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This paper is given to the investigation of warm inflation using Modified Chaplygin gas in the
background of locally rotationally symmetric Bianchi Identity type I. We find out the field equations
and perturbations parameters such as; scalar power spectrum, scalar spectral index, scalar potential
and tensor to scalar ratio under slow roll approximation. We find out these parameters in directional
of Hubble parameter during the Logamediate inflationary regime in weak and strong case. These
comological parameters shows that the anisotropic model is also compatible WMAP7 with recent
observational data Planck 2018.
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I. INTRODUCTION

The standard universe model (hot big-bang cosmology) successfully explains the observations of cosmic mi-
crowave background (CMBR) but there are still some unresolved issues i.e origin of fluctuations, Horizon, Flat-
ness and magnetic monopole. Inflation is very successfully resolved the theoretical and paradigm in addressing the
shortcomings of standard model issues [1-8]. Scalar field as a primary ingredient of inflation provides the causal
interpretation of the origin of Large scale structure (LSS) distribution and observed anisotropy of CMB [9, 10]. In-
flationary standard models are classified into slow-roll and reheating epochs. In slow-roll period, potential energy
dominates kinetic energy and all interactions between scalar (inflatons) and other fields are neglected, hence the uni-
verse inflates [11]. Subsequently, the universe enters into reheating period where the kinetic energy is comparable to
potential energy. Thus, the inflaton starts an oscillation about minimum of its potential losing their energy to other
fields that present in the theory [12]. After this epoch, the universe is filled with radiation. According to the current
universe, the cold inflation is the ending stage of the inflating universe as compare to the warm infltaion [13, 14].
The warm inflation is only a way that thermal radiation production and reheating epoch. The formation of Large
scale structure (LSS) and also formation of initial fluctuation can be production of constant density by the thermal
fluctuations can become the affects of dissipation. The Hubble parameter is also less then as comparative to decay
rates, According to the process of microscope the thermalized particles can be produced. The radiation dominated
phase is easily enters into the universe, when the inflating era can be stopped. Finally, the remaining matter parti-
cles is produced [15, 16]. In the scenario of warm inflation discussed many points in [17]. The motivation of warm
inflation is completely different as compare to their result. In scenario of inflation era, the dissipative effects could
be lead to a friction term in the equation of motion and also described the dissipative coefficient. In case of low, high
and constant temperature regime particularly described in dissipation coefficient [18-29]. The dissipation coefficient
is discuss the two cases weak R << 1 and strong R >> 1 [30, 31]. In scenario of warm inflation era, the general
form of dissipation coefficient can be written as;

TZ

(T, ¢) = Cp—
( 99) ¢ q)zfl

where T is the temperature of the thermal bath, ¢ is the scalar field, C, is a dissipation microscopic dynamics and z
ia an integer term for the different specific values s.t z = 3,1,0, —1 for a low, high and constant temperature. The
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value of z = 1 is represent the high temperature (SUSY-case) I' « T and for z = 0 leads to normal temperature
(exponentially decaying propagator in the SUSY case)is I o« ¢ and for z = —1 non SUSY case leads to decay rates is

I o % and for z = 3 the most common form I' & gleads to a most common form for considering logamediate model

[32]-[35] According to the condition of warm inflation, its can be existence of thermal radiation and temperature
T >> H. The thermal fluctuations and quantum is proportional to T and H. According to chaplygin gas with exotic
equation of state and with negative pressure can be described by,

__X
Pcg Pes ,
and
Pgeg = ——3 -
Pieg

This equation can be extended in the form of generalized chaplygin gas and —f and A is a constant parameter. For
the value of A = 1 thus it is converted to the original chaplygin gas. However, The chaplygin gas is also converted
in the form modification of chaplygin gas by the equation of state,

Pmcg = CPmeg — /\L (L.1)

meg

This paper is investigated can be obtained by, we discuss section 2 the basic formalism of warm inflation in the
view of MCG. In next two sections 3,4 we discuss the weak and strong regime in the scenario of MCCG and also
find out explicit expressions of inflaton and rate of decay as well as perturbation parameters s.t scale factor, tensor
to scalar ratio, scalar power spectrum spectral index and also discuss the graphical behavior by the constraints of
observational recent planck data 2018. In last section, section 5 we summarized the result.

