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Abstract:  Advancements  in  omics  technologies  have  promoted  the  development  of  precision 

oncology. Lineage plasticity, a hallmark of cancer, incorporates molecular and histological aspects. 

Histological  differentiation  of  adenocarcinoma,  neuroendocrine,  and  squamous  characteristics 

occurs  in different anatomic  locations. Lung cancer, which  is highly heterogeneous, encompasses 

these differentiations, and therefore serves as a model for exploration. Data‐driven understanding is 

critical in cancer differentiation research, with the two major differentiation pathways, squamous and 

neuroendocrine, supported by omics data. Here, genetic and non‐genetic profiles are reviewed based 

on patient datasets, and  shareable molecular  features are described. This paper mainly discusses 

machine learning approaches to feature selection, where network modeling is effective for designing 

programmable  differentiation.  All  methods  are  presented  within  the  context  of  cancer  lineage 

plasticity along with examples and hypotheses. It emphasizes that selected patient datasets combined 

with methods will ultimately lead to actionable cancer lineage. Chances for clinical translation are in 

the spotlight, including biomarkers, molecular subtypes, and targeted therapies. 
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Introduction & Background 

Conventional  cancer  therapies  target  organs  or  tissues.  However,  the  advent  of  precision 

oncology has revolutionized treatment strategies through molecular targeting.[1] In theory, cancer 

cells  deceive  normal  cells  through  similar  molecules,  or  manipulate  normal  cells  via  specific 

molecules, i.e., any gene can potentially drive cancer. [2] Trans‐differentiation pathways, including 

neuroendocrine and squamous, are supported by omics data and extend beyond the cellular level. 

[3] The concept of lineage plasticity, which merges molecular and histologic aspects, can guide drug 

discovery.  [4]  Nonetheless,  targeting  oncogenic  lineage‐restricted  transcription  factors  (TFs) 

indiscriminately may lead to severe toxicity and failure to achieve desired tissue specificity. [5] 

The accumulation of big data in cancer research has enabled the direct identification of lineage‐

restricted molecules. Omics studies aim to identify molecular subtypes with biological significance, 

revealing, for instance, distinct clusters of squamous carcinomas across different tissues. The TCGA 

consortiumʹs integration of 33 cancer types has facilitated cross‐tissue analyses, exploring anatomical 

systems  and  original  lineages  such  as  the  pan‐squamous  phenotype.  [6]  Previous  studies  have 

strongly demonstrated the molecular and cellular aspects of the pan‐squamous phenotype. [7] 

Unlike the well‐documented pan‐squamous phenotype, the neuroendocrine phenotype remains 

relatively rare. Mechanisms underlying neuroendocrine phenotype lack consensus evidence and are 

often described as systemic disorders. Current diagnosis of neuroendocrine neoplasms (NENs) relies 

heavily on neuroendocrine markers, predominantly hormones and bioactive peptides (e.g., CHGA 

and SYP). Due to the occurrence of neuroendocrine phenotype in diverse anatomical locations, there 

remains  an  unmet  need  for  reliable  biomarkers.  Progress  in  this  field  hinges  on  developing 

biomarkers through integrative approaches combining knowledge and omics analyses. [8,9] 

The patient‐centric model presents tailored opportunities to address rare diseases, a particularly 

pressing challenge given the large population of China. Data from cell lines or animal models may 
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not always translate directly to human contexts, highlighting the importance of focusing on patient‐

derived data and utilizing machine learning with illustrative examples to generate initial hypotheses. 

The structure of this paper is outlined in Figure 1. It is anticipated that data providing access to key 

features will aid in the development of targeted therapies, and this mini‐review aims to discuss the 

methodologies and their application to relevant diseases. 

 

Figure  1. Overview  of  the  ʺactionable  cancer  lineage,ʺ  encompassing  sections  on  omics  insights, machine 

learning, and clinical applications. Cancer data can be used to identify lineage‐related molecules as central hubs 

through  feature  selection,  providing  a  theoretical  foundation  for  therapeutic  strategies  and  disease 

understanding. Abbreviation: CUP (cancer of unknown primary). 

