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Abstract: In the computational prediction of bridge vibrations due to high-speed train traffic, the 
most accurate results can be obtained by considering the interaction dynamics between the train, 
the superstructure, and the supporting structure. To achieve this, a detailed understanding of the 
coupling properties of all elements is crucial as they significantly influence the calculated vibrations. 
The studies in this article investigate the influence of different levels of modeling complexity on the 
computational acceleration results of single-span girder bridges with a ballasted superstructure. A 
numerical study on an extensive parameter field of single-span girder bridges is conducted to in-
vestigate the influence of modeling the bridge structures as coupling beams, i.e., by considering 
them as two vertically coupled beams representing the track (rails and sleepers) and the supporting 
structure. The connection between both beams reflects the stiffness and damping properties of the 
ballasted superstructure and can reproduce its load-distribution capacity. The excitation is applied 
as either a moving load or a multi-body model of the train, an Austrian Railjet, to evaluate interde-
pendencies of interaction effects between the vehicle and track, and between track and bridge struc-
ture. The reference model is a simply-supported Bernoulli-Euler beam excited by moving axle loads. 
The comparison of acceleration results allows for identifying critical combinations of structural and 
train parameters for which the implementation of interaction dynamics has a particularly significant 
impact on the calculated vibrations and quantifying that impact. These findings provide the possi-
bility of formulating structure-dependent recommendations concerning the targeted application of 
more complex modeling of the structure (coupling beam model) on the one hand and train (multi-
body model) on the other.  

Keywords: Railway bridge dynamics; track-bridge interaction; vehicle-bridge interaction; coupling 
beam modeling 

 

1. Introduction 

With the growing importance of rail traffic in the existing European railway network and sim-
ultaneously increasing axle loads and train speeds, predicting the dynamic behavior of railway 
bridges under high-speed traffic plays an increasingly important role in assessing bridge structures. 
The vibrations and subsequent stresses on railway bridges during resonance events, which become 
relevant with higher train speeds, can over exceed the static loads many times. Excessive vibrations 
must be ruled out by computational investigations in existing structures as well as in the design of 
new infrastructure.  

Vertical structural accelerations are normatively limited to 3.5 m/s² by the Eurocode 
1990:2002/A1:2005/AC:2010 Appendix A2 [1]. They often become a decisive criterion for operational 
planning, the design of new bridge structures, or scheduling and the extent of required retrofitting 
measures on existing bridges. The occurrence of exceedingly high vertical accelerations of the 
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supporting bridge structure may not only impair the riding comfort of passengers by vibrations of 
the car body that are perceived as unpleasant, but under certain circumstances, more severe conse-
quences for riding safety can also occur. Possible damage to the supporting structure due to material 
fatigue is conceivable, as are track failures due to local destabilization of the ballast bed and, as a 
result, the risk of train derailments. 

Especially the dynamic assessment of the large number of existing bridges in the rail network 
for route approvals of new trains demands straightforward calculation models. Due to the small 
number of required input parameters, the primarily applied simple models are very suitable when 
there is a lack of reliable information about the structures and the trains passing over them. Further-
more, they can be transferred into mathematical models for which the equations of motion can be 
solved computationally with time-step integration methods very efficiently. Easily applicable models 
are, for instance, described in [2-7]. 

However, comparing in-situ measured bridge vibrations and those calculated with straightfor-
ward models shows that the mathematically predicted bridge vibrations often significantly overesti-
mate reality [8, 9]. Subsequently, proving compliance with the normatively specified limit values for 
vertical structural accelerations and displacements in serviceability checks according to Eurocode EN 
1990/A2 [1] may be hindered, especially in the case of existing structures. Without closer investiga-
tion, for example, by measurements, these overly conservative results can lead to substantial opera-
tional restrictions (speed restrictions) or even the need for cost-intensive retrofitting measures, im-
peding the establishment of efficient maintenance strategies for rail infrastructure buildings. 

The discrepancy between measurement and calculation is highly topical and complex and can 
be traced back to several causes. One essential aspect is the omission of beneficial influences from 
interaction dynamics in favor of those straightforward calculation models with insufficient modeling 
depth, which require multiple simplifications in the mechanical modeling of the bridge and the pass-
ing train. 

1.1. Multi-body dynamic models 

The simplest mechanical model assigns all properties of a bridge structure to one simply-sup-
ported bending beam (Bernoulli-Euler beam) and idealizes the dynamic excitation from a passing 
high-speed train as a series of constant static axle loads moving over it (Moving Load Model). How-
ever, this model is highly conservative and often generates large calculated vibration responses, 
which in many cases significantly exceed the vibrations measured on real structures (e.g., in [8-10]). 

More complex models considering the interaction dynamics between the train masses, super-
structure, and supporting structure by implementing multi-body modeling of all elements allow for 
a more accurate computational prediction of structural vibrations while requiring a higher number 
of structural or train parameters in the modeling. With this, precise knowledge of coupling properties 
regarding the train’s suspension stages plays a central role as they significantly influence the calcu-
lated vibrations. 

A large part of the current research activities on railway bridge dynamics, for instance, described 
in [4, 6, 10-15], deals with the computational vibration reduction that can be achieved by modeling 
the train more accurately as a multi-body system and, therefore, including interaction dynamics be-
tween the vehicle and bridge components. In practice, however, it is often complicated, if not impos-
sible, to obtain specific information on the technical characteristics of, e.g., the trains’ wheelset and 
bogie suspensions since they are often kept secret due to economic interests by the vehicle manufac-
turers. The future introduction and admission of new high-speed trains to the existing European rail-
way network will further aggravate this problem. 

Deepening the modeling complexity of the considered bridge structures offers another approach 
to more realistic calculation results, whereby many different modeling alternatives with different re-
quirements for input parameters are applicable, amongst others described in [16-20]. The present 
contribution focuses on the influence of modeling the bridge structures as coupling beams, i.e., by 
considering them as two vertically coupled beams representing the track (rails and sleepers) and the 
supporting structure. Both beams are interconnected vertically by continuously distributed Kelvin-
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Voigt elements, whose stiffness and damping properties reflect those of the ballasted superstructure. 
The equation of motion of the proposed model (explained in more detail in equations (A1-A34)) is 
approximated using trigonometric shape functions and solved by numerical time-step integration, 
whereby the system can be dynamically excited by moving load models as well as multi-body models 
of the train. 

This bridge model has the advantage of requiring only a few additional input parameters com-
pared to the reference model of the Bernoulli-Euler beam and still being computationally highly effi-
cient. At the same time, it allows taking the load-distributing influence of the ballast bed as well as 
the energy dissipation mechanisms depending on the relative vertical movements of the track grid 
and bridge structure into account. 

However, identifying and implementing appropriate and realistic model-related dynamic stiff-
ness and damping parameters represents a further problem. According to the current state of re-
search, no closed and mechanically and physically justifiable unit of calculation model and related 
parameters can be given. Literature references that focus on the effects of track-bridge interaction 
(e.g., in [16, 18-31]) apply various models with different levels of complexity to idealize the many 
interconnected elements of the supporting structure (usually modeled as Bernoulli-Euler beam) and 
the components of the superstructure (rails, sleepers, and ballast bed). The idealized dynamic bridge 
system can consist of two layers, as in the numerical investigations described in the present contri-
bution in section 2, but also three or more; see schematically displayed in Figure 1 and, for instance, 
described in [16, 18-31]. The more layers and elements are included, the more information on the 
dynamic behavior and interaction of the respective elements is required, which poses a challenge, 
particularly regarding the complex subject of dynamic ballast bed behavior. 

 

Figure 1. Possible modeling of the ballasted superstructure on any subsoil (bridge structure or em-
bankment). 

The applied coupling properties ki and ci between rails and subsoil (bridge structure) in various 
literature show a significant spread by a factor of 24, respectively 77 for damping or stiffness coeffi-
cients representing the interconnection of the two-layered structural model (literature data are, for 
example, compiled in [20]). In addition, the origin of those specific coefficients is rarely documented 
comprehensibly in the corresponding literature, making a plausibility check more difficult. 

1.2. Simplified model alternatives 

The influence of considering the interaction effects of the track, vehicle, and supporting structure 
has been investigated by several research activities in the past [4, 6, 10-31]. The impact of taking ve-
hicle-bridge interaction into account by multi-body modeling of the passing trains has shown to be 
dependent on many different characteristics of considered trains and bridges, mainly the bridge 
structure’s span, fundamental frequencies, and mass distribution, in relation to the axle distances, 
masses, and properties of the suspension system of the train cars (amongst others described in [10, 
12, 15]). Research indicates that the vibrations are reduced particularly effectively in the case of reso-
nance excitation of the bridges due to the regularly spaced train axles. 

Besides explicitly modeling the vehicle and bridge structure as multi-body systems, it is also 
possible to consider the beneficial effects of the interaction effects by simplified methods, which is 
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partly specified in the current standards to be applied, the Eurocode EN 1991-2:2003/AC:2010 [32]. 
The vibration-reducing effects from considering vehicle-bridge interaction, which primarily takes 
place in the primary suspension stage (the coupling of the unsprung wheelset masses and the bogies), 
can currently be considered by the Additional Damping Method as described in EN 1991-2 [32] chap-
ter 8.7. An additional damping ratio representing the vibration-reducing effects of vehicle-bridge in-
teraction in calculations without explicitly considering those effects (applying the Moving Load 
Model) may be assigned to the examined bridge structures. The amount of this additional damping 
is defined in the current specification of the EN 1991-2 [32] as only dependent on the bridge span. 
However, several recent research activities have revealed considerable discrepancies between the ac-
celeration results calculated with more sophisticated multi-body models of different high-speed 
trains and the alternative application of the Additional Damping Method [10-13]. In many cases, the 
latter leads to a substantial underestimation of vehicle-bridge interaction and, therefore, uneconom-
ical results, while in other cases, the impact is overestimated, producing unsafe results. These inves-
tigations indicate the complexity of the topic and its dependency on multiple influencing factors re-
garding bridge and train properties. As a result, the redesigned EN 1991-2, currently in the drafting 
process and available as prEN 1991-2:2021 [33], will no longer contain recommendations for addi-
tional damping. The ÖBB guideline RW 08.01.04, Appendix 1 [34], to be applied for the dynamic 
calculation of railway bridges in the Austrian rail network, allows implementing additional damping 
for train passages of the Railjet in dependency of the bridge's fundamental frequencies and distin-
guished by bridge type (concrete and steel structures). It was derived in [14] through numerical in-
vestigations on a parametric field of bridges. 

The load-distributing effect of the ballast bed can be implemented in calculations on simple 
beam models of the bridge by distributing the moving axle loads, for example, by applying the nor-
matively specified distribution pattern of 25%-50%-25% in the distance of the sleepers according to 
EN 1991-2 [32]. The standard recommends this distribution for calculations on bridge structures with 
small spans below L = 10 m, for which especially pronounced reductions of resulting accelerations 
can be expected. However, since the actual stiffness properties of the ballast bed under dynamic load-
ing are not comprehensively and experimentally researched, the question of whether alternative dis-
tributions might consider the ballast bed behavior more accurately cannot be resolved at the current 
state.  

Both simplified methods according to EN 1991-2 [32] of considering the interaction effects, the 
Additional Damping Method, and the load distribution pattern of 25%-50%-25% were based on nu-
merical investigations performed by the European Rail Research Institute (ERRI) in 1999 [17], which 
had at the time limited computational capacities and, therefore, a limited range of investigations and 
multiple simplifications regarding the considered train and bridge modeling and parameters.  

1.3. Objectives of numerical study 

The numerical study on a broad range of bridge parameters described in the following sections 
aims to extensively investigate the influence of expanding the simplest reference modeling of bridge 
structures and trains utilizing the Bernoulli-Euler beam and the Moving Load Model by either in-
cluding track-bridge interaction with a two-layered bridge model and/or vehicle-bridge interaction 
with multi-body modeling of the train. Section 2 contains a more detailed summary of the fundamen-
tal mechanical modeling and the variation of parameters of bridge structures and trains. The evalua-
tion of results obtained using different modeling alternatives enables identifying the structural prop-
erties for which applying a more sophisticated coupling beam model of the bridge structure signifi-
cantly influences the maximum accelerations, and quantifying that influence. Additionally, it is ex-
amined to what extent the influence of the coupling beam modeling depends on the chosen train 
model. 

The analyses demonstrate the potential for obtaining lower acceleration results by considering 
the load-distributing impact of the ballasted superstructure in coupling beam models (facilitating 
verification of compliance with normative acceleration limits in EN 1990/A2 [1]). They indicate that 
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the influence of multi-body models of the train, which consider vehicle-bridge interaction, is partic-
ularly pronounced for different structures than that of the coupling beam modeling. 

These findings open up the possibility of formulating structure-dependent recommendations 
concerning the targeted application of more complex modeling of the structure (coupling beam 
model) on the one hand and train (multi-body model) on the other. Thus, they enable a realistic cal-
culational prediction of the structural vibrations independent of vehicle information for the greatest 
possible share of structures. 

2. Materials and Methods 

A computational parameter study is carried out with a locomotive-hauled Railjet over a wide 
range of realistic combinations of single-span girder bridge characteristics. The calculation results 
regarding maximum vertical structural accelerations at midspan during a train passage are subse-
quently compared with the ones of a simple reference beam model. The applied mechanical idealiza-
tion of four models with and without vehicle-bridge and track-bridge interaction is graphically dis-
played in Figure 2 and summarized in the following sections.  

(a) (b) 

Figure 2. Applied two-dimensional mechanical models: (a) models of the bridge structure; (b) models 
of the high-speed train. 

2.1. Mechanical models of the bridge structures 

As previously mentioned, the reference model of the bridge used in the following investigations 
is a simply-supported single-span shear-rigid bending beam, referred to as the Bernoulli-Euler beam 
(see Figure 2a at top). It is characterized by only four parameters: the span L [m], bending stiffness EI 
[Nm²], mass per unit length μ [kg/m], and Lehr's damping ratio ζ [%]. Its fundamental frequency n0, 
which is varied in the parameter study described in the following sections, can be recalculated from 
these four fundamental parameters:  𝑛0 = 𝜋2 𝐿²√𝐸𝐼𝜇  . (1) 

Only lateral deformations in the vertical direction (bending deformations w(x,t)) are considered; lon-
gitudinal, lateral, and torsional vibrations are omitted.  

The equation of motion (see equation (A1) and further) can be derived using modal analysis, 
utilizing the first three modal functions (i = 1, 2, 3) of the form φi = sin (iπx / L) as shape functions for 
the discretization of the bending deformation, as they are expected to govern the maximum vibration 
response, as, for instance, the investigations in [5, 35, 36] indicate, and to be sufficient for realistic 
representation in most cases. The damping matrix of the system is obtained by applying Rayleigh 
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damping with ζ1 = ζ2 = ζ. Further information on the derivation of the system of equations of motion 
can be found, among others, in [7].  

The multi-body modeling of the bridge structure (Figure 2a bottom) consists of two vertically 
coupled beams, the lower one representing the supporting structure (with the properties Ls, EsIs, μs, 
and ζs) and the upper beam the rails (with the properties Lr, ErIr, μr, and ζr). Both beams are vertically 
coupled by Kelvin-Voigt elements assuming linear spring stiffness 𝑘𝑏𝑎 and viscous damping 𝑐𝑏𝑎. As 
mentioned in section 1, these coupling coefficients holistically represent the properties of the ballast 
bed, including the contributions of the ballast itself, sub-ballast mats, elastic sleeper sole pads, sleeper 
fasteners, and rail pads.  