II. MODIFIED CHAPLYGIN GAS INSPIRED INFLATION

In this section, we discuss the general form of modified chaplygin gas in the view of dissipative coefficient for the
inflaton decay rate I' and we have formalism of equation of state in scenario of MCCG;

Pmcg = CPmeg — /\Lr (IL.1)

meg

Where ¢ and f are two constant parameter and 0 < A < 1. Particularly, where P, is represent the pressure and
Pmcg is a energy density of chaplygin gas. We find the energy density of chaplygin gas according to equation of stress
energy and use the scale factor 4,

X ¢ a
Pmeg = <g+1 + g(erz)(AJrl)(EH))

1

_ = 1- Xs 1
= Pmcg0 <Xs + —g(m+2)(5+1)(/\+1) > ’ (H.Z)

Where §s = é%ﬁ According to equation (2.2), we introduce some parameters %s, { and A and ¢ are positive
mcgo
integration constant. specially, we use differential age of old galaxies such that oscillation peak parameter, Baryonic

acoustic, SN Ia data and growth index for the different and specific values (for best-fit) are obtained by fs; = 0.8252,

¢ = 0.0046 and A = 0.1905. The contribution of two equations energy density of mater p,; and and energy density
of radiation field p, in background of inflation,

1

1
X (A+AZ+E+1) | T < X (A+A5+1+§)>”1 13
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Consider a universe is a flat then the radiation field and inflation field ¢ are self interacting then we have written in
the form of Friedmann equation as follows,

1
% 5 A+T
=~ ({X . +p§,}”)(§“)} i +p7> , (IL4)

T+2m \ [1+¢

where H is known as a Hubble parameter is define H = % and ¥ = 877G . According to modified Friedmann equation
and we suppose that inflation field ¢ and radiation field in the scenario of flat universe, yielding

Op + (M +2)(0p + Pp) = T2 = G+ (M +2)¢+V = —T¢?, (IL5)
and
4

py + 507+ 2) Hapy = T¢7, (IL.6)

(P'z
o =5 +V(e) (IL7)

. @2
Py ="~ V() (IL.8)

Here p, is known as the energy density and P, is known as the pressure, both the function are related to the same
field. Where similarly term is, consequently, V(¢) is a scalar potential. The condition of energy density of radiation
field is py >> p, then Eq.(2.4)

1
K X (1+A+A+E) | T
H? .
2 1+2m<{1+§+p‘? }

Q

1

. 3 (/52 (A+AL+1+0)] T
= = |4 — . 1L
2+ 1 g+1+< ((”Hz) 19)
By solving these equations in terms of field Egs.(2.5) and (2.9),
=4
oo (2 + 41i1) (—Hy) (1+2m)H3 | 1*¢
¢ k(i +20 +ml +2)(1+R) K
,g, g',
- - ~(+1)] (@)
2
x [1 - gi‘r : <(1 HK"’)Hz) ] ) (IL.10)
we characterized a new parameter as follows,
r
R= — . 11
(i + 2)(Fa) .