Review 

Omics insights for neuroendocrine and squamous phenotypes 

Currently, the characterization of the cancer genome, particularly with regard to coding gene 

drivers,  is  well‐established.  [10,11]  Two  key  frameworks—evolutionary  shaping  and  tissue 

specificity—have  been  highlighted  in  genomic  studies.  [5,10]  This  review  focuses  on  shared 

characteristics between neuroendocrine  and  squamous phenotypes. First,  somatic mutations  and 

copy number variations were analyzed in parallel. Chromosome 3q amplification (such as TP63 and 

SOX2) was a significant feature of the squamous lineage, and cell cycle dysregulation including TP53 

and CDKN2A mutations was also prevalent. [7] Compared to the squamous lineage, NENs are less 

well understood. [8,9] Recently, NENs have been divided into neuroendocrine tumors (NETs) and 

neuroendocrine carcinomas (NECs) based on the proliferative index, with point mutations showing 

tissue‐specificity in NETs. [5] MEN1 is the most significantly mutated gene in NETs, while TP53 and 

RB1 are predominant drivers in NECs. [12–15] These results indicate that genetic events can drive 

phenotypic  changes  and  influence  tumor  evolution.  [10] Meanwhile,  the  experimental  literature 

supported  these mentioned driver mutations, which will not be expanded  in detail here. Beyond 

that, germline mutations are noteworthy in NETs. And rare variants are expected to be captured in 

large datasets such as the AACR‐GENIE, MSK series, Chinese‐OrigiMed, and UK 100,000 genomes 

projects. Analyzing genomic data  retrospectively  in  combination with NCG  annotation  can  fully 

unlock the potential of gene therapeutics. [11] 

The  transcriptome and proteome are commonly applied  for quantitative studies  from a non‐

genetic perspective. To reduce off‐target effects, widely expressed targets in tumors are preferred in 

proteome studies,  focusing on essential genes  rather  than  lineage specificity.  [16–18] Cross‐ethnic 

studies help obtain conservative results, with substantial data accumulated on lung adenocarcinoma. 

[19] While proteome studies offer the advantage of targetability, detecting low‐abundance proteins 

(e.g.,  cell  surface  proteins)  remains  challenging.  These  proteins  serve  as  markers  for  cellular 

differentiation  and  lineage.  In  contrast,  the  transcriptome  does  reveal  convergent  pathways. 

Neuroendocrine lineage based solely on transcriptome was not favored due to genetic discrepancies 

(e.g., RB1 mutations). However, recent data collection has allowed  the molecular depiction of  the 

pan‐neuroendocrine  landscape.  [20,21] Meanwhile, convergent biologies between neuroendocrine 
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and squamous phenotypes are also recognized by epigenetic inheritance. [22,23] Overall, non‐genetic 

components reveal more shareable characteristics compared to genomics. 

Despite  the  existence  of  convergent  pathways  against  neuroendocrine  and  squamous 

phenotypes, there is room for improvement—one direction in neuroendocrine studies, such as small‐

cell cytology. An  interesting  finding  is  that small‐cell carcinoma of  the bladder  is more similar  to 

bladder  carcinoma  than  to  small‐cell  lung  cancer,  challenging  the  neuroendocrine  phenotype 

concept. [24] Beyond neuroendocrine markers, the original lineage is the driver of neuroendocrine 

phenotype. Opinions on transcriptome suggest that neuroendocrine cells originate from the central 

and  peripheral  nervous  systems, with  shared  transcription  circuits  (e.g., ASCL1  and NEUROD1 

crosstalk) supporting this view. [8,25] In this regard, high‐throughput screenings assist in the search 

for molecules, driven by data. 

A bold hypothesis  is that neuroendocrine and squamous molecules may regulate each other, 

possibly due  to  their mutually  exclusive  expression profiles. For  example,  smokers often  exhibit 

neuroendocrine or squamous features in lung cancer. Recent studies also suggest that in advanced 

metastatic cancers of the bladder and colon, the proportion of neuroendocrine‐like subtypes may be 

increased.  [26,27]  Another  important  aspect  is  that  algorithms  analyzing  the  data  suggest  that 

localized lineage molecules could represent the broader molecular profile. Given these complexities, 

discussing neuroendocrine and squamous lineages in isolation, based solely on transcriptomic data, 

may not be advisable. 