The beam representing the rails is being prolonged beyond the bearings of the beam represent-
ing the supporting structure into the embankment over a length Lemb = (Lr – Ls)/2. This embankment 
area, where the rail beam is coupled to a rigid subsoil, prevents a sudden impuls excitation of the 
supporting structure initiated by excessive deformations close to the rail beam bearings that can occur 
due to the sudden change of subsoil stiffness.  

In order to make calculations with the different bridge models comparable, the properties of the 
overall bridge assigned to the Bernoulli-Euler beam have to be allocated to both beams of the cou-
pling beam model. The mass distribution corresponding to the mass contribution of the ballast bed 
is allocated to the supporting structure beam μs, while the discrete sleeper masses are smeared and 
allocated to the rail beam μr. The bending stiffness of the rail beam is derived from the properties of 
the two rails (assumed 60E1 profiles), and its damping ratio is assumed to be zero (ζr = 0).  

The mathematical discretization of this dynamical model for its numerical solution can be per-
formed using, for example, finite bar elements with Hermitian shape functions of the third or fourth 
order, as described, among others, in [27]. However, this approach has the disadvantage of requiring 
a high number of bar elements to simulate the beam vibrations accurately, especially in cases where 
the bending stiffness of the rail beams is substantially lower than that of the supporting structure. 
The subsequent high number of degrees of freedom results in high demands for computational ca-
pacities. In contrast, discretizing the system by applying trigonometric shape functions of both beams 
leads to calculation results that converge at comparably low degrees of freedom associated with short 
computation times. The latter approach is extensively described, for example, in [37]. Since the trig-
onometric shape functions represent the modal functions in the case of two uncoupled beams, this 
approach can be degenerated to represent the Bernoulli-Euler beam if the input parameters are set 
accordingly. In the following evaluations, the number of shape functions Ns for the supporting struc-
ture beam is kept at three (is = 1, 2, 3) as in the calculations for the uncoupled Bernoulli-Euler beam, 
while the number of shape functions for the rail beam ir = 1, 2, …, Nr is dependent on the required 
accuracy of the rail beam vibrations. Regarding the influence of the number of shape functions Nr on 
the accuracy of the predicted vibrations of the supporting structure, previous investigations and the 
analyses in [37] concluded that those converge if a minimum natural frequency nr,lim of the rail beam 
is considered. This leads to a minimum number of considered shape functions Nr of the rail beam 
according to the following limitations in dependency on the uncoupled rail beams fundamental fre-
quency n0,r:  𝑛𝑁𝑟,𝑟 > 𝑛𝑟,𝑙𝑖𝑚  , (2) 

where 𝑛𝑁𝑟,𝑟  can be written as 𝑛𝑁𝑟,𝑟 = 𝑁𝑟2  𝜋2 𝐿𝑟2√𝐸𝑟𝐼𝑟𝜇𝑟⏟    𝑛0,𝑟
= 𝑁𝑟2 𝑛0,𝑟 . 

(3) 

With equation (2), this leads to 

𝑁𝑟 ≥ √𝑛𝑟,𝑙𝑖𝑚𝑛0,𝑟 = 𝑁𝑟,𝑙𝑖𝑚 (4) 

with 𝑛𝑟,𝑙𝑖𝑚 = 200 Hz (chosen according to preliminary investigations).  
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The system of equations of motions is subsequently derived by applying the trigonometric shape 
functions to approximation methods according to Ritz and Galerkin (analogously to the approach for 
the Bernoulli-Euler beam) and including coupling terms in the stiffness and damping matrices of the 
system. In order to implement the different beam lengths into the coupling terms, it is necessary to 
assume discrete coupling of subsoil and rail at a limited number of points along the rail's longitudinal 
x-axis with a distance of e and transform the continuous coupling properties 𝑘̅𝑏𝑎 and 𝑐𝑏̅𝑎 to 𝑘𝑏𝑎 =𝑘̅𝑏𝑎/𝑒 and 𝑐𝑏𝑎 = 𝑐𝑏̅𝑎/𝑒. In the following calculations, a continuous coupling is simulated by adjusting 
this distance very shortly to e = 0.01 m. Another possibility would be to use the actual sleeper distance 
of e = 0.6 m, which, according to preliminary investigations, has a negligible influence on the results 
of medium to long-span bridges. In very short-span bridges, however, it is possible to obtain slightly 
different results depending on the number and location of the sleepers on the bridge structure if the 
ratio of bridge span to sleeper distance becomes too small. Thus, the sleeper distance is set to a min-
imal value of e = 0.01 m for better comparability. 

2.2. Mechanical models of the high-speed train 

Both bridge models require the implementation of an external force vector as excitation, which 
can be obtained by applying different train models.  

The Moving Load Model (MLM) is the first train model utilized in the following investigations 
and is the most simple one applicable (see Figure 2b top). It idealizes the train as a series of its static 
axle loads Fstat,j moving with constant speed v and distances over the bridge model. It can be easily 
implemented as a generalized force vector in the equation of motion of the bridge by performing a 
modal transformation with the shape functions φi of either the total bridge (Bernoulli-Euler beam i = 
1, 2, 3) or the rail (coupling beam i = ir =  1, 2, …, Nr) evaluated at the respective contact points of each 
load.  

This train model considers no interaction effects between the train and the subsoil, respectively, 
bridge structure. In order to evaluate the impact of these interactions, it is necessary to model the 
train as a system of coupled masses, for instance, by applying the Detailed Interacion Model (DIM) 
consisting of the interconnected rigid masses of the car bodies, bogies, and wheelsets (see Figure 2b 
bottom). The coupling properties reflect the train's primary and secondary suspensions. Implement-
ing this kind of train model into the dynamic equations requires extending the system of equations 
of motion of the Bernoulli-Euler beam or the coupled beam by additional degrees of freedom associ-
ated with the train masses, particularly the vertical displacements of car bodies, bogies, and wheelsets 
as well as the car bodies and bogies rotation about the transverse horizontal axis through their center 
of gravity. The wheelset displacements are equated with the bridge deflection, respectively rail, at 
the point of contact, assuming rigid and continuous contact of wheels and rails at all times. This forms 
the coupling condition of the train and the bridge structure and reduces the vehicle's degrees of free-
dom by the displacements of the wheelsets.  

The composition of the system matrices necessary to implement the different mechanical models 
into dynamic calculation programs is summarized in equations (A1-A34) in the appendix and was 
derived by modifying the approach described in [27].  

The equations of motion can be solved for the rail and bridge structure beam accelerations, ve-
locities, and deflections by applying numerical time step integration methods for a specific train 
speed or a range of speeds. All the investigations described in this article were performed using 
MATLAB [38] scripts, applying the implemented differential equation solver for stiff problems 
(MATLAB ode15s, see [39]) based on the numerical differentiation formulas (NDFs). 

2.3. Parametric analysis – bridge parameters 

In order to draw valid conclusions regarding the effects of considering track-bridge or vehicle-
bridge interactions using the previously described model alternatives on a spectrum of single-span 
bridge structures representative of reality, calculations were conducted on a broad parameter field of 
bridges. The varied input parameters were the bridge's span L, mass distribution μ, Lehr's damping 
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ratio ζ, and fundamental frequency n0 according to equation (1). The limits of the parametric field 
were obtained by analyzing the characteristics of 275 existing single-span and single-track bridges in 
the European rail network. Information on their properties was derived from several catalogs of ex-
isting bridges, primarily located in Austria, and documented during previous research activities. Ad-
ditionally, the information on 74 bridges was obtained from the ERRI (European Rail Research Insti-
tute) reports RP3 [40] and RP8 [41], on 35 bridges from Frýba [3], and on 25 bridges from Rauert [42], 
provided these bridges also meet the conditions of being constructed as single-span, single-track 
structures with ballasted beds. 

The bridges are distinguished by their construction type, with 101 steel and seven composite 
structures being grouped in the same category as they have similar properties regarding mass distri-
bution and span lengths. The same applies to 99 concrete and 68 filler beam structures. Measured 
values regarding the fundamental frequencies are available for 104 steel and composite structures 
and 114 concrete and filler beam structures. For the remaining 57 bridges, fundamental frequencies 
were recalculated by applying equation (1) and estimating the bending stiffness EI from the docu-
mented cross-sections. Furthermore, not all bridge structures have reliable information on their mass 
distribution available. Consequently, only the 45 steel and composite structures and 136 concrete and 
filler beam structures with recorded mass distributions are taken into account for determining this 
parameter bandwidth. The combinations of span, fundamental frequencies, and mass distribution 
are graphically represented in Figures 3 and 4.  

 

Figure 3. Combinations of span and fundamental frequencies of existing concrete, filler beam, steel 
and composite bridge structures as the basis for the numerical study.  
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Figure 4. Combinations of span and mass distribution of existing concrete, filler beam, steel and com-
posite bridge structures as the basis for the numerical study.  

Figures 3 and 4 also contain the parameter combinations used in the numerical study (marked 
by small grey, respectively blue and green circles). They are obtained by applying regression func-
tions as upper and lower bound limits, which were derived from analyzing the property combina-
tions of the existing bridges by Glatz et al. in [14, 43]. The regression functions for the upper and 
lower bound limits of the span-dependent fundamental frequencies n0,ub(L) and n0,lb(L) have been de-
termined in [14] as power functions as follows:  𝑛0,𝑢𝑏 = 113.1 𝐿−0.8312 (5) 𝑛0,𝑙𝑏 = 82.43 𝐿−0.9937 (6) 

The combinations of parameters for the numerical study were obtained by evaluating the equations 
(5) and (6) for spans L from 4 to 40 m in 1-meter increments and choosing five equidistant fundamen-
tal frequencies ranging from n0,ub(L) to n0,lb(L). The linear regression functions for the span-dependent 
mass distributions were differentiated according to the masses of the heavier concrete and filler beam 
and the lighter steel and composite structures. Three mass distributions per construction type (con-
crete and filler beam: μ1 to μ3 steel and composite: μ4 to μ6) were chosen following equation (7) and 
the input parameters a and b from Table 1. 𝜇 = 𝑎 𝐿 + 𝑏,  

with L in [m] and μ in [t/m] 
(7) 

Table 1. Input parameters for equation (7) according to [14] 

 
concrete and filler beam structures steel and composite structures 

μ1 μ2 μ3 μ4 μ5 μ6 

a 0.843 0.7002 0.5584 0.1214 0.1214 0.1214 
b 10.45 8.539 6.627 9.5174 5.918 2.1691 

 
The Lehr's damping ratio of the bridges examined was chosen according to the standard EN 

1991-2 [32], which must be currently applied. The given span-dependent values also differentiate 
between reinforced concrete and filler beam structures and steel and composite structures: 

Concrete and filler beam structures: 𝐿 < 20 𝑚: 𝜁 = 1.5 + 0.07 (20 − 𝐿) 𝐿 ≥ 20 𝑚: 𝜁 = 1.5 
(8) 

Steel and composite structures:  𝐿 < 20 𝑚: 𝜁 = 0.5 + 0.125 (20 − 𝐿) 𝐿 ≥ 20 𝑚: 𝜁 = 0.5 
(9) 

These values are designed as lower and conservative limits of the structural damping and often un-
derestimate the actual damping ratios measured in-situ at structures, as, for instance, observed by 
Reiterer et al. in [8, 9]. It is to be expected that future research on the complex discrepancy between 
measured and normatively prescribed damping ratios will ultimately lead to a revision of the related 
standards. To investigate whether the influence of vehicle-bridge and track-bridge interaction is in-
dependent of the damping ratio used in calculations, the numerical study was also conducted with 
the normatively prescribed damping value increased by the factors 1.5 and 2 (ζ1 = ζEC; ζ2 = 1.5 ζEC; ζ3 

= 2.0 ζEC).  
Additionally, applying the coupling beam requires the definition of coupling properties reflect-

ing the ballast bed under dynamic excitation. The approach to modeling the coupling in this article 
is based on combining all the coupling properties of the ballasted superstructure, i.e., all the individ-
ual elements such as the rail fasteners, intermediate layers, sleepers, sleeper sole pads, the sub-ballast 
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mats, and the ballast bed itself, into a single coupling element with linear stiffness and viscous damp-
ing characteristics. The literature references dealing with this modeling show a significant scattering 
of both coefficients, the ballast bed stiffness 𝑘̅𝑏𝑎 and damping 𝑐𝑏̅𝑎 per unit length. The scattering of 
literature values was, among others, documented by Stollwitzer in [20], see Figure 5, which also dis-
plays the literature values for three- and four-layer models, including the stiffness and damping 
properties of the rail fasteners and pads (index rp – rail pads) and/or of the sub-ballast mat (index sb). 

 

Figure 5. Literature values of stiffness and damping coefficients of the ballast superstructure accord-
ing to two- to four-layer models, modified from [20]. 

Since experimentally determined and verified values are scarce, the impact of applying different 
stiffness and damping values is investigated by varying these properties as follows: 

• Linear stiffness: 𝑘̅𝑏𝑎,1= 50 000 kN/m², 𝑘̅𝑏𝑎,2= 100 000 kN/m², 𝑘̅𝑏𝑎,3= 200 000 kN/m² 
• Viscous damping: 𝑐𝑏̅𝑎,1= 30 kNs/m², 𝑐𝑏̅𝑎,2= 60 kNs/m², 𝑐𝑏̅𝑎,3= 100 kNs/m² 

In total, 37 different bridge spans from 4 to 40 m with five fundamental frequencies each were 
considered in the following study. All calculations on the therefore 185 span and fundamental fre-
quency combinations were performed for six different mass distributions and three different struc-
tural damping ratios, leading to 3 330 parameter combinations for the reference modeling alternative 
(V1-B1, see section 2.5). The calculations with the coupling beam model excited by the MLM are per-
formed for a total of five combinations of 𝑘̅𝑏𝑎  and 𝑐𝑏̅𝑎  (𝑘̅𝑏𝑎,1  + 𝑐𝑏̅𝑎,2 , 𝑘̅𝑏𝑎,2  + 𝑐𝑏̅𝑎,2 , 𝑘̅𝑏𝑎,3  + 𝑐𝑏̅𝑎,2 ; 𝑘̅𝑏𝑎,2 + 𝑐𝑏̅𝑎,1, and 𝑘̅𝑏𝑎,2 + 𝑐𝑏̅𝑎,3), thus, in total, 16 650 parameter combinations are investigated. Pre-
liminary results showed only a marginal influence of varying the ballast damping coefficient 𝑐𝑏̅𝑎 and 
the structural damping ζ on the effects of applying the coupling beam model (which will be con-
firmed by the numerical study, see section 3.2.3). In order to limit the computational expenses for the 
most demanding model (coupling beam model and DIM), only the variation of 𝑘̅𝑏𝑎 is investigated 
with this modeling alternative (𝑘̅𝑏𝑎,1, 𝑘̅𝑏𝑎,2, and 𝑘̅𝑏𝑎,3 in combination with 𝑐𝑏̅𝑎,2 and ζ1 = ζEC → 3 330 
parameter combinations). 