According to this condition pi, << 3 (1t +2)H,p,, by combining Eq. (2.6) and (2.10)

. 3Tgr 3T(—H,)
" 4(m+2)Hy  2x(Hy)(1+{)(1+R)

[ (2 + 1) H2 | 7 [ (20 4+ 1)
K {(m+2)2}

e

[ - oo\ —(1+A) ( (ESESYESY)
x |1- 24 <(1 +2m)H2> ) (IL12)
¢+1 K
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Particularly, the thermalized energy density is known as p, = C,T*. According to Minimal Super symmetric stan-
dard model (MSSM), C,, = 30 , 8+ = 228.75 and C,, = 70 [36], by solving Eq.(2.12)

T 3T (—Hy) (1 + 2iit) (1+ 2m)H3 @
| 2kHyCo (71 +2)2(1+ {) (1 + R) K
i (A+1)] G
- 142 H2\ ™ (4+40+4AT+4N)
o |1 & ((E2H; ) (IL13)
c+1 K
By Considering Egs. (2.9), (2.10) and (2.13) ,
v — (1 —|—27’71)H% B X ) (14+C+A+AZ) N {_12
K 1+¢ k(1+0)(1+R)
=4
y (14 21) | (1+2m)(H3) |1
(m+2) K
(E+A(1+0))
. - (1) T @Dy
2
« 1o & (ZrtDH; , (IL.14)
¢+1 K
The dissipative coefficient can be obtained as,
z =l
i 3(1 + 21m)(—Ha) L (14 21) (HZ) | 4049
2k(Cy)Ha (111 +2)2(1 + ) (1 + R) K
()] ~ )
- 142 H2\ ~ +1)(4+4
X Cppl = X <( + 271) 2) ] , (IL15)
1+¢ K
In this era, the scalae factor of logamediate inflationary model is given by,
a(t) = exp/ "™ £ > Oandg > 1 (IL.16)

where g and f are two dimensionless constant parameter [37]. The next three sections, we will discuss the two cases
weak dissipative regime and strong dissipative regime.

III. THE WEAK DISSIPATIVE REGIME

In this case, the weak (R << 1) function can be converted in number of scalar field’s ¢ , by using Eq. (2.10) and
(2.16), we get

P(t) — o = —==, (IIL.1)

Where ¢, is a constant term of this integration , and @ is a constant term and 7[t] is a function of comic time is given

by, ( with condition ¢g = 0)
~ 3 1 1=C K _1
= 2 71 2(1+¢) 2(1+¢)
VEL+ 23 m+2) ()70 (555
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3 s s s (1-0)(1-g)
. 2(1+¢)*Gamma [H;(élt%gg, ﬁafgm} (In[t]) 204D
T[t] = _

4
_Xt(lfi()l(ﬁi\) (5+/\+ gA)
1+ +4)
(—1+8)(3+4A+Z(5+4A))
2(1+0)
(2437 +2A +2{)\) Log|t] L3ty

- s Sl

x Gammal[l —

7

(—=1+8) (3+4A+{(5+4A))

(—(2 +37 424 +2ZA)Loglt] ) - 200
1+¢

Under the slow slow roll approximation, we formulate the Gamma function and also we find out the scalar potential

in terms of scalar field ¢ by using %2 < V(g), we get

1
2 (97 2 1+A 2 ICRRSIERY
V(p) ~ ( S g ) ¢ , (IIL.2)
k(22 [@g]))2(In(7 - [@g]))228) ¢+1
we can written as constant dissipative coefficient in terms of ¢ as follows,
Mp) = { 3(1 + 2) ]42
7 )@+ 2D+ 272z )
< (1+2m)f2g> > (Ei= orts
(T 1[@g])2(n(z [@g]) 219) vy
LAY DT
o =17, 2 =17 % 2(1-g) O+ (=2
|k (MG 2 de)) , 13
1+w (1+2mm)f2¢>

In a cosmological time, the number of e-folds N is interpolated between two different time initial ¢; and final ¢, as

follows,
7 t
N = <m+2) : H,dt
3 h

= L2 (e (@ga))s — (n(z [@g1)))], (114)

According to inflationary scenerio, anisotropic model can be proposed by [38, 39]. Slow roll parameter determine’s
the degree of the anisotropy. Anisotropy during inflation cannot be completed neglected because slow roll parameter
is factual known as order of a percent. Dimensionless slow roll parameter can be expressed € and 7 by [40]. These
parameters presented in function of ¢ defined as,

