs. And rare variants are expected to be captured in
large datasets such as the AACR-GENIE, MSK series, Chinese-OrigiMed, and UK 100,000 genomes
projects. Analyzing genomic data retrospectively in combination with NCG annotation can fully
unlock the potential of gene therapeutics. [11]

The transcriptome and proteome are commonly applied for quantitative studies from a non-
genetic perspective. To reduce off-target effects, widely expressed targets in tumors are preferred in
proteome studies, focusing on essential genes rather than lineage specificity. [16-18] Cross-ethnic
studies help obtain conservative results, with substantial data accumulated on lung adenocarcinoma.
[19] While proteome studies offer the advantage of targetability, detecting low-abundance proteins
(e.g., cell surface proteins) remains challenging. These proteins serve as markers for cellular
differentiation and lineage. In contrast, the transcriptome does reveal convergent pathways.
Neuroendocrine lineage based solely on transcriptome was not favored due to genetic discrepancies
(e.g., RBI mutations). However, recent data collection has allowed the molecular depiction of the
pan-neuroendocrine landscape. [20,21] Meanwhile, convergent biologies between neuroendocrine
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and squamous phenotypes are also recognized by epigenetic inheritance. [22,23] Overall, non-genetic
components reveal more shareable characteristics compared to genomics.

Despite the existence of convergent pathways against neuroendocrine and squamous
phenotypes, there is room for improvement—one direction in neuroendocrine studies, such as small-
cell cytology. An interesting finding is that small-cell carcinoma of the bladder is more similar to
bladder carcinoma than to small-cell lung cancer, challenging the neuroendocrine phenotype
concept. [24] Beyond neuroendocrine markers, the original lineage is the driver of neuroendocrine
phenotype. Opinions on transcriptome suggest that neuroendocrine cells originate from the central
and peripheral nervous systems, with shared transcription circuits (e.g., ASCL1 and NEURODI1
crosstalk) supporting this view. [8,25] In this regard, high-throughput screenings assist in the search
for molecules, driven by data.

A bold hypothesis is that neuroendocrine and squamous molecules may regulate each other,
possibly due to their mutually exclusive expression profiles. For example, smokers often exhibit
neuroendocrine or squamous features in lung cancer. Recent studies also suggest that in advanced
metastatic cancers of the bladder and colon, the proportion of neuroendocrine-like subtypes may be
increased. [26,27] Another important aspect is that algorithms analyzing the data suggest that
localized lineage molecules could represent the broader molecular profile. Given these complexities,
discussing neuroendocrine and squamous lineages in isolation, based solely on transcriptomic data,
may not be advisable.

Cancer Lineage Plasticity Guided by Machine Learning

Semi-supervised and unsupervised clustering methods

Most statistical methods assume linear fitting, and comparative studies screen to identify
conservative features. [28,29] In this field, semi-supervised approaches have been extensively utilized
in prognostic markers. The data format can be continuous or binary variables, and the patient's
prognosis including follow-up time with survival events is also required. Generally used analyses
include Cox regression and the shrinkage method, the latter of which minimize unimportant
variables from high-dimensional data. Interestingly, lineage-restricted molecules are often
accompanied by prognostic significance (e.g.,, NKX2-1). Apart from this, correlation analyses
compare known lineage-restricted molecules with unknown ones, common in feature selection. [5]

Compared with semi-supervised methods, unsupervised clustering is less affected by feature
selection. [30] Unsupervised clustering aims to uncover biological signals through dimensionality
reduction, without requiring prior knowledge. Importantly, clustering is a population-based design
that divides whole data into several groups, which can be complemented with studies of global
correlation. How to combine omics and machine learning methods has been described in detail
elsewhere, and will not be discussed here. Multi-omics may retain strong signals better than
individual omics, as opposed to individual omics, which is suitable for external validation. Given the
higher weight of underlying biological pathways, transcriptome data was often preferred in multi-
omics analysis due to its high variability. [31] However, using TCGA consortium data alone
underestimates protein levels, addressed by the CPTAC consortium. [17]