Not all combinations of bridge parameters are equally likely to occur in reality. For instance, 
steel constructions are usually applied for single-span bridges with higher spans and are simultane-
ously characterized by a low mass distribution. In order to draw reliable conclusions on the practical 
benefit of the different modeling alternatives, the results on the parametric field were evaluated while 
taking the statistical probability of each combination into account. This probability was determined 
as a multivariate normal probability density function, which can be calculated utilizing pre-imple-
mented functions in MATLAB [38] based on the theoretical description by Kotz et al. in [44]. With 
this, the documented properties regarding bridge span L, fundamental frequency n0, and the mass 
distribution μ served as input parameters, whereby the reciprocal of the span was used to reflect the 
non-linear relation of span and fundamental frequency. Further, the structural types of concrete and 
filler-beam structures and steel and composite structures were distinguished by performing two sep-
arate analyses with the corresponding bridge catalogs.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 June 2023                   doi:10.20944/preprints202306.1666.v1

https://doi.org/10.20944/preprints202306.1666.v1


 

The matrices of mean values 𝑚̅ (not to be confused with the mass distribution μ), and covari-
ance Σ are as follows: 

𝑚̅ = [ 1𝐿𝜇̅̅𝑛̅0], 𝛴 = [  
  𝜎1𝐿2 𝜎1𝐿 𝜇 𝜎1𝐿 𝑛0𝜎𝜇 1𝐿 𝜎𝜇2 𝜎𝜇 𝑛0𝜎𝑛01𝐿 𝜎𝑛0 𝜇 𝜎𝑛02 ]  

  
 (10) 

Concrete and filler beam structures: 

𝑚̅ = [   
 0.0939 1m17 458 kgm10.115 1s ]  

  
, 𝛴 = [   

  0.0019 ( 1m)2 −146.6 (kgm2) 0.209 1ms34 274 000 (kgm)2 −18 509 kgms𝑠𝑦𝑚. 30.6 (1s)2 ]  
    (11) 

From the first component in 𝑚̅ follows 𝐿̅ = 10.654 m. 

Steel and composite structures: 

𝑚̅ = [   
 0.0655 1m7 451 kgm8.115 1s ]  

  
, 𝛴 = [   

  0.00083 ( 1m)2 −22.4 (kgm2) 0.101 1ms19 471 000 (kgm)2 −6 088 kgms𝑠𝑦𝑚. 15.3 (1s)2 ]  
    (12) 

From the first component in 𝑚̅ follows 𝐿̅ = 15.261 m. 

This information can be utilized to calculate a probability value for each combination of span, 
mass distribution, and fundamental frequency of the parametric field. A graphical representation of 
these probabilities is displayed in Figure 6: 

 

Figure 6. Probability of structural parameter combination based on multivariate regression and a catalog of 
existing bridges. 
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It can be observed in Figure 6 that, based on the information on existing bridges available to the 
authors, concrete and filler beam structures tend to have a high or medium mass distribution (μ1 or 
μ2), spans between L = 6 and 25 m, and corresponding fundamental frequencies of n0 = 4 to 18 Hz. 
Steel and composite structures usually have a lighter mass distribution (mainly μ5), longer spans of 
L = 9 to 40 m, and subsequently lower fundamental frequencies of n0 = 2 to 14 Hz. Hence, the influence 
of different modeling alternatives on these most probable combinations of structural parameters will 
be reviewed in more detail in the following sections.  

2.4. Parametric analysis – train parameters 

The investigated train in this paper is a locomotive-hauled Austrian Railjet in the standard con-
figuration, which consists of seven regular passenger cars (index pc) and one front locomotive (index 
loc) with higher axle loads and differing axle distances. In reality, the individual passenger cars fea-
ture slightly different characteristics due to their function (i.e., the onboard restaurant) and their po-
sition in the configuration. These deviations are considered negligible in the present investigations. 
Thus, all seven cars are modeled with the parameters of a standard middle car. The train parameters 
are taken from [4] and are summarized in Table 2, using the same abbreviations as in Figure 2b bot-
tom: 

Table 2. Train parameters of the Railjet [4]. 

 
Locomotive 

(loc) 

Passenger car 

(pc) 

Axle load Fstat [kN] 215.6 148.4 
Car body mass mc [kg] 51 500 47 316 

Car body moment of inertia Ic [kgm] 882e3 307e4 
Bogie mass mb [kg] 13 220 2 800 

Bogie moment of inertia Ib [kgm] 27 100 1 700 
Wheelset mass mw [kg] 2 495 1 900 

Length over buffer d [m] 18.59 26.50 
Bogie axle distance r [m] 9.90 19.00 
Wheelset distance b [m] 3.00 2.50 

Primary suspension stiffness kp [kN/m] 3 680 1 690 
Primary suspension damping cp [kNs/m] 80 20 
Secondary suspension stiffness ks [kN/m] 2 720 280 

Secondary suspension damping cs [kNs/m] 200 14 
 

All cars are vertically decoupled from each other, which means that displacements or rotations 
of individual elements of one car do not affect the adjacent cars. The centers of gravity of all car bodies 
are assumed to be precisely in the midpoint of the bogie distances, and the centers of gravity of the 
bogies in the midpoint of the wheelset distances. 

2.5. Parametric analysis – calculation and evaluation parameters 

In order to evaluate the effect of considering vehicle-bridge or track bridge interaction, the ac-
celerations ẅmax occurring at the structure (either at the Bernoulli-Euler beam or the structural beam 
of the coupling beam model) are compared with each other in calculations with the different model-
ing alternatives. The ratio of the maximum accelerations in percent serves as a comparison value, 
whereby only maximum absolute values during the train crossings in the time domain at midspan 
are used. According to equation (13), negative values of η indicate that the maximum accelerations 
ẅreference obtained with a reference model are reduced by the alternative modeling to ẅmodel, while pos-
itive values of η indicate an increase in maximum accelerations. 
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𝜂 = 𝑤̈𝑚𝑜𝑑𝑒𝑙 − 𝑤̈𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑤̈𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  100% (13) 

Only peak accelerations are considered, i.e., only local maxima occurring in the defined range of train 
speeds for which the calculations are performed. Dynamic calculations result in exceptionally high 
structural vibrations, for instance, peak accelerations, whenever resonance occurs. The acceleration 
peaks at resonance (generally representing the maximum accelerations within a considered speed 
range) mainly occur at train speeds at which the regularly spaced train axles exert a periodic excita-
tion close to a natural frequency ni of the bridge structures. This means that if the train speed is near 
one resonance speed vx,i,j  according to equation (14), resonance vibrations are to be expected. 𝑣𝑥,𝑖,𝑗 = 𝑛𝑖  𝑥𝑗  , 

with i = 1, 2, … , j = 1,2,… and x = d, r or b (see Table 2) 
(14) 

In this regard, the length over buffers dpc of the passenger cars and the fundamental bridge frequency 
(i = 1) are of particular significance, which means that the highest computational acceleration results 
are obtained at vdpc,1,1. The acceleration peak at this critical speed exceeds the accelerations at subor-
dinate resonance scenarios without exception. The Railjet has a maximum operational speed of 230 
km/h; however, the calculations for the numerical study were performed for a speed range from 100 
to 420 km/h. Since the fundamental frequencies n0 of the investigated single-span bridges are usually 
in the range from 2 to 40 Hz, and the passenger car length of the Railjet is dpc = 26.5 m, the Railjet 
reaches only on a few bridges the critical speed vdpc,1,1 within a realistic speed range, for example for 
the lowest considered fundamental frequency n0 = 2 Hz at 190 km/h. For most bridge structures, vdpc,1,1 

lies well beyond the operational speed maximum. Subordinate critical speeds at j > 2 most likely 
produce the critical resonance scenario with the highest acceleration peaks for these bridge structures. 
The examined speed range was extended to 420 km/h to investigate the effects of considering track-
bridge interaction for a representative number of bridge structures at the resonance speed vdpc,1,1. 
Thus, all bridge structures with fundamental frequencies below n0 = 4.4 Hz can reach this particular 
resonance scenario (48 combinations of span and natural frequency, with spans between 19 and 40 
m). 

It should be noted that the maximum accelerations occur at train speeds slightly deviating from 
vx,i,j when vehicle-bridge or track-bridge interaction effects are considered. In the case of vehicle-track 
interaction, the train axle loads rigidly connected to the structure influence their modal mass matrix, 
which leads to a slight reduction of the natural frequencies and, therefore, the critical speeds at which 
resonance occurs. In the case of track-bridge interaction, the coupling between the rail beam and the 
structure beam increases the modal stiffness of the overall bridge, leading to a slight increase in the 
natural frequencies. Both effects are particularly pronounced in bridge structures with very low mass. 

Additionally, another scenario can suppress resonance acceleration peaks: the cancellation effect 
of bridge vibrations at a specific cancellation speed according to equation (15). 𝑣𝑐𝑎𝑛𝑐,𝑖,𝑗 = 2 𝑛0,𝑖  𝐿2 𝑗 − 1 , 

with i = 1, 2, … , j = 1,2, … 

(15) 

Resonance effects that might occur at critical speeds vx,i,j that are close to one only span- and 
frequency-dependent cancellation speed vcanc,i,j are generally less pronounced or might get suppressed 
entirely.  

 
All calculations are performed with four different model alternatives, which are referred to as 

follows:  
• V1-B1: Reference calculations with the MLM (V1) and the Bernoulli-Euler beam (B1) 

→3 330 parameter combinations 
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• V2-B1: Calculations with the DIM (V2) and the Bernoulli-Euler beam (B1) – Consid-
eration of vehicle-bridge interaction possible → 3 330 parameter combinations 

• V1-B2: Calculations with the MLM (V1) and the coupling beam (B2) – Consideration 
of track-bridge interaction possible → 16 500 parameter combinations 

• V2-B2: Calculations with the DIM (V2) and the coupling beam (B2) – Consideration 
of vehicle-bridge and track-bridge interaction possible → 3 330 parameter combina-
tions 

 
The reference calculations with model V1-B1 are performed for the entire speed range in 1 km/h 

steps. The results are used to identify the highest local acceleration maxima in the chosen speed range, 
whereby up to five acceleration peaks are considered. The calculations with the other three modeling 
alternatives considering the interaction effects are performed only for the identified critical speeds 
with maximum accelerations and a limited speed range around them. This approach helps to signif-
icantly reduce the calculation effort for the computationally demanding modeling alternatives V2-B1, 
V1-B2, and V2-B2. An example can be seen in Figure 7. Acceleration peaks that occur at the bounda-
ries of the overall speed range (close to 100 km/h or 420 km/h) are only included in the following 
evaluations if all modeling alternatives fully capture them. This prevents distorting the comparison 
results by shifts of peaks beyond the examination scope due to the increase or reduction of critical 
speed at which they occur due, as mentioned before, to the modal stiffness or mass increment of the 
bridges. 

3. Results 

3.1. Investigation of an exemplary bridge structure 

Figure 7 illustrates the speed-dependent acceleration results obtained with the four different 
modeling alternatives for one exemplary bridge structure representing a light concrete structure (μ3), 
which is in terms of mass distribution very close to a heavy steel structure (μ4, see Figure 4). The 
Lehr's damping ratio is chosen according to the normative prescriptions in equation (8). The ballast 
bed stiffness is 𝑘̅𝑏𝑎 = 𝑘̅𝑏𝑎,2 = 100 000 kN/m² and the damping 𝑐𝑏̅𝑎 = 𝑐𝑏̅𝑎,2 = 60 kNs/m².  
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Figure 7. Acceleration results for one exemplary structure and four different modeling alternatives. 

In Figure 7 it can be observed that there are three pronounced acceleration peaks in the examined 
speed range that occur close to vdpc,1,4 = 410 km/h, between vdpc,1,8 = 205 km/h and vdpc,1,7 = 234 km/h and 
close to vdpc,1,11 = 149 km/h. Different acceleration peaks become relevant or decisive depending on 
which speed range is investigated in bridge verifications under dynamic loading. This is of interest, 
for example, if lower operational train speeds are prescribed in certain railway sections than the max-
imum train speed, which may result from other routing conditions (curves, distances to railway sta-
tions, etc.). Applying the simplest structural and vehicle model, the Bernoulli-Euler beam and the 
MLM (V1-B1), leads to the highest acceleration results in all cases. By considering vehicle-bridge in-
teraction (V2-B1), it is possible to obtain lower acceleration results, reduced by η = -2.4% to -12.9%, 
depending on the respective critical speed at which the acceleration peaks occur. Applying the cou-
pling beam model and thus considering track-bridge interaction (V1-B2) leads to a slightly lower 
reduction of structural accelerations for the peak close to vdpc,1,4, but a significantly higher reduction 
of the acceleration peaks at lower critical speeds. The acceleration peak at vdpc,1,8 is damped by η = -
55.9%. The acceleration peak at the even lower resonance speed vdpc,1,11 is strongly suppressed by ap-
plying the coupling beam model so that it no longer appears as a local acceleration maximum in the 
speed-acceleration curve. If the acceleration at exactly the same speed at which the maximum accel-
eration peak occurs with the reference model is used for calculating the acceleration reduction η, then 
it yields a value of η = -80.6%. 

Applying the DIM in combination with the coupling beam model (V2-B2) generally yields the 
lowest acceleration results. The acceleration peak at vdpc,1,8 is damped to such an extent that the peak 
at the next higher resonance speed vdpc,1,7 now slightly exceeds that at vdpc,1,8 (η = -62.5% compared to 
the reference acceleration at vdpc,1,8). With this model alternative, the difference compared to the results 
of considering only the track-bridge interaction (MLM and coupling beam model V1-B2) is relatively 
small and of the same order as applying vehicle-bridge interaction to calculations with the Bernoulli-
Euler beam. This indicates that applying vehicle-bridge interaction might be relatively independent 
of the applied structural model. The specific results are summarized in Table 3. 
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Table 3. Acceleration peaks and their reduction with different models (reference: V1-B1) of the exem-
plary bridge structure 

  V1-B1 V2-B1 V1-B2 
ηV1-B2 / 

ηV2-B2 
V2-B2 

vPeak ~ 
vdpc,1,4 

Train speed v [km/h] 409 409 413 - 406 
Acceleration ẅmax [m/s²] 13.0 12.7 12.9 - 11.9 

Reduction η [%] - -2.4 -1.0 0.12→ -8.6 
vPeak ~ 
vdpc,1,8 / 

vdpc,1,7 

Train speed v [km/h] 209 208 221** - 232** 
Acceleration ẅmax [m/s²] 6.3 5.5 2.8 - 2.4 

Reduction η [%] - -12.9 -55.9 0.89→ -62.5 

vPeak ~ 
vdpc,1,11 

Train speed v [km/h] 149 147 149* - 149*- 
Acceleration ẅmax [m/s²] 4.0 3.5 0.8 - 0.7 

Reduction η [%] - -12.0 -80.6 0.97→ -82.7 
* no pronounced acceleration peak recognizable → vPeak = vPeak,V1B1, ** acceleration peak occurs at differ-
ent resonance speed → vPeak > vPeak,V1B1. 

3.1.1. Variation of coupling beam parameters 

Figure 8 illustrates the speed-dependent accelerations for the same exemplary structure, but this 
time with a variation of the structural damping ratio ζ between ζ1 = ζEC (in the case of the exemplary 
bridge 2.41%) and ζ3 = 2.0 ζEC(4.82%). As expected, higher structural damping yields smaller maxi-
mum accelerations, whereby increasing the damping ratio has a primarily scaling effect on the accel-
erations. By suppressing the most pronounced acceleration peaks, now neighboured peaks may be-
come more relevant in the evaluation of acceleration maxima, as can be observed, for instance, at the 
peaks at vdpc,1,11, which are in some times suppressed with the damping variants ζ > ζEC. If no clear 
acceleration peak can be determined, the acceleration at vPeak,V1B1 is used as the comparative value.  