3 H,
= - 15
€ <r71 + 2) H?' (I5)
and
b
p=— (-0 ) 2 (IIL6)
m+2 H>H,

In inflationary scenario in terms of scalar filed slow roll parameter, it is a nearest of early and possible stage of e =1,

1
1 3 1 \s1
P1 = 5 |:(exp <ﬁl—i—2fg> ] , (III7)
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There are four ways in which scalar perturbations can be represented i.e scalar spectral indices and scalar tensor
power spectra ns, nt and Pg[k], Prk] According to standard scalar field, the scalar density perturbations can be

1
written as in the form of of P} = (m+2) 59 is derive by d¢? ~ ("+2)H, T [41]-[43]. The scalar power spectrum is
obtained by Egs. (2.10) ,(2.13) and (2. 15)

1_y (B3z=11)(1+0)+2((2-3)+2(3~2) (1+{) (8=1)[(11-32) (1+{) +2{(3—2)]+(g=1) (z=3) (1+{)
Pr = Fo+:t (1+0)(4-2) (In[t]) 1+0)E—2)
(3=2)(E+A(1+0)

. ~ A4+ T )E—=
Pt ((1+2m)H§> ws)

1+ K
This function is converted in the form of scalar field ¢,

1z (82-11)(144) +2{(2-3) +2(3—2)(14§)
Pr = quoﬁ(i'*l[cf)q@]) (14+0)(4-2)
(s=1)[(11-32) (1+0)+203—2) | +(g=1) (1+{) (z=3)
(In(T™ @ ¢2])) ot
+A(140))

—2)(&

B B (A+1) z+1( 2)(1+1)

1+ 2im)H2

[1_ x~<( +21m) 2) ] ) (IIL.9)
14+¢ K

X

where F; is a constant term then,

1

Eo_ (m:|—2)3 <K(l+§)(ﬁ1—|—2)> 3(1+2m)C, 4z
! 3 2(1 + 2mm) 2kC, (171 + 2)2 (1+g)
142 6= Zl)fg) (11-35)(140)42{3-2)+ (-3) (140)
X [ } (f8)

(1+0)(4—2)
K

7

1-2 (32-11)(1+0)+2{(2—3)+2(3~2)
e
1[(11-32)(1+{) +2{(3-2)]+(g~1)(z=3)

X (ln(G[N])) (1+D)(4-2)

+A(1+0)

G-2)(¢
. _ —(A+1)7 @) E-2)(+4)
Pt ((1 +2m)H§> (I11.10)

C1+¢ K

8
—1

where &, and G[N] are defined by F, = Fla)% and G[N] = [exp( (mliz) (7)f8)7 ]é . The scalar spectral index

ns is defined as ns = 1+ ddl?% , and by combining Eqn. (3.1) and (3.11), we get

(3z—11)(1+ ) +2(1+{)(3—2z) +2{(3—2)
fe(1+§)(4—z)(In[t])s~
(=11 =32)(1+§) +20(3-2)+(z=3)(1+](g—1)
f8(1+)(4—z)(Int])8
+ np+n3, (IIL.11)

Where 75 and n3 are terms of above equation can be obtained by

1oz [ a(tom ((1+2m)(fg)2)1fz
27 4- fer(im+2)(1+) K

1g 1+3§ 7&
1+¢

ng = 14

+

X

(1+¢))

@7
1_ X (1 + Zﬁi)fzg2(ln[t])2(g71) —(A+1)7] 2D a+A)
1 —0—6 K12

X
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and
B —2% 3-z\ ,» o\ (x/(2m+ 1))t
"o <(1+Z)2> (4—Z> (E+A01+0) =g
o (L)(3+2/\)(g71)<t)2(1+/\) 1 X (t)201-8) i
In[t] 1+ \ (2 + 1)f2g2