Subtype classifiers: training and external validation

Subclass classifiers are a method for solving classification issues that usually require given
sample labels. The principle of "subtype classifiers" is training molecules concerning sample labels,
and then using them for external validation. This methodology reduces the number of variables, and
the assignment probability of individual samples is determined by a small number of feature
comparisons. [32] Importantly, differences in technology must be considered (e.g., RNA sequencing
vs. Microarrays). In cancer, molecular classifiers are mainly tissue-based. [33] Moreover, a new study
suggests that original lineage is also practical by trained classifiers. [34] In classification tasks, DNA
methylation arrays are more sensitive than RNA sequencing but struggle to detect detailed cluster
information. [35] The available evidence suggests that both DNA methylation and transcriptome are
feasible for classification, with transcriptome performing well in clustering scenarios.
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Computational biology: focus on quantitative & qualitative

Compared to the other two approaches, computational biology can use high-throughput data
combined with cellular experimental data. Key challenges in cancer include that lineage-restricted
molecules might be undruggable and play essential roles in normal tissues. [36] Thus, constructing
regulatory networks or targeting operative molecules is warranted. Network modeling to design
gene circuits is gaining attention, with cell line data supporting signal transduction studies. Previous
studies proved that programmable gene editing led to direct differentiation. [37] In lung cancer,
genetic circuits can be engineered to block triple differentiation (adenocarcinoma-neuroendocrine-
squamous). Candidates perhaps are the KRAB zinc finger protein family, which may persistently
inhibit the differentiation program due to the fact that this family often exhibits transcriptional
repression. [38] Furthermore, there may be some families or molecules that regulate differentiation in
future studies.

Genetic circuits are designed as pre-simulated molecular networks that are later validated by
specific molecules. The most classical approach is to combine network simulations and high-
throughput screening to identify factors of direct differentiation. In large-scale level studies, it is
preferable to study the entire gene family rather than a single member, emphasizing family
characteristics. If this factor is untargetable, then the alternative strategy suggests to change to its
collaborators. This review outlines the blocking of multiple differentiation through transcriptional
repression and the establishment of regulatory networks for each lineage. As with all, computational
biology is at the root of genetic circuits.

Computational biology embraced network modeling, which required a combination of
quantitative and qualitative approaches, usually in the context of cell lines. Quantitative research
found global transcription rates can be inferred using the network modeling method named GENIE3.
[39] It can rapidly calculate linkages between genes, and tools like it include ARACNe, CellNet and
Mogrify. Compared to quantitative approaches, Boolean modeling is a classic tool in qualitative
studies. [40,41] Boolean models require existing phenotypes, such as taking ANp63 (Truncated
isoform of TP63) as an input and squamous markers as an output. The relationship between genes is
characterized as binary variables (activation or inhibition) based on experimental data, with middle
regulations being molecules of interest. These can be kinases and chromatin regulatory factors, and
there are already clinical trials underway. [3,4,16]

Clinical Applications and Future Directions

Lung cancer - a molecular subtype model

Lineage-restricted TFs were widely recognized diagnostic markers used in
immunohistochemistry to distinguish histology. In contrast, molecular subtypes are emerging as an
important focus. While molecular subtypes can be validated using clinical samples, translating these
findings into routine clinical practice remains challenging. Each subtype may have a biological basis,
but conserved signals across subtypes hold greater value. [2,15] The ideal subtype derived from a
single tissue type should be mappable to anatomical systems or original lineages, meaning it can be
applied in both horizontal and longitudinal comparative studies. For instance, overexpressed
molecules associated with the three histological types of lung cancer can be replicated in lung
adenocarcinoma (~10% Jaccard index, using GSE94601 as reference data; Supplementary Table S1).
Similar findings were observed in Lund's advanced bladder cohort. [42] These results suggest that
convergent pathways can be identified across different organs, potentially serving as candidate
metagenes (Supplementary Table S2). It could be argued that the molecular drivers behind subtypes
are more important than the subtypes themselves.

Modified subtypes in lung adenocarcinoma and lung squamous carcinoma can accomplish the
above promises. This hypothesis is that lung adenocarcinoma is a subset of lung cancer, and lung
squamous carcinoma is the pan-squamous miniature.