 

Figure 8. Acceleration results for one exemplary structure, four different modeling alternatives, and 
variation of structural damping ζ. 
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The maximum accelerations resulting from applying the reference model V1-B1 and the subse-
quently calculated reduction values η for the different models and structural damping values are 
summarized in Table 4. It can be observed that there is still no significant reduction of accelerations 
at vdpc,1,4 when only the coupling beam model or the DIM is applied, independently of the damping 
ratio. Combining both models yields smaller values of η with increasing damping ratio. At the second 
highest resonance scenario at vdpc,1,8, the influence of the coupled beam model alternative stays ap-
proximately the same with increasing damping ratio, while higher damping ratios yield smaller ab-
solute values of η by applying the model V2-B1. The smallest resonance scenario in the examined 
speed range at vdpc,1,11 generally produces minor accelerations, especially if the coupling beam is ap-
plied. The corresponding values of η also scatter stronger with increasing damping ratio than for the 
other acceleration peaks.  

Table 4. Acceleration peaks and their reduction with different models (reference: V1-B1) of the exem-
plary bridge structure with variation of structural damping ζ. 

   V1-B1  V2-B1 V1-B2 
ηV1-B2 / 

ηV2-B2 
V2-B2 

vPeak ~ 
vdpc,1,4 

ζ1 = ζEC 
ẅmax 

[m/s²] 

13.0 
η 

[%] 

-2.4 -1.0 0.12→ -8.6 

ζ2 = 1.5 ζEC 9.6 -0.6 0.2 
-

0.04→ 
-4.4 

ζ3 = 2.0 ζEC 7.9 -0.2 0.2 0.04→ -4.0 
vPeak ~ 
vdpc,1,8 / 

vdpc,1,7 

ζ1 = ζEC 
ẅmax 

[m/s²] 

6.3 
η 

[%] 

-12.9 -55.9** 0.89→ -62.5** 
ζ2 = 1.5 ζEC 5.3 -6.1 -55.2 0.90→ -61.1 
ζ3 = 2.0 ζEC 4.8 -5.4 -55.9** 0.93→ -60.0 

vPeak ~ 
vdpc,1,11 

ζ1 = ζEC 
ẅmax 

[m/s²] 

4.0 
η 

[%] 

-12.0 -80.6* 0.97→ -82.7* 
ζ2 = 1.5 ζEC 3.0 -7.7 -75.7* 0.97→ -77.7* 
ζ3 = 2.0 ζEC 2.7 -8.1 -73.9* 0.98→ -75.2* 

* no pronounced acceleration peak recognizable → vPeak = vPeak,V1-B1; ** acceleration peak occurs at dif-
ferent resonance speed → vPeak > vPeak,V1-B1. 

The grey shading of several table elements highlights that the results of η are approximately 
constant for the same model alternative, independently of the applied structural damping ζ. This 
applies especially to the influence of implementing the coupling beam model, i.e., to the results of 
V1-B2 compared to V1-B1 and the results of V2-B2 compared to V2-B1. 

Lastly, Figure 9 illustrates the influence of applying different ballast bed stiffnesses 𝑘̅𝑏𝑎 to the 
coupling beam model and for both vehicle models.  
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Figure 9. Acceleration results for one exemplary structure, four different modeling alternatives, and variation 
of ballast bed stiffness 𝑘̅𝑏𝑎. 

As shown in Figure 9 and the summarized results of η in Table 5, varying the ballast bed stiffness 
significantly influences the acceleration results, whereby increasing the stiffness leads to higher ac-
celeration results and vice versa. Especially in the case of acceleration peaks at resonance of lower 
order, such as the peaks occurring at vdpc,1,8 or vdpc,1,11, reducing the ballast bed stiffness in calculations 
with the MLM and the coupling beam model V1-B2 reduces the resulting acceleration peaks much 
stronger than additionally including vehicle-bridge interaction by choosing the DIM as vehicle 
model. It should also be noted that considering vehicle-bridge interaction is significantly more effec-
tive in reducing the acceleration peak at vdpc,1,4 than at the other resonance peaks, but only if applied 
simultaneously with the coupling beam model (V2-B2). 

Table 5. Acceleration peaks and their reduction with different models (reference: V1-B1) of the exem-
plary bridge structure with variation of ballast bed stiffness 𝑘̅𝑏𝑎. 

   V1-B1  V2-B1 V1-B2 
ηV1-B2 / 

ηV2-B2 
V2-B2 

vPeak ~ 
vdpc,1,4 

𝒌̅𝒃𝒂,𝟏 
ẅmax 

[m/s²] 
13.0 

η 
[%] 

-2.4 
-6.4 0.24→ -27.4 𝒌̅𝒃𝒂,𝟐 -1.0 0.12→ -8.6 𝒌̅𝒃𝒂,𝟑 1.4 ~ 0.0 

vPeak ~ 
vdpc,1,8 / 

vdpc,1,7 

𝒌̅𝒃𝒂,𝟏 
ẅmax 

[m/s²] 
6.3 

η 
[%] 

-12.9 
-68.8** 0.92→ -75.1** 𝒌̅𝒃𝒂,𝟐 -55.9** 0.89→ -62.5** 𝒌̅𝒃𝒂,𝟑 -42.3** 0.85→ -49.8* 

vPeak ~ 
vdpc,1,11 

𝒌̅𝒃𝒂,𝟏 
ẅmax 

[m/s²] 
4.0 

η 
[%] 

-12.0 
-87.0 0.99→ -87.7* 𝒌̅𝒃𝒂,𝟐 -80.6* 0.97→ -82.7* 𝒌̅𝒃𝒂,𝟑 -72.2* 0.96→ -75.0* 𝒌̅𝒃𝒂,𝟏 = 50 000 kN/m²; 𝒌̅𝒃𝒂,𝟐 = 100 000 kN/m²; 𝒌̅𝒃𝒂,𝟑 = 200 000 kN/m² 

* no pronounced acceleration peak recognizable → vPeak = vPeak,V1-B1; ** acceleration peak occurs at dif-
ferent resonance speed → vPeak > vPeak,V1-B1. 
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In the previous evaluations, the ballast bed damping coefficient was set constant to 𝑐𝑏̅𝑎= 𝑐𝑏̅𝑎,2= 
60 kNs/m². The influence of varying this value is examined according to the same principle as the 
variation of the ballast stiffness. The investigations performed by Bruckmoser in [45] indicate a sub-
ordinate influence of the ballast bed damping on the calculated vibrations. For the exemplary struc-
ture, the results of reducing the maximum accelerations obtained by varying 𝑐𝑏̅𝑎 while keeping the 
other structural parameters constant (𝑘̅𝑏𝑎= 𝑘̅𝑏𝑎,2; ζ1 = ζEC) are summarized in Table 6. They confirm 
that only a slight deviation of the calculated acceleration maxima is induced by varying the ballast 
bed stiffness, which numerical inaccuracies may also explain. Again, the grey shaded table areas 
highlight the approximately same results of η for the varied ballast bed damping coefficients. 

Table 6. Results of acceleration reduction (reference: V1-B1) of the exemplary bridge structure with 
variation of ballast bed damping 𝑐𝑏̅𝑎.  

   V1-B1  V2-B1 V1-B2 
ηV1-B2 / 

ηV2-B2 
V2-B2 

vPeak ~ 
vdpc,1,4 

𝒄̅𝒃𝒂,𝟏 
ẅmax 

[m/s²] 
13.0 

η 
[%] 

-2.4 
-1.5 0.19 -7.8 𝒄̅𝒃𝒂,𝟐 -1.1 0.12 -8.6 𝒄̅𝒃𝒂,𝟑 -1.3 0.15 -8.9 

vPeak ~ 
vdpc,1,8 / 

vdpc,1,7 

𝒄̅𝒃𝒂,𝟏 
ẅmax 

[m/s²] 
6.3 

η 
[%] 

-12.9 
-57.4 0.92 -62.5 𝒄̅𝒃𝒂,𝟐 -55.9** 0.89 -62.5** 𝒄̅𝒃𝒂,𝟑 -55.6 0.89 -62.7 

vPeak ~ 
vdpc,1,11 

𝒄̅𝒃𝒂,𝟏 
ẅmax 

[m/s²] 
4.0 

η 
[%] 

-12.0 
-80.3 0.97 -82.8 𝒄̅𝒃𝒂,𝟐 -80.6* 0.97 -82.7* 𝒄̅𝒃𝒂,𝟑 -80.9 0.98 -82.7 𝒄̅𝒃𝒂,𝟏 = 30 kN/m²; 𝒄̅𝒃𝒂,𝟐 = 60 kN/m²; 𝒄̅𝒃𝒂,𝟑 = 100 kN/m² 

* no pronounced acceleration peak recognizable → vPeak = vPeak,V1-B1; ** acceleration peak occurs at different reso-
nance speed → vPeak > vPeak,V1-B1 

3.1.2. Evaluation of critical train speed 

Based on the evaluations of the results on the exemplary structure described above, it can al-
ready be seen what significant influence not only the modeling, the applied structure, and coupling 
parameters but also the considered speed range of the passing trains can have on the results. The 
latter is particularly relevant because, depending on the respective fundamental frequency of the 
structure, only certain resonance events can occur in this predefined speed range. However, since the 
different models can have a different effect on the acceleration results depending on the examined 
resonance event, not only the reduction of the acceleration by a specific model is investigated in the 
following evaluations, but also another comparison feature: the maximum speed vlim at which a pre-
specified acceleration limit is exceeded for the first time in the calculations applying one of the four 
models. Subsequently, the normative acceleration limit for railway bridges with ballast superstruc-
ture according to EN 1990/A2 [1] is used for this purpose, defined as ẅlim = 3.5 m/s². 

For the exemplary structure, the resulting values of vlim are marked in Figures 7 to 9 with yellow 
markers and shortly summarized for all considered variants of models and structural parameters in 
Table 7:  

Table 7. Results of maximum train speed at which ẅlim is exceeded for the first time. 

ζ 𝒌̅𝒃𝒂 𝒄̅𝒃𝒂  V1-B1 V2-B1 V1-B2 V2-B2 

ζ1 = ζEC 𝑘̅𝑏𝑎,2 𝑐𝑏̅𝑎,2 
vlim 

[km/h] 

147 147 357 354 
ζ2 = 1.5 ζEC 184 188 359 354 
ζ3 = 2.0 ζEC 187 189 363 356 

ζ1 = ζEC 
𝑘̅𝑏𝑎,1 𝑐𝑏̅𝑎,2 

vlim 

[km/h] 
147 147 

359 354 𝑘̅𝑏𝑎,2 357 354 𝑘̅𝑏𝑎,3 205 352 
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ζ1 = ζEC 𝑘̅𝑏𝑎,2 
𝑐𝑏̅𝑎,1 

vlim 

[km/h] 
147 147 

357 348 𝑐𝑏̅𝑎,2 357 354 𝑐𝑏̅𝑎,3 357 354 
 
In this comparison, it can be observed that for this exemplary bridge structure, with the appli-

cation of the coupling beam model, a significant increase in the train speed is achievable, at which 
the normative acceleration limit according to EN 1990/A2 [1] is reached. Essentially, this effect can be 
explained by the fact that the resonance events at vdpc,1,11 and vdpc,1,8 are suppressed by considering 
track-bridge interaction to such an extent that they do not generate accelerations of a critical magni-
tude, so only the resonance event at vdpc,1,4 becomes relevant.  

Between the results with different vehicle models, structural damping ratios, or coupling prop-
erties, only marginal results occur except for the shift of vlim at the highest ballast bed stiffness 𝑘̅𝑏𝑎,3 
to 205 km/h.  

3.2. Investigations on a parametric field of bridges 

All parameter combinations described in section 2.3 were investigated analogously to the exem-
plary bridge, and the results are mainly presented graphically in the following sections. 

1.2.1. Acceleration results of reference model 

The following Figure 10 shows for each mass distribution separately the highest acceleration 
peak results obtained in the considered speed range when applying the reference model V1-B1. The 
structural damping ζ for all structures in Figure 10 was set to the normative value ζ1 = ζEC according 
to equations (8) and (9). Grey-shaded areas mark those examined bridge structures for which no cal-
culated acceleration exceeded the normative acceleration limit of ẅlim = 3.5 m/s² according to EN 
1990/A2 [1]. The number of structures for which this is the case increases primarily with increasing 
mass distribution and bridge span and secondarily with the bridge's fundamental bending frequency. 
Within the white dashed contour in each subfigure lie those bridges with parameter combinations 
with a more than 25%, 50%, or 75% probability of occurrence, according to the investigations in sec-
tion 2.3 and Figure 6, distinguished by concrete/filler beam structures and steel/composite structures. 

It can be observed that the maximum acceleration peaks for bridge structures with particular 
spans are significantly lower than for bridges with slightly longer or shorter spans, e.g., for bridges 
with L = 22 or 23 m. This can be traced back to the occurrence of cancellation effects at the same critical 
speed as resonance effects would occur (for example, for L = 22 m: vdpc,1,3 = n0 d/3 ≈ vcanc,3 = n0 2 L/(2·3-1), 
see equations (14) and (15)). This concurrence may oppress the resonance peak so that neighboring 
but at the same time usually less pronounced resonance peaks become decisive.  

Generally speaking, especially the light steel and composite bridges experience exceptionally 
high accelerations in the considered speed range, which would most likely exceed the normative 
limitations even at lower train speeds. 
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Figure 10. Acceleration results for parameter field of bridges for 100 km/h ≤ v ≤ 420 km/h and V1-B1. 

3.2.2. Influence of modeling on critical train speed 

As previously mentioned, comparing only maximum peak accelerations yields results strongly 
dependent on the considered speed range. Thus, Figure 11 displays the train speeds vlim at which each 
structure experiences accelerations above the normative limit ẅlim = 3.5 m/s² according to EN 1990/A2 
[1] for the first time when applying V1-B1. The structural damping of all considered bridge structures 
in Figure 11 is defined to comply with the normative prescriptions for ζ1 = ζEC. Blue-shaded areas 
mark parameter combinations for which train speeds of the Railjet can easily reach 350 km/h or more 
without causing critical accelerations. However, the graphical representation reveals that especially 
the bridge structures within the red-shaded areas experience critical accelerations at relatively low 
train speeds in calculations with V1-B1. Therefore, the basic calculation model could not be applied 
in the serviceability limit state design for a large share of bridge structures and operational train 
speeds of 230 km/h. 
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Figure 11. Train speeds with ẅmax > 3.5 m/s², evaluated for a parameter field of bridges and V1-B1. 

Applying V2-B1 (the calculation model considering vehicle-bridge interaction effects with the 
train’s DIM but applying the simple Bernoulli-Euler beam) brings up the critical speed vlim for many 
bridge structures, especially the lighter structures with spans L above 15 m, see Figure 12. Conversely, 
implementing V1-B2 (coupling beam model considering track-bridge interaction and the simple 
MLM) favorably affects the limit train speeds for shorter bridge structures with spans below 15 m in 
particular, regardless of the mass distribution, as shown in Figure 13. The graphical representation 
only contains results obtained with the medium ballast coupling stiffness 𝑘̅𝑏𝑎,2 and damping coeffi-
cient 𝑐𝑏̅𝑎,2, but the results for other combinations of 𝑘̅𝑏𝑎 and 𝑐𝑏̅𝑎 display similar tendencies. 
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Figure 12. Train speeds with ẅmax > 3.5 m/s², evaluated for a parameter field of bridges and V2-B1. 

 

Figure 13. Train speeds with ẅmax > 3.5 m/s², evaluated for a parameter field of bridges and V1-B2 (𝑘̅𝑏𝑎,2, 𝑐𝑏̅𝑎,2). 