The scalar spectral index in the form of N

(Bz—11)(14+0)+2(1+0)(3—2z) +2{(3 —2z)
f8(1+)(4 —2)(In(G[N]))s~1
(g—D[(11-3z)(1 + 5)~+25(3 -2)+(z-3)(1+]g-1)
f8(1+¢)(4—z)(In(G[N]))8
+ np+ng, (II1.12)

ng = 1+

+

Where 1, and n3 are defined as

_ 1oz [ 20420 (<1+2n~1><fg>2)1f%~
"= 4-— far(m+2)( 1+§) K
(1-g)(1+30) 1+3g =
x (In(G G(N))™
& [ (1420) f2%(In(GIN]))s Y ~(HD)] G @)
X — =
1+¢ K(GIN])?

and

nz = (( —2X ) (3_Z> (C+A(1+0)) (xc/ (210 + 1))t

14¢)2) \4-z (fg)3+2A
o ((ln(cl;[N]))BJrZA)(gl)(G[N])2(1+A)

-1

1+A
_ X (x(n(GIN])**~®)
1+¢\ (2m+1)f28?
The tensor perturbations is written as in form of standard scalar inflation Ref.([44]), we may compute the tensor to
scalar ratioisr = 11,) , we obtained,

_ H» m+ 2
= 8k <27T> (—— 3 ), (TI1.13)

) (11-32) (1+0)+2(1+8) (3—2)+2L (z—3) +2(1+{) (4—2)
7’( ) _ M *lt (1+0)(4-2)
¢ 37T2F1 7
(1=g)[(11-32) (148) +20(2-3) +(3—2) (14+{) +2(4—2) (1+{)]
X (In[t]) +0)E-2)

—3)({+A(1+0))

(z-3)
% [ x2(In[t])21-8) 1+AT @) U-2)a+A)
) s F 111.14

1+§<(2m+1)f2g2> ( )
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Tensor to scalar ratio in terms of number of e-folds N,

2(771 + 2)Kf2g2 1 (11-32) (140) +2(140) (3-2)+2{ (—3)+2(1+{) (4—2)
= 29N 8 (2(GIND)) = (GIN 1+ 4—2)
S (F(GIN)) F (GIN)
(1=g)[(11-32) (148) +2(2-3) +(3—2) (14+{) +2(4—2) (1+{)]
x (In(G[NY])) (1) (d=)
) S
- > 21— 110 (4—2)(1+A
& (x(GIND(in(GIN])**—¥ s)
1+¢ (2m +1)f2¢2
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IV. THE STRONG DISSIPATIVE REGIME

In this section, we analyze the strong dissipative regime I' << (71 4 2) H, in the scenerio of inflationary model and
discuss two special cases s.t z = 3 and z # 3. We formulated the soluation of scalar filed as the function of cosmic
time by combining Eq. (2.10) and (2.15),

v . [t
¢(t) — go = exp < LL]> (IV.1)
The term @ and function Trt] are define as,
2% X 3% 1 5+3¢ K 7+8C
T = — — 7) 8(1+0) ( _ )8(1+§)
(rﬂ+2)%3><c¢7><c? 3 1+ 2m
Y (g=1)( —2(1+A) (=1+£)(11+16A+Z(13+16A))
A = (g S RCIVE A+ TN o - SR
1+A)(14+7)
< Gamma[l— (-1+g)(A1+16A+(13+161))
4(14¢)
(94 8A +27(5+4A))In]t] 3+5C+53+303

J(inle)) 050

(—1+9)(11+16A+{(13+16A))

(9 4 8A + 27 (5 + 40))In[t] ) 1)
1+

(=

Kt ( ln 2(1 8)
( 1 —I—Zm) )
(

4(1+0)

7 ~ _ (5+30)(s-1)
1+¢ SO (Il + 2Z0n[f]) T 0
+ 1+2€)) n[t]) S0+ ( o >
v Gammal BF5E+5C+38g) _ (1+20)(Inlt])
8(1+¢0) ' 4(1+Q)