Cancer Lineage Plasticity Guided by Machine Learning 

Semi‐supervised and unsupervised clustering methods 

Most  statistical methods  assume  linear  fitting,  and  comparative  studies  screen  to  identify 

conservative features. [28,29] In this field, semi‐supervised approaches have been extensively utilized 

in prognostic markers. The data  format  can be  continuous or binary variables,  and  the patientʹs 

prognosis including follow‐up time with survival events is also required. Generally used analyses 

include  Cox  regression  and  the  shrinkage  method,  the  latter  of  which  minimize  unimportant 

variables  from  high‐dimensional  data.  Interestingly,  lineage‐restricted molecules are  often 

accompanied  by  prognostic  significance (e.g.,  NKX2‐1).  Apart  from  this,  correlation  analyses 

compare known lineage‐restricted molecules with unknown ones, common in feature selection. [5] 

Compared with semi‐supervised methods, unsupervised clustering  is  less affected by feature 

selection.  [30] Unsupervised clustering aims  to uncover biological signals  through dimensionality 

reduction, without requiring prior knowledge. Importantly, clustering is a population‐based design 

that divides whole data  into  several groups, which  can be  complemented with  studies of global 

correlation. How  to  combine  omics  and machine  learning methods  has  been described  in detail 

elsewhere,  and  will  not  be  discussed  here. Multi‐omics  may  retain  strong  signals  better  than 

individual omics, as opposed to individual omics, which is suitable for external validation. Given the 

higher weight of underlying biological pathways, transcriptome data was often preferred in multi‐

omics  analysis  due  to  its  high  variability.  [31]  However,  using  TCGA  consortium  data  alone 

underestimates protein levels, addressed by the CPTAC consortium. [17] 

Subtype classifiers: training and external validation 

Subclass  classifiers  are  a method  for  solving  classification  issues  that  usually  require  given 

sample labels. The principle of ʺsubtype classifiersʺ is training molecules concerning sample labels, 

and then using them for external validation. This methodology reduces the number of variables, and 

the  assignment  probability  of  individual  samples  is  determined  by  a  small  number  of  feature 

comparisons. [32] Importantly, differences in technology must be considered (e.g., RNA sequencing 

vs. Microarrays). In cancer, molecular classifiers are mainly tissue‐based. [33] Moreover, a new study 

suggests that original lineage is also practical by trained classifiers. [34] In classification tasks, DNA 

methylation arrays are more sensitive than RNA sequencing but struggle to detect detailed cluster 

information. [35] The available evidence suggests that both DNA methylation and transcriptome are 

feasible for classification, with transcriptome performing well in clustering scenarios. 
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Computational biology: focus on quantitative & qualitative 

Compared to the other two approaches, computational biology can use high‐throughput data 

combined with cellular experimental data. Key challenges in cancer include that lineage‐restricted 

molecules might be undruggable and play essential roles in normal tissues. [36] Thus, constructing 

regulatory networks or  targeting operative molecules  is warranted. Network modeling  to design 

gene circuits is gaining attention, with cell line data supporting signal transduction studies. Previous 

studies proved  that programmable gene  editing  led  to direct differentiation.  [37]  In  lung  cancer, 

genetic circuits can be engineered to block triple differentiation (adenocarcinoma‐neuroendocrine‐

squamous). Candidates perhaps are  the KRAB zinc  finger protein  family, which may persistently 

inhibit  the  differentiation  program  due  to  the  fact  that  this  family  often  exhibits  transcriptional 

repression. [38] Furthermore, there may be some families or molecules that regulate differentiation in 

future studies. 

Genetic circuits are designed as pre‐simulated molecular networks that are later validated by 

specific  molecules.  The  most  classical  approach  is  to  combine  network  simulations  and  high‐

throughput  screening  to  identify  factors of direct differentiation.  In  large‐scale level  studies,  it  is 

preferable  to  study  the  entire  gene  family  rather  than  a  single  member,  emphasizing  family 

characteristics. If  this  factor  is untargetable,  then  the alternative strategy suggests  to change  to  its 

collaborators. This review outlines the blocking of multiple differentiation through transcriptional 

repression and the establishment of regulatory networks for each lineage. As with all, computational 

biology is at the root of genetic circuits. 