Combining both the more sophisticated DIM and the coupling beam model in V2-B2 yields ac-
celeration results for a large share of the considered bridges, which meet the normative acceleration 
limits at train speeds above 250 km/h and, therefore, above the operational speed of the Railjet, see 
Figure 14. Both influences observed in Figures 12 and 13 are superimposed, leaving only a few ex-
ceptionally light bridges with low fundamental frequencies, which would exceed the acceleration 
limits at train speeds of less the 200 km/h.  
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Figure 14. Train speeds with ẅmax > 3.5 m/s², evaluated for a parameter field of bridges and V2-B2 (𝑘̅𝑏𝑎,2, 𝑐𝑏̅𝑎,2). 

These findings can also be observed in the graphical representation in Figure 15, which displays 
the percentage of bridge structures with critical accelerations at certain train speeds on an interval 
scale. Analogous to Figures 11 to 14, the color scale of the figure shows the train speed intervals in 
which the normative acceleration limit of 3.5 m/s² according to EN 1990/A2 [1] is exceeded for the 
first time for the concrete and filler beam structures and the steel and composite structures. The 
stacked bar chart indicates the respective proportion of the bridge structures exceeding said acceler-
ation limit.  

At first glance, it is noticeable that it is possible to comply with the acceleration limit without 
any problems for a large proportion of the concrete and filler beam structures, even at train speeds 
above 400 km/h, almost irrespective of the dynamic calculation model used. The proportion of struc-
tures for which this is not computationally possible at speeds below 250 km/h amounts to a total of 
14.9% for the reference model V1-B1 and can be reduced substantially to 5.4% (V1-B2) or, in combi-
nation with the DIM (V2-B2), to 3.2%, above all by using the coupling beam model. The use of the 
DIM without consideration of the track-structure interaction (V2-B1) shows a less pronounced influ-
ence on the calculation results.  

A more differentiated picture emerges in the case of steel and composite structures, which tend 
to be associated with lower mass distributions. Generally, the proportion of structures for which ver-
ification with the simple reference model V1-B1 becomes problematic is much larger. The acceleration 
limit is exceeded in about 61.3% of the structures with train speeds below 250 km/h. If the DIM is 
used alone (V2-B1), the proportion is reduced to 43.5%; if the coupling beam is used alone (V1-B2), 
to 51.9%. The latter, however, has a particularly strong effect on those structures whose maximum 
acceleration already exceeds the normative limit at 100 to 150 km/h; this proportion is reduced from 
31% to 12.4%, while it is still 19.5% when the DIM is used alone.  

For both types of structures, the joint application of DIM and coupling beam (V2-B2) is the most 
influential. 

 

Figure 15. Proportion of bridge structures with ẅmax > 3.5 m/s² at specific train speed intervals depending on 
dynamic calculation model, evaluated for concrete and filler beam structures (left) and steel and composite 

structures (right) 

The influence of the different calculation models on the critical train speed vlim at which the ac-
celeration limit is exceeded is additionally shown in Figure 16. The results are distinguished 
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according to mass distributions μ1 to μ6. The resulting bandwidth of vlim is given for each calculation 
model, and further, the average values, median, and 25% and 75% quartiles. The average, median, 
and quartiles are also shown as weighted values, whereby the weighting is derived from the proba-
bility of structural parameter combinations, as shown in section 2.3. 

Again, this graph shows the tendency for the coupling beam model alone or in combination with 
the DIM (V1-B2 and V2-B2) to have a more significant effect on the results than using the DIM alone 
(V2-B1), especially in the observed bandwidth of results. In turn, using the DIM (V2-B1) alone has a 
stronger effect on the lighter steel structures than using the coupling beam model (V1-B2) alone, 
whereby a relatively large spread of results can be observed.  

 

Figure 16. Statistical evaluation of critical train speed vlim (ẅmax > 3.5 m/s²) depending on dynamic calculation 
model and mass distribution μ 

3.2.3. Influence of modeling on acceleration peaks 

The following graphical evaluations show the reduction of acceleration peaks resulting from 
applying one of the dynamic calculation models compared to the respective reference model. Figure 
17 shows the acceleration reductions η resulting from the sole use of the coupling beam model V1-B2 
compared to the reference model V1-B1. Both models are applied to calculations on the parametric 
field of bridges with the normative structural damping (ζ1 = ζEC), and the coupling beam model as-
sumed medium stiffness and damping (𝑘̅𝑏𝑎,2, 𝑐𝑏̅𝑎,2). The reduction is plotted as a percentage ratio on 
the ordinate according to the definition given in equation (13). The larger the absolute value of the 
negative results η, the smaller the resulting acceleration peak when V1-B2 is used compared to the 
acceleration calculated with V1-B1. 
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Figure 17. Evaluation of influence η of V1-B2 on acceleration peaks, compared to V1-B1, distinguished by mass 
distribution. 

The train speeds at which the respective acceleration peak occurred are plotted on the abscissa 
in a logarithmic scale. However, these critical speeds are normalized to the respective fundamental 
frequency n0 of the structures as follows: 𝜆𝑃𝑒𝑎𝑘 = 𝑣𝑃𝑒𝑎𝑘𝑛0  ,  𝑣𝑃𝑒𝑎𝑘  in [m/s] (16) 

For each structure, depending on its fundamental frequency and the range of train speeds considered, 
the calculations were only carried out in specific wavelength ranges of λ. For example, dynamic cal-
culations for a structure with n0 = 4 Hz are performed for only λ = 27.78 m/s / 4 Hz = 6.94 m (lower 
limit v = 100 km/h) to λ = 116.67 m/s / 4 Hz = 29.17 m (upper limit v = 420 km/h). For this exemplary 
structure, acceleration peaks are to be expected, in particular, at the critical speeds occurring at vdpc,1,j 

= dpc n0 / j (see equation (14)) or with the relation (16) in between λdpc,1,1 = 26.5 m and λdpc,1,3 = 8.83 m. 
The evaluation considers one to five acceleration peaks for each structure. The probability that 

the respective combination of bridge parameters (L, n0, μ) occurs is characterized by the transparency 
of the individual markers; the more transparent they are displayed, the less likely the parameter com-
bination is in reality. In addition, the color of the markers gives information about the respective ratio 
of span L and structural damping ζ of each structure, normalized to the maximum values of the con-
sidered parameter field (Lmax = 40 m, ζmax = 2.62%). 

Figure 17 reveals a clear dependence of the acceleration reductions η (generated by considering 
the track-bridge interaction in V1-B2) on the normalized train speed λ at which the respective accel-
eration peaks occur. The lower the normalized speed λ, the higher the reduction of the respective 
acceleration, which can take values below -80% for all mass distributions at λ < 2.5 m. In the value 
range of λ > 10 m, the achievable acceleration reductions approach zero, with a large scatter of results 
and also positive values of η observed, especially for the steel and composite structures. The more 
scattered results seem to be related to tendencies of higher values of 𝐿̅/𝜁  ̅ of the respective structures, 
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i.e., structures with larger spans and, at the same time, low structural damping (particularly frequent 
in steel and composite structures). 

 
The relationship between λ and η can be approximated by regression functions. The results ob-

served particularly in the lower value range of λ < 2.5 m, suggest that an s-shaped or sigmoidal re-
gression function would represent the relationship of λ and η better than the exponential regression 
function of the form  𝜂(𝜆) = a 𝑒𝑏 𝜆, (17) 

as displayed for each mass distribution. However, since a sigmoidal regression function would re-
quire considerably more parameters to estimate, the more straightforward exponential form is re-
sorted to, though its validity must be restricted to the range of values 2.5 m < λ < 10 m. The range of 
the respective parameters a and b to determine the exponential regression functions are given in the 
legend of Figure 17, as are the coefficients of determination R², which can be understood as goodness-
of-fit measure describing the percentage of the variance of output values that is explained by the 
variance of input variables (quotient of error squares).  

In all subgraphs, the respective regression function and its 95% prediction intervals for new ob-
servations are plotted as black solid and dotted lines, respectively. The estimation of parameters for 
the regression functions according to equation (17) involved weighting the considered input param-
eters according to the probability of structural parameter combination estimated in section 2.3. The 
weighting factors are supplied as a value between 0 and 1 for each bridge parameter combination, 
whereby each value corresponds to the probability of occurrence.  

The evaluations displayed in Figure 17 could be used to assess the beneficial influence on the 
maximum acceleration peaks that could be generated by applying the coupling beam model before 
actually performing the calculations and, therefore, evaluate whether the choice of structural model 
complexity significantly influences the results. However, this requires prior knowledge of the prob-
able resonance events, or more precisely, the normalized train speed at which particularly pro-
nounced acceleration peaks are most likely to occur. Furthermore, the resulting regression function 
could be used to estimate the reduction of accelerations obtained with the reference model, even 
without additional calculations. For this purpose, it would be recommendable to use the 95% confi-
dence boundary for new predictions (the upper boundary in Figure 17, illustrated with a dotted line) 
to ensure sufficient prediction reliability. Since it can be observed that all regression functions regard-
ing the different mass distributions are relatively similar, the parameters for estimating said upper 
boundary are only given for the regression functions obtained with all calculation results (independ-
ent of the respective mass distribution), as can be seen in Figure 20.  
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Figure 18. Evaluation of influence η of V2-B1 on acceleration peaks, compared to V1-B1, distinguished by mass 
distribution. 

Figure 18 shows, analogously to Figure 17, the evaluation of η when the more sophisticated ve-
hicle model DIM is applied alone (V2-B1) compared to the V1-B1 reference model, again plotted 
against the normalized train speed λ at which the respective acceleration peaks occur. In contrast to 
Figure 17, no clear dependence of λ and η can be observed in this plot, although the vehicle model’s 
influence can take particularly large absolute values of up to η = -70%, especially for acceleration 
peaks in the range from 6.6 m < λ <13.2 m. Since much smaller absolute values and positive values of 
η can occur at the same normalized speeds, specifying a regression function with high predictive 
reliability is impossible. However, the results indicate that V2-B1 has a more substantial effect with 
decreasing mass distribution of the structures and that a high ratio of 𝐿̅/𝜁  ̅ also tends to be associated 
with larger acceleration reductions η. It is also noticeable that the sole use of the DIM (V2-B1) has a 
particularly favorable effect at different normalized speeds (λ > 6.5 m) than the sole use of the cou-
pling beam model (V1-B2). 
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Figure 19. Evaluation of influence η of V2-B2 on acceleration peaks, compared to V2-B1, distinguished by mass 
distribution. 

Lastly, Figure 19 shows the influence of using the coupling beam model while simultaneously 
applying the more complex DIM (V2-B2), but this time in comparison to the reference model V2-B1, 
i.e., applying the same vehicle model. The figures show a very similar picture as already Figure 17, 
except for a slightly larger scatter of the results, which is also reflected in the lower R² values and 
larger prediction intervals of the determined regression functions. The parameters of the regression 
functions, especially for the concrete and filler beam structures, are very similar to those obtained by 
comparing the accelerations obtained with the V1-B2 model with those obtained with V1-B1. The 
results indicate that the influence of the coupling beam has a very similar effect on the results of the 
structure accelerations for both vehicle models investigated, the MLM (V1) and the DIM (V2). 

 

Figure 20. Comprehensive depiction of regression functions η(λ) for V1-B1 and V2-B2. 

Figure 20 summarizes the results for comparing the calculation results of models V1-B2 to V1-
B1 and models V2-B2 to V2-B1 for all mass distributions. The regression functions created based on 
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all calculation results are shown with solid red lines; the 95% prediction intervals are marked with 
dashed lines; the respective functions for each mass distribution are displayed as black lines. The 
mathematical formulation of the overall regression functions can be found in the legend on the right 
side of the figure. Particularly when comparing the models using the MLM as the vehicle model, 
there is good agreement between the calculated regression functions of each mass distribution and 
that calculated based on all results. The boundary line of the upper 95% prediction interval could be 
assumed to be on the safe side for estimating the achievable acceleration reductions for λ < 8 m.  

When using the DIM, it is noticeable that there are more significant deviations of the 95% pre-
diction boundaries of the regression functions for each mass distribution compared to the regression 
function determined based on all results, in particular for the somewhat lighter mass distributions, 
whose results noticeable spread more strongly (e.g., μ6, see Figure 19, right bottom). Nevertheless, 
both regression functions have high coefficients of determination. 

 

Figure 21. Comparison of regression functions η(λ) for different coupling stiffnesses 𝑘̅𝑏𝑎. 

In the example in section 3.1, it was evident that the applied spring stiffness of the coupling 
between the rails and the bridge structure 𝑘̅𝑏𝑎, which can also be understood as the dynamic ballast 
bed stiffness, significantly influences the reduction of the calculated acceleration peaks. This effect 
can also be seen in the regression functions displayed in Figure 21 for the various coupling stiffnesses 
investigated, whereby other model parameters (coupling damping coefficient 𝑐𝑏̅𝑎  and structural 
damping ζ) are kept unchanged. In the center of the figure, the two regression functions already 
shown in Figure 20 are presented for the models V1-B2 (red) and V2-B2 (green) at applied medium 
ballast bed stiffness 𝑘̅𝑏𝑎,2. The left subfigure additionally shows the regression function with the 
lower ballast bed stiffness 𝑘̅𝑏𝑎,1. This function is shifted to the right compared with 𝑘̅𝑏𝑎,2 , which 
means that if an acceleration peak occurs at the same normalized speed λ, a more significant reduc-
tion in the acceleration peak can be expected with lower ballast stiffness. With the higher ballast bed 
stiffness 𝑘̅𝑏𝑎,3 the determined regression function shifts to the left compared to that with 𝑘̅𝑏𝑎,2, i.e., 
the acceleration peaks at the same normalized speed are reduced to a lesser extent. This influence of 
the coupling stiffness can become quite large. For example, the reduction η estimated with the expo-
nential regression function using V1-B2 at λ = 6.625 m (corresponds to vdpc,1,4) with 𝑘̅𝑏𝑎,1  is 
about -18.9%, with 𝑘̅𝑏𝑎,2 -12.2%, and with 𝑘̅𝑏𝑎,3 -7.5%. For acceleration peaks in the range of λ = 4.417 
m (corresponds to vdpc,1,6), the results are η = -45.1%, -33.9%, and -24.1%, respectively. 

Furthermore, the subfigure on the left reveals that for the lowest ballast stiffness considered, the 
results of η obtained with the more complex DIM (green regression functions) differ stronger from 
those obtained with the MLM (black regression functions), whereby the coupling beam model influ-
ences the acceleration results stronger when it is combined with the more sophisticated vehicle 
model. 
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Figure 22. Comparison of regression functions η(λ) for different coupling stiffnesses 𝑘̅𝑏𝑎 (left), damping coef-
ficients 𝑐𝑏̅𝑎 (center) and structural dampings ζ. 

Last, Figure 22 shows the determined regression functions η(λ) resulting from the analysis of the 
calculations results when V1-B2 is used versus V1-B1 and other parameters are varied. In the left 
subfigure, the results yielded from applying different ballast bed stiffnesses 𝑘̅𝑏𝑎 are again displayed, 
whereby the ballast bed damping coefficients 𝑐𝑏̅𝑎 and the structural damping ζ remain the same for 
all underlying calculations. The apparent difference in the determined regression functions can also 
be seen in this diagram. In contrast, increasing or reducing the applied ballast bed damping coeffi-
cient 𝑐𝑏̅𝑎 while keeping the other structural parameters constant has no discernible effect on the gen-
erated results (see subfigure in the center), nor does increasing the structural damping ζ beyond the 
normative damping (subfigure on the right). 