The Hubble parameter as function of inflations field for z = 3 by using equation’s (2.15) and (4.1)

5) — fg
) = @I g in(F @ M g (v2)

In strong case, the scalar potential V() is given by

o (1+ 211) 2> 1A
o= K R TSR T)  ThT

1
T+ (1+A)

(IV.3)

We analyze the constant dissipative coefficient for special case z = 3 by using eqns (2.1) and (4.1), we obtain the
result as;

’ -3 3(g-1)(1-0)
M) = BEGN)) 2(GIN) T (n(G(N)) 7

X (GG 2\
T+l f2(1+2m)g? !

—3(C+A(140))
0+ (1HA)

(IV4)
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_ 3
Where F; = Cy [ o g(gﬁgg{; g 2)} 1 ( (1+21i) f232> T+ is a constant term. By using eqn (2.1) and (4.1), the interaction
between the quantity of e-folds N is found as,

77 t
N = <m+2) Zszt
3 H

= DT T o)) — (7' @ n i) (v5)

According to the early universe, the thermal fluctuations provide the main source of scale density in scenario of
inflationary. For the first time, the power spectrum is introduced by [45], when the friction coefficient in the inflation
equation of motion depends on temperature. If the constant dissipative coefficient increases with temperature then
the always increases the scalar perturbations. We discuss the high temperature case by ([46, 47]). For the strong

dissipative regime R = W > 1. Where < 0 > is the scalar field fluctuation and can be written as < 6¢p >2~~

% . The new function is known as wave number and it can defined «r this function is also will be equal to xf =

(MTH)FHZ = (m+2) \/% after following at these Eqs. (2.1) ,(2.12) and (2.14), this equations will be equal to the
scalar perturbation,

m+25HzrzT +2 (1+§)C¢ 1+ 217\ 8r0
Pr = ( ) 2 p

272 1/’2 3 472(1 +2m)

ol

X
5

§ (gt [0+ 2m) ]?

[ZKCW( +2)(1 +C)

(14 2mmE2) Y )

1+<: 1+A>

e (IV.6)

Another form of scalar perturbation can be written as in scalar ¢ perturbation ¢;

— (3+26> 3(g=1)(5+3¢)
P = R(FN@Ing]) 0 (In(t [@Ing])) S0 ¢
—3(C+A(1+0))
(Dlnqo ( 71[6{)11’14’)])2(17‘@ 1+A7] 20+20)(2+21)
(1+21m)f2g2

(IV.7)

where

K1+ +O) (11 omy
£ m+2 J; 1+ 2\ 80+0)
* 3 ( + 21)4rr K
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25430 (1 + 211) N
x (fg) 50 [2(m+2)KC7(1+€)}

The power spectrum written as a number of e-folds for z = 3

_3(3+29) 4 1)(543 B
m—amw“wwmwfﬁﬁwﬂgmwm)

=3(6+A(1+0))

2 inTi20—g) | ] THOERA
X (wqm>cw> ) ,

(IV.8)

Considering the Egs. (4.7) and (4.5) ;

ne = 1— 3(3 +20) 3g-1)(G+3)
o 4fg(1+€)(l”[f])g’l+8fg(1+C)(ln[t])g+ 1+ 12 (IV.9)
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where 111 and ny are the next two terms of spectral index

—3-47
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X

Similarly, can be written as number of e-folds of spectral index as given ,

b1 3(3+20) L 8lg=1)(5+30)
| 4fg(1+)(In(G[N])s~ 1~ 8fg(1+¢)(In(G[N]))3
+ ny+ny (IV.12)
where
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The tensor perturbations can be written as ¢
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FIG. 1: plot of left R verses n; and right plot T verses ns { = 0.0046, ¥ = 0.8289, 1M =1, ¢ =20, f = 0.9805,« =1