Computational  biology  embraced  network  modeling,  which  required  a  combination  of 

quantitative and qualitative approaches, usually  in  the context of cell  lines. Quantitative research 

found global transcription rates can be inferred using the network modeling method named GENIE3. 

[39] It can rapidly calculate linkages between genes, and tools like it include ARACNe, CellNet and 

Mogrify. Compared  to  quantitative approaches, Boolean modeling  is  a  classic  tool  in  qualitative 

studies.  [40,41]  Boolean models  require  existing  phenotypes,  such  as  taking  ΔNp63 (Truncated 

isoform of TP63) as an input and squamous markers as an output. The relationship between genes is 

characterized as binary variables (activation or inhibition) based on experimental data, with middle 

regulations being molecules of interest. These can be kinases and chromatin regulatory factors, and 

there are already clinical trials underway. [3,4,16] 

Clinical Applications and Future Directions 

Lung cancer ‐ a molecular subtype model 

Lineage‐restricted  TFs  were  widely  recognized  diagnostic  markers  used  in 

immunohistochemistry to distinguish histology. In contrast, molecular subtypes are emerging as an 

important focus. While molecular subtypes can be validated using clinical samples, translating these 

findings into routine clinical practice remains challenging. Each subtype may have a biological basis, 

but conserved signals across subtypes hold greater value. [2,15] The ideal subtype derived from a 

single tissue type should be mappable to anatomical systems or original lineages, meaning it can be 

applied  in  both  horizontal  and  longitudinal  comparative  studies.  For  instance,  overexpressed 

molecules  associated with  the  three  histological  types  of  lung  cancer  can  be  replicated  in  lung 

adenocarcinoma (~10% Jaccard index, using GSE94601 as reference data; Supplementary Table S1). 

Similar findings were observed in Lundʹs advanced bladder cohort. [42] These results suggest that 

convergent  pathways  can  be  identified  across  different  organs,  potentially  serving  as  candidate 

metagenes (Supplementary Table S2). It could be argued that the molecular drivers behind subtypes 

are more important than the subtypes themselves. 

Modified subtypes in lung adenocarcinoma and lung squamous carcinoma can accomplish the 

above promises. This hypothesis is that lung adenocarcinoma is a subset of lung cancer, and lung 

squamous carcinoma is the pan‐squamous miniature.   

Assuming  that  genes with  a  high mRNA‐protein  correlation were  taken  as  an  assessment 

criterion for being activated, RNA processing and extracellular matrix pathways differed between 
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subtypes in lung squamous carcinoma. [43] This observation aligns with findings in pan‐squamous 

Chinese proteomic analysis. [44] Given the  large differences  in numbers between subtypes (LSQ1: 

1090 vs LSQ2: 299, based on mRNA‐protein correlation; |Δr | > 0.3),  this may be caused by post‐

transcriptional regulation. Regarding post‐transcriptional regulation, the coefficient of variation of 

five molecules associated with RNA processing, RBM10, SF1, CPSF6, SLTM and DDX5, were lower 

than  those  of KRT5.  It  is  suggested  that  they may be  less prone  to  off‐target  effects.  [16]  If  this 

assumption  is plausible,  then  extracellular matrix pathways  should play an activated  role  in  the 

cancer epithelium. Further,  the understanding of epithelial mechanotransduction can be aided by 

high‐dimensional analysis at spatial resolution. [45] 

Cell‐of‐origin pairing for cancers of unknown origin and rare diseases 

This section named ʺCell‐of‐origin pairing for cancers of unknown origin and rare diseasesʺ has 

some  conceptual overlap with  the ʺsubtype  classifiersʺ described  above, as both  involve  scenario 

simulations  of  classification  issues. Clinical  translation  of  cell‐of‐origin  pairing  is  appropriate  in 

cancers of unknown origin and rare diseases. Consider platforms for sequencing, DNA methylation 

and transcriptome analyses performed well for categorization in both primary and unknown origin 

cancers. [28,46] A lack of approved therapies is a common problem in this field, including cancers of 

unknown origin and rare diseases. For this, tissue‐agnostic therapies, such as genomics‐guided and 

lineage‐based therapies, are suggested in emerging viewpoints. [1] Lineage‐based therapies allow for 

simultaneous  consideration  of  diagnosis  and  treatment,  offering  broad  applications. For  some 

diseases, ethnicity differences are determinative;  for  instance, esophageal squamous carcinoma  is 

highly prevalent  in China, while esophageal adenocarcinoma  is more prevalent  in Caucasians. [9] 

This  is why  exploring  the differences between  adenocarcinoma and  squamous  carcinoma makes 

sense. 