4. Conclusions and outlook 

Extensive numerical parameter studies are conducted using various models to identify and 
quantify the influence of four different modeling variants on the calculated structural accelerations. 
All the model variants share the assumption of relatively straightforward mechanical idealizations 
and can only capture vibrations in the vertical direction of the structure. In addition to the reference 
model (V1-B1), which idealizes the structure as a Bernoulli-Euler beam and the vehicle as a series of 
moving axle loads, two additional models are considered: one (V2-B1) that incorporates vehicle-
bridge interaction using a multibody model of the train (DIM), and another (V1-B2) that accounts for 
track-structure interaction using a two-layer coupling beam model of the bridge. The last model 
(V2-B2) combines both interaction effects. A standard configuration eight-car Railjet train is used in 
all models. 

4.1. Statistical analysis of bridge parameters 

All four computational models were applied to a parameter field of bridge structures defined by the 
span (L), mass distribution (μ), fundamental bending frequency (n0), and structural damping (ζ) of 
the bridges. A statistical analysis was performed on the probability of occurrence of all combinations 
of span, mass distribution, and fundamental bending frequency within the parameter field based on 
measured or documented structural properties of 275 structures (see Figures 3 and 4). This statistical 
analysis of the combinations of structural properties allows for a better assessment of the benefits of 
different modeling variants in terms of their practical relevance in dynamic analyses. The following 
combinations of structural parameters represent a particularly relevant framework for further inves-
tigations (see also Figure 6): 

1. Based on the available information on existing concrete and filler beam structures, 
the average span is 𝐿̅ = 10.65 m, the average mass distribution is 𝜇̅ = 17.5 t/m, and 
the average fundamental bending frequency 𝑛̅0 = 10.1 Hz. Parameter combinations 
with spans ranging from 7 to 23 m and fundamental frequencies from 5 to 17 Hz, 
particularly for heavy to medium structures (μ1 to μ2), have a probability of occur-
rence greater than 50%.  
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2. Based on the available information on existing steel and composite structures, the 
average span is 𝐿̅ = 15.3 m, the average mass distribution is 𝜇̅ = 7.5 t/m, and the 
average fundamental bending frequency 𝑛̅0 = 8.1 Hz. Parameter combinations with 
spans ranging from 10 to 31 m and fundamental frequencies from 4 to 13 Hz, partic-
ularly for structures with medium mass distribution (μ4), have a probability of oc-
currence greater than 50%. 

1.2. Evaluation of exemplary bridge structure 

When analyzing the results for the specific exemplary structure (see also Figures 7 to 9 and Tables 3 
to 7), several tendencies emerge that are also confirmed when examining the results of the entire 
parameter field: 

1 The results of the reference model (V1-B1) generally represent the maximum acceler-

ation values in most cases, which can be reduced to varying degrees by applying one 

of the other models. It is observed that the lowest accelerations are typically obtained 

with the most complex model (V2-B2), which considers both the track-bridge and ve-

hicle-bridge interaction. When examining the acceleration peak at the maximum train 

speed, which occurs within the range of the resonant speed vdpc,1,4 for this particular 

structure, the maximum reduction can be achieved by employing the DIM of the train 

(V2-B1 and V2-B2). However, for the acceleration peaks at lower train speeds (at vdpc,1,8 

and vdpc,1,11), the application of the coupling beam model (V1-B2 and V2-B2, respec-

tively) has a much more significant influence in reducing the acceleration results. 

2 When utilizing the multi-body model of the train alone (V2-B1), a shift of the acceler-

ation peaks towards slightly lower train speeds is observed. This can be explained by 

the increase in the modal mass of the overall system resulting from the consideration 

of train masses. On the other hand, when solely employing the coupling beam model 

(V1-B2), the acceleration peaks tend to shift towards somewhat higher train speeds. 

Furthermore, it was noted that the influence of the coupling beam model leads to 

more pronounced damping of the acceleration peaks at lower train speeds than at 

higher speeds. This effect may lead to acceleration peaks at higher train speeds, which 

were previously overshadowed in the reference model, becoming more significant or 

decisive (see also Figure 9). 

3 When combining both model extensions in the V2-B2 model, there appears to be an 

additive superposition of the computational benefits of both interaction effects. Spe-

cifically, the accelerations are reduced to a similar extent by applying the coupling 

beam model, regardless of the vehicle model used (see also Tables 3 to 6). This im-

plies that the influence of the coupling beam model on reducing accelerations re-

mains consistent regardless of the specific characteristics of the vehicle model. 

4 When the underlying structural damping ζ is varied (to the same extent in all mod-

els), it is observed that the coupling beam model (V1-B2) has a very similar effect on 

reducing accelerations (see also Figure 8 and Table 4). However, when solely apply-

ing the more complex vehicle model (V2-B1) at higher underlying structural acceler-

ations, the achievable reduction is less compared to cases with the normatively lower 

bound damping (ζ1 = ζEC). In other words, the coupling beam model consistently con-

tributes to reducing accelerations regardless of the damping level. In contrast, the 

sole application of the more complex vehicle model is less effective in reducing 
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accelerations when the underlying structural accelerations are higher than the nor-

mative damping would suggest. 

5 When varying the applied coefficients of the ballast bed damping 𝑐𝑏̅𝑎 while using 

the coupling beam model, only a marginal deviation in the resulting influence on 

accelerations is observed (see also Table 6). This indicates that the ballast bed damp-

ing does not have a noticeable impact on the influence of the coupling beam model 

on structural accelerations within the range of variation considered.  

6 When the applied spring stiffness of the ballast bed 𝑘̅𝑏𝑎 is varied while utilizing the 

coupling beam model, a significant influence on the computed acceleration reduc-

tions is observed (see also Figure 9 and Table 5). Specifically, a lower applied ballast 

stiffness is associated with a higher reduction in acceleration. 

7 The evaluation of speeds vlim at which the calculated structural acceleration exceeds 

the acceleration limit of ẅmax = 3.5 m/s², as specified by the standard, reveals a signif-

icant potential for the coupling beam model to assess high-speed train crossings as 

computationally uncritical. For the exemplary structure, regardless of the specific 

parameters applied to the coupling stiffness 𝑘̅𝑏𝑎, coupling damping 𝑐𝑏̅𝑎, structural 

damping ζ, and vehicle model (MLM or DIM), the coupling beam model allows for 

train speeds of over 350 km/h without exceeding the acceleration limit (see also Table 

7). In contrast, the reference model predicts a first-time exceedance of the acceleration 

limit at speeds below 150 km/h. Furthermore, applying the DIM (V2-B1) alone does 

not significantly influence the limit speed achieved with the reference model (V1-B1) 

for this specific exemplary structure. 

1.2. Evaluation of parametric field of bridges 

The results obtained from the analysis of the entire parameter field confirm the tendencies ob-
served for the exemplary structure and provide the basis for deriving some fundamental conclusions. 
The evaluation focuses on examining the specific impact of the extended models (V2-B1, V1-B2, and 
V2-B2) on the acceleration peaks of the reference model (V1-B1), as well as determining the critical 
velocity vlim, which represents the train speed at which the normative acceleration limit ẅmax = 3.5 m/s² 
is first exceeded. 

1 Critical accelerations, which substantially exceed the normative limit value, tend to 

occur more frequently as the structures' mass distribution and span length decrease 

(see also Figure 10). This is particularly prominent in the case of steel and composite 

structures, where nearly all parameter combinations with a probability of occurrence 

exceeding 50% are affected by excessive structural accelerations when the reference 

model is applied (within the considered speed range).  

2 When considering the critical speed vlim, it is observed that for a relatively large pro-

portion of the concrete and filler beam structures, with a probability of occurrence 

exceeding 50% (and approximately 62% of all structures), critical accelerations only 

occur at train crossing speeds above 250 km/h (see also Figures 11 and 15). The median 

critical speeds range from 268-296 km/h, with a weighted range of 288-326 km/h (see 

Figure 16). Consequently, these structures can be identified as dynamically uncritical 

without any issues (at least when considering the Railjet in the standard configura-

tion), even when using the reference model V1-B1. Lower critical speeds are only 
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observed for structures with lower mass distributions, shorter spans, and lower fun-

damental bending frequencies. 

3 In contrast, assessing steel and composite structures as dynamic uncritical using the 

reference model V1-B1 is rarely possible above speeds of 250 km/h (see Figures 11 

and 16). Almost all structures experience high maximum accelerations at relatively 

low speeds. The median critical speeds range from 133-230 km/h, with a weighted 

range of 161-231 km/h for these structures (see Figure 16). 

4 Only minor increases in maximum crossing speeds vlim can be achieved for concrete 

and filler beam structures when utilizing only the more complex multibody model 

of the train in the V2-B1 model (the median critical speeds range from 287-295 km/h, 

with a weighted range of 319-322 km/h, see Figures 12 and 16). However, significant 

increases in maximum crossing speeds are attainable for steel and composite struc-

tures (the median critical speeds range from 204-262 km/h, with a weighted range of 

228-271 km/h, see Figure 16). Notably, for structures with spans L > 15 m, the V2-B1 

model has a highly favorable effect compared to the reference model. Nevertheless, 

it should be noted that there is a considerable scatter of results, and a relatively high 

proportion of 19.5% of structures still exhibit problematic accelerations at speeds be-

low 150 km/h (see Figure 15). 

5 The sole application of the two-layer coupling beam model results in significant in-

creases in critical crossing speeds vlim for all types of structures or mass distributions 

(see Figures 13, 15, and 16). The median critical speeds for concrete and filler beam 

structures range from 299-337 km/h, with a weighted range of 304-333 km/h. Simi-

larly, the median critical speeds for steel and composite structures range from 

189-271 km/h, with a weighted range of 189-241-km/h. The increment of critical train 

speed is particularly pronounced for structures with smaller spans L, specifically 

those below 15 m. When considering parameter combinations with a probability of 

occurrence exceeding 50%, the favorable impact of the coupling beam model in 

V1-B2 is similar to or slightly less pronounced than the influence achieved by using 

the DIM model alone through V2-B1. 

6 Once again, the beneficial effects of considering the interaction dynamics are further 

amplified when both the DIM and the coupling beam model are combined in the 

V2-B2 model (see Figures 14 to 16). As a result, critical accelerations at crossing 

speeds vlim < 250 km/h are only observed for a smaller proportion of particularly light 

steel and composite structures. Only 3.2% of all concrete and filler beam structures 

and 34% of all steel and composite structures experience acceleration peaks below 

250 km/h that exceed the normative limit. The median critical speeds vlim for concrete 

and filler beam structures range from 323-344 km/h, with a weighted range of 324-351 

km/h. The median critical speeds for steel and composite structures range from 

219-300 km/h, with a weighted range of 238-274 km/h.  

7 The influence of the coupling beam model (V1-B2) on the maximum acceleration 

peaks of the reference model (V1-B1) exhibits a clear dependence on the normalized 

crossing speed 𝜆 = 𝑣/𝑛0 at which it occurs (see Figure 17). Larger reductions in ac-

celeration can be expected as the normalized speeds decrease. This relationship can 
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be accurately described by an exponential (weighted) regression function, which has 

a high predictive probability. The reduction of acceleration peaks approaches zero at 

a normalized speed of approximately 13.2 m. At higher normalized speeds, the re-

sults tend to scatter significantly; in some cases, even an increase in acceleration 

peaks can occur. The upper 95% confidence limit for predicting new observations 

can be considered reliable within a range of normalized speeds from 2.5 to 8 m. With 

medium coupling stiffness, the reference model's calculated acceleration results can 

be reduced within this range from 0% to -77%. 

8 In contrast to the coupling beam model (V1-B2), the sole application of the vehicle 

model DIM (V2-B1) does not exhibit a clear dependence between the percentage re-

duction of the maximum acceleration peaks and the normalized train speed at which 

they occur (see Figure 18). Therefore, a regression function of the same form cannot 

be provided. However, it can be observed that low mass distributions and large ra-

tios of span to structural damping tend to favor a stronger influence of the DIM. In 

general, as the mass occupancy decreases, the magnitude of acceleration reduction 

increases. In the maximum case, the reduction can reach up to -75%. 

9 The comparison between the acceleration reduction achieved by using the coupling 

beam model and the DIM (V2-B2) versus applying the DIM alone (V2-B1) shows 

similar results to the comparison with the MLM for the vehicle (see Figures 17 and 

19). This indicates that the beneficial impact of the coupling beam model is mainly 

independent of the specific vehicle model used. In other words, regardless of 

whether the multibody model or the MLM is employed, including the coupling beam 

model consistently leads to favorable acceleration reductions. 

10 The achievable acceleration reductions strongly depend on the ballast bed stiffness 𝑘̅𝑏𝑎 of the coupling beam model (V1-B2 and V2-B2, see Figures 20 to 22). Lower cou-

pling stiffnesses are associated with more significant reductions in the acceleration 

peaks of V1-B1. It is worth noting that the regression functions determined for the 

different vehicle models, DIM (V2-B2) and MLM (V1-B2), may exhibit some devia-

tion, particularly in the case of the lowest coupling stiffness 𝑘̅𝑏𝑎,1. 

11 The variation of the ballast bed damping coefficient 𝑐𝑏̅𝑎 and structural damping ζ 

has only marginal effects on the regression functions derived from the results of the 

entire parameter field, analogously to the exemplary structure (see Figure 22). This 

observation suggests that a more precise variation of these two parameters may not 

be necessary for future investigations aiming to describe the influence of coupling 

beam modeling. It implies that a more generalized approach can be applied, where 

specific variations of coupling and structural damping can be omitted without sig-

nificantly compromising the accuracy of the results. 

1.2. Final conclusions and outlook 

The results of the parameter study highlight the significant potential of coupling beam modeling 
in determining lower computational accelerations compared to a simple beam model. This modeling 
approach requires only a few input parameters and can be universally applied, independent of the 
specific train model. As a result, it presents a good complement or alternative to multi-body modeling 
of the train that considers the vehicle-bridge interaction. This is particularly advantageous in 
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situations where crucial input parameters for multi-body modeling of the train are not accessible. In 
this regard, considering the vehicle-bridge interaction as well as the track-structure interaction tends 
to have a particularly favorable effect on bridges with different structural parameters. 

In principle, it is evident in the case of the coupling beam model that its impact on the maximum 
computational accelerations is influenced not only by the normalized train speed, which corresponds 
to the resonance scenario at which they occur, but also by the applied coupling or ballast bed stiffness. 
However, estimating these characteristic values solely based on existing literature sources is associ-
ated with inadequate certainty. Therefore, conducting a more comprehensive and experimentally 
underpinned investigation into the dynamic load-bearing behavior of the ballasted track is essential. 
Only through such efforts can the coupling beam model's reliability be firmly established, thus 
providing the necessary confidence for its widespread adoption in engineering practice. 

When examining the calculation results underlying the regression functions used to describe the 
impact of coupling beam modeling, it is evident that some positive values are observed, indicating 
an increase in the maximum calculated acceleration peaks compared to the reference model. While 
this contradicts physical reality, it can be attributed to simplifications in modeling the coupling beam, 
such as the linear stiffness assumption of the coupling springs. Therefore, further investigation into 
these cases and the specific conditions in which they occur would be valuable for future research. 

Additionally, the deviation observed in the regression functions describing the influence of the 
coupling beam for different vehicle models, particularly in the case of the lowest coupling stiffness, 
warrants more detailed investigation. It is plausible that with such low coupling stiffness, minimal 
or negligible acceleration peaks are formed, making a direct comparison with the acceleration peaks 
of the reference model less feasible and subsequently influencing the resulting regression functions. 