As the weak regimen the tensor to scalar ratio in terms of number of e-folds becomes

m+ 2 zK(fg)z 4(11*2@ (8_1)(1j'7€)
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V. THE STRONG DISSIPATIVE REGIME
In this case, we discuss the scalar field for a special case of a strong regimen for z # 3, we obtained
¢(t) — o = fulf] (V.1)
Wn
where ¢ is another new scalar field which is defined as ¢[t] = 3ZTZ¢3%Z and also @, and 1, [t] both function written
as,
z 1 z—4 5 4-z
z . 5 . 8—z+4¢(z 4
o = =50 (1) T i ()™
2% C3 1+¢ m+2" " fg 1+ 2
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According to this case, The definition of Hubble parameter is define,

fg

Hy (@) = == T AT (V:2)
(T @g]))(In(t-1[@@]))1 8
For special second case z # 3, The Potential in this form
1+A ( ‘)1(
1 27 252 = 14¢) (14A)
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For this case, the dissipative coefficient after the solved can be written as,
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and the constant term, where F; = C [2(m+2)xcy(1+5)} ( < ) .
For this case, The number of e-folds ,we get
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In special second case for z # 3, The Power Spectrum can be found that
3(1-2) (=D[(6=32)(14+30)-8(1+0)] 1 2(6-3z)(1+20)-8(1+L)
Pr = Fu¢ 7 (Inft]) 8(1+0) . 8(110)

6-32)(G+A(1+4))

(
N 5 2(1-g) 1+AT] 8(1+0)(d—2)(1+A)
{1 X <Kt (In(t)) ) ] V6)

T+ \ (@m+1)f2g2


https://doi.org/10.20944/preprints201906.0252.v1
https://doi.org/10.1140/epjp/i2019-12877-5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 June 2019 d0i:10.20944/preprints201906.0252.v1

Where,
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Consequently, The power spectrum is defined number of e-folds, we get
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1+ (2171 4 1) f2¢2

Where 7, is a constant term and is defined by v, = (%)¥ and also written as of scalar spectrum index in scalar
field
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In this case z # 3 and the scalar spectral index which can be expressed in number of e-folds,
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where 11, and ny, are
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In the second case, similarly we also find the tensor-to-scalar ratio,
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Similarly, this equation can also be written as number of e-folds
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VI. CONCLUSION

In the present work we have studied the warm inflationary dynamics by modified chaplygin gas in the background
of rotationally symmetric Bianchi identity I. We formulated the inflationary expansion by the process of constant
dissipative coefficient I' = C,T*/ (pz’l where, z = —1,0,1,3 . We are considering weak and strong dissipative
regime and find out the several inflaton decay rates. Under the slow roll approximation we formulated the scalar
power spectrum, scalar power index and tensor to scalar ratio subsequently. According to essential condition of
warm inflation T >> H, and this always satisfied the weak (R << 1) and strong(R >> 1) dissipative regime. The
limit of dissipative parameter C, for upper and lower is satisfied the condition of warm inflation and the conditions
of decay rates. The parameters r and 7n; does not compose any constraints data on the contrary the Planck data, on
the considering two- marginalized constraints at 68 and 95 C.L. However, The recent planck observational data is
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compatible for tensor to scalar ratio r . According to recent observational planck data, the strong dissipative regime
for special case z = 3 the conditions of model evolves under the this regime and for two-dimensional marginalized
constraints on the parameter r and 7 for the constant dissipative parameter C, by the set of upper and lower limit.
Finally the values of z = —1 and z = 0 are not satisfied the condition warm inflation for the case of strong dissipative
and recent data and the plot of r verses n; can’t draw in a strong case, since the predicted the value spectral index
is always greater than unity. It is interesting, the recent observational data is also compatible with our inflationary
dynamic model for specific value of tensor to scalar ratio r ~ 0. We conclude that the warm logamediate inspired
modified chaplygin gas with rotationally symmetric Bianchi Identity I with current planck 2018 data for all inflation
decay ratios for different parameterized z with evolves under constant dissipative regime.
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