Assuming that genes with a high mRNA-protein correlation were taken as an assessment
criterion for being activated, RNA processing and extracellular matrix pathways differed between
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subtypes in lung squamous carcinoma. [43] This observation aligns with findings in pan-squamous
Chinese proteomic analysis. [44] Given the large differences in numbers between subtypes (LSQ1:
1090 vs LSQ2: 299, based on mRNA-protein correlation; |A: | > 0.3), this may be caused by post-
transcriptional regulation. Regarding post-transcriptional regulation, the coefficient of variation of
five molecules associated with RNA processing, RBM10, SF1, CPSF6, SLTM and DDX5, were lower
than those of KRT5. It is suggested that they may be less prone to off-target effects. [16] If this
assumption is plausible, then extracellular matrix pathways should play an activated role in the
cancer epithelium. Further, the understanding of epithelial mechanotransduction can be aided by
high-dimensional analysis at spatial resolution. [45]

Cell-of-origin pairing for cancers of unknown origin and rare diseases

This section named "Cell-of-origin pairing for cancers of unknown origin and rare diseases" has
some conceptual overlap with the "subtype classifiers" described above, as both involve scenario
simulations of classification issues. Clinical translation of cell-of-origin pairing is appropriate in
cancers of unknown origin and rare diseases. Consider platforms for sequencing, DNA methylation
and transcriptome analyses performed well for categorization in both primary and unknown origin
cancers. [28,46] A lack of approved therapies is a common problem in this field, including cancers of
unknown origin and rare diseases. For this, tissue-agnostic therapies, such as genomics-guided and
lineage-based therapies, are suggested in emerging viewpoints. [1] Lineage-based therapies allow for
simultaneous consideration of diagnosis and treatment, offering broad applications. For some
diseases, ethnicity differences are determinative; for instance, esophageal squamous carcinoma is
highly prevalent in China, while esophageal adenocarcinoma is more prevalent in Caucasians. [9]
This is why exploring the differences between adenocarcinoma and squamous carcinoma makes
sense.

Lineage-based concepts also guide drug discovery in rare diseases. One hopeful chance is that
olfactory neuroblastoma mimics small-cell lung cancer. Clustering analysis also appreciates the
rationality of this measure because of convergent signaling. For rare diseases, the greatest problem is
the lack of appropriate control samples, and outlier analysis may bring in targets although the
efficacy needs to be improved. Theoretically, population-based N-of-1 trials can yield fast-track
molecular insights. To support these, the Treehouse group proposes outlier analysis in pediatric
cancer based on N-of-1 design. Firstly, the background data should be established, and individual
patients were then compared against it to identify dysregulated molecules. [47] As an example, if a
new patient has squamous cytology and has completed mass spectrometry, the aberrant targets can
be recognized using the Chinese pan-squamous proteome. [44]

Targeted therapy design

Lineage-based targeted therapies have currently reached the preclinical stage, with early
interception and refractory metastasis being prioritized. [3,4] Carcinoma in situ was a pre-invasive
state that could further progress to invasive cancer, and early intervention may prevent cancer
progression. Pre-invasive genetic drivers are few, but once formed, such conditions are often
"irreversible." The key challenge is that directly targeting TFs may lead to de novo trans-
differentiation, such as NKX2-1 in lung adenocarcinoma and ANp63 in lung squamous carcinoma.
For trans-differentiation studies mainly including Pre- and post-transformation paired and direct
collection of post-transformation samples, the former is temporarily limited by the lack of sufficient
sample sizes. Refractory tumors collected directly, such as lung adenosquamous cell carcinoma,
require pathological evidence, which has been well-studied by Ji's laboratory. [48] Early intervention
is particularly emphasized, and lineage-restricted molecules serve as diagnostic markers.
Furthermore, the therapeutic window needs comprehensive assessment, considering factors like the
interaction of environment and genes. [49] Because disease regression took a long time, the results
may not be sufficient for replication. Importantly,

squamous  differentiation =~ should  intervention  could be  inferred  from
GSE108082 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108082) and remained a
lineage feature of squamous cell carcinoma. [50] It is desirable to obtain molecules that arrest the
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squamous differentiation and influence disease regression. In addition, identifying highly selective
targets by gene circuits, such as Boolean modeling, is suggested. The choice of targeting design is
crucial, and in addition, it should prioritize highly heterogeneous or transcription-driven cancers,
such as some pediatric cancers.