However, the overall finding that the vehicle model does not significantly interact with the in-
fluence of the coupling beam model in other cases allows for simplifications in future investigations. 
It would no longer be necessary to extensively analyze different vehicle models to make universally 
applicable statements regarding the impact of considering track-bridge interaction through a two-
layer coupling beam model, thereby significantly reducing the computational effort required for fu-
ture numerical investigations. The same applies to the limited influence of coupling or ballast bed 
damping and structural damping as parameters with minimal impact, allowing them to be excluded. 
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Appendix A 

The following equations summarize the composition of the system matrices for the dynamic 
calculation for the most complex applied train and bridge models (Detailed Interaction Model of the 
train and coupling beam model of the bridge). The modifications while applying the simpler models 
(Moving Load Model of the train and Bernoulli-Euler beam model of the bridge) are summarized in 
equation (A32 -A33). 

 
The system of equations of motions is written as follows:  𝑴 𝒙̈ + 𝑪 𝒙̇ + 𝑲 𝒙 = 𝒑 (A1) 
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In equation (A1), all matrices – the mass matrix M, damping matrix C, stiffness matrix K, force vector 
p, and the displacement vector x and its time derivatives (velocities ẋ and accelerations ẍ) – are gen-
erally time-dependent and two-dimensional. The matrices are formed by combining several subma-
trices denoting the contributions of the train model (vehicle – index v), the rails (index r), and the 
supporting structure (index s), including their interactions. The derivation of the matrices was 
adopted as a modified version of the model described by Lou [27] and is further described in Weber 
[37]. 

 
The displacement vector x consists of the following subvectors: 

Displacement vector (N×1 order): 𝒙 = [𝒙𝒗  𝒙𝒓  𝒙𝒔]T , (A2) 

with a total number of degrees of freedom N = 6 Nv + Nr + Ns. 

Subvector of displacements of vehicles (6 Nv×1 order):  𝒙𝒗 = [𝒙𝒗𝟏  𝒙𝒗𝟐  …  𝒙𝒗𝑵𝒗]T, (A3) 

where Nv is the number of train wagons, and each displacement vector xvi consisting of six degrees 
of freedom assigned to car bodies (index c: displacement wc and rotation φc) and bogies (index b: 

displacements wb,1, wb,2 and rotations φb,1 and φb,2):  𝒙𝒗𝒊 = [𝑤𝑐𝑖   𝜑𝑐𝑖   𝑤𝑏,1𝑖   𝜑𝑏,1𝑖  𝑤𝑏,2𝑖   𝜑𝑏2,𝑖]T . (A4) 

Subvector of displacements of the rail (Nr×1 order): 𝒙𝒓 = [𝑞𝑟1 𝑞𝑟2… 𝑞𝑟𝑁𝑟]T, (A5) 

where Nr is the total number of considered rail modes, here limited by equation (2).  

Subvector of displacements of the supporting structure (Ns×1 order): 𝒙𝒔 = [𝑞𝑠1 𝑞𝑠2… 𝑞𝑠𝑁𝑠]T , (A6) 

where Ns is the total number of considered modes of the supporting structure, here limited to Ns = 3. 
 
Just as the displacement vector, the mass, damping, and stiffness matrices are composed of sub-

matrices, which then again consist of several contributions of the structural mass, damping, and stiff-
ness properties as well as their interconnections, as follows: 

Mass matrix (N×N order): 𝑴 = [𝑴𝒗𝒗 𝟎 𝟎𝟎 𝑴𝒓𝒓𝟏 +𝑴𝒓𝒓𝟐 𝟎𝟎 𝟎 𝑴𝒔𝒔]𝑁 × 𝑁 (A7) 

Damping matrix (N×N order): 𝑪 = [𝑪𝒗𝒗 𝑪𝒗𝒓 𝟎𝑪𝒓𝒗 𝑪𝒓𝒓𝟏 + 𝑪𝒓𝒓𝟐 + 𝑪𝒓𝒓𝟑 𝑪𝒓𝒔𝟎 𝑪𝒔𝒓 𝑪𝒔𝒔𝟏 + 𝑪𝒔𝒔𝟐 ]𝑁 × 𝑁 (A8) 

Stiffness matrix (N×N order): 𝑲 = [𝑲𝒗𝒗 𝑲𝒗𝒓 𝟎𝑲𝒓𝒗 𝑲𝒓𝒓𝟏 +𝑲𝒓𝒓𝟐 + 𝑲𝒓𝒓𝟑 𝑲𝒓𝒔𝟎 𝑲𝒔𝒓 𝑲𝒔𝒔𝟏 + 𝑲𝒔𝒔𝟐 ]𝑁 × 𝑁 (A9) 

 

Vehicle:  

The submatrices of the vehicle Mvv, Cvv, and Kvv can be written as follows: 

Vehicle mass matrix (6 Nv×6 Nv order):  𝑴𝒗𝒗 = 𝑑𝑖𝑎𝑔[𝑴𝒗𝟏 𝑴𝒗𝟐… 𝑴𝒗𝑵𝒗] (A10) 

Vehicle damping matrix (6 Nv×6 Nv order):  𝑪𝒗𝒗 = 𝑑𝑖𝑎𝑔[𝑪𝒗𝟏 𝑪𝒗𝟐… 𝑪𝒗𝑵𝒗] (A11) 

Vehicle stiffness matrix (6 Nv×6 Nv order):  𝑲𝒗𝒗 = 𝑑𝑖𝑎𝑔[𝑲𝒗𝟏 𝑲𝒗𝟐… 𝑲𝒗𝑵𝒗] (A11) 
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Each submatrix Mvi corresponding to the ith train wagon is formed with the car body mass mc, inertia 
Ic, and the bogies masses mb,1, and mb,2, and inertia Ib,1, and Ib,2:  𝑴𝒗𝒊 = 𝑑𝑖𝑎𝑔[𝑚𝑐𝑖   𝐼𝑐𝑖   𝑚𝑏,1𝑖   𝐼𝑏,1𝑖  𝑚𝑏,2𝑖   𝐼𝑏2,𝑖]T (A12) 

The damping and stiffness matrices Cvi and Kvi of each train wagon contain coupling terms denoting 
the connection of car bodies and bogies with spring-damper elements in the primary (cp and kp) and 
secondary suspension stage (cs and ks). Also, the distances of wheelset axles to the bogies' center of 
gravity (Lb) and the distance of the secondary suspension to the car bodies' center of gravity (Lc) are 
considered in (A13).  

𝑪𝒗𝒊 =
[  
   
 2𝑐𝑠𝑖 0 −𝑐𝑠𝑖 0 −𝑐𝑠𝑖 02𝑐𝑠𝑖𝐿𝑐𝑖2 𝑐𝑠𝑖𝐿𝑐𝑖 0 −𝑐𝑠𝑖𝐿𝑐𝑖 0𝑐𝑠𝑖 + 2𝑐𝑝𝑖 0 0 02𝑐𝑝𝑖𝐿𝑏𝑖2 0 0𝑠𝑦𝑚𝑚. 𝑐𝑠𝑖 + 2𝑐𝑝𝑖 02𝑐𝑝𝑖𝐿𝑏𝑖2 ]  

   
 
 (A13) 

The stiffness matrix of each wagon Kvi can be formed analogously by replacing cp and kp and cs by ks 
in (A13). 
 

Rail beam:  

The submatrices of the rail Mr, Cr, and Kr are composed of several matrices containing the con-
tributions of the rail itself, the wheelset masses mw acting on them, and the coupling to the supporting 
structure: 

Contribution of rail mass (Nr×Nr order): 𝑴𝒓𝒓𝟏 = 𝑑𝑖𝑎𝑔[𝜇𝑟 𝐿𝑟2   𝜇𝑟 𝐿𝑟2 … 𝜇𝑟 𝐿𝑟2 ] (A14) 

Contribution of wheelsets to rail mass matrix: 

𝑴𝒓𝒓𝟐 = [  
  𝑚1,12,𝑟𝑟 𝑚1,22,𝑟𝑟 ⋯ 𝑚1,𝑁𝑟2,𝑟𝑟𝑚2,12,𝑟𝑟 𝑚2,22,𝑟𝑟 ⋯ 𝑚2,𝑁𝑟2,𝑟𝑟⋮ ⋮ ⋱ ⋮𝑚𝑁𝑟,12,𝑟𝑟 𝑚𝑁𝑟,22,𝑟𝑟 ⋯ 𝑚𝑁𝑟,𝑁𝑟2,𝑟𝑟 ]  

  
𝑁𝑟×𝑁𝑟

, 
with 𝑚𝑖,𝑗2,𝑟𝑟 = ∑ 𝑚𝑤𝑘 sin (𝑖 𝜋 𝑥𝑘𝐿𝑟 ) sin (𝑗 𝜋 𝑥𝑘𝐿𝑟 )𝑁𝑤𝑘=1  

(A15) 

whereby xk denotes the longitudinal distance of the kth wheelset from the left rail end, and Nw is the 
total number of wheelsets Nw = 4 Nv. 

Contribution of rail stiffness (Nr×Nr order): 𝑲𝒓𝒓𝟏 = 𝑑𝑖𝑎𝑔[𝐿𝑟2 𝐸𝑟𝐼𝑟 ( 𝜋𝐿𝑟)4   𝐿𝑟2 𝐸𝑟𝐼𝑟 (2𝜋𝐿𝑟 )4  …  𝐿𝑟2 𝐸𝑟𝐼𝑟 (𝑁𝑟 𝜋𝐿𝑟 )4] (A16) 

Contribution of coupling to train through the primary suspension stage: 

𝑲𝒓𝒓𝟐 = [  
  𝑘1,12,𝑟𝑟 𝑘1,22,𝑟𝑟 ⋯ 𝑘1,𝑁𝑟2,𝑟𝑟𝑘2,12,𝑟𝑟 𝑘2,22,𝑟𝑟 ⋯ 𝑘2,𝑁𝑟2,𝑟𝑟⋮ ⋮ ⋱ ⋮𝑘𝑁𝑟,12,𝑟𝑟 𝑘𝑁𝑟,22,𝑟𝑟 ⋯ 𝑘𝑁𝑟,𝑁𝑟2,𝑟𝑟 ]  

  
𝑁𝑟×𝑁𝑟

, 
with 𝑘𝑖,𝑗2,𝑟𝑟 =  ∑ {[𝑘𝑝𝑘 −𝑁𝑤𝑘=1𝑚𝑤𝑘𝑣2 (𝑗 𝜋𝐿𝑟 )2] sin (𝑖 𝜋 𝑥𝑘𝐿𝑟 ) sin (𝑗 𝜋 𝑥𝑘𝐿𝑟 ) + 𝑐𝑝𝑘𝑣 (𝑗 𝜋𝐿𝑟 ) sin (𝑖 𝜋 𝑥𝑘𝐿𝑟 ) cos (𝑗 𝜋 𝑥𝑘𝐿𝑟 )} , 

(A17) 

where v is the train speed. 
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Contribution of coupling to the supporting structure beam: 

𝑲𝒓𝒓𝟑 = [  
  𝑘1,13,𝑟𝑟 𝑘1,23,𝑟𝑟 ⋯ 𝑘1,𝑁𝑟3,𝑟𝑟𝑘2,13,𝑟𝑟 𝑘2,23,𝑟𝑟 ⋯ 𝑘2,𝑁𝑟3,𝑟𝑟⋮ ⋮ ⋱ ⋮𝑘𝑁𝑟,13,𝑟𝑟 𝑘𝑁𝑟,23,𝑟𝑟 ⋯ 𝑘𝑁𝑟,𝑁𝑟3,𝑟𝑟 ]  

  
𝑁𝑟×𝑁𝑟

, 
with 𝑘𝑖,𝑗3,𝑟𝑟 = ∑ 𝑘𝑏𝑎𝑁𝑏𝑎𝑝=1 sin (𝑖 𝜋 𝑥𝑝𝐿𝑟 ) sin (𝑗 𝜋 𝑥𝑝𝐿𝑟 ) , 

(A18) 

whereby xp denotes the longitudinal distance of the pth discrete coupling point from the left rail end. 

Contribution of rail damping applying Rayleigh damping (Nr×Nr order): 𝑪𝒓𝒓𝟏 = 𝛼 𝑴𝒓𝒓𝟏 +  𝛽 𝑲𝒓𝒓𝟏   , 
with 𝜁𝑟1 = 𝜁𝑟2 = 𝜁𝑟 , 𝛼 = 2𝜁𝑟 ( 𝜔𝑟1 𝜔𝑟2𝜔𝑟1+𝜔𝑟2) and 𝛽 = 2 𝜁𝑟𝜔𝑟1+𝜔𝑟2 . 

(A19) 

Contribution of coupling to train through the primary suspension stage: 

𝑪𝒓𝒓𝟐 = [  
  𝑐1,12,𝑟𝑟 𝑐1,22,𝑟𝑟 ⋯ 𝑐1,𝑁𝑟2,𝑟𝑟𝑐2,12,𝑟𝑟 𝑐2,22,𝑟𝑟 ⋯ 𝑐2,𝑁𝑟2,𝑟𝑟⋮ ⋮ ⋱ ⋮𝑐𝑁𝑟,12,𝑟𝑟 𝑐𝑁𝑟,22,𝑟𝑟 ⋯ 𝑐𝑁𝑟,𝑁𝑟2,𝑟𝑟 ]  

  
𝑁𝑟×𝑁𝑟

, 
with 𝑐𝑖,𝑗2,𝑟𝑟 = ∑ [𝑐𝑝𝑘 sin (𝑖 𝜋 𝑥𝑘𝐿𝑟 ) sin (𝑗 𝜋 𝑥𝑘𝐿𝑟 ) +2𝑚𝑤𝑘𝑣 (𝑗 𝜋𝐿𝑟 ) sin (𝑖 𝜋 𝑥𝑘𝐿𝑟 ) cos (𝑗 𝜋 𝑥𝑘𝐿𝑟 )]𝑁𝑤𝑘=1  

(A20) 

The contribution to the damping matrix of the rail denoting the coupling to the supporting structure 
beam (𝑪𝒓𝒓𝟑 ) can be derived analogously to (A18) by replacing kba with cba.  
 

Supporting structure beam: 

The submatrices of the supporting structure Ms, Cs, and Ks are similarly obtained as the ones for 
the rail beam.  

Bridge mass matrix (Ns×Ns order): 𝑴𝒔𝒔 = 𝑑𝑖𝑎𝑔[𝜇𝑠 𝐿𝑠2   𝜇𝑠 𝐿𝑠2 … 𝜇𝑠 𝐿𝑠2 ] (A21) 

Contribution of rail stiffness (Ns×Ns order): 𝑲𝒔𝒔𝟏 = 𝑑𝑖𝑎𝑔[𝐿𝑠2 𝐸𝑠𝐼𝑠 (𝜋𝐿𝑠)4   𝐿𝑠2 𝐸𝑠𝐼𝑠 (2𝜋𝐿𝑠 )4  …  𝐿𝑠2 𝐸𝑠𝐼𝑠 (𝑁𝑠 𝜋𝐿𝑠 )4] (A22) 

Contribution of coupling to the rail beam: 

𝑲𝒔𝒔𝟐 = [  
  𝑘1,12,𝑠𝑠 𝑘1,22,𝑠𝑠 ⋯ 𝑘1,𝑁𝑠2,𝑠𝑠𝑘2,12,𝑠𝑠 𝑘2,22,𝑠𝑠 ⋯ 𝑘2,𝑁𝑠2,𝑠𝑠⋮ ⋮ ⋱ ⋮𝑘𝑁𝑠,12,𝑠𝑠 𝑘𝑁𝑠,22,𝑠𝑠 ⋯ 𝑘𝑁𝑠,𝑁𝑠2,𝑠𝑠 ]  

  
𝑁𝑠×𝑁𝑠

, 
with 𝑘𝑖,𝑗2,𝑠𝑠 = ∑ 𝑘𝑏𝑎𝑁𝑏𝑎𝑞=1 sin (𝑖 𝜋 𝑥𝑞𝐿𝑠 ) sin (𝑗 𝜋 𝑥𝑞𝐿𝑠 ), 

(A23) 

whereby xq denotes the longitudinal distance of the qth discrete coupling point from the left bridge 
end. 