Lineage‐based concepts also guide drug discovery in rare diseases. One hopeful chance is that 

olfactory  neuroblastoma mimics  small‐cell  lung  cancer. Clustering  analysis  also  appreciates  the 

rationality of this measure because of convergent signaling. For rare diseases, the greatest problem is 

the  lack  of  appropriate control  samples,  and  outlier  analysis may  bring  in  targets  although  the 

efficacy  needs  to  be  improved.  Theoretically,  population‐based N‐of‐1  trials  can  yield  fast‐track 

molecular  insights. To  support  these,  the Treehouse group proposes outlier  analysis  in pediatric 

cancer based on N‐of‐1 design. Firstly, the background data should be established, and  individual 

patients were then compared against it to identify dysregulated molecules. [47] As an example, if a 

new patient has squamous cytology and has completed mass spectrometry, the aberrant targets can 

be recognized using the Chinese pan‐squamous proteome. [44] 

Targeted therapy design 

Lineage‐based  targeted  therapies  have  currently  reached  the  preclinical  stage,  with  early 

interception and refractory metastasis being prioritized. [3,4] Carcinoma in situ was a pre‐invasive 

state  that could  further  progress  to  invasive  cancer,  and  early  intervention may  prevent  cancer 

progression.  Pre‐invasive  genetic  drivers  are  few,  but  once  formed,  such  conditions  are  often 

ʺirreversible.ʺ The  key  challenge  is  that  directly  targeting  TFs  may  lead  to  de  novo  trans‐

differentiation, such as NKX2‐1 in lung adenocarcinoma and ΔNp63 in lung squamous carcinoma. 

For  trans‐differentiation  studies mainly  including Pre‐ and post‐transformation paired and direct 

collection of post‐transformation samples, the former is temporarily limited by the lack of sufficient 

sample  sizes. Refractory  tumors collected  directly,  such  as  lung  adenosquamous  cell  carcinoma, 

require pathological evidence, which has been well‐studied by Jiʹs laboratory. [48] Early intervention 

is  particularly  emphasized,  and  lineage‐restricted  molecules  serve  as  diagnostic  markers. 

Furthermore, the therapeutic window needs comprehensive assessment, considering factors like the 

interaction of environment and genes. [49] Because disease regression took a long time, the results 

may not be sufficient for replication. Importantly,   

squamous  differentiation  should  intervention  could  be  inferred  from 

GSE108082 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108082)  and  remained  a 

lineage  feature of squamous cell carcinoma.  [50] It  is desirable  to obtain molecules  that arrest  the 
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squamous differentiation and influence disease regression. In addition, identifying highly selective 

targets by gene circuits, such as Boolean modeling,  is suggested. The choice of targeting design  is 

crucial, and  in addition,  it should prioritize highly heterogeneous or  transcription‐driven cancers, 

such as some pediatric cancers. 

Lung  cancer  is  highly  heterogeneous,  consisting mainly  of  adenocarcinoma,  squamous  and 

neuroendocrine lineage, and small cell lung cancer being the most aggressive and representative type 

of neuroendocrine carcinoma. Lineage‐based targeted therapies are particularly indicated for highly 

heterogeneous  carcinoma in  the  precancerous  stage.  Precancerous patients  benefit  from  early 

detection  and  intervention, which  can  boost  survival  or  lower morbidity.  In  this  regard,  three 

therapeutic options have been proposed:  1) prevention of high‐risk precancerous populations by 

block differentiation, available for instance in the KRAB zinc finger family; 2) direct targeting of TFs 

in the pre‐invasive or refractory state by library screening, such as chemical probes and loss or gain 

of  function;  3)  programmable  circuit  design  for  highly  selective  targeting  from  downstream, 

upstream or co‐factors. This is a universal design of lineage‐restricted TFs, straightforward targeting. 