Lung cancer is highly heterogeneous, consisting mainly of adenocarcinoma, squamous and
neuroendocrine lineage, and small cell lung cancer being the most aggressive and representative type
of neuroendocrine carcinoma. Lineage-based targeted therapies are particularly indicated for highly
heterogeneous carcinoma in the precancerous stage. Precancerous patients benefit from early
detection and intervention, which can boost survival or lower morbidity. In this regard, three
therapeutic options have been proposed: 1) prevention of high-risk precancerous populations by
block differentiation, available for instance in the KRAB zinc finger family; 2) direct targeting of TFs
in the pre-invasive or refractory state by library screening, such as chemical probes and loss or gain
of function; 3) programmable circuit design for highly selective targeting from downstream,
upstream or co-factors. This is a universal design of lineage-restricted TFs, straightforward targeting.
Exceptions include nuclear signaling receptors like AR, ER, MYC, etc. [37,51,52] For these, three
possible options for targeting were summarised in Figure 2.

1. Blocking multiple differentiation
adenocarcinoma

| neuroendocrine

delivering molecules squamous

2. Direct targeting molecules

ﬂ.
! — > degradation

3. Targeted-dependency of
mediators/regulons (indirectly)

transcription factor Kinase
surfactant protein co-factor
other possibilities element

lineage molecules

Figure 2. Exploration of lineage-based therapeutics targeting both multiple and single differentiation pathways.
One approach is based on the hypothesis that histologic phenotypes serve as a background. The other focuses
on directly targeting compounds within monodifferentiation pathways or on mediators that regulate
downstream molecules. For downstream markers, the keratin family may be involved. The key drivers with the

greatest potential are transcription factors and cell surface proteins.
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In all, the above analyses require identifying molecules with prognostic significance,
incorporating convergent subtypes, etc., all of which require machine learning as a foundation. Data-
driven initial understanding of molecular properties, such as whether they are associated with the
cancer lineage, and from genes to diseases is the call of precision medicine.

Precision medicine vision

As interest and efforts in precision oncology escalate, recognizing the importance of biomarkers
and their use in developing targeted therapies in clinical research is indispensable. Significant
methodological advancements in genomics-guided clinical trial designs, such as basket and umbrella
trials within the master protocol framework, have been made. However, umbrella trials like
NCT02154490 and NCT03292250 have shown unsatisfactory results. [53] In contrast to genomics-
guided clinical trial design, lineage-based concepts hold promise for enhancing outcomes for shared
targets, with DLL3 as a successful example. Data-driven analysis not only enhances drug discovery
for targeted therapies but also holds equal importance for immunotherapy and traditional treatment
modalities. Lung cancer, being the most prevalent and fatal malignancy, already possesses a
considerable amount of data that could be leveraged for clinical translation. [54]

To enhance the operational effectiveness of cancer lineage plasticity, patient-centric datasets,
and illustrative examples have been curated. The utilization of freely available public resources,
where academic advancements surpass financial incentives, remains crucial. Transcriptome has
become routine in disease studies, with TFs likely playing a key role in driving cellular fate. In this
context, the development of dedicated TFs platform (e.g., TFome™) may prove beneficial. Certain
TFs exhibit cancer-specific expression patterns, which can be analyzed through regulated networks.
[55] Up to now, clinical translation has successfully incorporated RNA-related products (e.g.,
Oncotype DX® and CancerTYPE ID®) primarily for prognostic stratification and origin classification.
Looking ahead, liquid biopsies show promise in determining tumor origins compared to traditional
tissue specimens. Additionally, integrating TF data with DNA methylation profiles represents a
promising frontier. High-resolution data continues to enrich our understanding of life sciences, yet
it's important to acknowledge limitations such as oversimplified assumptions, binary classifications,
and the exclusive focus on TFs and transcriptomics.

Conclusions

Population-based data analysis enables the identification of cancer lineage factors, emphasizing
the importance of sharing over differentiation. In genetics, the notable feature of the pan-squamous
phenotype is chromosome 3q amplification. While mutations MENI and TP53- RB1 are
predominantly enriched in neuroendocrine tumors and neuroendocrine carcinomas, respectively.
The non-genetic part of the collection mainly consists of the transcriptome, proteome, and epigenome
all associated with cancer lineage. For precision therapy, one possible approach is to design gene
circuits to reduce tissue toxicity and induce direct differentiation. Furthermore, original lineage
therapy should focus on early interception and provide insights into pre-invasive, refractory, rare,
and unknown primary cancers. By the way, data collection involves assumptions beneath it; for
example, follow-up data in cancer are often predicated on the use of radiochemotherapies, and
aiming to develop novel therapies demands prospective validation.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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