Contribution of damping of the supporting structure applying Rayleigh 
damping (Ns×Ns order): 𝑪𝒔𝒔𝟏 = 𝛼 𝑴𝒔𝒔𝟏 +  𝛽 𝑲𝒔𝒔𝟏   , (A24) 
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with 𝜁𝑠1 = 𝜁𝑠2 = 𝜁𝑠, 𝛼 = 2𝜁𝑠 ( 𝜔𝑠1 𝜔𝑠2𝜔𝑠1+𝜔𝑠2) and 𝛽 = 2 𝜁𝑠𝜔𝑠1+𝜔𝑠2 
Again, the contribution to the damping matrix of the supporting structure denoting the coupling to 
the rail beam (𝑪𝒔𝒔𝟐 ) can be derived analogously to (A23) by replacing kba with cba.  

Furthermore, the coupling between the vehicle and rail beam, as well as between the beams of 
the rail and the supporting structure, induce interaction submatrices Cvr, Crv, Kvr, Krv, Crs, Csr, Krs, and 
Ksr. 

 
Interaction vehicle - rail: 

Substiffness and subdamping matrices induced by interaction between rail 
beam and vehicle, coupling through the primary suspension stage (6 

Nv×Nr order): 𝑪𝒗𝒓 = 𝑪𝒓𝒗𝑇 = [𝑪𝒗𝟏𝒓 𝑪𝒗𝟐𝒓… 𝑪𝒗𝑵𝒗𝒓]T (6 Nv×Nr order)  𝑲𝒗𝒓 = [𝑲𝒗𝟏𝒓 𝑲𝒗𝟐𝒓… 𝑲𝒗𝑵𝒗𝒓]T  (6 Nv×Nr order)  𝑲𝒓𝒗 = [𝑲𝒓𝒗𝟏 𝑲𝒓𝒗𝟐… 𝑲𝒓𝒗𝑵𝒗]  (Nr×6 Nv order) 

(A25) 

The submatrices Cvir and Crvi corresponding to the ith train wagon can be written as follows: 

𝑪𝒗𝒊𝒓 = 𝑪𝒓𝒗𝒊T =
[  
   
  0 0 … 00 0 … 0𝑐𝑖,1𝑣𝑟,𝑏11 𝑐𝑖,2𝑣𝑟,𝑏11 … 𝑐𝑖,𝑁𝑟𝑣𝑟,𝑏11𝑐𝑖,1𝑣𝑟,𝑏12 𝑐𝑖,2𝑣𝑟,𝑏12 … 𝑐𝑖,𝑁𝑟𝑣𝑟,𝑏12𝑐𝑖,1𝑣𝑟,𝑏21 𝑐𝑖,2𝑣𝑟,𝑏21 … 𝑐𝑖,𝑁𝑟𝑣𝑟,𝑏21𝑐𝑖,1𝑣𝑟,𝑏22 𝑐𝑖,2𝑣𝑟,𝑏22 … 𝑐𝑖,𝑁𝑟𝑣𝑟,𝑏22]  

   
  

6×𝑁𝑟 
 , 

with the translational share of the kth bogie 𝑐𝑖,𝑗𝑣𝑟,𝑏𝑘1 = −𝑐𝑝𝑖 [sin (𝑗𝜋𝑥𝑤1𝐿𝑟 ) + sin (𝑗𝜋𝑥𝑤2𝐿𝑟 )] ,  

and the rotatory share of the kth bogie 𝑐𝑖,𝑗𝑣𝑟,𝑏𝑘2 = 𝑐𝑝𝑖  𝐿𝑏𝑖 [sin (𝑗𝜋𝑥𝑤1𝐿𝑟 ) − sin (𝑗𝜋𝑥𝑤2𝐿𝑟 )] . 

(A26) 

In (A26), the first two rows correspond to the degrees of freedom of the car bodies, which are not 
coupled to the rail. The rows associated with the translational and rotatory degrees of freedom of 
each car wagon (i) bogies (bk, k = 1, 2) consist of coupling terms related to both wheelsets w1 and w2 
of each bogie, in which xw1 and xw2 denote the longitudinal distances of the wheelset to the left end of 
the rail beam. 

The submatrices Kvir and Krvi are obtained similarly to (A26) as follows:  

𝑲𝒗𝒊𝒓 =
[  
   
  0 0 … 00 0 … 0𝑘𝑖,1𝑣𝑟,𝑏11 𝑘𝑖,2𝑣𝑟,𝑏11 … 𝑘𝑖,𝑁𝑟𝑣𝑟,𝑏11𝑘𝑖,1𝑣𝑟,𝑏12 𝑘𝑖,2𝑣𝑟,𝑏12 … 𝑘𝑖,𝑁𝑟𝑣𝑟,𝑏12𝑘𝑖,1𝑣𝑟,𝑏21 𝑘𝑖,2𝑣𝑟,𝑏21 … 𝑘𝑖,𝑁𝑟𝑣𝑟,𝑏21𝑘𝑖,1𝑣𝑟,𝑏22 𝑘𝑖,2𝑣𝑟,𝑏22 … 𝑘𝑖,𝑁𝑟𝑣𝑟,𝑏22]  

   
  

6×𝑁𝑟
, 

with  𝑘𝑖,𝑗𝑣𝑟,𝑏𝑘1 = −𝑘𝑝𝑖 [sin (𝑗𝜋𝑥𝑤1𝐿𝑟 ) + sin (𝑗𝜋𝑥𝑤2𝐿𝑟 )] − 𝑐𝑝𝑖  𝑣 jπ𝐿𝑟 [cos (𝑗𝜋𝑥𝑤1𝐿𝑟 ) + cos (𝑗𝜋𝑥𝑤2𝐿𝑟 )], 
denoting translational share of the kth bogie, and  

(A27) 
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𝑘𝑖,𝑗𝑣𝑟,𝑏𝑘2 = 𝑘𝑝𝑖  𝐿𝑏𝑖 [sin (𝑗𝜋𝑥𝑤1𝐿𝑟 ) − sin (𝑗𝜋𝑥𝑤2𝐿𝑟 )] + 𝑐𝑝𝑖𝑣 jπ𝐿𝑟 𝐿𝑏𝑖 [ cos (𝑗𝜋𝑥𝑤1𝐿𝑟 ) −cos (𝑗𝜋𝑥𝑤2𝐿𝑟 )] , 

denoting the rotatory share of the kth bogie. 

𝑲𝒓𝒗𝒊 = [  
  0 0 𝑘𝑖,1𝑟𝑣,𝑏11 𝑘𝑖,1𝑣𝑟,𝑏12 𝑘𝑖,1𝑣𝑟,𝑏21 𝑘𝑖,1𝑣𝑟,𝑏220 0 𝑘𝑖,2𝑟𝑣,𝑏11 𝑘𝑖,2𝑣𝑟,𝑏12 𝑘𝑖,2𝑣𝑟,𝑏21 𝑘𝑖,2𝑣𝑟,𝑏22⋮ ⋮ ⋮ ⋮ ⋮ ⋮0 0 𝑘𝑖,𝑁𝑟𝑟𝑣,𝑏11 𝑘𝑖,𝑁𝑟𝑟𝑣,𝑏12 𝑘𝑖,𝑁𝑟𝑟𝑣,𝑏21 𝑘𝑖,𝑁𝑟𝑟𝑣,𝑏22]  

  
𝑁𝑟×6

, 
with the translational share of the kth bogie 𝑘𝑖,𝑗𝑟𝑣,𝑏𝑘1 = −𝑘𝑝𝑖 [sin (𝑗𝜋𝑥𝑤1𝐿𝑟 ) + sin (𝑗𝜋𝑥𝑤2𝐿𝑟 )] , 

and the rotatory share of the kth bogie 𝑘𝑖,𝑗𝑟𝑣,𝑏𝑘2 = 𝑘𝑝𝑖 𝐿𝑏𝑖 [sin (𝑗𝜋𝑥𝑤1𝐿𝑟 ) − sin (𝑗𝜋𝑥𝑤2𝐿𝑟 )] . 

(A28) 

 

Interaction rail – supporting structure: 

Subdamping matrices induced by the interaction between beams of rail 
and supporting structure (Nr×Ns, respectively Ns×Nr order): 

𝑪𝒓𝒔 = 𝑪𝒔𝒓𝑇 = [  
 𝑐1,1𝑟𝑠 𝑐1,2𝑟𝑠 𝑐1,3𝑟𝑠𝑐2,1𝑟𝑠 𝑐2,2𝑟𝑠 𝑐2,3𝑟𝑠⋮ ⋮ ⋮𝑐𝑁𝑟,1𝑟𝑠 𝑐𝑁𝑟,2𝑟𝑠 𝑐𝑁𝑟,3𝑟𝑠 ]  

 
𝑁𝑟×𝑁𝑠

, 

with 𝑐𝑖,𝑗𝑟𝑟 = −∑ 𝑐𝑏𝑎𝑁𝑏𝑎𝑝=1 sin (𝑖 𝜋 𝑥𝑝𝐿𝑟 ) sin (𝑗 𝜋 𝑥𝑝,𝑠𝐿𝑠 ) , 

(A29) 

whereby Nba is the number of discrete coupling points. The distance xp denotes the longitudinal dis-
tance of the pth coupling point from the left bridge end and xp,s the respective longitudinal distances 
of the same coupling point to the left end of the bridge structure. With Lemb as embankment length (Lr 

= Ls + 2 Lemb), xp,s is defined as follows: 𝑥𝑝,𝑠 = { 0,𝑥𝑝 + 𝐿𝑒𝑚𝑏            if  𝑥𝑝 < 𝐿𝑒𝑚𝑏  or 𝑥𝑝 > 𝐿𝑠 + 𝐿𝑒𝑚𝑏if  𝐿𝑒𝑚𝑏 ≤ 𝑥𝑝 ≤ 𝐿𝑠 + 𝐿𝑒𝑚𝑏  (A30) 

The substiffness matrices Krs and Ksr can be obtained analogously to (A30) by replacing cba by kba.  
Finally, also the vector of external forces p is formed consisting of three subvectors: 

Force vector (N×1 order): 𝒑 = [𝒑𝒗  𝒑𝒓  𝒑𝒔]T , (A31) 

whereby all elements of the subvector denoting the forces acting on the supporting structure ps are 
zero. Furthermore, the force vector acting on the vehicle pv only contains non-zero elements if rail 
irregularities are taken into account, which is not the case for the investigations described in this 
article. Therefore, only the vector pr acting on the rail beam has to be constructed as follows:  

Force vector acting on rail beam (Nr×1 order): 𝒑𝒓 = [𝒑𝒓𝟏  𝒑𝒓𝟐 … 𝒑𝒓𝑵𝒓 ]T , 

with 𝒑𝒓𝒊 = 𝑔∑ ∑ (𝑚𝑤𝑘 + 12𝑚𝑏𝑗 + 14𝑚𝑐𝑗) sin (𝑖𝜋𝑥𝑤𝑘,𝑗𝐿𝑟 )4𝑘=1𝑁𝑣𝑗=1  . (A31) 

In (A31), xwk,j denotes the longitudinal distance of the kth wheelset of the jth train wagon from the left 
end of the rail, whereby only those wheelsets currently located on the rail beam are considered in the 
calculations. The sum of weight forces (exerted by the wheelset mass mw and a proportional mass of 
bogie mb and car bodie mc) transmitted at each contact point between wheelsets and bridge can also 
be defined as static axle load Fstat = g (mw + ½ mb + ¼ mc), with g being the gravitational constant.  
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ẋẍ Nv is set to zero; ,  are omitted. The excitation exerted by the train is only considered in the 
subvector of forces acting on the rail (in the case of the coupling beam model) or the support-
ing/bridge structure (in the case of the Bernoulli-Euler beam). 

Similarly, the coupling beam model is degenerated to the Bernoulli-Euler beam mode by setting 
Ns = 0 and adapting related properties in the mass, damping, and stiffness submatrices. The displace-
ment subvector of the supporting structure xẋẍ, its submatrices (the coupling properties between rails 
and supporting structure (kba, cba) to zero. Finally, all rail properties influencing the matrices (are set 
to match the properties of the total bridge, i.e., Nr = Ns, Lr = L, μr = μ, ErIr = EI, ζr = ζ. 

 

Coupling beam and Moving Load Model: [𝑴𝒓𝒓𝟏 𝟎𝟎 𝑴𝒔𝒔] [𝒙̈𝒓𝒙̈𝒔] + [𝑪𝒓𝒓𝟏 + 𝑪𝒓𝒓𝟑 𝑪𝒓𝒔𝑪𝒔𝒓 𝑪𝒔𝒔𝟏 + 𝑪𝒔𝒔𝟐 ] [𝒙̇𝒓𝒙̇𝒔] + [𝑲𝒓𝒓𝟏 + 𝑲𝒓𝒓𝟑 𝑪𝒓𝒔𝑪𝒔𝒓 𝑲𝒔𝒔𝟏 + 𝑲𝒔𝒔𝟐 ] [𝒙𝒓𝒙𝒔] = [𝒑𝒓𝒑𝒔] . 
(A32) 

Bernoulli-Euler beam and Detailed Interaction Model: [𝑴𝒗𝒗 𝟎𝟎 𝑴𝒓𝒓𝟏 +𝑴𝒓𝒓𝟐 ] [𝒙̈𝒗𝒙̈𝒓] + [𝑪𝒗𝒗 𝑪𝒗𝒓𝑪𝒓𝒗 𝑪𝒓𝒓𝟏 + 𝑪𝒓𝒓𝟐 ] [𝒙̇𝒗𝒙̇𝒓] + [𝑲𝒗𝒗 𝑲𝒗𝒓𝑲𝒓𝒗 𝑲𝒓𝒓𝟏 + 𝑲𝒓𝒓𝟐 ] [𝒙𝒗𝒙𝒓] = [𝒑𝒗𝒑𝒓] , 

with 𝑁𝑟 = 𝑁𝑠,   𝐿𝑟 = 𝐿,   𝜇𝑟 = 𝜇,    𝐸𝑟𝐼𝑟 = 𝐸𝐼,    𝜁𝑟 = 𝜁 

(A33) 

Bernoulli-Euler beam and Detailed Interaction Model: [𝑴𝒓𝒓𝟏 ][𝒙̈𝒓] + [𝑪𝒓𝒓𝟏 ][𝒙̇𝒓] + [𝑲𝒓𝒓𝟏 ][𝒙𝒓] = [𝒑𝒓] 
with 𝑁𝑟 = 𝑁𝑠,   𝐿𝑟 = 𝐿,   𝜇𝑟 = 𝜇,    𝐸𝑟𝐼𝑟 = 𝐸𝐼,    𝜁𝑟 = 𝜁 

(A34) 
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