Exceptions  include nuclear  signaling  receptors  like AR, ER, MYC,  etc.  [37,51,52] For  these,  three 

possible options for targeting were summarised in Figure 2. 

 

Figure 2. Exploration of lineage‐based therapeutics targeting both multiple and single differentiation pathways. 

One approach is based on the hypothesis that histologic phenotypes serve as a background. The other focuses 

on  directly  targeting  compounds  within  monodifferentiation  pathways  or  on  mediators  that  regulate 

downstream molecules. For downstream markers, the keratin family may be involved. The key drivers with the 

greatest potential are transcription factors and cell surface proteins. 
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In  all,  the  above  analyses  require  identifying  molecules  with  prognostic  significance, 

incorporating convergent subtypes, etc., all of which require machine learning as a foundation. Data‐

driven initial understanding of molecular properties, such as whether they are associated with the 

cancer lineage, and from genes to diseases is the call of precision medicine. 

Precision medicine vision 

As interest and efforts in precision oncology escalate, recognizing the importance of biomarkers 

and  their  use  in  developing  targeted  therapies  in  clinical  research  is  indispensable.  Significant 

methodological advancements in genomics‐guided clinical trial designs, such as basket and umbrella 

trials  within  the  master  protocol  framework,  have  been  made.  However,  umbrella  trials  like 

NCT02154490 and NCT03292250 have shown unsatisfactory  results.  [53]  In contrast  to genomics‐

guided clinical trial design, lineage‐based concepts hold promise for enhancing outcomes for shared 

targets, with DLL3 as a successful example. Data‐driven analysis not only enhances drug discovery 

for targeted therapies but also holds equal importance for immunotherapy and traditional treatment 

modalities.  Lung  cancer,  being  the  most  prevalent  and  fatal  malignancy,  already  possesses  a 

considerable amount of data that could be leveraged for clinical translation. [54]   

To  enhance the  operational  effectiveness of  cancer  lineage plasticity,  patient‐centric datasets, 

and  illustrative  examples have  been  curated. The utilization  of  freely  available public  resources, 

where  academic  advancements  surpass  financial  incentives,  remains  crucial. Transcriptome  has 

become routine in disease studies,   with TFs likely playing a key role in driving cellular fate. In this 

context, the development of dedicated TFs platform (e.g., TFome™) may prove beneficial. Certain 

TFs exhibit cancer‐specific expression patterns, which can be analyzed through regulated networks. 

[55]  Up  to  now,  clinical  translation  has  successfully  incorporated  RNA‐related  products  (e.g., 

Oncotype DX® and CancerTYPE ID®) primarily for prognostic stratification and origin classification. 

Looking ahead, liquid biopsies show promise in determining tumor origins compared to traditional 

tissue  specimens. Additionally,  integrating TF data with DNA methylation profiles  represents  a 

promising frontier. High‐resolution data continues to enrich our understanding of life sciences, yet 

itʹs important to acknowledge limitations such as oversimplified assumptions, binary classifications, 

and the exclusive focus on TFs and transcriptomics. 

Conclusions 

Population‐based data analysis enables the identification of cancer lineage factors, emphasizing 

the importance of sharing over differentiation. In genetics, the notable feature of the pan‐squamous 

phenotype  is  chromosome  3q  amplification.  While  mutations  MEN1  and  TP53‐  RB1  are 

predominantly enriched  in neuroendocrine  tumors and neuroendocrine  carcinomas,  respectively. 

The non‐genetic part of the collection mainly consists of the transcriptome, proteome, and epigenome 

all associated with cancer  lineage. For precision  therapy, one possible approach  is  to design gene 

circuits  to  reduce  tissue  toxicity  and  induce  direct  differentiation.  Furthermore,  original  lineage 

therapy should focus on early interception and provide insights into pre‐invasive, refractory, rare, 

and unknown primary  cancers. By  the way, data  collection  involves  assumptions beneath  it;  for 

example,  follow‐up data  in  cancer  are  often  predicated  on  the  use  of  radiochemotherapies,  and 

aiming to develop novel therapies demands prospective validation. 
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